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ABSTRACT
As the demands for environmental sustainability and the requirements to lower carbon emissions have escalated, 

New Energy Vehicles (NEVs) have emerged as a compelling substitute for fossil-fuel-run automobiles. Hence, a smart 
energy management strategy has been developed to enhance the performance of NEVs, maximizing the sustainability of 
transportation systems and minimizing environmental impacts. The system combines different power reserves, includ-
ing a photovoltaic (PV) generator, fuel cell (FC), and battery system, to provide a continuous energy supply, even when 
the vehicle is running. The Multi-Directional Power Transfer converter for the battery provides the required energy ad-
aptation between the input and output. The FC and PV systems are all connected through a direct current/direct current 
converter to effectively charge the battery whenever excess energy is present. The new energy management technique 
called Optimized Ant Colony Algorithm is proposed to dynamically allocate power among the different power sources, 
improving system efficiency. Unlike traditional methods, the suggested approach actively optimizes energy flow accord-
ing to actual demand and availability, minimizing energy losses and enhancing sustainability. The MATLAB/Simulink 
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1. Introduction

The demand for clean, efficient, and eco-friendly 
means of transportation is driving the rapid expansion of 
intelligent transport systems, assuming a critical role in 
the development of future mobility solutions [1]. The ad-
vent of Electric Vehicles (EVs) has enormous potential to 
restrict greenhouse gas emissions and enhance the quality 
of urban environment, making them a green alternative 
to conventional fossil fuel-based vehicles. Smart energy 
management is not just the setting up of charging stations 
but also the integration of renewable energy sources like 
solar and wind in a smooth manner to provide a greener 
and sustainable power supply for EVs [2]. Transportation 
infrastructures have to be maximized to realize economic 
and social objectives, maximize traffic mobility, reduce 
congestion, and protect people through improved road 
safety via minimized road crashes while, at the same time, 
managing environment-related issues such as air emis-
sions and carbon production [3]. Plug-in Electric Vehicles 
(PEVs) have come out strongly as an economical option 
for reduced carbon dioxide output with the additional ben-
efit of cleaner, more environmentally friendly and less-
dependence-on-oil-based solutions. Intelligent transporta-
tion systems have revolutionized traditional gasoline and 
diesel-powered transport networks into new-age, low-cost, 
and highly sustainable transport solutions that provide effi-
cient and quiet transport services, rendering them increas-
ingly applicable to urban environment [4]. However, with 
better energy density and performance, lithium-ion battery 
cells high cost and weight remain the main barrier to the 
prolongation of the driving range of EVs and hence their 
universal use [5]. To achieve a future-proofed transportation 
infrastructure, current systems need to have EVs intercon-
nected with electric grids to facilitate efficient distribution 
of energy, conservation of resources, and better grid reli-

ability. Smart charging systems are essential in resolving 
these challenges by way of recharging infrastructure man-
agement, grid demand balancing, and the use of renewable 
energy sources to reduce the reliance on fossil fuels [6]. 
PEVs, hybrid electric vehicles, and hydrogen fuel cell ve-
hicles are prime examples of EV technology, each with its 
respective advantages in terms of efficiency, environmental 
sustainability, and energy consumption. These vehicles uti-
lize various modes of propulsion like electric motors, fuel 
cells, and regenerative braking to offer better performance 
and extend battery life [7]. The increasing number of EVs 
places significant strain on the energy supply infrastructure 
because charging these cars requires a lot of energy. Bi-di-
rectional charging networks such as V2G and high-power 
chargers can further alleviate grid tension by allowing EVs 
to supply power back into the grid in peak demand periods. 
Intelligent power management techniques combined with 
predictive analytics based on AI can also streamline EV 
charging schedules and energy allocation for uninterrupted 
and seamless power delivery to EV users [8]. The research 
aims to establish smarter power management technolo-
gies for New Energy Vehicles (NEVs) to develop power 
consumption efficacy and transport sustainability while 
minimizing environmental impact. It aims to integrate dif-
ferent energies and maximize the efficiency of power via 
enhanced conversion and management. A smart energy 
management strategy is present to maximize energy use in 
NEVs through the combination of various energy sources, 
such as photovoltaic (PV) generators, fuel cells (FC), and 
batteries. 

An optimum EV charging preparation algorithm 
based on Grey Sail Fish Optimization (GSFO), which fuses 
GWO and SFO, was examined by Rajamoorthy et al. [9]. 
It enhanced traffic efficiency and power optimization, 
although scalability with rising vehicles required more 
examination. An environmentally conscious optimization 

