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ABSTRACT

With the rapid advancement of robotics and Artificial Intelligence (AI), aerobics training companion robots now

support eco-friendly fitness by reducing reliance on nonrenewable energy. This study presents a solar-powered aerobics

training robot featuring an adaptive energy management system designed for sustainability and efficiency. The robot

integrates machine vision with an enhanced Dynamic Cheetah Optimizer and Bayesian Neural Network (DynCO-BNN) to

enable precise exercise monitoring and real-time feedback. Solar tracking technology ensures optimal energy absorption,

while a microcontroller-based regulator manages power distribution and robotic movement. Dual-battery switching ensures

uninterrupted operation, aided by light and I/V sensors for energy optimization. Using the INSIGHT-LME IMU dataset,
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which includes motion data from 76 individuals performing Local Muscular Endurance (LME) exercises, the system detects

activities, counts repetitions, and recognizes human movements. To minimize energy use during data processing, Min-Max

normalization and two-dimensional Discrete Fourier Transform (2D-DFT) are applied, boosting computational efficiency.

The robot accurately identifies upper and lower limb movements, delivering effective exercise guidance. The DynCO-BNN

model achieved a high tracking accuracy of 96.8%. Results confirm improved solar utilization, ecological sustainability,

and reduced dependence on fossil fuels—positioning the robot as a smart, energy-efficient solution for next-generation

fitness technology.

Keywords: Aerobics Training Robot; Energy Power Supply Control; Dynamic Cheetah Optimizer (DynCO); Bayesian

Neural Network (BNN); Motion Recognition

1. Introduction

Robotics has transformed several activities in uncharted

or hazardous situations, including intelligence, surveillance,

reconnaissance, and disaster monitoring. Robots must de-

velop more effective energy management techniques and

efficiency as missions get more complicated to prolong mis-

sion durations. Unmanned Aerial Vehicles (UAVs) need to

be both environmentally friendly and economically viable to

be considered sustainable. To ensure that these cars are de-

veloped and implemented without squandering resources for

future generations, this entails deploying robots with a lower

environmental impact [1]. The increasing focus on health

and physical well-being has highlighted the significance of

exercise. Aerobics, a dynamic combination of movement

and musical rhythm, draws a wide spectrum of participants,

as well as those who are absorbed in dance, fitness, and

coordination training [2]. With the quick advancement of

computer intelligent vision technology, aerobics continuous

image recognition involved in determining aerobics move-

ment. Classical approaches like geometric regularity con-

tour restoration and arithmetic features based on structures

were utilized for strengthening aerobics movement analy-

sis with an intention to the enlarged signal-to-noise ratio

of the reassembled image [3]. The combination of robotics

and Artificial Intelligence (AI) has recently transformed sev-

eral industries, including sports and fitness instruction. The

development of aerobics training companion robots, which

offer users cooperating and flexible training experiences,

has drawn a lot of attention among these advancements [4].

Machine vision expertise is used by these robots to assess

human movements, provide real-time feedback, and growth

training effectiveness [5]. Solar UAVs’ Energy Management

Systems (EMS) must balance energy generation, storage, and

consumption while reacting to ambient factors like as day-

light temperature and light levels. Improving EMS is critical

for collective the speed of flight and sustaining consistent

operation [6]. Advanced image processing techniques allow

these robots to track body movement, estimate situation, and

offer remedial input [7]. To increase user involvement, this

real-time feedback organization lowers the chance of harm.

Nevertheless, a considerable quantity of energy is consumed

by the continuous technique of machine vision apparatus,

such as cameras and image processors. Consequently, it is

essential to install a smart power organization arrangement

to guarantee effective energy use without sacrificing robot

performance [8].

1.1. Objective of the Research

The research’s foremost intent is to create an energy-

efficient power management system for an aerobics training

partner robot by combining solar energy with machine vision-

based movement analysis. The system is made to function in

a assortment of environmental surroundings, assuring con-

tinuous process with decreased energy waste. By utilizing

the DynCO-BNN, the model enhances motion recognition

while maximizing power usage. The adaptive energy distri-

bution mechanism allows real-time tracking of upper and

lower limb actions, ensuring precise exercise supervision and

response. A key emphasis of the investigation is to create

an environmentally sustainable solution by reducing depen-

dency on conventional power sources. The incorporation

of solar energy minimizes the carbon footprint, making the

system eco-friendlier. Additionally, the model is considered

to adapt to environmental variations, maintaining efficiency
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under different lighting conditions. Ultimately, this research

contributes to the development of intelligent fitness robots

that operate efficiently while promoting environmental sus-

tainability.

1.2. Key Contribution of the Research

X This research describes an innovative aerobics com-

panion robot powered by solar energy and loaded with an

adaptive energy management system, which reduces depen-

dency on non-renewable energy sources and promotes envi-

ronmentally responsible exercise solutions.

X Designed an environmentally responsive adaptive

tracking system that maximizes solar energy absorption and

optimizes power distribution, ensuring sustainable energy

utilization.

X The research utilizes the INSIGHT-LME IMU

dataset, which includes 76 individuals, to identify exercises,

estimate recurrence and HAR reliably.

X The research employs Min-Max normalization and

two-dimensional Discrete Fourier Transform (2D-DFT) to

optimize data processing, reducing computational load and

unnecessary energy consumption.

X The article provides a DynCO-BNN-based motion

tracking framework that combines robotic vision and opti-

mizations to recognize limb movements in real-time in a

powered by solar energy aerobics training robots.

