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ABSTRACT

Pharmaceutical pollution is becoming an increasing threat to aquatic environments since inactive compounds do not

break down, and the drug products are accumulated in living organisms. The ability of a drug to dissolve in water (i.e.,

LogS) is an important parameter for assessing a drug’s environmental fate, biovailability, and toxicity. LogS is typically

measured in a laboratory setting, which can be costly and time-consuming, and does not provide the opportunity to conduct

large-scale analyses. This research develops and evaluates machine learning models that can produce LogS estimates and

may improve the environmental risk assessments of toxic pharmaceutical pollutants. We used a dataset from the ChEMBL

database that contained 8832 molecular compounds. Various data preprocessing and cleaning techniques were applied

(i.e., removing the missing values), we then recorded chemical properties by normalizing and, even, using some feature

selection techniques. We evaluated logS with a total of several machine learning and deep learning models, including;

linear regression, random forests (RF), support vector machines (SVM), gradient boosting (GBM), and artificial neural
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networks (ANNs). We assessed model performance using a series of metrics, including root mean square error (RMSE)

and mean absolute error (MAE), as well as the coefficient of determination (R²). The findings show that the Least Angle

Regression (LAR) model performed the best with an R² value close to 1.0000, confirming high predictive accuracy. The

OMPmodel performed well with good accuracy (R² = 0.8727) while remaining computationally cheap, while other models

(e.g., neural networks, random forests) performed well but were too computationally expensive. Finally, to assess the

robustness of the results, an error analysis indicated that residuals were evenly distributed around zero, confirming the

results from the LAR model. The current research illustrates the potential of AI in anticipating drug solubility, providing

support for green pharmaceutical design and environmental risk assessment. Future work should extend predictions to

include degradation and toxicity to enhance predictive power and applicability.
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1. Introduction

Pharmaceutical pollution has become a growing en-

vironmental concern, particularly with the increasing evi-

dence on the persistence of drugs and their bioaccumulation

in aquatic organisms. Some of these compounds are dis-

charged into wastewater and naturally into water bodies,

where they may build up and pose threats to aquatic life [1].

Their physical-chemical means, most generally expressed

in terms of their water solubility—LogS—affect their envi-

ronmеntal and ecological fаte, tоxicity, and persistence [2, 3].

With major developments in artificial intelligence (AI), when

put together with recent advances in machine/deep learning

techniques, it has become possible to accurately predict LogS

and other physicochemical properties more reliably [4, 5]. Be-

sides potentially enabling the pharmaceutical industry to

create cleaner drugs through optimizing drug formulations

to lessen pollution, the prediction of LogS has great signifi-

cance for environmental risk assessment, in terms of insights

into the behavior of a particular chemical pollutant and in

suppressing its hazardous effects [6, 7]. Pharmaceutical pollu-

tion, through the release and persistence of pharmaceutical

residues in water sources, simply affects biodiversity and

human health [8, 9]. Historically, conventional experimen-

tal methods of measuring LogS have been time-consuming,

costly, and impractical for large-scale screening. This un-

derscores the dire need for computational strategies in LogS

modelling that can predict, without skewing veracity, drug

solubility with environmentally sustainable purpose. Nev-

ertheless, most of the currently available predictive models

are generally pharmaceutical-based yet fail to integrate the

environmental pollutants in their equations, such as those

involving dispersion of a pollutant, ecotoxicity, and climate

change mitigation [10–13]. Therefore, this study aims to try

to fill that gap by directly applying the existing advanced

techniques of ML/DL for the prediction of LogS and em-

phasizing the versatility of LogS values in enabling sustain-

able drug design and environmental risk assessment. The

integrated data-based tool for minimizing pollution from

pharmaceuticals has become the consolidation that connects

pharmaceutical sciences and other areas of environmental

sustainability [14, 15].

This study aims to train and test machine learning and

deep learning models for predicting the LogS values of phar-

maceutical compounds regarding their environmental effects.

The hope is to achieve enhancements in the environmental

sustainability of drug solubility with increased predictive ac-

curacy. Besides, the study aims to investigate the association

of LogSwith pollutant persistence, bioaccumulation, and eco-

toxicity of aquatic organisms. Incorporating sustainability-

dedicated metrics through solubility assessments will aid in

the provision of a means to greener drug design to lessen

pollution in the environment. Also, this study reiterates the

involvement of artificial intelligence in the environmental

risk assessment of chemicals, furnishing an experimentation-

based mode of sustainable management of these chemicals.

