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ABSTRACT
The increasing global demand for energy, coupled with concerns about environmental sustainability, has un-

derscored the need for a transition toward renewable energy sources. A well-structured teaching program under the 
framework of sustainable development in renewable energy seeks to give students the information, abilities, and critical 
thinking needed to solve energy-related problems sustainably. This research proposes AI-powered personalized learn-
ing, innovative real-time integration of diverse data, and adaptive teaching strategies to enhance student understanding 
regarding renewable energy concepts. The sheep flock-optimized innovative recurrent neural network (SFO-IRNN) will 
recommend relevant topics and resources based on students’ performance. Renewable energy teaching data from assess-
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1.	 Introduction

Increasing energy demand on a global scale, together 
with increasing environmental concerns, has made solu-
tions to sustainable energy more pressing than ever before. 
With the decline in fossil fuel reserves and an increasingly 
evident environmental impact, the transition to renewable 
energy sources, such as solar and wind, has picked up 
impetus and gained credibility. The challenge to meet this 
transition lies in integrating renewable energy education 
into school curricula to provide future generations with 
highly relevant, cogent, and research-backed analysis in 
leading the global energy transformation [1]. Education is a 
prime mover in ensuring that there is increased adoption of 
renewable energy and sustainability processes. By provid-
ing students with the required knowledge, skills, and tools 
to understand all aspects of energy systems, environmental 
impact, and sustainable practices, education programs will 
inspire a generation of leaders in renewable energy innova-
tion. Specifically, with the recent developments in technol-
ogy, this is where it will be particularly important to under-
stand how artificial intelligence (AI) and energy systems 
merge, as this could lead to transformative, sustainable 
solutions for the world’s energy problems [2].

Machine learning (ML) has continuously developed 
an advanced integration of AI to provide a personalized 
learning experience. These systems were designed to 
serve the same functional objectives akin to that of a one-
on-one tutor while dynamically responding to a student’s 
needs and capabilities and tracking the learners’ progress. 
Even the advanced AI can customize the learning process 

because the models are getting real-time data. While solv-
ing problems of renewable energy education, ML can 
give students real-time information about energy systems, 
thus making complex subjects very engaging [3]. With the 
introduction of AI and the Internet of Things (IoT) in edu-
cational platforms, there are innumerable opportunities for 
personalized learning for students. AI provides personal-
ized Content and pacing for every individual student while 
IoT sensors provide real-time data from renewable energy 
sources. Such a blend allows for an interactive, dynamic 
learning experience in which students engage with live 
energy systems and obtain a better understanding of solar 
power, wind energy, and smart grids. Such a combination 
provides better theoretical and practical learning experi-
ences [4]. 

Some of the most exciting promises of AI in educa-
tion lie in personalization. AI systems utilize student in-
teraction data to adapt content, suggest learning materials, 
and provide real-time feedback to help students with com-
plicated topics. For renewable energy education, personal-
ized learning ensures that students are reaching the very 
pertinent information according to their level of under-
standing and interest. AI-based systems can also diagnose 
knowledge gaps and pinpoint resources to fill such gaps [5].  
Most students have a tough time wrapping their minds 
around the system of energy, smart grids, and sustainable 
technologies because of their extreme abstractness. Apart 
from this, renewable energy is an extremely dynamic and 
ever-changing field; with this evolution, it is not easy for 
an education curriculum to cater to all development as-
pects. Thus, there is an urgent need to introduce new meth-

ments are combined with real-time IoT-based renewable energy data. This dataset contains renewable energy education 
using AI-driven teaching methods and internet-based learning. The data was preprocessed by handling missing values 
and min-max scaling. The data features were extracted using Fourier Transform (FT). Further application of 10-fold 
cross-validation will increase the reliability of the model as it can evaluate its performance metrics like accuracy, F1-
score, recall, and precision on different subsets of student data, which improves its robustness and prevents overfitting. 
The findings showed that the proposed method is significantly better, which ensures that the students have a deeper 
theoretical and practical understanding of renewable energy technologies. In addition, integrating real-time IoT data 
from renewable energy sources gives students a chance to do live simulations and problems that would enhance analyti-
cal thinking and hands-on learning. The research shows that AI provides context-aware guidance on sustainable energy 
infrastructure, enhancing interactive and personalized learning.
Keywords: Teaching Program; Artificial Intelligence (AI); Sustainability; Sheep Flock Optimized Innovative Recurrent 
Neural Network (SFO-IRNN); Renewable Energy; Environmental
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ods of teaching that can cope with these challenges while 
also aiding in promoting an understanding of the topics 
amongst students [6].