tool was used to simulate the energetic performance of an electric car utilizing the suggested approach. The performance 
of this multi-source power system is assessed by contrasting the energy the PV and FC generating devices offer, and the 
energy generation of each recharge system. Additionally, the battery power comparison validates the cost-effectiveness 
and sustainability of the proposed model in NEVs. Results designate a significant improvement in energy efficiency and 
overall NEV environmental sustainability within contemporary transportation networks.
Keywords: Electrical Vehicles (EV); Photovoltaic (PV); Environment; Fuel Cells (FC); Optimized Ant Colony Algo-
rithm (OACA); Energy Efficiency
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method for planning when to charge electric vehicles was 
observed using Exponential Harris Hawks Optimization 
(EHHO) algorithm [10]. Using this, EVs spend less time 
charging in the Charging Station and the finest EV charg-
ing stations were suggested. For multi-connection DC 
networks, the characteristics of the top and bottom energy 
management levels were obtained using an Ant Colony 
Optimization (ACO) technology [11]. It was demonstrated 
that the ACO algorithm did not break electric power limi-
tations, fluctuations in voltage, or oscillations. However, 
shifting periods were greatly decreased while ensuring 
environment-friendly operational practices The history and 
advantages of EVs were analyzed, and the results found 
were better charging infrastructure and battery technol-
ogy [12], despite the challenges such as the expense of high 
infrastructure and range anxiety. Furthermore, a cloud-
supported IoT-centered Intelligent Transportation System 
(CIoT-ITS) for traffic flow optimization and congestion 
management was examined by Liu and Ke [13]. Simulation 
proved its efficiency in vehicle flow control, although it 
was limited in its scalability and practical applicability of 
the system in real-world environmental settings. The ac-
ceptance of EVs and the complexities of deploying effec-
tive fast-charging structures, particularly integrating with 
the renewable energy sector and electrical grid, were ad-
dressed by Mohammed et al. [14]. They discussed planning 
strategies, simulation models, and optimization techniques 
for the increasing need for environmentally sustainable EV 
fast-charging points. A power managing algorithm for a so-
lar and biogas hybrid EV recharging center that minimized 
power generation and costs and environmental impacts 
was presented by Karmaker et al. [15]. It showed a decrease 
in the cost of energy and lower emissions, with station 
owners experiencing short payback periods. A new power 
managing strategy for plug-in hybrid EVs with the aid of 
fuzzy logic and neural fuzzy logic regulators was discussed 
to improve the efficiency of batteries [16]. The results indi-
cated that more sophisticated control strategies increased 
fuel economy, while promoting environmental efficient 
operations. However, the optimal system to be adopted by 
different vehicle profiles and operating conditions needs 
further evaluation. The contributions of EVs and the V2G 
method to renewable energy resource integration, environ-
mental sustainability and demand management on the grid 

were summarized by Dik et al. [17]. The conclusions identi-
fied technological innovation and challenges. Limited scal-
ability and practical implementations were its limitations. 
The influence of 5G technology on Intelligent Transporting 
Systems (ITS) in smart cities, along with its technological 
and economic and environment effects, were discussed by 
Gohar and Nencioni [18]. It detailed how 5G will improve 
various sectors of a smart city, especially transportation. 
The practical issues and full integration into current infra-
structures were its constraints. Growing need for ecologi-
cally friendly transport demands effective management of 
energy in order to create a stable, reliable power source 
for NEVs. Fluctuations in power from sources such as PV 
generators and FC result in power instability and loss of ef-
ficiency. Effective energy delivery and conversion are thus 
essential to ensure high performance and utilization rates 
even with varied conditions. To mitigate these challenges, 
this research introduces a MDPT converter and OACA 
through which energy flow is managed. The proposed sys-
tem improves energy adaptation, ensures effective power 
distribution, and boosts overall sustainability in NEVs. 
High cost of batteries and constraints of lithium-ion bat-
teries, such as low energy density and weight, have a di-
rect impact on NEV’s efficiency and travel distance. Such 
constraints highlight the need for a highly efficient energy 
management system capable of effectively blending mul-
tiple sources of energy to assist in reducing dependence 
on a single source of power. Poor energy delivery leads to 
power imbalances, energy losses, and higher operating ex-
penses. To solve this, the research introduces MDPT con-
verter and an OACA to control energy flow. The objectives 
of the proposed method are as follows:

(1) Maximizes NEV energy management through the 
incorporation of PV, FC, and battery systems for a steady 
and uninterrupted power supply.

(2) Employs an MDPT converter for smooth energy 
flow and a DC/DC converter to charge the battery with 
surplus renewable energy.

(3) Uses Optimized Ant Colony Algorithm (OACA) 
to distribute energy in real-time dynamic based on real-
time demand.

(4) Greater use of renewable power, reducing de-
pendence on fossil fuels, and increasing environmental 
sustainability.
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(5) Evaluation of the energy output of the FC and PV 
systems and the efficiency of every method of recharging, 
point to great gains in energy efficiency and the environ-
mental sustainability of NEVs in today’s transportation 
systems.

Existing research has focused into numerous opti-
mization methods for managing energy for EVs, but there 
are still constraints on scalability, real-time flexibility, and 
energy integration from multiple sources. The GSFO and 
EHHO approaches have been successful in charging ef-
ficiency optimization and station choice, but they mostly 
aim at minimizing waiting times instead of optimizing 
overall energy allocation. ACO has also been used in 
multi-connection DC networks to avoid power constraints 
and voltage variations, but not entirely dynamic energy 
distribution from various sources such as PV generators, 
FC, and batteries. The new approach, OACA, improves its 
capability to dynamically distribute energy according to 
demand variations, reducing energy losses and enhancing 
overall sustainability. The comparisons of performance 
based on metrics like energy output, energy efficiency, 
cost-effectiveness, and sustainable energy consumption 
will further confirm the advantage of OACA over current 
optimization techniques.