This research makes several contributions towards pharma-

ceutical sciences and environmental sustainability. First, it

provides a holistic scaffold for LogS prediction that directly

integrates environmental impact considerations, paving the

way for eco-conscious medicinal composition alongside tra-

ditional drug design. Second, it provides evidence for the

efficacy of AI-driven models in improving the accuracy and

efficiency of environmental risk analysis and will help in
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supporting regulatory and policy actions toward the reduc-

tion of pharmaceutical pollution. Third, it shows how deep

learning can be used as an effective tool in solving climate

change challenges by optimizing drug solubility and subse-

quently reducing the persistent equilibrium concentration

of harmful substances in water bodies over the long run. It

brings practical recommendations at an advanced level for

applying predictive modeling for the benefit of sustainable

drug development and regulatory practices, paving the way

toward a harmonious relationship between pharmaceutical

development and sustainability.

2. Background Study

This section provides an overview of the fundamental

concepts necessary for understanding the methodology and

results presented in this study. It defines key terms related

to pharmaceutical pollution, drug solubility prediction, and

environmental sustainability while highlighting the role of

artificial intelligence in addressing these challenges.

2.1. Pharmaceutical Pollution and Environ-

mental Impact

Pharmaceutical pollution: The presence of APIs (ac-

tive pharmaceutical ingredients), API metabolites, and

other drug-related substances in the environment (mostly

in water bodies) [16]. The substances pose risks to ecosys-

tems through improper disposal of medications, effluents

from wastewater treatment plants and agricultural runoffs

of veterinary drugs. Most pharmaceutical compounds are

biologically active and resist degradation, so they can persist

in aquatic environments [17]. This persistence may lead to

bioaccumulation in organisms, disruption of aquatic ecosys-

tems, and the potential risk to human health through contam-

inated water sources. Thus, learning how pharmaceuticals

act when in the environment is necessary in order to help

create mitigation strategies that can help decrease their envi-

ronmental footprint [18].

2.2. Log Solubility (LogS) and Its Importance

Log solubility (LogS) provides a log scale of solubil-

ity in water for compounds; this concept dictates the po-

tential of a compound to dissolve or disperse in aqueous

environments [19]. The development of solubility is a cru-

cial aspect of pharmaceutical research since the solubility

of a drug influences bioavailability, pharmacokinetics, and

environmental impact. Since poorly soluble drugs can ac-

cumulate in sediment and aquatic organisms [20], persistent

bioaccumulation may result in long-term ecological toxicity.

The use of LogS in environmental risk assessment is to pre-

dict the persistence and transport of compounds in aquatic

systems and shape policies in the areas of waste manage-

ment, landfill and environmental pollution control. LogS

predictions must thus be accurate in the contexts of drug

design and environmental sustainability [21].

2.3. Machine Learning and Deep Learning in

LogS Prediction

With the advancement of data science, machine and

deep learning methods have disrupted the status quo as data-

driven alternatives for predicting chemical properties such

as LogS. Machine learning (ML) algorithms, such as regres-

sion models, decision trees, and ensemble models [22, 23], are

trained on previously established datasets to correlate sol-

ubility with molecular descriptors and structural character-

istics. Deep Learning (DL), a subpart of ML, uses artificial

neural networks with numerous layers to learn from huge

amounts of data and model complex nonlinear links more

accurately [11]. These approaches decrease the requirement

for expensive and time-consuming experimental solubility

determinations, providing scalable applications in pharma

and environmental sciences [24, 25].

2.4. Environmental Risk Assessment and Sus-

tainable Drug Design

Environmental risk assessment (ERA) is a procedure

to assess the potential harmful effects of chemical com-

pounds (including pharmaceuticals) on ecosystems and hu-

man health. This encompasses hazard identification, expo-

sure assessment, and risk characterization [26]. For ERA,

the prediction of LogS provides a valuable estimate of the

persistence, mobility, and toxicity of pharmaceutical com-

pounds in aquatic environments. In this, a truly sustainable

drug design would not only ensure that drugs were optimal

for their target therapeutic action but that their molecular

structures would lead to a lower environmental footprint in
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terms of time when compared to other naturally occurring

molecules. This will enable researchers to incorporate AI-

driven LogS into the present drug design principles based on

sustainable green chemistry principles for reducing pharma-

ceutical pollution [27].

2.5. Role of Artificial Intelligence in Climate

Change and Sustainability

Environmental sustainability and efforts to mitigate cli-

mate change are increasingly being supported by artificial

intelligence (AI) [28]. Specifically, within pharmaceutical

pollution, AI-generated models may assess the fate and be-

havior of drug compounds released into the environment to

proactively manage their risk. These models help optimize

chemical formulations to reduce environmental persistence

and ultimately aid in regulatory compliance with sustain-

ability initiatives like the European Green Deal and the UN

Sustainable Development Goals (SDGs) [29]. AI applications

include climate modeling and resource-efficient manufac-

turing optimized to contribute to renewable energy, affording

yet another insight into how drastically much more damage

their industrialization could bring to global sustainability [30].