These adaptive features integrate great possibili-
ties of increasing students’ engagement through AI-based 
systems, whereby personalization of learning is enabled 
by what each student needs to keep fully engaged in the 
process of learning [7]. These systems can keep students 
motivated through their learning journey while swallowing 
interactive problem-solving tasks that prompt personalized 
feedback. Also, the introduction of interactive features such 
as energy simulations in real time and challenges tied to 
live renewable energy data will allow students to dive into 
and conceptually engage with the material. This will lead 
to deeper learning and a better understanding of renewable 
energy systems [8]. The goal of this research was to develop 
an advanced AI for ensuring students’ performance, which 
incorporates the Sheep Flock Optimized Innovative Recur-
rent Neural Network (SFO-IRNN) for personalized learn-
ing, real-time IoT data from renewable energy sources, and 
creating a platform to facilitate increasing student interest 
and comprehension of the sustainable energy technologies.

The research is structured as follows: Phase 2 pro-
vides literature investigation, Phase 3 defines the proce-
dure, Phase 4 focuses on the evaluation of performance 
and discussion, and Phase 5 concludes the overall evalua-
tion.

2.	 Related Works

Assessed the long-term impact of training in entre-
preneurship and innovation for undergraduate and graduate 
students majoring in clean energy [9]; an evaluation model 
was suggested. The model built an environmental analysis 
indices technique and improved the generalized regression 
neural networks (GRNN) algorithm using the self-projec-
tion adaptation-vector field search (SPA-VFS) and Anar-
chy Bat algorithms. Simulations were used to validate the 
model’s reliability and integrity in science. Examining the 
long-term growth of 19 Asian countries in digitization [10],  
factors like academic freedom, nepotism, energy use, 
urbanization, financial complexity, business, human re-
sources, and the use of renewable energy were considered. 
The method suggested prioritizing information and com-
munication technology (ICT) use, trade integration, saving 

energy, intelligent development, and fair resource use.
The aim was to assess how different technological 

tools could enhance the teaching of physics [11]. The out-
comes demonstrated that these technologies outperformed 
the shortcomings of conventional teaching approaches by 
improving student participation, awareness, and reasoning 
skills. The challenges were inadequate professional devel-
opment programs, uneven device use, and teacher prepara-
tion. The developments in ML and deep neural networks 
(DNN) that predicted the production of green energy were 
examined [12]. The method highlighted the significance of 
solid models for a sustainable energy future while going 
over its advantages, disadvantages, difficulties, and poten-
tial research avenues.

The ethical ramifications of AI along with its pos-
sible detrimental impacts on the surroundings and society 
at large were covered [13]. To promote green energy, it sug-
gested feasible AI. The model identified eight key areas of 
AI assessment on energy administration with qualitative 
analysis and context-specific topic modeling. Along with 
incorporating remedies like elbow approaches to address 
obstacles, it suggested 14 potential training strands.AI has 
the potential to completely transform training, and educa-
tion by enhancing mobility, efficacy, and future viability 
through a range of subject areas [14]. AI could maximize 
resources and knowledge, improving the efficiency and 
enjoyment of learning. AI and green education together 
could produce a comprehensive, profitable strategy for sus-
tainable development. AI could increase the reliability of 
educational materials, create more effective teaching strat-
egies, and assess the results of sustainable development 
projects.

A model based on ML and reinforcement learning 
was used to create a sustainable green energy management 
system (SGEMS) that optimized solar power and energy 
consumption on green campuses [15]. Real-time energy 
analysis and decision-making were made possible by the 
superior performance of the extreme gradient boosting 
(XGBoost) method and reinforced learning. The scalable 
solution raised energy efficiency and lessened dependabil-
ity on exterior grids, establishing a standard for upcoming 
green campus projects. In 2020–2022, Irish educators, 
supporters of underwater solar power, and environmental 
participants discussed improving post-primary educational 
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resources [16]. For students ages 15 to 17, a dual-language 
transfer year unit was developed with a focus on English 
and Irish. According to a multidisciplinary case study, 
stakeholder input was crucial for program efficacy and en-
gagement. The research recommended a web-based Deep 
Learning (DL) platform for a nationwide impact. 

