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ABSTRACT
As a major worldwide issue, desertification poses significant threats to ecosystem stability and long-term socio-

economic growth. Within China, the Mu Us Sandy land represents a crucial region for studying desertification phe-
nomena.  Comprehending how desertification risks are distributed spatially and what mechanisms drive them remains 
fundamental for implementing effective strategies in land management and risk mitigation. Our research evaluated de-
sertification vulnerability across the Mu Us Sandy land by applying the MEDALUS model, while investigating causal 
factors via geographical detector methodology. Findings indicated that territories with high desertification vulnerability 
extend across 71,401.7 km², constituting 76.87% of the entire region, while zones facing extreme desertification hazard 
cover 20,578.9 km² (22.16%), primarily concentrated in a band-like pattern along the western boundary of the Mu Us 
Sandy land. Among the four primary indicators, management quality emerged as the most significant driver of desertifi-
cation susceptibility, followed by vegetation quality and soil quality. Additionally, drought resistance, land use intensity, 
and erosion protection were identified as the key factors driving desertification sensitivity. The investigation offers sig-
nificant theoretical perspectives that can guide the formulation of enhanced strategies for controlling desertification and 
promoting sustainable land resource utilization within the Mu Us Sandy land region.
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1. Introduction

Land degradation manifested as desertification pre-
dominantly occurs in arid, semi-arid, and dry sub-humid 
territories emerging as a worldwide concern that endangers 
ecosystem integrity and sustainable socio-economic de-
velopment [1,2]. Studies suggest that exceeding one-quarter 
of global terrestrial surfaces face desertification threats, 
propelled by climatic shifts and anthropogenic actions, si-
multaneously imperiling the subsistence of roughly 25% of 
humanity worldwide [3,4]. Through multinational coopera-
tion, the UNCCD and 2030 SDGs strive to halt and reverse 
desertification processes, ensure sustainable management 
of land resources, and promote worldwide socio-economic 
advancement [5,6]. Therefore, addressing desertification re-
quires coordinated action from countries worldwide.

Among nations experiencing profound desertification 
impacts, China ranks prominently, confronting a multifac-
eted problem influenced by interacting environmental fac-
tors, economic developments, and human-induced modifi-
cations [7,8]. Data from 2019 reveals that China’s desertified 
territories encompass around 2.57 million km2, represent-
ing 26.81% of its total land surface, with major effects par-
ticularly evident throughout the arid and semi-arid zones 
across northwestern, northern, and southwestern regions [9].  
Desertification has resulted in substantial economic losses, 
estimated at around US$6.8 billion annually, and has di-
rectly or indirectly affected nearly 400 million people [10].  
Despite ongoing efforts, desertification continues to ex-
pand in certain areas. To address this challenge, govern-
mental authorities in China have deployed diverse compre-
hensive approaches against desertification, incorporating 
policy measures, engineering interventions, technological 
innovations, legislative systems, and global partnerships. 
Prominent programs comprise the policy of “converting 
cultivated land back to forests and grasslands” [11], the ex-
tensive three-north protective forest belt initiative [12], and 
efforts to control sand sources in the Beijing-Tianjin-Hebei 
region [13]. While these efforts have yielded some progress, 
desertification remains a pressing challenge, underscoring 
the need for enhanced management and intervention.

As a focal point for Chinese desertification studies, 
the Mu Us Sandy Land has garnered considerable schol-
arly interest over an extended period [14–16]. Characterized 

by its fragile natural, economic, and social ecosystems [17], 
the Mu Us Sandy region has been the subject of extensive 
scientific investigation since the early 20th century. Initial 
scientific exploration of this territory was performed by 
Obrucher, a Russian researcher, followed by comprehen-
sive investigations launched by CAS during the late 1950s 
that examined regional environmental characteristics, 
aeolian processes, agricultural and pasture stabilization 
methods, and approaches for sustainable water resource 
management [18]. The Chinese government initiated the 
“Three-North” integrated management program in 1981, 
encompassing agricultural district planning and methodi-
cal assessment of farming, animal husbandry, and prairie 
resources throughout the Mu Us Sandy region. Recent 
studies have increasingly employed remote sensing tech-
nologies to monitor desertification dynamics and landscape 
transformations in the Mu Us Sandy Land [16,19]. Satellite-
derived data have been widely used to analyze temporal 
variations in desertified areas [16], assess the impact of 
vegetation changes [20], and classify land cover types [21], 
providing essential information for ongoing research. A 
variety of methods have been applied to assess desertifica-
tion risk in this region. For instance, Wang et al. (2022) 
evaluated desertification trends from 2000 to 2020 using 
the Desertification Index (DI); Han et al. (2020) analyzed 
three decades of desertification dynamics based on the 
wind-sanding index [15]; and Ji et al. (2023) developed the 
Desertification Difference Index (DDI), derived from the 
MSAVI-Albedo model, to assess desertification trends 
between 1991 and 2021 [16]. However, the diversity of re-
search methodologies has led to considerable variability in 
findings. Most studies rely solely on single-source remote 
sensing data, which hampers the integration of natural 
and anthropogenic factors in desertification assessments. 
Moreover, comprehensive investigations into the underly-
ing causal mechanisms of desertification remain limited in 
the existing literature.