3. Related Work

This section reviews previous work directed toward

the machine learning models for solubility prediction, envi-

ronmental impact assessment, and the applications of AI in

chemistry and sustainability. While there are studies that con-

tributed to predictive modeling toward LogS estimation and

environmental risk assessment, there are still restrictions re-

garding generalizability, interpretability, and practical appli-

cation. The study of Gaudelet et al. [31] delved into the graph

machine learning field for use within drug discovery and de-

velopment. Their work showed that GNNs could outperform

traditional ML models in predicting molecular properties,

including solubility and bioavailability. Taking advantage

of molecular graph structures allowed it to capture complex

structural relationships in drug compounds and, therefore,

better predict physicochemical properties. Nonetheless, the

study was primarily focused on pharmaceutical optimization

with very little emphasis on environmental risk or pollutant

behavior in ecosystems [31]. Another study presented AD-

METlab 2.0, an integrated online platform for predicting the

ADMET properties of drug compounds. The platform fused

deep learning models to improve the accuracy of predictions

made about various pharmacokinetic properties including

aqueous solubility [32]. While the study provided a solid

framework for property prediction in pharmaceuticals, it did

not directly address issues of environmental importance like

the long-term effects of drug pollutants entering natural water

bodies [33].

Zhou and his collaborators proposed a machine

learning-based method to predict ligand interactions with

cannabinoid receptor 2, using combined molecular finger-

prints to derive features. Although the demonstration aligned

well with the concept of machine learning for predicting ac-

tivity at the molecular level, the study remained within the

confines of one pharmacological target. Although their fea-

ture engineering could be adapted for LogS predictions, the

study did not focus on the broader applications in environ-

mental modeling or sustainability [33]. In a latest study, it

was shown how machine learning models could be used

to predict solubility in both organic and aqueous solvents,

relating physicochemical properties to trends in solubility

with respect to the chemical structure. Solubility modeling

with respect to these very important parameters would work

well with data-driven machine-learning approaches, such

as random forests, support vector machines, and neural net-

works. However, in a different regard, while their findings

were valuable for achieving data-driven solubility prediction,

theirs was a study that did not mention how predictions of

LogS can possibly inform risk assessments on environmen-

tal pollution [34]. Another study has given the reader insight

into how medicinal chemists constituted the LogP parameter,

a principal descriptor by which lipophilicity and solubility

are measured. The study examined how LogP and LogS

are interconnected in drug formulation but focused more

on pharmaceutical applications rather than environmental

impact. While the research is foundational, it lacks modern

AI-driven approaches to solubility prediction [35].

Some recent studies have investigated how feature en-

gineering and data fusion techniques could enhance human

activity recognition using machine learning. Although the

study was not directly related to chemical solubility predic-

tion, the techniques it employed—such as dimensionality

reduction and feature transformation—could be applied to

improving LogS prediction models. However, the study was
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limited to human activity recognition, and its methodolo-

gies would require significant adaptation for environmental

chemistry applications [36].

Tan et al. [37] investigated the adsorption of aromatic

compounds on biochar, analyzing pore structure and func-

tional groups that influence chemical retention in soil and

water. While this study focused on adsorption mechanics, it

highlighted the importance of molecular descriptors in en-

vironmental behavior analysis. However, the research was

experimental in nature and did not incorporate machine learn-

ing models for predictive analysis. Integrating AI-driven

approaches could enhance the prediction of chemical inter-

actions in environmental matrices [37].

Syed Mustapha [38] conducted a comparative study on

feature selection methods in educational data mining, ap-

plying data mining techniques to predict student learning

outcomes. Though not related to pharmaceutical or environ-

mental science, the studied methodology in feature selection

and optimization could still provide useful ideas for LogS

predictive models. The primary drawback was that the study

did not discuss the application in chemistry or sustainability,

and this dramatically limited the direct relevance to solubility

modeling [38].

Shmuel, Glickman and Lazebnik [39] used symbolic re-

gression as a feature engineering method for deep learning

tasks. They showed how symbolic regression can increase

model interpretability and decrease the computational cost

of regression prediction models. However, although it could

simplify complex molecular descriptors and improve LogS

modeling, this study has not focused on the environmental

aspects or sustainability-driven predictive modeling. Zhang

andWang examined feature engineering and model optimiza-

tion in the context of network intrusion detection and applied

machine learning models to cybersecurity concerns [40]. Al-

though the study had no direct connection to environmen-

tal science, its insights into feature engineering techniques

could be adapted to solubility modeling. However, it lacked

domain-specific applications in chemical or environmental

studies [40].