Research carried out in Beijing, China, discovered a 
U-shaped relationship between humidity and the amount 
of electricity used by undergraduates [17]. Days with tem-
peratures above 30°C saw a 16.8% increase in electricity 
consumption, while days with temperatures below –6 °C 
saw a six percent increase. Building characteristics such as 
a window course and level heights impacted the relation-
ship. The findings suggest that, especially in urban centers 
like Beijing, Tianjin, and Hebei, building walls could rep-
resent a better way to cut energy consumption and become 
ready for higher temperatures. 

Investigate the impact of environmental education 
on the ecologic education of 15-year-olds in Colombia, 
taking into consideration a variety of factors such as fi-
nancial standing, a student’s scientific community ability, 
parent features, and school-level features [18]. The results 
indicated insufficient evidence that environmental instruc-
tion increased environmental awareness, and showed little 
association with environmental engagement. The study 
also concluded that instruction and energy-efficient tech-
nologies alone were not sufficient and that environmental 
education was not ideal.

To find the best ways to balance energy consumption 
and the condition of the interior in Taiwanese elementary 
schools was suggested [19]. It examined how the flow rate 
and temperature set-point affected the standard of the at-
mosphere and suggested the best trade-off strategies. Bei-
jing and Hong Kong have the greatest per-hour expense 
performance when set-point and airflow are combined op-
timally, taking into account cooling energy and academic 
performance. To improve student achievement in hot-
humid climate regions, the research offered administrators 
recommendations. 

The energy-saving measures in student residence 
halls from a psychological perspective [20]. A new variable, 
individual ethical norms, and the theory of planned be-
havior (TPB) formed the basis of the suggested theoretical 
framework. The outcomes proved that students’ intentions 

to conserve energy were positively correlated with their 
actions, with personal ethics having the largest impact. 
Gender and temperature perceptions mitigated the impact 
of energy-saving intention on behavior. The findings sup-
ported the value of moral perspectives and provided insight 
into how students exploit their power in college residence 
halls. 

The experiment investigated an intervention to boost 
intermediate school student engagement in energy concepts 
employing both simulation and real-world research [21]. The 
strategy included the influenced investigation exercises as 
well as group discussions. The students outperformed the 
control group based on engagement along with enhanced 
learning outcomes. The research used an evidence-based 
approach, showing that increased interest enhanced learn-
ing outcomes and raised the likelihood that other challeng-
ing scientific concepts could gain greater significance. 

The impact of science, technology, engineering, arts, 
and mathematics (STEAM) education on seventh-grade 
students’ conceptual grasp of force and energy concepts 
was examined [22]. The findings indicated that STEAM 
instruction improved students’ conceptual knowledge, 
lowered misconceptions, and raised post-test scores. The 
content adds to the body of research on how STEAM edu-
cation helped conceptual understanding. 

Investigate the relationship between solar energy 
and Hungary’s ecological awareness [23]. The relationship 
surveyed 2180 primary, middle, and university pupils in 
the Gyöngyös microregion. The results showed that intel-
lectual well-being was more significant for students than 
protecting the environment. There was no increase in 
views on the environment or awareness among college stu-
dents. It was believed that using renewable energy was too 
expensive for low-income families.

 Examined energy awareness among Vietnamese 
high school students with a focus on the factors influencing 
energy-saving behavior [24]. The results showed an inad-
equate amount of knowledge, an increased valued opinion, 
and an intent to conserve energy. As journalism is the pri-
mary source of energy information, students in educational 
institutions use more energy-efficient techniques. 

The effectiveness of STEM-PBL integrated engineer-
ing designing a process (EDP) in cost-effective building 
units, with an emphasis on enhancing students’ ability to 
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compute, was suggested [25]. STEM-EDP outperformed tra-
ditional STEM techniques in terms of student performance 
and engagement, creating superior conceptual abilities, 
and utilizing basic, accessible technologies for meaningful 
learning.

3.	 Materials and Methods

This section involves the framework of SFO-IRNN 
to offer personalized, adaptive learning experiences in 
renewable energy education and enhance the student’s per-
formance. Figure 1 depicts the methodology flow to rec-
ommend relevant topics and resources based on students’ 
performance.