To date, the flexible MEDALUS model has regained 
attention [22]. This model evaluates desertification risk us-
ing four key quality indices: soil conditions, vegetation 
characteristics, climatic factors, and land management 
practices. Additionally, each quality index is composed 
of various remote sensing observation variables [22]. The 
MEDALUS model is recognized for its flexibility, robust-
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ness, and integrative capacity. It allows for the selection of 
context-specific variables and the construction of analytical 
frameworks that accommodate diverse spatial scales and 
data sources [23], thereby addressing the issue of singularity 
in existing desertification evaluation indicators. Addition-
ally, its structure allows for the adaptation of evaluation 
criteria to region-specific environmental contexts. Nowa-
days, MEDALUS has been successfully applied to deserti-
fication sensitivity assessments in various other regions [3,24]. 
Hence, our investigation seeks to evaluate desertification 
vulnerability within the Mu Us Sandy Land by applying 
the MEDALUS framework, which combines environmen-
tal and human-induced elements, while also examining re-
gional causative factors. Our research particularly focuses 
on: (1) mapping spatial patterns of desertification vulner-
ability, and (2) quantifying principal contributing factors to 
desertification processes across the Mu Us Sandy terrain. 
Results from this analysis will contribute essential theo-
retical foundations for establishing improved desertifica-
tion mitigation approaches and advancing sustainable land 
resource utilization throughout the Mu Us Sandy region.

2. Materials and Methods

2.1. Study Area

The Mu Us Sandy Land, located in northwestern 
China, spans the provinces of Shaanxi, Ningxia, and Inner 
Mongolia, lying at the junction of the Loess Plateau and 
the northwest Desert. The Yellow River defines its eastern 
boundary while Inner Mongolian grasslands mark its west-
ern limits, exemplifying characteristic arid and semi-arid 
conditions found throughout northern China [14]. The re-
gion experiences an arid climate, with annual precipitation 
ranging from 250 mm in the northwest to 440 mm in the 
southeast, of which approximately 70% occurs during the 
summer months. Water resources are scarce, and precipita-
tion is unevenly distributed throughout the year [14,25]. The 
soils in the Mu Us Sandy Land are diverse, primarily con-
sisting of sandy, grassland, and saline types, all of which 
are highly susceptible to wind and sand erosion [26]. Such 
pedological properties, combined with ecosystem fragility 
throughout the region, establish the Mu Us Sandy Land 
as a critical zone for desertification investigations and for-
mulation of remediation approaches. The research domain 

comprises twelve administrative units (counties, cities, and 
banners) that collectively encompass the Mu Us Sandy 
Land territory (Figure 1).

Figure 1. Study Area Overview.

2.2. Data and Pre-Processing

This investigation utilized diverse data repositories 
addressing four fundamental components: soil charac-
teristics, vegetation parameters, climatic variables, and 
management factors. Soil data, including information on 
soil texture (ST), bulk density (SBD), organic carbon con-
tent (SOC), rock fragments (RF), and effective soil water 
content (SWC), were sourced from the Harmonized World 
Soil Database (version 2.0) (https://gaez.fao.org/pages/
hwsd) (spatial resolution: 1km; time resolution: 2020). 
Surface classification data were obtained from the Euro-
pean Space Agency (ESA) (https://data.ceda.ac.uk/neodc/
esacci/land_cover/data) (spatial resolution: 300 m; time 
resolution: 2020). Normalized Difference Vegetation In-
dex (NDVI) data were derived from the MOD13A1 product 
(https://search.earthdata.nasa.gov/search) (spatial resolution: 
500 m; time resolution: 2020). Precipitation and potential 
evapotranspiration data were accessed from TerraClimate 
(https://www.climatologylab.org/terraclimate.html) (spa-
tial resolution: 4 km; time resolution: 2020), while aridity 
indices were computed as ratios between annual rainfall 
and evapotranspiration potential according to Equation 
(1) [27]. Global population density data were sourced from 
LandScan (https://landscan.ornl.gov/) (spatial resolution: 1 
km; time resolution: 2020). To ensure consistency with the 
study area, these datasets were merged, masked, resampled 

https://data.ceda.ac.uk/neodc/esacci/land_cover/data
https://data.ceda.ac.uk/neodc/esacci/land_cover/data
https://search.earthdata.nasa.gov/search
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at varying resolutions, and finally harmonized to a 1 km 
resolution.