1.1. Research Gaps

Existing research on EV charging infrastructure con-
tains some limitations such as scalability issues, inefficient 
traffic optimization, and utilization of renewable energy 
sources in an inefficient manner. Existing optimization 
techniques like GSFO, EHHO, and ACO improve efficien-
cy but are inefficient in handling large-scale EV networks, 
leading to congestion and scheduling inefficiencies. Traffic 
flow optimization models are not validated in real-time and 
do not integrate perfectly with energy management, re-
stricting their applicability in real-world scenarios. Moreo-
ver, renewable power sources such as PV and FC are usu-
ally isolated, leading to inefficient energy consumption. 
Energy problems such as overcharging, deep discharge, 
and power unsteadiness shorten battery life and system 
stability. High infrastructure cost also prevents widespread 
fast-charging station adoption and integration with renew-
able energy sources. Existing researches does not dynami-
cally combine PV, FC, and batteries, resulting in increased 

energy consumption and inefficiencies. Optimization meth-
ods do not have real-time verification, and hence they are 
not appropriate for large-scale EV networks. Traffic flow 
and energy distribution are typically handled separately, 
lowering overall efficiency.

1.2. Possible Solution

To overcome these challenges, the research conduct-
ed an optimized, scalable EV charging scheduling system 
with the Optimized Ant Colony Algorithm (OACA) to 
dynamically allocate charging slots, avoiding congestion 
and delay. It is combined with ITS to enable smooth traf-
fic flow with charge ability, preventing wastage of energy. 
The PV, FC, and battery storage are smoothly integrated 
based on an MDPT platform, which captures the dynamic 
energy input and consumption balance. Real-time adaptive 
energy distribution optimizes the usage of the battery life 
and smart DC/DC converters ensure voltage adjustment 
and loss minimization. The platform is also compatible 
with high-efficiency Vehicle-to-Grid (V2G) interaction to 
deliver the best demand-side management and grid stabil-
ity. With more effective power allocation, less dependency 
on grid power, and lower infrastructure bottlenecks, the 
proposed model is efficient in terms of cost, scalability, and 
environmental sustainability for NEV energy management. 
The suggested OACA-based system maximizes real-time 
energy distribution with the seamless integration of PV, 
FC, and batteries, minimizing energy wastage and conges-
tion. The system improves efficiency, prolongs battery life, 
and provides a stable, scalable energy management system 
for NEVs. 

Section 2 offers an explanation of the methodology 
context. Section 3 delivers the illustrations of the results 
and findings. The discussion portion is shown in Section 
4, while Section 5 provides a description of the conclusion 
along with the limitations and its future scope.

2. Methodology

The method proposed a new energy management 
system for NEVs by combining PV, FC, and batter-
ies using design and simulation. The power and DC/DC 
converters are applied to control the energy transmis-
sion efficiently. Power distribution is optimized to reduce 
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losses and enhance the overall performance of the system. 
Synchronization of the power sources is ensured optimally 
by implementing smart control algorithms. The system 
targets real-time adjustment by varying load conditions to 
stabilize. Simulation models validate the optimal efficiency 
and sustainability of the system. The approach maximizes 
the use of NEV energy with ensure of environmentally 
friendly transportation.

The OACA algorithm maximizes real-time energy 
distribution through the intelligent coordination of PV, FC, 
and battery power sources in NEVs. Prior to optimization, 
energy output, efficiency, and sustainability were con-
strained through standalone energy usage. With dynamic 
power allocation and balancing energy resources, the pro-
posed strategy maximizes energy output and efficiency. 
Intelligent scheduling ensures less wastage and better cost-
effectiveness through enhanced renewable energy utiliza-
tion.

2.1. Electric Vehicle (EV) Architecture

Hybrid electric vehicles (HEVs) are driven with a 
range of different energy sources, either internally or exter-
nally. Classifying this vehicle, it is within two categories: 
pure EVs and hybrid EVs. The vehicle can run on a battery 
when driving in a densely populated area or in the heart 
of the city and switch to an engine when it is farther away 
since this model is powered by electricity from a differ-
ent source. In addition, HEVs can further be divided into 
Fuel cell EVs (FCEVs) and Plug-in HEVs (PHEVs). The 
research recommends a multi-source technology involving 
a lithium-ion battery, a PV generator, and an FC system.

EV structure determines the electric and structural 
arrangement of an EV, including the main parts required 
for successful performance. It comprises an energy storage 
system, most commonly a battery, powering the electric 
motor. A power electronic system, containing inverters and 
converters, also regulates the exchange of energy from the 
battery to the motor as well as between ancillary systems. 
Regenerative braking is also responsible for gaining ef-
ficiency through capturing energy while braking. A system 
that has the capacity to design more than one power source 
such as FC and PV provides effective energy management. 
Intelligent energy distribution provides a stable power 
supply with better performance and sustainability. EV 

architecture in total provides green, reliable, and efficient 
mobility. Figure 1 demonstrates the model of HEV.

Figure 1. Hybrid Electric Vehicle (HEV) Model.