X The suggested technique, DynCO-BNN, is used to

improve the reliability of real-time movement identification

and observations, resulting in high tracking accuracy.

The rest of the research is followed by: Section 2 pro-

vides the related works; Section 3 explains the methodology;

Section 4 gives the results; Section 5 and 6 provide the dis-

cussion and conclusion.

2. Related works

Yihan (2024) provided an exercise movement identi-

fication system that employs biotechnology data and Deep

Learning (DL) algorithms [9]. Biosensing technologies and

wearable devices are used to acquire real-time physiologi-

cal signal data from anatomical parts of athletes. Convolu-

tional Neural Networks (CNN) and Long Short-Term Mem-

ory (LSTM) are employed, with the model’s efficiency im-

proved via parameter selection and techniques. Model C has

an accuracy of 0.987, dispatching both standalone CNNs

and Recurrent Neural Network (RNN) models. The system

also performs efficiently, with decreased execution times for

data processing, feature extraction, and classification. Joshi

et al. (2024) described the Internet of Things (IoT) devices

demand a scarce amount of energy [10], thus it is critical to

maintain continuous power supply and communication. A

strategy is suggested to providewireless power as well as data

transfer for IoT devices by absorbing solar energy and em-

ploying UAV and Reconfigurable Intelligent Surfaces (RIS).

The intention is to improve energy efficiency by scheduling

IoTUnits (U) energy harvesting and optimizing the UAV

orientation. Amulti-agent federated reinforcement learning

technique is presented, which achieves 96.3% and 97.5%

accuracy for interaction circuits and RIS components, re-

spectively, while also improving energy consumption.

Agarwal et al. (2024) established solar-powered cold

storage units for street sellers, which provide a dependable

and portable alternative in off-grid locations [11]. The tech-

nology incorporates solar energy, resulting in flexibility, mo-

bility, and effectiveness. It has an accessible user interface,

effective cooling methods, and real-time monitoring via IoT.

The system’s mobility and IoT integration provide optimal

performance and energy efficiency, increasing product qual-

ity and shelf life, and ultimately improving corporate oper-

ations and profitability. Hazare et al. (2024) suggested an

innovative approach for improving solar-powered UAVs uti-

lizing slime mold neural networks for azimuthal solar syn-

chronization and aerodynamic neuro-optimization [12]. The

objective is to enhance the endurance and environmental

resistance of UAVs so that they can potentially utilized for a

variety of tasks such as environmental monitoring and rescue

efforts. This technique demonstrates the value of combining

biomimicry and neural network-based optimization.

Prauzek et al. (2024) investigated the use of Genetic

Programming (GP) and fuzzy logic to enhance the control

techniques for IoT nodes [13]. It presents a innovative ap-

proach to constructing a fuzzy-based energy management

controller that illustrates the ideal regulator architecture and

parameters on its own. The technique is examined with a

sunlight-generating IoT approach, proving its suitability for a

wide range of geographic operations as well as compatibility

with low-performance microcontrollers. The investigation

established that the model effectively leverages historical
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records to offer optimal control techniques, with gradual

advancement throughout the learning period.

Shao et al. (2023) described a long-term human-robot

interaction conducted at a nearby long-term care facility,

examining the advantages of workout encounters between

older persons and an autonomous socially helpful robot,

both individually and in groups [14]. The robot employed

a special emotion model to modify its actions and monitor

users’ progress toward fitness objectives. In one-on-one ses-

sions, consumers valued the robot’s intelligence, sociability,

and looks, indicating positive valence and high engagement.

Mekruksavanich and Jitpattanakul (2024) employed a new

DL model to recognize gym exercise activities with wear-

able sensors directly [15]. Model-recognized exercises with

multimodal sensor information using DLmodels. The model

was evaluated with the Myogym dataset based on an F1-

score of 92.68% and a classification accuracy of 97.29%.

Ablation experiments confirm the effectiveness of the model

and demonstrate its capability for personalized training and

rehabilitation.

Giordano et al. (2023) investigated how soft robotics

might be used to improve environmental sustainability. In-

vestigating biodegradable materials, integrating renewable

energy sources, and the difficulties of large-scale maintain-

able manufacture were all covered [16]. Field-ready soft

robots were presented that assist the Sustainable Develop-

ment Goals (SDGs) in the ranges of urban farming, health

care, disaster relief, land and ocean protection, and sustain-

able energy. This approach encourages clean energy, sustain-

able manufacturing, financial expansion, ecological preser-

vation, and general health.

Liu et al. (2024) described how industrial robots af-

fect the environment in 10 of the top AI countries between

2007 and 2020 [17]. A Quantile-on-Quantile methodology

was determined, which concluded that manufacturing robots

enhance environmental quality by reducing their ecological

effect. The consequences, showed that variables vary from

nation to nation, highlighting the necessity for authorities

to closely oversee industrial robots and ecological footprint

initiatives. Environmental psychology examined how peo-

ple behave about their surroundings and how psychological

strategies can encourage behavior modification. Wasim et al.

(2024) provided an energy management approach for a pow-

ered by solar energy battery-ultracapacitor hybrid system

that uses a Rule-Based Grasshopper Optimization Algorithm

(RB-GOA). The method obtained to correspond with the

pulsed load requires extracting the most energy from the

solar array [18]. The GOA randomly assigns power shares

based on Photovoltaic (PV) battery bank, and ultracapacitor

restrictions. The investigation corresponded with the sug-

gested approach to various swarm intelligence systems, and

found that it outperformed others in terms of power surge

reduction, oscillation mitigation, and Maximum Power Point

(MPP) tracking. It lowers power surge by 26%, 22%, and

8% for variable PV with constant load.