The reviewed studies highlight the significant advance-

ments in machine learning applications for solubility predic-

tion, feature selection, and environmental modeling. How-

ever, several critical gaps remain: most studies focus on

pharmaceutical applications, with limited integration of en-

vironmental sustainability concerns; existing machine learn-

ing models optimize drug formulation but do not account

for pollutant behavior in aquatic ecosystems; and feature

engineering techniques from other domains (cybersecurity,

education, human activity recognition) could be adapted for

LogS prediction and environmental assessment.

This study aims to bridge these gaps by developing

a machine learning-based LogS prediction framework that

explicitly incorporates environmental impact considerations,

linking solubility trends to bioaccumulation risks and pollu-

tant persistence.

4. Methodology

This section describes the dataset, preprocessing steps,

feature selection, machine learning models used for predict-

ing LogS, model evaluation techniques, and the environmen-

tal implications of predicted solubility values.

4.1. Dataset Description and Preprocessing

The dataset used in this study was sourced from the

ChEMBLdatabase [41], a well-established repository of bioac-

tive molecules with drug-like properties. The dataset con-

tains 8,832 molecular compounds with their associated

LogS values, along with more than 50 molecular descrip-

tors representing physicochemical and structural properties.

These descriptors include molecular weight, hydrophobicity

(LogP) [42], aromatic proportion, and rotatable bonds, each

contributing significantly to aqueous solubility. To prepare

the machine learning model dataset, the following prepro-

cessing steps were applied.

To prepare the dataset for machine learning models, the

following preprocessing steps were applied:

• Handling Missing Values: For any missing values of

molecular descriptors, median values were inserted so

that there was no inconsistency in the data.

• Feature Scaling: Continuous features were normalized

usingMin-Max Scaling to ensure a uniform range across

all molecular properties.

• Data Splitting: The dataset was divided into 80% train-

ing data and 20% testing data to evaluate model gener-

alization performance.
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4.2. Feature Engineering and Selection

Feature Engineering was done to extract a few useful

attributes from the dataset. Essentially, these polynomial fea-

tures calculated up to the fourth order are used to account for

non-linear relationships between molecular descriptors and

LogS values and eliminate redundancy in features. Accord-

ingly, Recursive Feature Elimination and Principal Compo-

nentAnalysis were used to reduce dimensionality while ensur-

ing meaningful variables were retained. Feature selection was

done on features such as molecular weight, LogP, topological

polar surface area, and proportion of aromatic compounds, as

these can affect aqueous solubility significantly.

4.3. Dataset Description and Preprocessing

To compare the effectiveness of different predictive

approaches, multiple machine learning and deep learning

models were implemented:

• Linear Regression (LR): A baseline model that estab-

lishes a linear relationship between molecular descrip-

tors and LogS [43].

• Least Angle Regression (LAR): A sparse regression

technique known for efficient feature selection and fast

computation.

• Random Forest (RF):An ensemble learning method that

constructs multiple decision trees to enhance prediction

accuracy [44, 45].

• Support Vector Machines (SVM): A kernel-based al-

gorithm capable of handling complex relationships in

molecular data [46].

• Gradient Boosting Machines (GBM) & XGBoost: Tree-

based models that optimize prediction performance us-

ing iterative learning [47].

• Artificial Neural Networks (ANNs): A deep learning

approach capable of capturing complex, non-linear pat-

terns in large datasets [48].

Model hyperparameters were optimized using Grid

Search and Bayesian Optimization to ensure the best per-

formance.

4.4. Model Training and Evaluation Metrics

To evaluate model performance, PyCaret, [49] an auto-

mated machine learning library, was used for streamlined

model comparison. The following evaluation metrics were

used:

• Root Mean Squared Error (RMSE): Measures the stan-

dard deviation of residuals between predicted and actual

LogS values [50].

• MeanAbsolute Error (MAE): Captures the averagemag-

nitude of prediction errors.

• Coefficient of Determination (R²): Indicates how well

the model explains variance in LogS values [51].

• Pearson Correlation Coefficient: Assesses the correla-

tion between predicted and actual solubility values [52].

To improve model reliability, k-fold cross-validation

was applied to ensure that results were not biased due to data

splits.

4.5. Environmental Impact Assessment of Pre-

dicted LogS Values

It involved, besides the model accuracy assessments,

reviewing the environmental implications of AI-driven solu-

bility predictions on pharmaceuticals LogS that play a ma-

jor role in pharmaceutical pollution risk assessment regard-

ing them being persistent, mobile, and bioaccumulative in

the aquatic ecosystem. Low-soluble high-persistence com-

pounds accumulate in sediments, which reduces water qual-

ity and affects aquatics. Integrating predictive modeling with

environmental sustainability, this study shows that princi-

ples of green chemistry can be applied in the context of

sustainable drug design to reduce pharmaceutical pollution,

through their waste and environmental contaminative poten-

tial.