 AI =



 (1)

where AI is the aridity index, EP is potential evapotranspi-
ration, and P is precipitation.

2.3.  Methods

Desertification sensitivity refers to the susceptibil-
ity of land to desertification and is typically represented 
by a Desertification Sensitivity Index (DSI), where higher 
values indicate greater vulnerability [22,23,28]. In this study, 
we assessed desertification sensitivity in the Mu Us Sandy 
Land using the MEDALUS model [23,28], which integrates 
four key indicators: soil characteristics, vegetation attrib-
utes, climatic conditions, and land management practices. 
The resulting vulnerability indices were categorized into 
distinct risk levels, with classification reliability subse-
quently verified through PCA methodologies [29]. To further 
investigate the drivers of desertification sensitivity, the 
K-means clustering method combined with geographical 
detector method to quantify comparative influences among 
the four major indicators [30,31].

2.3.1. MEDALUS Model

Mu Us Sandy Land is a region subject to pronounced 
ecological stressors—including arid climate, unconsolidat-
ed soil structure, sparse vegetation cover, and intensive an-
thropogenic disturbance [32,33]. Therefore, we selected soil 
bulk density (SBD), texture characteristics (ST), rock frag-
ment content (RF), effective soil moisture capacity (SWC), 
and organic carbon concentration (SOC) to comprise the 
soil quality index. The above variables can effectively re-
flect the conditions of the unconsolidated soils [28]. As for 
vegetation quality index, drought resistance capabilities 
(DR), erosion prevention potential (EP), fire susceptibility 
(FR), and NDVI were incorporated following the work of 
Ferrara et al. (2020) [23]. Then, considering the arid climate 
characteristics of the Mu Us Sandy region, the climate 
quality metric was established using precipitation patterns 
(PRE) and aridity indices (AI), which can reflect the arid 
climate characteristics [23]. For management quality evalua-

tion index, the land utilization intensity measurement (LUI) 
and human population distribution density (PD) were 
used, similar to the previous studies [23,28]. Specifically, the 
MEDALUS model is calculated as follows: (1) the selected 
observation variables are segmented into different layers, 
and appropriate weights are assigned to each variable layer 
according to the methods outlined in the methodologies by 
Ferrara et al. (2020) and Ren et al. (2023) [23,34]. Detailed 
classification criteria and assigned weights for each sub-
indicator are provided in Tables A1–A4 of Appendix A; 
(2) then, each quality index (soil, vegetation, climate, and 
management) is calculated separately according to Equa-
tion (2); (3) next, the desertification vulnerability indicator 
is determined through geometric mean calculation of all 
four quality parameters (Equation (3)); (4) finally, the de-
sertification risk level is obtained based on the four derived 
quality indices (Equation (4)).

 Quality_xij = (variable_lij • variable_2ij, • 
variable_3ij....variable_nij)1/nij

 (2)

where i and j indicate the row and column positions of spe-
cific pixels for every parameter; n refers to the parameter 
quantity; and x corresponds to the four quality indicators: 
soil, climate, vegetation, and management.

 DSIij = (SQIij  • VQIij  • CQIij  • MQIij)
1/4 (3)

where DSI is the desertification vulnerability index, and 
SQI, VQI, CQI, and MQI represent the soil, vegetation, cli-
mate, and management quality indices, respectively.

2.3.2. Principal Component Analysis

PCA represents a commonly employed statistical 
technique for dimensionality reduction and extraction of 
essential features from complex multivariate datasets [29]. 
This approach converts initial variables into orthogonally 
independent components while maximizing information 
preservation from the original dataset [29,35]. These derived 
components are arranged hierarchically according to ex-
plained variance, with successive components capturing 
decreasing proportions of data variability. In this study, the 
PCA is used to reveal the relationship between each prin-
cipal component and the original variables, thereby assess-
ing the model’s stability [29]. The main steps include: data 
standardization (Equation (4)), determination of covari-
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ance structures (Equation (5)), computation of eigenvalues 
and associated eigenvectors (Equation (6)), and principal 
component score calculation (Equation (7)) [29].