Wang (2025) created a fine motion capture and action

recognition model for collegiate aerobics instruction that ad-

dressed noise and incompleteness concerns [19]. The model’s

greatest attributes include a 36.5% increase in efficiency

for the process captures model and a 59.4% top-up accu-

racy for the action recognition model. On both datasets, the

model exceeded the control group by 9.4 points in terms

of classification precision. This increased the ability to im-

part the efficacy of efficient aerobics training. Ishaya et al.

(2025) described IoT which is revolutionizing smart cities by

enhancing connectivity and automation [20]. However, ques-

tions regarding energy usage, device longevity, and network

sustainability have emerged. Energy-efficient protocols, in-

cluding dynamic power regulation, cycling function, and

hybrid energy harvesting, are critical for managing power

usage while preserving network dependability. Advanced

Medium Access Control and routing protocols, as well as

new communication standards, all contribute to reducing en-

ergy waste. The research assessed advanced energy-efficient

IoT protocols in smart urban environments, with an emphasis

on AI-powered energy management, edge computing, and

energy-harvesting IoT devices.

Kalbande et al. (2024) appeared at the incorpora-

tion of ternary nano-enhanced materials into organic Phase

Change Materials (PCM), with Erythritol as the fundamental

PCM [21]. Three distinctive nano-enhanced phase change ma-

terials are produced by combining nanomaterials and carbon

nanotubes. The thermal performance of mono, binary, and

ternary nano-enhanced PCM-based thermal energy storage

devices is compared with that of the basic PCM. In com-

parison to traditional systems, ternary nanocomposite nano-

enhanced PCM has the best thermal efficiency and power

retention capability.Damien Bouchabou et al. (2021) present
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recent algorithms, works, challenges, and taxonomy of the

field of human activity recognition in a smart home through

ambient sensors [22].

2.1. Research Gap

Prior work has focused on energy-efficient IoT devices,

solar-powered UAVs, and wearable sensors for detecting

human activity. However, there is an absence of integrated

systems that combine real-time aerobics training coaching,

energy efficiency via solar processing, and intelligence mo-

tion monitoring with powerful optimization processes in a

single robotic framework. Most systems lack an exhaustive

solar-adaptive energy management system or use Machine

Learning (ML) and AI.

DynCO-BNN covers the loopholes with a blend of

optimized feature learning, recognition that is aware of un-

certainty, and low-power computation. Different from the

typical CNN-based architectures, it conserves computation

with no compromise in accuracy to enable real-time response

and motion adjustment. With an incorporated solar-driven

energy management unit, operation sustainability is assured

without much reliance on external power inputs. Further-

more, with an adaptive dual-battery power storage method,

efficient consumption of power provides enhanced operation

endurance. Through the use of machine vision, the model

improves movement accuracy and lessens computationally

expensive calculations. Its support for wearable and au-

tonomous robotic systems enables it to be a scalable option

for various training environments. With these improvements,

the proposed solution offers an overall, eco-friendly, and

smart solution for next-generation aerobics training robots.

3. Methodology

Research provides real-time physical activity assess-

ment while reducing dependency on nonrenewable energy

and improving ecological sustainability. The solar-powered

aerobics training robot with an adaptive energy management

system, obtaining to promote the ecological sustainability

and long-term efficacy of nonrenewable energy-based tech-

nology. The methodology used in the research to define the

organization of the environmentally adaptive Smart Power

and Energy Management (SPEM) system for aerobics train-

ing partner robots was presented in this section. The research

uses the INSIGHT-LME IMU dataset for motion tracking,

using Min-Max normalization for data preprocessing. Fea-

ture extraction is conducted using the 2D-DFT to improve

motion recognition. A hybrid methodology combining the

Dynamic Cheetah Optimizer (DynCO) and Bayesian Neural

Network (BNN) provides energy-efficient movement predic-

tion. Environmentally optimized search and eco-attacking

strategies in DynCO help adaptive trajectory accuracy at

reduced energy cost in aerobics motion analysis. Figure 1

provides the overall flow of methodology.

Figure 1. Flowchart of the Research Process.

Source: Authors’ work.

3.1. SPEM System for an Aerobic Training

Partner Robot

A SPEM system specifically designed to enhance envi-

ronmental sustainability in aerobics training partner robots

by optimizing renewable energy management is represented

in Figure 2. The system harnesses solar energy using a solar

panel, which is maximized with an optimization via a track-

ing mechanism that adjusts its position to maximize sunlight

absorption. The ambient light sensor continuously moni-

tors environmental lighting conditions to optimize energy

capture. The generated solar power is regulated by an I/V sen-

sor, ensuring efficient energy distribution and eco-friendly

power supply. The microcontroller acts as the processing

center, controlling energy flow, source switching, and robot

movement control. A battery charging system accumulates

excess energy in two batteries, controlled by Selector 1 and

Selector 2, dynamically managing charge-discharge cycles,

ensuring uninterrupted operation while optimizing energy

sustainability.
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Figure 2. Framework of the Environmentally Adaptive SPEM Sys-

tem.