3.1.	 Data Collection

The data collected from 500 students across different 
engineering courses help to determine the effects of AI-

assisted teaching on renewable energy education [26]. The 
data includes information about student engagement in AI-
supported learning programs, awareness of sustainability 
topics, and academic achievement in renewable energy 
courses. Data points show interaction metrics, such as time 
spent on tasks, completion rates, and real-time assessment 
responses. The combination of this information, along with 
IoT-based renewable energy data, allows for an in-depth 
analysis of how personalized and AI-enhanced learning 
impacts students in sustainability education. Research in-
cluded 500 participants with a mean age of 24.86 years. 
The gender distribution was 55% female and 45% male. 
The participants were roughly evenly split between private 
(52.4%) and state (47.6%) institutions. The participants 
came from different departments, such as Civil (142), 
Computer Science (125), Electrical (119), and Mechanical 
(114). In AI adaptation, 180 students had a high level, 156 
had a medium, and 164 had a low.

3.2.	 Data Preprocessing

The data was preprocessed using two techniques 
handling missing values and min-max scaling to suggest 
related subjects and materials based on the student. 

® Handling Missing Values
The technique is one of the most critical rituals in 

the line of data preprocessing, especially in an educational 
dataset. In educational datasets, the reasons for missing 
values can range from incomplete student performance to 
experience gained through missing IoT sensor data from 
the renewables. Multiple forwarding strategies can be ap-
plied: imputation techniques by mean, median, and mode, 
predictive models to estimate missing values or even an 
advanced option. These assist in ensuring that the dataset 
remains conformed to integrity, therefore enhancing the 
accuracy and reliability of the educational recommenda-
tions.

® Min-Max Scaling
The technique used to normalize data while rescaling 

feature values to a certain range is preferable within [0,1], 
as given in 
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F i,y = –∞
+∞ f q,v ej2π qi+qy dqdv�� (8)

zu=IRNN(zu–1,Mu) (9)

zu=IRNN(zu–w, Mu) (10)

qHsheep=0.001× upper bound–lower bound ×S (11)

S=1– iteration
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(12)

ush1,1= 1–s ×D×Rand 1, Dim ×(WHBest –W) (13)

ukbest,1=D×Rand 1, Dim ×(Wkbest–W) (14)

uother,1=D×Rand 1, Dim ×(WRandomsheep–W (15)

Accuracy= true positive+true negative
total instances

(16)

Precision= truepositive
true positive+false positive

(17)

Recall= true positive
true positive+false positive

(18)

F1–score=2× precsion×recall
precision+recall

(19)

cld= –i
–i 	 (1)

Where stands for the data point when collected character-
istic. 𝑖is the number that determines the minimum value of 
the feature. Represents the value of the maximal feature. 
The result,𝑑 is the transformed value for the given data that 
is in the range. The variables in a dataset are measured on 
different scales or units to prevent them from submerging 
because of their higher value. It has large or small values 
in the data that affect the scaling of other values. Handling 
missing values and Min-Max scaling are essential preproc-
essing steps that ensure data consistency and normaliza-
tion, making them crucial for effective model performance. 

Figure 1. Framework of SFO-ARNN.
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While outlier detection is useful, handling missing data 
and scaling can have a more immediate impact on improv-
ing data quality and ensuring algorithms work optimally.

3.3.	 Feature Extraction Using Fourier Trans-
form (FT)

Digital signal processing has greatly benefited from 
the FT method. The convolutions required to construct dig-
ital filters, the correlations required to implement matched 
filters, and the Fourier analysis required to produce spec-
trograms can be efficiently carried out using the methodol-
ogy. The forms of the foundation, ranging from predicting 
student performance to optimizing learning pathways, ob-
serving student well-being, assessing the efficacy of train-
ing, predicting dropout rates, and providing educational 
management with real-time decision-making capabilities, 
are provided by correlation, convolution, and spectrum 
analysis procedures. Depending on how many independent 
variables were used to transform the function, one or more 
dimensions are employed to express the FT theorem. The 
FT of a function F(q) in the time (or spatial) domain f(i)is 
defined as Equation (2).
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 and q are the variable frequency. F(q) is 
obviously a complex function. The magnitude H(q) and 
Phase (q) of F(q) are calculated in the event that both im-
agined and actual elements are specified as Fi(q) and Fg(q), 
respectively,
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Frequently, F(q) is shown in the Equation (5) polar 
form.
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The inverse Ft Equation (6) is used to recreate the 
function F(i).
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The FT pair is denoted by F(i) and F(q). A two-di-

mensional function F(i,y) has the following Fourier trans-
forms pair equivalently:
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Where the frequencies for i and y, respectively, are rep-
resented by q and v, and a similar calculation is used to 
determine the Fourier Transform’s magnitude and phase. 
Here,f(i,y)f(i, y)f(i,y) is the original spatial domain func-
tion (e.g., an image or motion signal), F(q,v)F(q, v)F(q,v) 
is the frequency domain representation, qqq and vvv rep-
resent the frequency components corresponding to the 
spatial variables iii and yyy, respectively. FT is particularly 
optimal for the feature extraction process as it effectively 
analyzes frequency components of signals, which is essen-
tial for identifying patterns in time-series data. While other 
techniques like wavelet transform or PCA may be useful in 
different contexts, Fourier Transform provides a more di-
rect and efficient method for the specific types of data and 
objectives in this study. 