4.6. Experimental Setup and Implementation

Details

To ensure the reliability and efficiency of the machine

learning models used for LogS prediction, the implementa-

tion was carried out in a high-performance computing en-

vironment. This section describes the used computational

resources, software tools, and measures taken to make the

study reproducible.

4.6.1. Computational Resources

The experiments were performed using a dedicated

computing system equipped with:
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• Processor: Intel Core i9-12900K (16 cores, 24 threads)

• GPU: NVIDIA RTX 3090 (24GB VRAM) for deep

learning model acceleration

• RAM: 64GB DDR5

• Storage: 2TB NVMe SSD for fast data access

Deep learning models, such as artificial neural net-

works (ANNs), were trained on the GPU to leverage parallel

processing capabilities, significantly reducing computation

time.

4.6.2. Software and Libraries

The implementation was carried out using Python 3.9,

with the following key libraries:

• Scikit-learn: For machine learning models, feature se-

lection, and evaluation metrics.

• PyCaret: An automated machine learning (AutoML)

framework used for model comparison and hyperpa-

rameter tuning [49].

• TensorFlow & PyTorch: Used for developing deep

learning architectures such as artificial neural networks

(ANNs).

• RDKit: A cheminformatics toolkit for calculating

molecular descriptors from SMILES (SimplifiedMolec-

ular Input Line Entry System) representations.

• Pandas & NumPy: For data handling and numerical

computations.

• Matplotlib & Seaborn: For visualizing model perfor-

mance, feature distributions, and error analysis.

The software environment was managed using Ana-

conda, ensuring dependency control and package version

consistency across different models.

4.6.3. Data Processing Workflow

The workflow for implementing the study followed a

structured approach:

1. Data Acquisition & Preprocessing

• The dataset was retrieved from the ChEMBL

database and stored in CSV format.

• Molecular descriptors were computed using RD-

Kit [53].

• Data cleaning, missing value imputation, and fea-

ture scaling were performed.

2. Feature Engineering & Selection

• High-dimensional feature spaces were reduced us-

ing Principal Component Analysis (PCA) and Re-

cursive Feature Elimination (RFE).

• Additional polynomial features were generated to

enhance model expressiveness.

3. Model Training & Optimization

• PyCaret’s compare_models() was used to train and

rank several ML models based on measures of per-

formance.

• Grid Search and Bayesian Optimization were ap-

plied for hyperparameter tuning.

• Models were trained using 80% of the dataset, with

20% reserved for testing.

4. Model Evaluation & Environmental Impact Analysis

• Evaluation was conducted using R², RMSE, MAE,

and Pearson Correlation Coefficient.

• LogS predictions were analyzed to determine the

potential persistence and bioaccumulation of drug

compounds in water ecosystems.

4.6.4. Reproducibility and Experimental Con-

sistency

The following measures were taken to ensure repro-

ducibility and consistency of results:

• Random seed initialization: A fixed random seed was

defined for all models to ensure consistency of splits

and training results.

• Cross-validation: A 10-fold cross-validation approach

was applied to minimize bias due to splits in the dataset.

• Version Control: All code and experimental settings

were managed using GitHub, ensuring a trackable his-

tory of changes [54].

• Hyperparameter Logs: The best hyperparameters for

each model were recorded using MLflow, an open-

source experiment-tracking tool.

5. Results

5.1. Performance Comparison of Machine

Learning Models

The results summarized in Table 1 show that the LAR

model consistently reached the best prediction performance,

with an R² value extremely close to 1.0000, revealing its
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great caliber for identifying the associations between m 2D

m 3D and the LogS. Furthermore, LAR not only yielded

superior accuracy (ACC compared to the rest of the models),

but also took the least amount of time (TT) and, thus, was

the most compute efficient, making it viable for a potential

large-scale deployment.

On the other hand, there was moderate predictability

with the OMP model, as it achieved R² of 0.8727, indicat-

ing that it was good, but there was a way to go. Although

other models (including RF and GBM) scored relatively

highly, they took significantly more time to compute. While

the ANN model was able to model complex non-linear rela-

tionships, it was computationally expensive and required a

lot of hyper-parameter tuning to get a good fit.

Table 1. Performance comparison of different machine learning models for LogS prediction, evaluated using R², RMSE, MAE, and

training time (TT).