  =
 − 


 (4)

where Zij is the standardized value of the i-th sample for 
the j-th variable, xij is the original value, xi is the mean of 
the j-th variable, and Si is its standard deviation.

  =
1

 − 1
=1



 −   −    (5)

where C corresponds to the covariance matrix, n reflects 
total sample quantity, zi is the standardized value of the i-th 
sample, and z constitutes the vector containing mean val-
ues across all variables.

	 CV	=	VΛ (6)

where C symbolizes the covariance matrix, V denotes the 
matrix of eigenvectors, and Λ represents the diagonal ar-
rangement of eigenvalues.

 Y = ZV (7)

where Y signifies the matrix of scores, Z identifies the ma-
trix containing normalized data, and V characterizes the 
matrix composed of eigenvectors.

2.3.3. Desertification Drivers Analysis

Spatial and temporal variations in land degradation 
vulnerability arise from the interplay of multiple envi-
ronmental and anthropogenic factors, resulting in distinct 
spatial distribution patterns. Identifying and understanding 
these patterns is essential for the effective management and 
mitigation of desertification processes [36,37]. To statistically 
examine spatial heterogeneity and quantify the influence of 
potential driving factors, this study adopts the geographic 
detector method—an analytical framework widely applied 
in environmental, ecological, and socio-geographical re-
search domains [38,39]. Prior to conducting factor detection, 
we employed the K-means clustering algorithm to discre-
tize all continuous indicators into four categorical levels 

[28], as required by the geographic detector’s input format. 
K-means is a widely used unsupervised machine learning 
technique that partitions data into K mutually exclusive 
clusters by minimizing intra-cluster variance and maximiz-
ing inter-cluster distinction through iterative optimization 
(Equation (8)) [40]. This preprocessing step ensures that the 
spatial variance in land degradation vulnerability can be 
accurately attributed to the underlying drivers captured by 
the selected indicators. Following the completion of indi-
cator classification, factor probing is conducted to assess 
the driving influence of each selected parameter on de-
sertification sensitivity, with the strength of this influence 
quantified by the q-value metric (Equations (9)–(11)) [31].

  =
=1




∈

|| − ||2  (8)

where J is the objective function, representing the sum of 
squared distances between all points in the cluster and its 
center of mass. The goal of the K-means algorithm is to 
minimize J through iterative optimization, adjusting the 
center of mass to bring data points closer to it. Ci is the i-th 
cluster, containing all data points xi, and μi is the center of 
mass of cluster i, the mean of all points in Ci,  =

=1




∈

|| − ||2  is 
the squared Euclidean distance between data point xi and 
center μi.

  = 1 − =1
 2
2 = 1 −




 =
=1
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 = 1 − =1
 2
2 = 1 −




 =
=1



2

 = 2 (11)

where i represents the classification layer of response or 
predictor variables; Ni and N refers to variance of the de-
pendent variable in stratum, and indicates this variance 
across the entire studied area; σi

2 and σ2 respectively repre-
sent the response variable’s variance in classification layer 
i and across the entire study territory. SSW and SST denote 
the within-stratum variance and total variance of the re-
gion, respectively. Values of q fall between [0, 1], whereby 
greater values suggest enhanced explanatory capability of 
independent variables regarding the dependent variable.
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3. Results

3.1. Soil, Vegetation, Climate, and Manage-
ment Quality Indexes

Utilizing the MEDALUS framework, our study 
generated quality index maps for soil (Figure 2(A)), veg-
etation quality index map (Figure 2(B)), climate quality 
index map (Figure 2(C)), and management quality index 
map (Figure 2(D)). Our analysis indicates that the Mu Us 
Sandy Land regions exhibiting degraded soil quality main-

ly occur in central areas, encompassing Wushen County, 
western Yulin County, and eastern portions of Otog Front 
Banner. Vegetation degradation primarily appears in north-
western Otog Banner and south-central sections of Otog 
Front Banner. The western portion of the Mu Us Sandy 
Land, comprising Taole County, Lingwu County, and west-
ern Otog Banner, exhibits concentrated areas of suboptimal 
climate conditions. Inadequate management practices ap-
pear more scattered throughout the region, with particular 
prominence in western Lingwu County and northern Jing-
bian County (Figure 2).