2.2. Battery Modeling System

Battery Modeling System is important in managing 
energy flow in NEVs by predicting battery performance. 
It tracks necessary parameter states of charge to achieve 
optimal utilization. By making optimal power allocation 
efficient, it ensures longer battery life and reliability. It 
dynamically adjusts in accordance with changing loads, 
avoiding overcharge or deep discharge. It works in tandem 
with FC and PV to balance energy supply and demand. 
More sophisticated algorithms enhance precision, which 
enables effective energy management and sustainability. 
It maximizes NEV efficiency, providing an optimized and 
stable power supply.

The battery model’s mechanisms need to be under-
stood because the charging method is utilized to recharge 
a battery. The lithium model has the best power. Voltage in 
the battery (Ubatt/cell) is defined in 
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 (1)

Here, Qts and Dts are the short-term double-layer 
properties of electromagnetic impedance and inductance 
respectively. Qks and Dks are the impedance and inductance 
of the long-time-interval mass transport effects of electro-
chemistry and Ja is the load current.

The battery output potential (Ubatt) and resistive im-
pedance (Qbam)  are given in 
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Here, Mtbatt and Mobatt are the number of series and 
parallel cells. Qp implies the battery cell impedance when 
recharging or discharging. 

The State of Charge (SOC) of the battery can be 
stated in relation to time in 
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Here, X represents the coefficient of charging or dis-
charging and Na is the self-drain of the battery. 

The Battery Modeling System maximizes charging 
and discharging processes. It prevents overcharge and deep 
discharge, which would result in battery shortening and 
unreliability. Voltage equations determine power output, 
while SOC modeling tracks charge levels for efficient en-
ergy distribution. By adapting dynamically to changing 
loads, it balances energy supply and demand in real-time. 
The system operates in conjunction with MDPT, control-
ling power transfer between the battery, PV, and FC. The 
integration predicts energy loss, increases overall efficien-
cy, and moderates power delivery. Consequently, NEVs 
realize improved energy utilization, cost-effectiveness, and 
sustainability.

2.3. Mult i-Directional  Power Transfer 
(MDPT)

Multi-Directional Power Transfer (MDPT) is a power 
conversion technology used to regulate energy transfer be-
tween different energy sources and loads in a bidirectional 
power exchange mechanism. MDPT allows power trans-
fer in different directions, ensuring energy utilization to 
its maximum and promoting system efficiency. In NEVs, 
MDPT plays an important role in achieving energy genera-
tion, storage, and utilization balance. Multi-Directional 
Power Transfer allows efficient energy transfer between 
battery, FC, and PV in NEVs. MDPT controls power 
transfer dynamically as per demand, optimizing energy uti-
lization. It optimizes overall system performance and effi-
ciency by minimizing losses. The system offers a constant 
supply of energy regardless of variation in generation or 
consumption. It also enables the regenerative recovery of 
energy, making it more sustainable. MDPT adapts to vary-
ing load conditions, ensuring stable and consistent opera-

tion. It renders NEV more efficient, more sustainable, and 
energy-efficient.

The MDPT converter dynamically balances energy 
distribution among multiple sources like PV cells, FCs, 
and batteries, to maximize the power utilization in NEVs. 
It operates on a bidirectional energy flow mechanism 
with the capability to efficiently exchange energy based 
on demand and availability. In the event of excess power 
generated by PV or FC, MDPT sends it to charge the bat-
tery or provide vehicle load. Under conditions of limited 
generation, the battery supplies energy to ensure stability. 
By regulating voltage and current in real time through DC/
DC converters, MDPT avoids power oscillations, reduces 
losses, and facilitates seamless energy transfer. This im-
proves system efficiency, extends battery life, and enables 
grid integration for renewable energy management.

For instance, in a system where various energy 
sources are involved (such as photovoltaic, fuel cells, and 
batteries), MDPT facilitates:

Energy Flow Control: It controls power from 
sources and the battery, and directs energy from the battery 
to the grid or be used by the car when needed. The total 
power generated and consumed should be balanced, as ex-
pressed in 

 Pt = Ps + Pb + Pl (4)

Here, Pt is total power output, Ps is power generated 
from renewable sources, Pb is power exchanged between 
battery and other components and, Pl is power required by 
the load (vehicle).

Bidirectional Power Transfer: MDPT makes sure 
that excess power from sources (like solar panels or fuel 
cells) is stored in the battery or sent back to the grid, and 
power can be drawn from the battery when the sources are 
not providing sufficient power. The power transfer from 
the source to the battery and vice-versa can be expressed 
as 

 Ps = Pb  (Charging the battery) (5)

 Pb = Pl  (Discharging the battery) (6)

Efficiency Enhancement: Through enabling multi-
directional energy transfer, MDPT optimizes the utilization 
of available energy, minimizes wastage, and enhances the 
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total efficacy of the energy management structure. Effi-
ciency is determined by
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Here, Pu is useful power provided to the load.
Energy Flow Optimization in Multi-Directional 

Systems: In a multi-source hybrid system (e.g., solar pow-
er, fuel cells), MDPT can optimize energy flow according 
to availability. A typical optimization goal is to reduce en-
ergy loss and utilize renewable energy as much as possible, 
as given in
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Here, ELi is loss due to conversion inefficiencies, and 
EWi is excess energy not used.