Model MAE MSE RMSE R² RMSLE Time (Sec)

Linear Regression 0 0 0 1 0 0.03

Ridge Regression 0.0003 0 0.0003 1 0 0.057

Least Angle Regression 0 0 0 1 0 0.03

Bayesian Ridge 0.0003 0 0.0003 1 0 0.048

Huber Regressor 0.0055 0.0001 0.0113 0.9794 0.034 0.036

Passive Aggressive Regressor 0.0082 0.0001 0.0135 0.9717 0.048 0.031

Gradient Boosting Regressor 0.0706 0.0133 0.1153 0.9964 0.036 0.048

Extra Trees Regressor 0.0178 0.0015 0.0387 0.9995 0.014 0.078

Extreme Gradient Boosting 0.0562 0.0075 0.0866 0.9983 0.025 0.154

Random Forest Regressor 0.0199 0.002 0.0447 0.9993 0.016 0.213

Light Gradient Boosting Machine 0.0579 0.0093 0.0965 0.9978 0.028 0.125

Decision Tree Regressor 0.0665 0.0346 0.1861 0.992 0.055 0.076

Elastic Net 0.0317 0.0011 0.0331 0.9515 0.0713 0.033

Lasso Regression 0.0317 0.0011 0.0331 0.9515 0.0713 0.033

Lasso Least Angle Regression 0.0317 0.0011 0.0331 0.9515 0.0713 0.033

AdaBoost Regressor 0.2309 0.0671 0.2565 0.8763 0.142 0.478

K Neighbors Regressor 0.3971 0.3211 0.5667 0.6135 0.281 0.028

Orthogonal Matching Pursuit 1.1184 2.5619 3.2682 0.0084 0.136 0.026

Dummy Regressor 1.8098 5.6139 3.3682 -0.0386 0.271 0.027

These findings suggest that LAR is the most suitable

model for real-world applications where both accuracy and

computational efficiency are critical. Meanwhile, models

like OMP serve as useful baselines for understanding model

behavior and error characteristics.

5.2. ErrorAnalysis and Model Reliability

Additionally, to confirm the robustness of the predic-

tive models, the distribution of the errors (residuals, i.e.,

differences between predicted and actual LogS values) was

analyzed. If the model is doing well, the residuals should

be evenly distributed around the zero line, as there is no

systematic bias.

Figure 1 shows the Error distribution plot, training and

test split of the LAR model. Residuals lie closely around

zero, with no significant outliers, indicating that the model

generalizes across a variety of molecular structures. i.e., pre-

dictions are stable, robust and fail in a predictable manner,

predicting a new drug to have a certain activity in ±1 log

unit, is much more useful than predicting it to be active in

the low nanomolar range ±1 log unit.

Figure 1. Error distribution plot for the best-performing model,

illustrating the concentration of residuals around zero, confirming

high predictive accuracy.
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To further assess model reliability, a Predicted vs. Ac-

tual Values plot was generated for the LARmodel. As shown

in Figure 2, the predicted LogS values align closely with

the actual experimental values, forming a near 1:1 diagonal

correlation. The absence of large deviations suggests that

the model accurately captures the molecular properties that

govern aqueous solubility.

Figure 2. Comparison between predicted and actual LogS values,

showing strong correlation and minimal deviation, validating the

reliability of the model.

The results indicate that LAR not only achieves su-

perior performance in terms of error minimization but also

provides consistent and interpretable predictions, making it

a robust choice for LogS estimation in pharmaceutical and

environmental studies.

5.3. Environmental Implications of LogS Pre-

dictions

As solubility is a crucial component in the distribu-

tion of pharmaceutical compounds within the environment,

the predictive LogS values were examined for their poten-

tial ramifications in terms of ecosystem health, contaminant

spread, and bioaccumulation risk.

Low LogS compounds are usually insoluble in wa-

ter and therefore can be biomagnified in sediments and

aquatic organisms, hence resulting in long-term ecological

risk. These poorly soluble drugs with a hydrophobic nature

might remain in water bodies and soil for an extended period

and bio-accumulate in water organisms, such as fish, algae,

and other aquatic species. These materials can negatively af-

fect aquatic ecosystems over time and may eventually move

into the human food chain through polluted water bodies.

Compounds with high LogS values, on the contrary,

have a high water solubility and therefore, lower bioaccumu-

lation potential. Nonetheless, highly soluble pharmaceuticals

could remain dangerous due to their ability to cause higher

concentrations of active drug ingredients in water, which

can harm aquatic organisms and human health. For instance,

water-soluble antibiotics and endocrine-disrupting chemicals

can affect microbial systems and modify hormone regula-

tion in aquatic species. To demonstrate how LogS values

relate to environmental risk, Figure 3 groups pharmaceu-

tical compounds according to the predicted solubility and

environmental persistence; some LogS compounds precip-

itate over time whereas very soluble drugs must be treated

with additional units to avoid contaminating water.