3.2. Spatial Patterns of Desertification Risk 
across The Mu Us Sandy Land

Figure 3 presents geographic patterns of desertifi-
cation vulnerability across the Mu Us Sandy Land. The 
desertification sensitivity index was computed from soil, 
vegetation, climate, and management quality indicators 
(Figure 3(A)) then categorized into vulnerability levels 
according to standards established by Ferrara et al. (2020) 
and Ren et al. (2024) (Figure 3(B)) [23,28]. A total of 4,000 

sample points were randomly generated with a minimum 
distance of 1 km, and principal component analysis (Figure 
4) was performed. The principal component analysis score 
plot (Figure 4(A)) shows that the three principal compo-
nents (PC1: 25.6%; PC2: 19.4%; PC3: 15.2%) explained 
60.2% of the total variance, indicating a credible result [23]. 
The 95% confidence interval analysis showed a significant 
clustering effect, with most categories well within the in-
terval, confirming the reliability of the classification. The 
loading plot of principal component analysis (Figure 4(B)) 

Figure 2. Quality Index Distributions Across the Mu Us Sandy Land: (A) Soil Quality Assessment, (B) Vegetation Quality 
Evaluation, (C) Climate Quality Measurement, (D) Management Quality Appraisal.
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shows that the dominant variables accounting for PC1 are 
DSI (0.41), LUI (0.40), EP (0.38), DR (0.36), MQI (0.33), 
and VQI (0.31); the dominant variables for PC2 are SBD 
(0.48), ST (0.42), and SQI (0.42); and those for PC3 are AI 
(0.43), PRE (0.43), and CQI (0.34).

Additionally, we computed the area and percentage 
of each risk class (Table 1). Our findings show that moder-
ate-risk desertification zones comprise 904.80 km² (0.97%) 
of the Mu Us Sandy Land, predominantly appearing along 

southern boundaries of Jingbian and Hengshan counties. 
The high-risk area spanned 71,401.70 km² (76.87%), 
representing the largest proportion and widespread dis-
tribution. The extreme-risk area totaled 20,578.88 km² 
(22.16%), primarily located along the western edge of the 
Mu Us Sandy Land, including the northwest of Lingwu 
County, Taole County, and the western part of Otog Front 
Banner, with some sporadic occurrences in the central  
region.

  

Figure 3. Geographic Patterns of Desertification Vulnerability Across the Mu Us Sandy Land. (A) Mapping of Desertification 
Sensitivity Index (DSI). (B) Spatial Distribution of Desertification Risk, DRL Represents the Desertification Risk Level, with Higher 
Level Indicating Greater Desertification Risk. 

Figure 4. Results of Principal Component Analysis. (A) Principal Component Analysis Score Plot. (B) Principal Component Analysis 
Loading Plot. E Denotes Extreme Risk, H Denotes High Risk, and M Denotes Moderate Risk.
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3.3. Analysis of the Drivers of Desertification 
across the Mu Us Sandy Land

Utilizing previously described sample points, our 
investigation into key factors affecting desertification 
sensitivity across the Mu Us Sandy Land implemented 
dual methodological approaches: K-means clustering and 
geographical detector technique [30,31]. These methods were 
used to assess the influence of the four major indicators 
and 13 sub-indicators on desertification sensitivity (Figure 
5). The results indicated the hierarchical influence of prin-
cipal indicators on desertification sensitivity followed this 
order: MQI (0.480) > VQI (0.317) > SQI (0.294) > CQI 
(0.165). This suggests that management quality was the 
most influential driver, followed by vegetation quality and 
soil quality, while climatic quality had the least impact.

Figure 5. Assessment of Desertification Causal Mechanisms 
Throughout the Mu Us Sandy Land. (A) Driving Influence of the 
4 Major Indicators on Desertification. (B) Driving Influence of 
the 13 Sub-Indicators on Desertification.

The 13 sub-indicators were ranked according to their 
influence on desertification sensitivity as follows: DR 
(0.361) > LUI (0.321) > EP (0.282) > ST (0.245) > SBD 
(0.211) > AI (0.164). These results indicate that DR, LUI, 
and EP are the primary driving factors, while ST, SBD, and 

AI function as secondary drivers. The remaining indica-
tors—FR, PRE, SOC, PD, NDVI, SWC, and RF—did not 
exhibit statistically significant influence.