3.4.	 To  Recommend  Relevant  Topics  and 
Resources Based on the Students Using 
Sheep Flock-Optimized Innovative Re-
current Neural Network (SFO-IRNN)

The SFO-IRNN is a hybrid AI model that unites the 
flocking behavior of sheep with recurrent neural networks. 
This unique approach optimizes the RNN learning process 
by representing the adaptive, collaborative, and natural 
movement of sheep within a flock for better real-time data 
processing and personalized learning.

3.4.1.	 Innovative Recurrent Neural Network 
(IRNN)

Consider the sequence {M1, M2, ...Mu} where the 
kind of variable Mu (scalar or vector) depends on the situ-
ation. A recurrent function in a recurrent neural network 
determines hidden states zu, as described in equation (9). 
This process is vital for computational teaching where the 
model is modified according to a student’s performance 
with real-time changes for optimizing learning outcomes.
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Hidden states encode the data in transmitted input 
entries that are most important for producing the intended 
outputs. Because the variables of the recurrent function 
remain constant during the sequence indicated and may 
be trained by backpropagation. However, due to gradient 
disappearance, typical 𝑅 cells cannot create particularly 
long-term interdependence. Therefore, recurrent skipping 
is employed to exploit the recurring structure in the input 
information. The integration of instructional program dy-
namics and student performance data further increases the 
system’s capacity to adjust to each learning need, optimiz-
ing the recommendation of education
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In Equation (10), the provided data is used as the 
source of the period value.

3.4.2.	 Sheep Flock Optimization (SFO)

The SFO is inspired by the grazing behavior of a 
flock of sheep and goats that follow a shepherd while in 
search of fertile pastures. The goal of that algorithm is to 
optimize solutions by mimicking the search for the best 
pasture, wherein each animal represents a potential solu-
tion. SFO is superior to techniques such as PSO or GA in 
analyzing the teaching program from the perspective of 
sustainable environmental growth in renewable energy be-
cause it has a higher probability of supporting the unique 
dynamics of the analysis.

The key components of the SFO were depicted in the 
following features for using flexible teaching techniques 
to improve students’ comprehension of sustainable energy 
concepts.

Grazing Radius of Sheep: A dynamic range for 
alterations of teaching programs through each cycle of the 
optimization was designed. The applicable dynamic range 
is decided by as shown in equation (11), and the total 
number of iterations. The dynamic range of sheep, which 
reproduce the optimization processes driven by the AI, and 
repeat human adaptation to the learning of AI, is dependent 
on the current iteration and the total number of iterations. 
SFO undergoes extreme change at every decisive iteration, 
allowing for a transition of the optimization from a broad 

search for educational methods (exploratory stage) to a 
focus on exploiting the teacher strategies as effectively as 
possible using the improvements gained with the AI’s ad-
justment to learning new strategies.
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Time Influence Factor: The time influence factor 
is computed to decrease with time (iterations) to manage 
how AI systems and real learners adapt to evolving teach-
ing strategies. SFO aids in transitioning the educational 
approach from an initial broad exploration of techniques 
into a focused refinement of the most usable approaches 
for sustainable development in renewable energy. As it 
decreases, AI and human systems focus their attention on 
the best possible educational solutions, thus converging 
toward the best teaching strategies, as given in 
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Movement of Sheep: The global best teaching 
strategies to aid the educational 249 optimization process. 
The local best solutions (individual educational optimiza-
tion) to outgrow on convergence are 250 based on specific 
learning contexts and experiences. The interactions occur 
between the AI-driven models and the 251 human learners, 
supporting the search by collective knowledge, and data 
from learners’ progress is displayed in equations (13–15).
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Where ush1,1: Movement of a learner towards the global 
best solution. ukbest,1: Movement of a learner towards its 
own best solution (local best). uother,1: Movement of a learn-
er towards a randomly selected learner’s position for ex-
ploration. S: Scaling factor, D: Distance factor (affects step 
size), Randd (1,Dim): Random factor for direction, WHBest: 
Global best position, Wkbest: Local best position, WRandomsheep: 
Position of a randomly chosen learner, and W: Current po-
sition of the learner. 