Source: https://www.ijarcce.com/upload/2015/may-15/IJARCCE%2089.pdf

This makes the aerobics training partner robot run con-

tinuously and uninterruptedly. The robot is powered by

stored energy and can execute aerobics training movements

seamlessly usingmachine vision to inspect and give real-time

feedback on the exercises of users. The smart energy man-

agement system reduces power consumption and does not

lead to waste of energy while executing high-performance

motion at the same time. By incorporating renewable energy

sources, the system enhances environmental sustainability,

sustainability, lowers operating expenses, reduces carbon

footprints, and provides reliable operation of the aerobics

training partner robot.

3.2. Dataset

INSIGHT-LME IMUDataset from the Kaggle contains

71,473 rows of IMU sensor data recorded from 76 partic-

ipants who performed Local Muscular Endurance (LME)

exercises [23]. This dataset can be used for repetition count-

ing, exercise recognition, and Human Activity Recognition

(HAR) tasks.

3.3. Pre-Processing: Data Normalization

Ensuring consistent end environmentally adaptive

data processing, Min-Max normalization is applied to the

INSIGHT-LME IMU dataset. This method scales the raw

IMU sensor reading (e.g., values of accelerometer and gy-

roscope) to a specified range, normally [0–1], so that it is

consistent across various sensor inputs. Min-max normaliza-

tion has been shown to maintain all the relationships in the

dataset and is therefore well-suited to motion tracking and

aerobics exercise analysis. The following Equation (1) is

employed to normalize each value of the feature in question

into a new value.

u’ =
u–minB

maxB–minB
(new_maxB–new_minB) + new_minB (1)

Where u’ represents the new normalized value, u rep-

resents the original sensor reading, and maxB represents

the feature’s maximum value. minB is the minimum value

of the given feature B, while new_maxB and new_minB

represent the maximum and minimum values of the newly

considered range. By usingMin-Max Normalization, the sys-

tem achieves precise energy-efficient motion tracking with

firm environmental adaptability in aerobics training analysis.

3.4. Feature Extraction by Two-Dimensional

Discrete Fourier Transform (2D-DFT)

In environmentally adaptive energy management, ef-

fective feature extraction is vital for motion recognition and

energy usage optimization. Orthogonal mapping techniques,

such as the Fourier Transform, are commonly used for ana-

lyzing motion signals. One effective mathematical tool for

extracting relevant motion features is the Discrete Fourier

Transform (DFT), which operates within the discrete signal

domain. By establishing the transformation link between

the spatial and frequency domains, the 2D-DFT enables the

conversion of spatial domain motion data frequency-domain

representations for further analysis. This process facilitates

energy-efficient computational techniques, as most motion

recognition challenges can be addressed using spatial and

frequency domain analytic techniques. Then, 2D-DFT can

be displayed using

F (w, z) =

N–1∑
u=0

M–1∑
v=0

f(u, v)e
–i2π

(
wu
N + vz

M

)
(2)

The frequency-domain pixel coordinate is denoted by(w, z).

F (w, z) indicates the frequency-domain pixel value,

where w  =  {0, 1, 2,…, M–1}, z  =  {0, 1, 2,…, N–1},

The spatial − domain pixel value at coordinate (w,z)is

indicated by f(u,v), while u, v shows the spatial-domain

pixel coordinate in the image.u = {0, 1, 2,…, M–1},
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v = {0, 1, 2,…, N–1}, i is an imaginary unit, and N and

M stand for the size of the image row and column, respec-

tively. Equation (3) expresses the inverse transformation of

2D-DFT in the corresponding fashion, and e represents a

complicated exponential coefficient in the 2D-DFT and its

reverse.

f(u, v) =
1

NM

N–1∑
w=0

M–1∑
z=0

F (w, z) e
–i2π

(
wu
N + vz

M

)
(3)

By leveraging 2D-DFT in motion analysis, the system

enhances motion tracking accuracy while ensuring computa-

tional efficiency. This approach contributes to environmen-

tally sustainable robotics by optimizing processing power

and reducing unnecessary energy consumption in fitness

guidance applications.

3.5. Dynamic Cheetah Optimizer with

Bayesian Neural Network (DynCO-BNN):

AHybrid Approach for Environmentally

Conscious Motion Analysis

The proposed model merges the environmentally adap-

tive search and adaptation of DynCo with probabilistic learn-

ing of BNN to improve aerobics motion recognition while

Dynco guarantees fast convergence and efficient movement

trajectories, while BNN offers uncertainty estimation and

stable motion prediction. The DynCO-BNN method intends

to provide real-time, accurate, and energy-efficient move-

ment detection and evaluation for aerobics training automa-

tion in ecologically adaptable environments by employing

meta-heuristic efficiency and unpredictable development to

overcome the limitations of traditional models.

3.5.1. Bayesian Neural Network (BNN)

The BNN model is well suited for aerobics motion

recognition due to its probabilistic framework, enabling en-

vironmentally aware decision-making and energy-efficient

movement predictions. By leveraging dropout-based regu-

larization and batch normalization, BNN enhances motion

recognition accuracy while optimizing power efficiency for

a more sustainable aerobics training partner robot. The BNN

model assigns motion class labels to input movements while

incorporating environmental variability into motion adap-

tation. With its probabilistic approach to uncertainty esti-

mation, BNN optimizes network weight adaptation to en-

sure minimal energy wastage. Here, the probable weight

is represented as(W), and the posterior weight distribution

p (W|D) concerning the D dataset is evaluated after taking

into account prior knowledge or the p0 (W) distribution of

the weight (Equation (4)).

p (W |D) =
p (D|W ) p0 (W )

p (D)
(4)