4. Discussion

4.1. Implications for Desertification Preven-
tion Across the Mu Us Sandy Land

Our assessment of desertification vulnerability in the 
Mu Us Sandy Land shows strong agreement with previous 
studies, reinforcing the reliability of our findings. Notably, 
a correlation coefficient of 0.74 was observed between our 
results and those of Ren et al. (2024) (Figure 6) [28], pro-
viding indirect validation of our approach. Ji et al. (2023) 
similarly identified the western parts of the region—par-
ticularly Otog Banner and Otog Front Banner—as hotspots 
of severe desertification, aligning closely with our spatial 
patterns [16]. In addition, Liu et al. (2018) reported sub-
stantial land degradation across the western Mu Us Sandy 
Land in their spatiotemporal analysis of desertification dy-
namics [41]. While our study employed a different methodo-
logical framework, the consistency of these independent 
results supports the applicability of the MEDALUS model 
in this region and highlights the robustness of our desertifi-
cation sensitivity assessment.

Although previous studies have indicated that deser-
tification in the Mu Us Sandy Land has been effectively re-
versed due to long-term prevention and control efforts [41,42], 
sustained vigilance remains essential. Our findings high-
light management quality as the most influential driver of 
desertification sensitivity, followed by vegetation and soil 
quality, whereas climate quality showed a comparatively 
limited effect. This may be attributed to the implementa-

Table 1. Classification Scheme for Desertification Vulnerability in the Mu Us Sandy Land, Following the Criteria Proposed by 
Ferrara et al. (2020) [23], Showing Areal Coverage and Percentage Distribution Across Categories.

Degree of Risk Risk Levels Range of DSI Area (km2) Percentage (%)

Low 1 1.000≤DSI≤1.170 0 0

Moderate 2 1.170＜ DSI≤1.225 904.80 0.97

High

3 1.225＜ DSI≤1.275 710.72 0.77

4 1.275＜ DSI≤1.325 35111.92 37.80

5 1.325＜ DSI≤1.375 35579.05 38.30

Extreme

6 1.375＜ DSI≤1.425 13766.10 14.82

7 1.425＜ DSI≤1.530 5375.27 5.79

8 1.530＜ DSI≤2.000 1437.51 1.55
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tion of large-scale ecological restoration projects in the 
region—such as the conversion of farmland to forest and 
grassland, sand fixation through enclosure, and the plant-
ing of drought-resistant shrubs—which have significantly 
enhanced vegetation cover and ecosystem stability [11,12]. 
These interventions likely increased the system’s resilience 
to climatic variability, thereby diminishing the direct influ-
ence of climate factors on desertification processes.

Figure 6. Comparison Between the Results of This Study and 
Previous Research. DSI Represents the Desertification Sensitivity 
Index Derived from This Study, While DSI′ Denotes the Index 
Values Reported in Previous Study.

Therefore, future desertification control strategies 
should prioritize improving management quality, alongside 
enhancing vegetation restoration and soil protection. First 
and foremost, optimizing land management is essential. In 
areas with poor management quality—such as the western 
part of Lingwu County and the northern region of Jingbian 
County—rational land-use planning and efficient resource 
allocation must be prioritized to prevent over-exploitation 
and unsustainable practices, particularly in grassland and 
farmland regions. Management strategies should incor-
porate crop rotation, land conservation measures, and the 
establishment of ecological protection zones. Furthermore, 
promoting sustainable land management approaches—
such as ecological agriculture and grassland restoration—
will help enhance ecological resilience and improve the 
region’s overall carrying capacity. Secondly, vegetation 
restoration plays a pivotal role. In areas with low vegeta-
tion quality—such as the northwestern part of Otog Banner 
and the central-southern region of Otog Front Banner—
efforts should focus on enhancing vegetation cover, par-
ticularly in zones experiencing severe degradation. Large-
scale restoration projects should be implemented using 
native plant species well-adapted to local environmental 

conditions. Additionally, the establishment of windbreaks 
and sand fixation belts can strengthen ecosystem resil-
ience to sandstorms and dust storms. Third, improving 
soil quality is critical for effective desertification control. 
In regions characterized by poor soil conditions—such as 
Wushen County, Otog Front Banner, and Yulin County—
scientific soil and water conservation techniques should 
be applied to reduce erosion, enhance water retention and 
nutrient availability, and prevent soil sanding and saliniza-
tion. These efforts are essential to restore soil health and 
reinforce its ecological functions, thereby enhancing land 
resilience against degradation. Although climatic factors 
exhibit relatively limited direct influence on desertification 
processes, potential consequences of atmospheric changes 
on hydrological systems and vegetation dynamics remain 
significant. Adaptive strategies to address climate-related 
challenges—such as improved water governance in arid 
regions, the development of resilient water infrastructure, 
and the promotion of water-efficient agricultural prac-
tices—should be prioritized to reduce the vulnerability of 
land systems to climate-induced degradation.