2.4. Renewable Hybrid Power Systems for 
Electric Vehicles (EV)

Renewable hybrid electric power systems for EVs 
integrate various renewable energy sources, including fuel 
cells, solar power, and batteries, to maximize the use of 
energy and improve environmental sustainability. The sys-
tems are intended to minimize the use of non-renewable 
energy sources, providing a cleaner and more efficient 
means of powering EVs. The combination of various en-
ergy components enables them to deliver a consistent flow 
of energy and enhance vehicle performance in general. 
Smart energy management strategies, aid in balancing and 
optimizing the energy flow between the sources. Generally, 
these hybrid systems contribute to developing more cost-
efficient, sustainable, and environmentally friendly trans-
portation systems.

PV cells and FC motors are the two types of sources 
of power used in the recharge method. To introduce this 
hybrid recharge tool, each of these capabilities must be 
modeled. The DC/DC converter is critical to accommo-
dating, regulating, and controlling the various sources of 
energy to enable the NEV to operate most efficiently by 
making use of the synergy of PV, FC, and battery towards 
efficient utilization of energy. The DC/DC converter plays 
a key role in optimizing NEV energy management ef-
ficiency by smoothly integrating various power sources. 
The converter regulates and controls energy transmission 

from the PV generator, FC, and battery to ensure constant 
operation. With dynamic source balancing, the converter 
optimizes energy use, minimizes energy loss, and maxi-
mizes overall efficiency. Such cooperation makes it pos-
sible to adapt instantly to different energy needs, thereby 
maximizing the environmental impact and sustainability of 
NEVs. Eventually, the DC/DC converter plays a major role 
in implementing a stable, efficient, and smart power supply 
system for future environmentally friendly transportation. 
Table 1 demonstrates the comparison of FCs and PV cells.

Table 1. Contrast of FCs and PV Cells.

Characteristic Fuel Cells (FCs) Photovoltaic (PV) Cells

Energy Source Chemical energy Solar energy

Energy 
Conversion

Electrochemical 
conversion

Photovoltaic effect

Maintenance
Requires regular 
maintenance

Low maintenance, 
especially in sunny areas

Reliability
High with controlled 
conditions

Moderate, affected by 
weather conditions

Environment 
Impact

Low, but depends on the 
fuel used

Very low

Power 
Retention

Requires ongoing 
hydrogen storage or fuel 
supply

Capable of storing 
energy in batteries for 
later application

Service Life
5,000–10,000 hours 
(system type dependent)

20–30 years with 
negligible degradation

Capital 
Investment

High due to infrastructure 
and technology for fuel 
cells

Moderate to high but 
decreasing

Reaction Time
Fast response 
to changing loads

Slow response due to 
reliance on sunlight and 
energy storage

Mobility 
Viability

Best for transportation 
applications

Best for stationary or 
hybrid applications

2.4.1. Photovoltaic (PV)-Based Energy Gen-
erator Model

In EVs, solar cells are utilized as electrical com-
ponents that convert renewable energy from the sun into 
electrical energy. The current (Jd) is given as 
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 Jd = Jog + Jtg + Jc (9)

The PV cell’s current (Jog) can be evaluated by 
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The PV generating model is subjected to many paral-

lel (Mo) and series (Mt) cells whose current is given in 
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2.4.2. Fuel Cells (FC)-Based Energy Genera-
tor Model

Fuel cells use air and hydrogen as the fuel sources. 

The conversion rates between hydrogen (VfH2) and oxygen 

(VfO2) are defined in 
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  (12)

The partial pressures of hydrogen and oxygen can be 

obtained by 
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 (13)

The voltage source (F) can be determined by 
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2.5. Proposed Energy Distribution Plan Us-
ing Optimized Ant Colony Algorithm 
(OACA)

The efficiency of Ant Colony Optimization (ACO) for 
solving graph-related navigation problems has been widely 
recognized. The drawback of classical ACO is, however, 
that it struggles to overcome the added complicating factors 
involving charging time option selection, queues, and infus-
ing user taste into decisions. These variables mean more 
advanced tactics are needed for modifying ACO to suit the 
real world. Thus, conventional ACO methods may be lim-
ited in providing optimum solutions in dynamic situations 
where multiple causative factors are present. To overcome 
these limitations, better algorithms like the OACA are used 
to incorporate all such complexities effectively.

Optimized Ant Colony Algorithm (OACA) is a 
nature-inspired optimization algorithm that has been devel-
oped to assist in improved energy management of NEVs. 
The algorithm imitates the foraging process of ants to fol-
low the most efficient routes for energy transmission be-
tween different sources of energy, including PV generators, 
FC, and batteries. The algorithm adapts dynamically ac-
cording to changes in energy demand, ensuring that energy 
flow is optimized in real time. OACA optimizes the use of 
renewable energy to a higher extent, reducing the usage 
of non-renewable energy and increasing the efficiency of 
the system. It continuously assesses energy demand and 
corrects the allocation to ensure optimal energy balance 
within the system. Through the integration of the smart 
optimization technique, OACA guarantees that the energy 
management system has minimal wastage and maximum 
performance. This leads to enhanced sustainability, energy 
efficiency, and cost-effectiveness for NEVs in modern 
transportation systems. It combines a number of methods 
to improve charging time optimization and routing opera-
tions. Figure 2 shows the architecture of the Optimized 
Ant Colony Algorithm (OACA).
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Figure 2. Flow Chart of Optimized Ant Colony Algorithm 
(OACA).