Equation (4) uses p (D) as the environmentally influenced

normalization constant and p0 (W ) as the previous weight

distribution, which is typically an isotropic Gaussian. The

posterior from Equation (4) enables predictions in aerobic

movement analysis. Prediction is achieved by leveraging

multiple forward passes through the network. However, the

uncertainty in movement recognition arises from sampling

the regularization of dropout weight and Batch Normaliza-

tion (BN) as given in

p (Y ∗|X∗, D) =

∫
p (Y ∗|, X∗,W ) p (W |D) dW (5)

p (Y ∗|X∗, D) =
1

T

T∑
t=1

p (Y ∗|X∗, D,Wt) (6)

Bayesian predictive distribution for the output Y ∗ given a

new input X∗ and dataset D.BN accelerates network train-

ing by normalizing the hidden layer activation from each

mini-batch. This is done by lowering the internal covari-

ate shift, which characterizes the changes in the activation

unit distribution brought on by parameter modifications. A

Bayesian-motivated approach named dropout regularization

randomly drops some network links, turning weights into

stochastic variables. This makes the model stable while uti-

lizing less computational capacity, which aids in efficient

energy management in aerobics training robots. Stochastic

Gradient Descent (SGD) training with improvements using

dropout-based weight updates also reinforces motion predic-

tion stability and environmental responsiveness.

3.5.2. Dynamic Cheetah Optimizer (DynCO)

for Environmentally Adaptive Motion

Optimization

The DynCO is particularly well-suited to ecologically

adaptive motion optimization with its potential for balanc-

ing speed, accurateness, and energy efficiency. Illustration

encouragement from the agility of cheetahs, DynCO adapts

signal parameters dynamically with minimal computational

above and maximal real-time adaptability. Its compatibil-

ity with renewable energy further produces it deployable
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sustainably in aerobics training robots with subordinate eco-

logical footprints. The meta-heuristic optimization technique

called the Cheetah Optimizer (CO) algorithm is encouraged

by cheetah hunting tactics. It provides various advantages

such as rapid variation of motion, parameter adjustment min-

imization, and computation simplification. The procedure

effects in three predominant stages: environmental adaptive

search, optimized waiting, and operative occurrence. After

the conventional CO algorithmwas altered, DynCO’s motion

prediction efficiency enlarged. This is the comprehensive

improvement plan. The DynCo is highly appropriate for aer-

obics motion optimization due to its rapid motion adaptation,

efficient trajectory prediction, and real-time movement track-

ing. Its adaptive weighting mechanism optimizes trajectory

precision while its meta-heuristic learning enhances overall

environmental sustainability.

Environmentally optimized Searching strategy: To

improve search efficiency, Tent chaotic mapping was in-

troduced, replacing the conventional CO’s randomized ini-

tialization with an environmentally adaptive method. This

chaotic mapping approach enhances motion adaptability and

minimizes unnecessary computational waste, leading to the

formulation of Equations (8) and (9), modified from the

original searching model Equation (7). Where the current

and updated positions of the motion state j at iteration s are

denoted by Qs
j, i and Qs+1

j,i , respectively; Rd is a random

environmental factor ensuring energy-efficient exploration

integer chosen from the range of 0 to 1; asj, i it is a random

step length; s and S stand for the current and maximum

iteration numbers, respectively.

Qs+1
j,i = Qs

j,i +Rd.asj,i (7)

Qs+1
j,i = Qs

j,i + Ss
d (8)

Ss
d =

{
Ss–1
d

γ ,  Ss–1
d ∈ [0, γ)(

1–Ss–1
d

)
(1–γ) , Ss–1

d ∈ [γ, 1]
(9)

The current iteration is indicated by S; γ ∈ (0, 1)

Sustainable Attacking strategy: During this phase,

DynCO dynamically refines movement trajectories while

considering environmental constraints. Adynamic weighting

factor λ is introduced to optimize motion tracking efficiency

while reducing energy expenditure. Initially, λ is maximized

to support rapid adaptation, but as iterations progress, it

adaptively decreases to ensure energy-efficient stabilization.

Consequently, the following modifications could be made to

Equations (10–12).

Qs+1
j,i = Qs

G,i + λj,i.A
s
j,i (10)

λ =
e4(1–δ)–e–4(1–δ)

[e2(1–δ) + e–2(1–δ)]
2 ,   δ =

s

S
(11)

As
j,i = P t

k,i–P
t
j,i (12)

DynCO-BNN enhances solar-powered aerobics train-

ing robots with the inclusion of meta-heuristic optimization

and probabilistic modeling for efficient motion analysis with

minimal energy. DynCO dynamically adapts movement

paths through adaptive exploration, and BNN guarantees

dependable motion identification considering prediction un-

certainty. The blended method maximizes the consumption

of solar power to realize real-time responses with negligi-

ble power consumption. Adaptive robot system weighting

enhances accuracy and improves stability, making it more

sustainable under dynamic training. Subsequently it utilizes

solar energy, DynCO-BNN is more efficient associated to

conventional methods in the associations of movement ac-

curateness and ecological adaptability, making it an ideal

solution for sustainable training and robotics approach. Al-

gorithm 1 shows the process of DynCO-BNN.