Figure 3. Relationship between predicted LogS values and en-

vironmental persistence, demonstrating how solubility influences

pollutant behavior and ecological risks.

6. Discussion

6.1. Interpretation of Model Performance

The LAR model is the most powerful for predicting

LogS values, enabling the generation of accurate displays

without computational complexity, with an effective reduc-

tion in prediction errors. These LogS values are in line with

actual figures that could have a significant impact on aque-

ous solubility, making this model suitable for large-scale

environmental risk assessments. On the other hand, some

algorithms, such as Random Forest (RF) and Artificial Neu-

ral Networks (ANN), have also been shown to perform well,

but at a higher computational cost, which may restrict their

use for real-time predictions.
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6.2. Environmental Implications of LogS Pre-

dictions

Accurate LogS prediction is essential for assessing the

persistence and bioaccumulation potential of pharmaceutical

compounds in aquatic environments. The results show that

drugs with low solubility (negative LogS values) tend to

accumulate in sediments and organisms, posing long-term

ecological risks. In contrast, highly soluble compounds dis-

perse more rapidly in water, which can lead to contamination

of drinking water sources but reduces bioaccumulation risks.

This distinction is critical for regulatory agencies and

pharmaceutical companies, as it enables the development

of environmentally friendly drugs with minimal ecological

impact. AI-driven predictive modeling can be integrated

into green chemistry initiatives to optimize molecular de-

sign before large-scale drug production, ultimately reducing

pharmaceutical pollution.

6.3. Comparison with Existing Studies

Machine learning and deep learning models have been

widely used to predict solubility and other physicochemical

properties of pharmaceutical compounds. However, most ex-

isting studies have focused primarily on drug discovery and

optimization rather than environmental impact assessment.

In this study, we extend the application of LogS prediction

models to environmental sustainability by evaluating their

role in bioaccumulation risk assessment and pollutant behav-

ior analysis.

Graph machine learning models, such as those intro-

duced by Gaudelet et al. [31], demonstrated improved predic-

tive accuracy for drug discovery applications by leveraging

molecular graph structures. However, their study did not ex-

plore the implications of solubility in environmental contexts.

Similarly, Xiong et al. [32] developed ADMETlab 2.0, an AI-

driven platform for predicting ADMET properties, including

aqueous solubility. While their system improved pharma-

cokinetic predictions, it lacked an explicit environmental risk

analysis, making it less applicable for sustainability-focused

research.

Our study also aligns with Boobier et al. [34], who used

machine learningmodels such as Random Forest and Support

Vector Machines for solubility prediction. While their ap-

proach effectively predicted solubility in organic solvents and

water, their research did not consider the bioaccumulation

risks or environmental fate of pharmaceutical compounds.

By contrast, our study integrates LogS prediction with an

environmental sustainability framework, emphasizing the

role of AI in pollution risk assessment.

Another key distinction is that our study evaluates fea-

ture selection methods tailored for environmental applica-

tions, whereas Zhou et al. [33] focused on predicting ligand ac-

tivity for cannabinoid receptors. Their feature engineering ap-

proach—using combined molecular fingerprints—is highly

relevant for improving LogS prediction accuracy. However,

our study extends feature selection to assess how molecular

descriptors influence environmental persistence, which was

not explored in previous research.

Additionally, research by Tan et al. [37] examined the ad-

sorption of aromatic compounds in biochar, highlighting the

role of molecular structures in pollutant retention. While their

study provided valuable experimental insights, it lacked a pre-

dictive modeling component. Our study complements their

findings by applying machine learning models to predict sol-

ubility trends and environmental accumulation risks, offering

a scalable AI-driven approach for chemical risk assessment.

Overall, our research builds upon prior solubility predic-

tion studies by explicitly integrating machine learning with

environmental sustainability, addressing key gaps in previous

work. The comparative table below (Table 2) summarizes the

key aspects of our study in relation to existing research.

Table 2. Comparative analysis of previous studies and our study in terms of machine learning models, research scope, and environmental

sustainability considerations.

Study MLModels Used Scope of Study
Environmental Impact

Considered?
Key Limitations

Gaudelet et al. [31]
Graph Neural Networks

(GNNs)

Drug discovery &

molecular property

prediction

No

Focused on pharmaceutical

applications, did not assess

pollutant behavior

Xiong et al. [32]
Deep learning

(ADMETlab 2.0)

ADMET property

prediction (solubility,

absorption)

No

Lacked environmental sustainability

applications, only focused on

pharmacokinetics
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Table 2. Cont.