(1) Initialization Phase: The parameters associated 
with the ACO algorithm for initialization are applied at 
time t = 0, for instance, the number of ants and the phero-
mone factor. Ants all originate from the location of EV, 
and the initial concentrations of pheromone between nodes 
are expressed in 
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(2) Heuristic Evaluation: The heuristic value is 
calculated to assist ants in choosing charging points de-
pending on the distance to the destination and the power 
available. It employs path deviation, destination distance, 
and power of charging to assess the best charging points 
for ants to travel. The heuristic factor can be expressed as
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(3) Select Pathway: Ants choose the next node by 

considering the heuristic factor and concentration of the 
pheromone. They prefer paths with greater concentrations 
of pheromone and good conditions for the problem and ap-
ply a pseudorandom proportional rule. Starting from uj, the 
probability weight of the l th ant choosing the next node as 
i at moment s is as follows:
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(4) Compute Charging Duration and Overall 
Time: Once the route is determined, the waiting and 
charging time at every charging station is computed. Non-
linear programming is used to minimize the overall time, 
in terms of charging time at every station, under given 
constraints on charging times and energy levels. The entire 
amount of electricity needed to get from the starting point 
to the endpoint is expressed as
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Each part’s electrical size is given in 

 DK = Dm/K (19)

(5) Transition and Update Process: The state tran-
sition is computed through different equations to find the 
levels of electricity at every charging station, the charging 
time, and the waiting times. The state transition equation 
computes the charging times and waiting times from past 
states to obtain the optimal solution for the charging and 
waiting times for every route. The scent found on the uni-
versally optimum route is updated as follows 
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when the whole ant colony has finished searching.
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3. Results and Findings

The efficiency of the suggested smart energy man-
agement systems for NEVs is evaluated to analyze the 
efficiency improvements. The enhancements in energy effi-
ciency, environmental sustainability, and cost-effectiveness 
are emphasized by integrating PV generators, FC, and bat-
teries. The performance of the system is analyzed based 
on key factors such as energy output, efficacy, sustainable 
energy consumption, and cost-effectiveness. The find-
ings show the significant impact of OACA on optimizing 
energy flow. The findings present significant insights into 
the future of the proposed system in terms of maximizing 
NEV operation.

3.1. Experimental Setup

The research utilized a computational experimental 
setup with a PC that contained an Intel i7 processor and 
Python libraries for simulating the energy management 

system. The setup assisted in simulating and analyzing the 
performance of the NEV in terms of energy efficiency and 
environmental sustainability. The system was run in simu-
lation and included the PV, FC, and battery systems, all of 
which were managed by the OACA algorithm for evalu-
ation of performance in real environments in a controlled 
environment, and thus insight gained into the usability of 
the system in real terms. Through modelling these com-
ponents into a controlled system, the research was able to 
learn about performance and feasibility in the multi-source 
energy management system.

3.2. Performance Analysis

The performance analysis investigates the combina-
tion of renewable energy sources, including PV generators 
and FC, to render NEVs more energy-efficient and envi-
ronmentally sustainable. The combination of the energy 
sources improves the quality of energy production while 

Algorithm 1 shows the pseudocode for the OACA for EV charge route planning.

Algorithm 1. Optimized Ant Colony Algorithm (OACA) for EV Charge Route Planning.

Initialization
Initialize pheromone τ(u_j, u_i) = τ0 for all paths
Initialize ants with positions, power, and destinations
Set parameters: N (ants), max_iter (iterations), α, β, ρ
Main Loop: Iterate through all ants for max_iter
for iteration in range(max_iter):
Step 1: Heuristic Evaluation (for each ant)
    for ant in ants:
        for path in possible_paths:
            Calculate heuristic η(u_j, u_i) based on path deviation, power, and distance
ant.heuristic[path] = calculate_heuristic(path)
Step 2: Path Selection (Choose next node)
    for ant in ants:
current_node = ant.position
next_node = select_next_node(current_node, ant.heuristic, pheromone)
ant.move_to(next_node)
Step 3: Compute Charging Time & Total Time
    for ant in ants:
total_time = calculate_total_time(ant.route)   Minimize charging time at stations
Step 4: Update Pheromone Levels (after ants complete their routes)
    for ant in ants:
        if ant.route == optimal_route:
pheromone_update = calculate_pheromone_update(ant.route)
update_pheromone(ant.route, pheromone_update)
Step 5: Transition Process (update energy and times)
    for ant in ants:
update_ant_state(ant)
Return the optimal route and time
return optimal_route, total_time 
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reducing the reliance on non-renewable energy sources. 
Through the application of OACA, the energy flow is max-
imized and efficiently distributed within the system. This 
optimization leads to system performance and global en-
ergy efficiency being dramatically improved. Such results 
show the prospect for enhanced environmental sustainabil-
ity and efficiency in NEV operation. Figure 3 illustrates 
the graphical representation of the energy provided by the 
PV and FC.