DynCO-BNN, a combination, significantly improves

the performance and sustainability of aerobics training com-

panion robots. It efficiently accomplishes uncertainty in

motion analysis, making informed decisions in actual fitness

applications where human arrangements are complex and

variable. This approach reduced the chances of delusion in

motion tracking. DynCO-BNN explorations computational

capacity dependent on input data complexities, improving en-

ergy reduced in solar-powered or battery-constrained robotic

schemes and lowering the load on dispensation absences sac-

rificing effectiveness. The robot’s adaptive learning feature

continuously advances feedback quality during training ses-

sions, greater with user engagement and training outcomes

over time.
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4. Experimental Result

The evaluation of the DynCO-BNN approach in devel-

oping motion recognition, energy efficiency, and real-time

feedback for aerobics training robots were confirmed in this

section. The model was implemented to attain ecologically

adaptive motion analysis, providing minimal consumption of

energy while conserving high recognition accurateness. The

combination of DynCO’s meta-heuristic optimization and

BNN’s probabilistic learning facilitates maintainable motion

adaptation, diminishing computational overhead and max-

imizing power consumption. The comparative assessment

further exhibits its excellence over CNN_Model 1-based

methods in both upper and lower-body exercise identification.

The hyperparameter configuration in Table 1 is optimized

to facilitate operative motion version and uncertainty-aware

appreciation while decreasing energy consumption by the

eco-friendly robotics usage.

Table 1. Hyperparameter Setting.

Value/DescriptionHyperparameter

DynCO Parameters

50Population Size

100Maximum Iterations

Randomized (range: 0.1–1.0)Initial Step Length aaa

Random (range: 0–1)Environmental Factor Rd

Adaptive (Equation 8)Weighting Factor λ

Tent Map InitializationChaotic Mapping Strategy

Searching, Waiting, AttackingOptimization Phases

BNN Parameters

4 (Input, 2 Hidden, Output)Number of Layers

[128, 64, 32] (Hidden layers)Number of Neurons per Layer

ReLU (Hidden Layers), Softmax (Output)Activation Function

0.3Dropout Rate

EnabledBatch Normalization

0.001 (Adaptive with decay)Learning Rate

AdamOptimizer

Categorical Cross-EntropyLoss Function

50Training Epochs

32Batch Size

Monte Carlo Dropout SamplingUncertainty Estimation

4.1. Experimental Setup

The experiments were approved out on a high-

performance computing platform to produce the dispensation

effective and real-time. The machine used was an Intel Core

i9 processor, 32GB RAM, and an NVIDIA RTX 3090 GPU.

The DynCO-BNN model was executed in Python 3.8 and

TensorFlow 2.6, which offered a stable environment for DL

Algorithm 1: DynCO-BNN
Initialize BNN
Initialize weight distribution p_0(W)
for each epoch:
Perform forward pass with dropout & batch normalization
Compute posterior: p(W|D) = (p(D|W) * p_0(W)) / p(D)
Compute predictive: p(Y*|X*,D) = (1/T) * sum( p(Y*|X*,D,W_t)
Update weights via SGD

Initialize DynCO
Initialize cheetah population with Tent chaotic mapping
for each iteration:
Update position using a search strategy
Optimize movement using an attacking strategy

Integrate DynCO-BNN for motion classification
For each motion sample:
Extract features, refine with DynCO, classify with BNN
Compute uncertainty, output motion label & feedback
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calculations. The configuration was optimized for the pro-

cessing of large datasets and complex model training opera-

tions. This experimental setup (Table 2) guaranteed that the

devised model would have high accuracy and computational

performance, qualifying it for real-world usage in motion

analysis and exercise recognition.

Table 2. System Configuration.

SpecificationsComponent

Processor Intel Core i9

RAM 32GB

GPU NVIDIA RTX 3090

Software Python 3.8

Framework TensorFlow 2.6

Purpose Efficient computation and real-time performance

4.2. Evaluation metrics

The performance of the DynCO-BNN model is deter-

mined by important performance metrics presented in Equa-

tions (13–16). Accuracy measures accurate workout monitor-

ing by calculating the general accuracy of movement recog-

nition. Precision assesses the accuracy with which the model

detects pertinent movement, minimizing false alarms. To re-

duce the probability of missed detections, recall investigates

the system’s ability to detect all pertinent exercise move-

ments based on the environment. Awell-balancedmeasure of

the robustness of the model is the F1-score, a harmonic mean

of precision-recall and precision. (Note: TP-True positive;

FN-False negative; TN-True negative; FP-False positive)

Precision =
TP

TP + FP
(13)

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Recall =
TP

TP + FN
(15)

F1− Score = 2 × Precision×Recall

Precision+Recall
(16)

4.3. Output Phase

Table 3 and Figure 3 present the performance evalua-

tion of the constructed DynCO-BNN model against major

evaluation parameters. The model attains 96.8% accuracy,

indicating its ability to effectively identify and track program

patterns during aerobics exercises based on the environment.

Moreover, the system exhibits 92.5% energy efficiency, guar-

anteeing eco-friendly power consumption while supporting

steady operation. The 89.7% optimized power consump-

tion rate indicates the system’s capacity for reducing energy

wastage, limiting unnecessary power use, and proceeding

green energy technologies. Moreover, the model improves

motion synchronization by 94.3%, enabling accurate real-

time motion tracking while optimizing power resources. The

results confirm that DynCO-BNN is an enormously accu-

rateness, energy-efficient, and green solution for aerobics

training robots that encourage sustainable fitness expertise

and green AI applications.

Table 3. Performance Metrics of the Proposed Model.

DynCO-BNN [Proposed]Metrics

96.8(%)Accuracy

92.5(%)Energy Efficiency

89.7(%)Optimized Power Consumption

94.3(%)Improved Motion Synchronization

Figure 3. Output Metrics of DynCO-BNN.