Our research results indicate that DR, LUI, and EP 
function as fundamental catalysts for land degradation pro-
cesses across the Mu Us Sandy Land. Consequently, the 
desertification control strategy should focus on enhancing 
drought resilience, optimizing land use, and strengthening 
erosion control measures. Firstly, improving drought re-
sistance is the top priority in combating desertification. In 
areas with low drought resistance, strategies such as plant-
ing drought-resistant species and introducing water-saving 
agricultural techniques should be implemented to enhance 
water-use efficiency. Moreover, responsible administra-
tion of subterranean aquifers alongside advocacy for wa-
ter preservation behaviors remains vital for maintaining 
ecosystem equilibrium and perpetuity, especially during 
precipitation deficiency periods. Secondly, optimizing land 
use intensity and minimizing over-exploitation are critical 
to halting land degradation. Strict land-use planning and 
regulation should be enforced to avoid over-cultivation and 
overgrazing. In particular, the adoption of crop rotation, 
intercropping, and fallow systems should be prioritized 
in both farmland and grassland management, helping to 
maintain land productivity and enhance its resilience. 
Thirdly, sustainable farming practices must be encouraged 
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to minimize soil disturbance, and mitigate wind erosion.

4.2. Limitations and Prospects

Although our research successfully reveals the spa-
tial pattern of desertification risk in the Mu Us Sandy Land 
and quantifies the drivers of desertification sensitivity, it 
still has some limitations. Firstly, while desertification 
risk is observed to increase in some agricultural and pas-
toral areas, this study only quantifies the impact of land 
use intensity without incorporating livestock pressure as a 
sub-indicator. Future investigations may address this gap 
through on-site field surveys, analysis of livestock popula-
tion data, and other methods to quantitatively assess the 
impact of grazing intensity on land degradation suscepti-
bility in the Mu Us Sandy Land. Secondly, the resolution 
of the desertification risk map generated in this study is 
limited to 1 km, providing only a coarse-scale, macro-
scopic evaluation. This resolution may obscure finer-scale 
spatial heterogeneity in vegetation, soil conditions, and 
land management practices—particularly in ecologically 
sensitive or fragmented landscapes. Future studies are en-
couraged to utilize higher-resolution remote sensing data 
or field-validated datasets to capture more detailed spatial 
patterns and enhance the precision of desertification risk 
assessments in this region. Thirdly, although our findings 
indicate that climate quality currently plays a relatively mi-
nor role in desertification sensitivity compared to manage-
ment, vegetation, and soil factors, the potential long-term 
impacts of climate change should not be underestimated. 
Increasing climate variability—such as altered precipita-
tion regimes, more frequent droughts, and rising tempera-
tures—may influence desertification dynamics over time. 
Future research should incorporate temporal analyses and 
integrate multi-year environmental data to better evaluate 
the evolving influence of climate change on desertification 
risk in the Mu Us Sandy Land.

5. Conclusions

Employing the MEDALUS framework, our study 
synthesized four critical parameters—soil characteristics, 
vegetation attributes, climatic conditions, and manage-
ment practices—to evaluate land degradation vulnerability 

across the Mu Us Sandy Land and investigate its causal 
mechanisms. Principal discoveries include:

(1) Territories exhibiting elevated degradation vul-
nerability encompass 71,401.70 km² (76.87%) of the Mu 
Us Sandy Land, demonstrating extensive geographical dis-
tribution. Zones characterized by maximum vulnerability 
comprise 20,578.88 km² (22.16%), predominantly situated 
along western boundaries of the Mu Us Sandy Land form-
ing linear arrangements, with occasional manifestations 
throughout central sectors.

(2) Regarding principal assessment factors, man-
agement practices exert predominant influence on land 
degradation processes across the Mu Us Sandy Land, with 
vegetation characteristics and soil properties demonstrating 
secondary importance. Climate quality plays a relatively 
minor role in driving desertification.

(3) Among the 13 sub-indicators, drought resistance 
(DR), land use intensity (LUI), and erosion protection (EP) 
are the primary drivers of desertification sensitivity, while 
soil texture (ST), soil bulk density (SBD), and aridity in-
dex (AI) act as secondary drivers.
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Appendix A

Table A1. Classes and Corresponding Weights of Soil Sub-
Indexes (Soil Bulk Density, Soil Organic Carbon, and Soil 
Water Content Were Classified Using the Jenks Natural Breaks 
Classification Method) [23,28,34,43].