At slower speeds, the energy output of the hybrid 
system from the FC and PV components is sufficient to 
recharge the battery while also driving the engine of the 
vehicle at the same time. The total energy generation of 
both sources provides a consistent and stable power out-
put, even during less stressful conditions. The PV system 
supplies solar radiation energy, while the FC supplies 
ancillary power as hydrogen to provide maximum overall 

efficiency. Such cooperation between the two sources of 
energy reduces the need for the battery, thus making the 
vehicle more environmentally friendly. As a result, the 
hybrid system ensures significant improvement in energy 
efficiency and operating sustainability, particularly under 
low-speed driving conditions. The performance measures 
are described through Table 2. 

Table 2 showcases the system’s potential to maxi-
mize energy output, efficiency, sustainability, and cost-
effectiveness for NEVs. By combining PV, FC, and bat-
teries with OACA, it maximizes power management and 
minimizes the use of conventional energy sources. This 
analysis confirms its potential to enhance NEV energy 
management. Figure 4 illustrates the comparison of sys-
tem efficiency and energy consumption for different energy 
configurations such as PV, FC, and battery.

Figure 3. Energy Provided by (a) Photovoltaic (PV) and (b) Fuel Cells (FCs).

Table 2. Description of the Performance Metrics.

Metrics Explanation

Energy Output
The combination of three energy sources (PV, FC, and battery) maximizes energy distribution for a stable and 
continuous power supply of NEVs, regardless of fluctuating operating conditions. The MDPT converter adaptively 
controls energy adaptation in real time, reducing energy losses and increasing output efficiency.

Efficacy
The suggested OACA-based power management system allocates energy across various sources to maximize the overall 
NEV efficiency. Through active power flow adjustment relative to demand and availability, the system reduces wastage 
of energy and optimizes real-time utilization of energy.

Sustainable Energy 
Consumption

The system focuses on the use of renewable energy, greatly decreasing fossil fuel dependency. Through the use of 
FC and PV generators, NEVs attain greater sustainability, with lower carbon emissions and a contribution to an 
environmentally friendly transportation system.

Cost-Effectiveness
By enhancing energy efficiency and less dependence on traditional fuel sources, the system decreases operational costs 
and enhances NEV affordability. Integration of optimal energy management techniques extends battery lifespan and 
minimizes maintenance costs, boosting long-term economic feasibility.
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Figure 4. System Efficiency and Energy Consumption 
Comparison.

The graph shows how the various configurations of 
energy influence energy consumption and efficiency in the 
NEV system. The addition of PV and FC increases efficien-
cy along with lower energy consumption as against single-
source setups. Addition of a battery (PV+FC+Battery) 
continues energy flow enhancement further, stabilizing 
and ensuring it is sustainable. These findings support the 
efficiency of multiple-energy-source management towards 
enhancing the NEV’s overall performance. The SOC of the 
battery over time compares the energy management with 
and without MDPT in NEVs (Figure 5).

Figure 5. Battery State of Charge (SOC) Over Time.

Optimization of energy management in NEVs aims 
at maximizing battery efficiency and sustainability through 
MDPT. Without MDPT, the SoC decreases at a faster rate, 
which represents poor energy use. The maximized MDPT 
method maximizes energy flow while minimizing losses 
and battery unsustainability. These outcomes reflect the 
competence of smart energy management in producing sta-

ble and efficient power supply in NEVs. Figure 6 shows 
the power output variations of PV and FC sources in NEVs 
with and without MDPT for optimized energy sources.

Figure 6. Power Output of PV and FC Sources with and Without 
MDPT. 

The conventional system shows large power delivery 
fluctuations, impacting overall efficiency. Without MDPT, 
the power fluctuation is larger, resulting in inefficient en-
ergy distribution. With MDPT, the power output becomes 
smoother, improving energy use and system performance. 
This proves the efficiency of MDPT in power manage-
ment optimization for sustainable operation of NEVs. The 
enhanced power stability renders to improved energy ef-
ficiency and lower reliance on additional storage systems.

Table 3 highlights the functioning of the proposed 
multi-recharger system, combined with Fuel Cells (FC) 
and Photovoltaic Cells (PV) as power sources.

The optimization process leads to the highest pos-
sible rate of energy output from FC as well as PV through 
improved efficiency of the whole system. This leads to sig-
nificant improvement in the efficiency of energy and eco-
nomic viability, making the system more practical for real-
world applications. Therefore, the optimized system shows 
a growth in operating efficiency and cost-effectiveness of 
NEVs. The optimization method has the highest feasible 
energy yield rate of both FC and PV with an improve-
ment in overall efficiency of the system. This results in a 
dramatic improvement in energy efficiency and economic 
feasibility, making the system more appropriate for real-
world applications. The optimized system therefore reflects 
an improvement in efficiency of operations and the cost-
effectiveness of NEVs.
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3.3. Comparison Phase

The proposed model OACA is compared with the ex-
isting methods like Hybrid Optimization of Multiple Energy 
Resources (HOMER) and Hybrid Recharging System [19,20]. 
The comparison focuses on the battery power and the in-
tegration of the different sources. Table 4 and Figure 7 
demonstrates the comparison of battery power and energy 
sources across different models [19,20].

Table 4. Battery Power Comparison of Proposed and Existing 
Models.

Model Battery Power (W)
Number of 
Sources

Hybrid Recharging System [19] 4900 3

HOMER [20] 3200 2

OACA [Proposed] 5300 3

Figure 7. Comparison of Battery Power for Different Models.