Source: Authors’ work.

4.4. Probabilistic of Aerobics Recognition

Model

The reliability and precision of a motion tracking sys-

tem by establishing a bootstrapped 95% confidence range

for its accuracy, determines in Figure 4. This statistical

technique serves in examined the variability and stability of

the arrangement’s presentation under the repeated sampling

surroundings.

The histogram represents the spreading of bootstrapped

motion tracking accuracy scores, which show an approxi-

mately normal distribution with a mean of 96.67%. The

mean is the average of all of the accuracy estimations. 95%

confidence interval boundaries, which range from 96.47%

to 96.83%. The secured interval designates that the motion-
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tracking expertise regularly accomplishes superior precision.

Figure 4. Illustrate the Statistical Reliability and Variation.

Source: Authors’ work.

4.5. Comparison Phase

Comparative analysis of the DynCO-BNN model with

the Convolutional Neural Networks (CNN)_Model 1 fur-

ther highlights its ecological sustainability characteristics

of energy efficiency and green AI-driven motion recogni-

tion [24]. The improved recall and F1-score values further

produce that DynCO-BNN maximizes computational en-

ergy expenditure to produce a lower carbon footprint while

supporting higher accurateness in aerobics movement ob-

servation. The research investigates the Lidar sensors and

power consumption techniques that employ the Proximal

Policy Optimization (PPO) technique, are also compared to

the proposed approach [25].

4.5.1. Upper Limb Exercise Recognition

The comparison between CNN_Model 1 and the pro-

posed DynCO-BNN approach for upper limb exercise recog-

nition determined in Table 4. The consequences designate

that the proposed model performances the baseline in each

metrics. DynCO-BNN achieves an average precision of

0.9720, recall of 0.9850, and F1-score of 0.9810, surpass-

ing CNN_Model 1, which has respective values of 0.9683,

0.9773, and 0.9727. This improvement highlights the en-

hanced ability of the proposed model to accurately classify

upper limb exercises. The findings contribute to creating a

reliable exercise recognition system within an environmen-

tal setting focused on rehabilitation, fitness monitoring, or

physiotherapy applications. Figure 5 provides a graphical

illustration of the comparison of upper-body exercise recog-

nition.

Table 4. Performance Comparison of the Models for Upper Limb Exercise Recognition.

Metrics
DynCO-BNN [Proposed]

Average precision

Average Recall

Average F1-Score

Figure 5. Comparison of Performance of the Recognition of Upper

Body Exercise.

Source: Authors’ work.

4.5.2. Lower Limb Exercise Recognition

Table 5 compares the performance of CNN_Model 1

and the proposed DynCO-BNN model for lower limb exer-

cise recognition [23]. The proposed model achieves superior

performance, with an average precision of 0.9710, recall of

0.9880, and F1-score of 0.9850, compared to CNN_Model

1’s values of 0.9673, 0.9743, and 0.9704, respectively. These

improvements suggest that DynCO-BNN provides a more

reliable and accurate classification of lower limb exercises.

This advancement enhances the environmental adaptability

of automated exercise monitoring systems, making them

beneficial for physical rehabilitation, sports training, and

healthcare applications that require precise movement analy-

sis. Figure 6 provides a graphical comparison of the Lower

limb exercise recognition.

492

CNN_Model  1  [23]

Upper  Body  Exercise

0.9683

0.9773

0.9727

Upper  Body  Exercise

0.9720

0.9850

0.9810



Journal of Environmental & Earth Sciences | Volume 07 | Issue 06 | June 2025

Table 5. Performance Comparison of the Models for Lower Limb Exercise Recognition.

DynCO-BNN [Proposed]

Lower Body Exercise

Figure 6. Comparison of Performance of the Recognition of Lower

Body Exercise.

Source: Authors’ work.

4.5.3. Evaluation of LiDAR Range

The Average LiDAR Range (m) is the precise distance

that a LiDAR sensor can determine in various saturation

situations, which influences motion quality, reaction dura-

tion, and energy consumption. Efficient aerobics training

and autonomous systems require high-precision, long-range

detection for directions, motion tracking, and cognition of

the environment, therefore increasing LiDAR range while

reducing cost of energy and duration is critical. Both models

demonstrate an increase in LiDAR range as saturation rises,

indicating adaptive measurement, represents in Table 6 and

Figure 7 [24].

Table 6. Numerical Range of LiDAR.

Saturation PPO [24] DynCO_BNN [Proposed]

135.60120.520.05

190.72172.680.10

239.88215.780.15

291.50251.230.20

310.44280.930.25

325.60308.280.30

426.71331.530.35

The DynCO-BNN model significantly outperforms the

PPO baseline at all saturation levels, with an average gain

of 12–30 meters and up to 95 meters at higher saturation [24].

The significant increase at 0.35 suggests improved range

generalization under high environmental or computational

strain.

Figure 7. Outcome of LiDAR.

Source: Authors’ work.

4.5.4. Assessment of Power Consumption

Average Power Consumption (Wh) is a measure of the

quantity of electrical energy a system utilizes while operating.

In intelligent systems such as the Solar-Powered Aerobics

Training Robot withAdaptive EnergyManagement, reducing

power usage is critical for energy efficiency and durability,

as depicted in Table 7 [24]. It decreases the robot’s reliance

on external power sources, allowing it to perform activities

including aerobics motion identification and environmental

sensing with more independence.