Index Class Weight

Soil Bulk Density (g/
cm3)

<1.314 1.0

1.314–1.437 1.1

1.437–1.537 1.3

1.537–1.637 1.5

1.637–1.745 1.7

≥1.745 2.0

Rock Fragments

≥50% 1.0

40%–50% 1.1

30%–40% 1.3

20%–30% 1.5

10%–20% 1.7

<10% 2.0

Soil Organic Carbon

≥22.42% 1.0

9.63%–22.42% 1.1

3.71%–9.63% 1.3

1.48%–3.71% 1.5

0.37%–1.48% 1.7

<0.37% 2.0

Index Class Weight

Soil Texture

CL; L; SCL; SL; LS 1.0

SiCL; SiL; SC 1.2

C; SiC; Si 1.6

S 2.0

Soil Water Content

≥5.00% 1.0

3.98%–5.00% 1.1

2.99%–3.98% 1.3

1.98%–2.99% 1.5

0.99%–1.98% 1.7

<0.99% 2.0

L: loam, SCL: sandy clay loam, SL: sandy loam, LS: loamy sand, CL: clay loam, 
SC: sandy clay, SiL: silty loam, SiCL: silty clay loam, Si: silt, C: clay, SiC: silty 
clay, S: sand.

Table A2. Classes and Corresponding Weights of Vegetation Sub-
Indexes [23,34].

Index Class Weight

Drought
Resistance

wooded land, shrub land, other wooded land, 
rivers and canals, lakes, reservoirs, permanent 
glacial snow, ocean

1.0

towns, rural settlements, public transport 
construction land, swampy land

1.1

open forest land, sea shoals, mudflats 1.2

paddy field 1.4

dry land 1.5

grassland 1.6

sandy land, Gobi, saline land, bare land, bare 
rocky gravel land, other unused land

2.0

Fire Risk

permanent glacial snow, sandy land, Gobi, 
saline land, bare land, bare rocky gravel land, 
other unused land, ocean

1.0

other forest land, rivers and canals, lakes, 
reservoirs, sea shoals, mudflats, marshlands

1.1

towns, rural settlements, public transport 
construction land

1.2

forested land, shrub land, grassland 1.3

paddy field, dry land 1.4

open forest land 1.7

Erosion
Protection

wooded land, shrub land, other wooded land, 
permanent glacial snow, ocean

1.0

towns, rural settlements, public transport 
construction land

1.1

rivers and canals, lakes, reservoirs, sea shoals, 
mudflats, marshlands

1.2

paddy fields, open forest land 1.4

dry land, grassland 1.7

sandy land, Gobi, saline land, bare land, bare 
rocky gravel land, other unused land

2.0

Table A1. Cont.
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Index Class Weight

NDVI

≥0.80 1.0

0.72–0.80 1.1

0.62–0.72 1.2

0.5–0.62 1.3

0.38–0.50 1.4

0.26–0.38 1.5

0.18–0.26 1.6

0.13–0.18 1.7

0.11–0.13 1.8

0.10–0.11 1.9

<0.10 2.0

Table A3. Classes and Corresponding Weights of Climate Sub-
Indexes [23].

Index Class Weight

Precipitation (mm)

≥650 1.00

570–650 1.05

490–570 1.15

440–490 1.25

390–440 1.35

345–390 1.50

310–345 1.65

280–310 1.80

＜ 280 2.00

Aridity Index

≥1 1.00

0.75–1 1.05

0.65–0.75 1.15

0.5–0.65 1.25

0.35–0.5 1..35

0.2–0.35 1.45

0.1–0.2 1.55

0.03–0.1 1.75

＜ 0.03 2.00

Table A4. Classes and Corresponding Weights Of Management 
Sub-Indexes [23,34].

Index Class Weight

Land Use Intensity

shrubland, other woodland, permanent 
glacial snow, ocean

1.0

forested land, towns, rural settlements, 
public transport construction land

1.1

rivers and canals, lakes, and reservoirs 1.2

open forest land, sea shoals, mudflat, 
marshland

1.3

paddy fields 1.6

dry land 1.7

grassland 1.8

Index Class Weight

sandy land, Gobi, saline land, bare land, 
bare rocky gravel land, other unused 
land

2.0

Population Density 
(inhabitants/km2)

<4 1.0

4–30 1.1

30–80 1.2

80–170 1.3

170–300 1.4

300–500 1.5

500–850 1.6

850–1400 1.7

1400–2000 1.8

2000–2700 1.9

≥2700 2.0
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