HOMER has two power sources, such as PV and FC, 
and balances energy distribution to be cost-efficient. The 
three-source (PV, FC and, battery) hybrid recharging system 
increases charging and availability of energy. The proposed 
OACA has three energy sources as well but yields a greater 
battery power output. OACA enhances the overall usage of 
energy and stability of the system by allocating power dy-
namically in real-time. In contrast to conventional methods, 

it provides an adaptive and effective energy flow according 
to demand and availability. This illustrates the better perfor-
mance of OACA in achieving maximum energy efficiency 
for sustainable and cost-efficient NEV operations.

4. Discussion

The goal of the research is to develop the efficiency 
and environmental sustainability of New Energy Vehicles 
(NEVs) through the integration of PV generators, FC, and 
batteries into a multi-source power system. The prevalent 
energy management technologies of NEVs are restricted 
particularly the energy output capacity ability, the system 
performance capability, and the ability to accommodate 
the sustainable sources of energy in proper terms. Existing 
systems tend to limit in efficient transmission of energy 
across numerous energy sources, confining total energy 
efficiency and elevating dependence on non-renewable 
resources. Such limitations are addressed using a novel 
model for managing energy via the OACA when adjusting 
the dynamic flow of energy. The optimization technique 
increases energy output, enhances the efficiency of re-
newable energy resources, and encourages more efficient 
and cost-saving NEV operations. The performance of the 
proposed system is assessed based on key parameters such 
as energy output, efficacy, sustainable energy consump-
tion, and cost-effectiveness. The outcomes demonstrate 
that the novel model notably promotes NEV efficiency and 
environmental sustainability through prominent improve-
ment in energy output and economic viability. The battery 
performance of the proposed system is validated through 
a comparison with the existing methods. Existing systems 
such as HOMER and the hybrid recharging system are 
confronted with dynamic power allocation and maximum 
energy utilization inefficiencies. The suggested OACA 
addresses these by providing real-time power distribu-
tion, optimal energy efficiency, and improved stability for 
NEVs. The innovation of energy management not only in-

Table 3. Energy Generation of the Proposed Method.

Metrics Fuel Cell (FC) Photovoltaic Cell (PV) PV+FC After Optimization

Energy Output Minimal Average Average Maximized

Efficacy Minimal Average Average Maximized

Sustainable Energy Consumption Minimal Average Average Maximized

Cost-Effectiveness Average Maximized Maximized Maximized
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creases running efficiency in NEVs but is also dedicated to 
the general target of environmental preservation and more 
infiltration of renewable power into transport sectors. The 
system reduces carbon emissions considerably by combin-
ing PV and FC as main energy sources, reducing the use 
of fossil fuels. In comparison to traditional NEV charging 
systems, which rely on grid electricity from non-renewable 
energy sources, the system reduces greenhouse gas emis-
sions. The application of FC also increases sustainability 
since it only produces water as a byproduct, without any 
harmful pollutants. Also, the optimized energy distribution 
plan minimizes wastage of energy, hence ensuring a better 
and environmentally friendly transportation system. Life-
cycle analysis of PV and FC parts, factoring in the emis-
sions during manufacturing and disposal, would give the 
total carbon footprint of the system.

5. Conclusion

The main objective of the research was to design an 
optimal energy management system that ensured maximum 
energy flow, enhanced performance, and reduced consump-
tion of non-renewable resources. The OACA was used to 
optimize the energy management process, ensuring seam-
less integration between the energy sources and providing 
maximum output of energy, environmental efficiency, and 
cost-effectiveness. The research introduces an NEV system 
that has the potential to enhance performance, as well as 
environmental sustainability, by incorporating renewable 
energy sources, such as PV generators, FC, and batteries, 
into a multi-source power system. The results showed a 
significant enhancement in all critical performance indica-
tors with the energy output and effectiveness operating at 
their best levels, while sustainable consumption of energy 
was appreciably enhanced after optimization. The cost-
effectiveness of the system also increased, and its possibili-
ties for large-scale use in today’s transportation infrastruc-
ture were made possible. Despite these advances, however, 
the provided system does not deal with real-world envi-
ronmental variations, such as varying weather conditions, 
nor does it mitigate the disadvantages of high-density 
deployment, which pose significant roadblocks to practical 
application. Research identifies challenges in scalability, 
as actual deployment in extensive NEV networks needs 
further confirmation. Environmental aspects such as solar 

variability and fluctuations in fuel cell efficiency can affect 
stability. Multiple energy sources need coordination with 
sophisticated mechanisms to avoid imbalances. Real-time 
processing of data requires fine-tuning for better accuracy 
and responsiveness. Future research could include the in-
corporation of ML techniques to enable the system to learn 
more about diverse environmental conditions and demand 
patterns. Research in the future might focus on integrating 
regenerative braking and wind power to make the system 
more sustainable and to maximize energy retrieval. Wind-
mills can support PV and FC to provide power under low 
solar irradiation levels. Regenerative braking will maxi-
mize the utilization of energy by capturing kinetic energy 
at the time of slowing down. Algorithm improvements for 
real-time optimization will increase the ability of the sys-
tem to cope with changing levels of energy supply. A road-
map must target large-scale deployment, adaptive energy 
prediction, and greater grid interaction for broader use.
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