Study MLModels Used Scope of Study
Environmental Impact

Considered?
Key Limitations

Zhou et al. [33]
Machine learning

(Combined Fingerprints)

Ligand-receptor binding

prediction
No

Did not address LogS prediction for

environmental pollutants

Boobier et al. [34]
Random Forest, SVM,

ANN

Solubility in organic

solvents & water
No

Did not consider bioaccumulation

risk or environmental persistence

Tan et al. [37]
Experimental adsorption

studies

Adsorption of aromatic

compounds in biochar
Yes

No machine learning-based

predictive modeling

This study LAR, RF, SVM, ANN

LogS prediction with an

environmental

sustainability focus

Yes

Limited to pharmaceutical

compounds, needs more chemical

diversity

6.4. Limitations of the Study

Although this study provides a solid structure for LogS

forecasting and environmental influence evaluation, there are

some limitations that should be mentioned. ChEMBL [41]

was used as the primary source for the dataset, which con-

sists mostly of pharmaceutical compounds. Further, expand-

ing the data to cover industrial chemicals, pesticides, per-

sonal care products etc. would improve the generalizabil-

ity of the model and improve its applicability across vast

classes of chemicals. Another limitation of this study is that

the assessment of environmental impact is based only on

predicted LogS values, while in reality, the behavior of pol-

lutants is dependent on several factors like biodegradability,

photodegradation and interactions with natural organic mat-

ter. But if these parameters are included in future models,

it should be better at predicting chemical persistence and

ecological risks, which could also help improve regulatory

impact analysis. Finally, even though LAR performed well,

more advanced models, such as GNNs, could yield better

insight into structure-activity relationships in solubility pre-

diction. These models, however, have higher computational

costs, which might limit their practical application for large-

scale environmental assessments.

6.5. Future Research Directions

For enhancing AI-based solubility prediction for envi-

ronmental sustainability in the future, the following aspects

must be considered. Training on broader datasets that in-

tegrate chemicals from more classes than just pharmaceuti-

cals would increase the generalizability and applicability of

models in the context of environmental sciences. Moreover,

incorporating values for biodegradation rates, soil-water par-

titioning, etc. efficiency with toxicity measures next to LogS

predictions would give a better sense of persistence and im-

pact on the environment. The final piece of this puzzle is the

improvement of model interpretability, which will be crucial;

understanding howmachine learning is making its prediction

could help environmental regulators make a more informed

policy decision. SHAP (SHapley Additive Explanations) or

LIME (Local Interpretable Model-agnostic Explanations)

techniques could deliver this interpretability for better under-

standing of our algorithm in relation to the predictions. More-

over, the advancement ofAI-driven sustainability tools—like

open-source solubility prediction software designed for envi-

ronmental risk assessment—may create useful resources for

researchers and policymakers alike, helping to move the nee-

dle towards data-driven approaches to pollution reduction

and sustainable chemical management.

7. Conclusions

In this study, we applied machine learning models to

the task above, and we showed essentially that LAR achieved

higher accuracy (both in terms of Pearson correlation coeffi-

cient and R-accuracy) with lower computational consumption

than many other models. This study also showed that LogS

predictions could be utilized as an environmental risk as-

sessment tool, providing critical insights into pharmaceutical

bioaccumulation and pollutant behavior in aquatic ecosys-

tems. AI-assisted solubility prediction opens doors for sus-

tainable drug design as evidenced by our results. Challeng-

ing high-LogS compounds are more prone to be deposited

in sediments and accumulate in predatorial organisms, thus

reflecting long-term ecological effects and high bioconcen-

tration risk, whereas extreme water-solubility drugs will be

quickly dispersed as well as can contaminate the environment

and water bodies. Using machine learning to refine environ-

mental sustainability models, the study demonstrates how

predictive models can inform regulatory and pollution control
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policies. Despite its contributions, this research has certain

limitations. The dataset used primarily consists of pharmaceu-

tical compounds, limiting its generalizability to other chemical

pollutants such as pesticides, industrial chemicals, and per-

sonal care products. Additionally, while LogS is a key factor

in environmental impact assessment, other properties such as

biodegradability, adsorption potential, and toxicity should be

considered in future studies. To enhance the applicability of

AI in pharmaceutical and environmental sciences, future re-

search should focus on expanding datasets to include a wider

range of chemical pollutants, developing hybrid AI models

that incorporate biodegradability and toxicity predictions, and

building open-sourceAI-powered sustainability tools for envi-

ronmental regulators and researchers. By integrating machine

learning with environmental risk assessment, this study paves

the way for greener pharmaceutical innovations and more sus-

tainable chemical management. The findings underscore the

potential of AI-driven solutions to mitigate pharmaceutical

pollution and contribute to global sustainability efforts.
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