Table 7. Numerical Outcome of Power Consumption.

Saturation PPO [24] DynCO_BNN [Proposed]

14.2015.800.05

16.0116.590.10

16.3417.230.15

16.7717.770.20

17.0018.210.25

17.5418.620.30

18.0018.970.35

Figure 8 determines the DynCO-BNN model shows

lower power consumption compared to the baseline PPO,

with notable savings at lower saturation levels (0.05–0.15)

and an insignificant power advantage at higher saturation

(0.35), suggesting superior energy efficiency during light to

moderate workload conditions.
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Figure 8. Visualization of Power Consumption.

Source: Authors’ work.

5. Discussion

The state-of-the-art CNN_Model 1 achieves higher ac-

curacy than traditional supervised ML techniques through

the learning of more sophisticated features. Nevertheless,

though accurate, it has various drawbacks such as high com-

putational resource utilization, sparse real-time feedback, and

reliance on offline computing. The solar-powered aerobics

training robot’s real-time feedback, energy economy, and

customization make it suitable for a variety of applications.

It enables rehabilitation, inside and outside exercise without

requiring external power. This is enormous for geriatric care,

remote training camps, and wearable integration, as well as

an instructional tool for demonstrating green AI-powered

robots in action. CNN_Model 1 is computationally intensive

for repetition counting and exercise recognition, which ren-

ders real-time applicability difficult. Although it efficiently

counts repetitions, it offers limited qualitative feedback on

movement correctness and thus diminishes its applicability

to support training. Also, most of the existing approaches are

based onwindowing techniques for offline calculations, limit-

ing their efficiency in real-time settings. These are addressed

by DynCO-BNN using meta-heuristic optimization in com-

bination with probabilistic learning that optimizes feature

extraction and reduces computational expense without sacri-

ficing accuracy. Motion-tracking accuracy is significantly

improved, with real-time qualitative feedback on movement

accuracy and adaptive learning. The rise in efficiency is at-

tributable to the integration of the DynCO, which effectively

explores the search space for optimal weights, and BNN,

which includes probability estimates, enabling more robust

and adaptable learning across a variety of dynamic behaviors.

The model also enhances energy efficiency via dynamic com-

putation requirements adjustment, reducing overall power

consumption. The energy consumption improvement is aca-

demically demonstrated through the model’s ability to scale

processing professions based on the quantity of motion in-

puts, reducing wasteful computing in less difficult activities.

Another significant advantage of the DynCO-BNN model

is that it is ecologically friendly, which makes it highly ap-

propriate for green aerobics training systems. Efficient use

of energy and solar-powered robotics technology enables

it to minimize its reliance on outside power sources, en-

abling environmentally sound fitness applications. Its ability

to work with environmental changes also ensures motion

recognition in different conditions is accurate, rendering it

highly suitable for real-time applications. The deterministic

modeling approach improves system adaptability by general-

izing across several ecological and customized user changes,

consequently increasing resilience and dependability. The

compatibility of the model with renewable energy sources

renders it a suitable candidate for seamless integration in

wearable devices and autonomous robotic systems, render-

ing it an intelligent and green solution for aerobics training

and environmental adaptive motion analysis. The system

has negative aspects, such as decreased effectiveness in low

sunlight, which impacts energy collection and operation time.

Its AI-based processing generates computational expenses,

necessitating efficient equipment. Furthermore, the solar

tracking system can malfunction in unpredictable light con-

ditions, and the additional sensors and controllers raise both

cost and maintenance requirements. The investigation estab-

lished a solar-powered aerobics training robot, which reduces

reliance on nonrenewable resources. Its adaptive energy

technology provides effective power use particularly indoors.

AI-based motion monitoring improves training security and

efficiency, promoting ecological fitness in residences, fitness

centers, and distant locations.

6. Conclusions

The proposed solar-powered energy management sys-

tem for an aerobics exercise robot integrates machine vision

and the DynCO-BNN algorithm for optimizing exercise guid-

ance and real-time feedback. An adaptive solar tracking plat-

form and an affordable dual-battery storage system are incor-
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porated into the system for long-lasting, cost-efficient power

management. The energy-saving technique not only opti-

mizes working longevity but also promotes an ecologically

sound fitness solution. The DynCO-BNN algorithm signifi-

cantly improves the recognition accuracy of motion to 96.8%

with power efficiency optimization. The uncertainty-aware

framework integration enables greater real-time flexibility,

ensuring precise movement recognition and feedback. The

robustness of the system was also tested using IMU sensor

data from 76 participants performing LME exercises, verify-

ing its efficiency in human activity recognition applications.

Comparison stresses the advantage of DynCO-BNN over

other standard CNN_Model 1-based methods, specifically

tracking upper and lower limb motions, real-time adjust-

ment, and energy efficiency. The eco-friendly system design

renders it a sustainable aerobics training solution. Minimal

dependency on non-renewable energy and optimal compu-

tational requirements ensure less environmental footprint.

Its resistance to changing lighting conditions supports con-

stant operation, further upholding practical implementation.

The results validate the system’s potential as a smart and

sustainable fitness device, providing an improved user inter-

face with accurate movement correction and optimal energy

usage.

7. Limitation and Future Scope

While its benefits, solar power use can decrease effi-

ciency during low-light environments. Also, the emphasis

of the dataset on LME exercises constrains generalizability

to more diverse fitness regimens. Future work will investi-

gate hybrid energy sources and increase exercise variety to

increase adaptability, sustainability, and real-world applica-

bility.
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