Position Update and Velocity Calculation: Every 
cycle of the algorithm, the positions of the AI models, and 
the human learners are updated based on a global set of 
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local best educational solutions. Velocity is added to the 
current position to find the new position, guaranteeing con-
tinuous refinement of the teaching strategies toward maxi-
mized learning outcomes.

Updating of Optimal Solutions: Every iteration 
updates the global and local best educational strategies 
through the current positions of AI-driven models and hu-
man learners. Global best is the significant educational 
strategy found by the entire optimization process, while 
local best solutions are tailored to individual learners. Such 
updates ensure that the educational optimization process 
improves and approaches closure to a more effective solu-
tion many times. Figure 2 displays how the SFO is applied 
to personalize learning by recommending relevant renewa-
ble energy topics based on individual student performance. 
SFO enhances the adaptive learning system by optimizing 
the AI’s capability of predicting and responding to each 
learner’s needs in real-time.

Figure 2. Flow Chart of SFO.

Hybrid algorithm that combines the collective be-
haviour of sheep flocking with advanced neural network 
techniques. This optimization approach mimics the natural 
coordination and adaptability of sheep flocks to enhance 
the efficiency and precision of recurrent neural networks 
(RNNs). By leveraging the flocking behaviour’s dynamic 

search capabilities, SFO-IRNN optimizes learning pro-
cesses in real-time, enabling personalized, context-aware 
recommendations based on student performance and inter-
action data for more effective educational outcomes. Algo-
rithm 1 displays the process of SFO IRNN.

Algorithm 1: SFO-IRNN
Initialize population size N, max iterations Max_iter, bounds (upper, 
lower), and time factor T
Initialize positions X_sheep and velocities V_sheep, Global_best = 
random position, LocalBest_sheep = sheep’s
initial position.
For iteration = 1 to Max_iter:
TrainIRNN (Global_best)
Evaluate Performance (IRNN_model, X_sheep)
If performance improves:
Global_best = new IRNN optimized solution
For iteration = 1 to Max_iter:
T = 1 – (iteration / Max_iter)
For each sheep 
v_sheep = Update Velocity (X_sheep, GlobalBest, LocalBest_sheep, T)
X_sheep = X_sheep + v_sheep
Evaluate and Update the Best Position for sheep
TrainIRNN (GlobalBest)
If ConvergenceCriteriaMet (GlobalBest):
Break
Return GlobalBest □

4.	 Result and Discussion

The findings indicate the superior performance of 
SFO-IRNN, ensuring that students develop a deep and 
practical understanding of renewable energy technologies.

4.1.	 Experimental Setup

The experimental apparatus in the project employs 
Python as its principal programming language with the use 
of Tensorflow and PyTorch libraries for AI-based optimi-
zation algorithms. The system requires a minimum of 16 
GB RAM, along with a multi-core processor, Intel i7, to 
efficiently run deep learning models and optimization com-
putations.

4.2.	 Evaluation Criteria

The outcomes were derived based on the (10-fold) 
cross-validation based on the evaluation of performance 
metrics.

® Accuracy is the total performance of the AI sys-
tem to correctly identify normal and abnormal renewable 
energy, as given in
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® Precision is the proportion of correctly predicted 

abnormal sustainable development among all instances 

predicted as abnormal, which is given in 
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® Recall is that the model identifies abnormal re-

sources while minimizing sustainable development in 
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F1-Score is the balance expressed in equation (19) 

between precision and recall, indicating how well the 

model weighted between them for evaluation of students’ 

performance.
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Table 1 and Figure 3 display the numerical out-

comes for the cross-validation (10-fold) for the AI-based 

model in renewable energy education (Figure 3(a) and (b)). 

Each fold includes performance metrics, which provide 

an in-depth performance analysis of the model on differ-

ent subsets of the data. Results show reliably high perfor-

mance across folds, with minimal variation in precision 

and recall. In a nutshell, it is confirmed that the model is 

reliable in prediction accuracy and evaluation metrics used 

and is, therefore, robust in personalized renewable energy 

education.

Table 1. Numerical Values of Cross Validation (10-Fold).

Fold Accuracy Recall F1 Score Precision

1 0.9914 0.9548 0.9672 0.9600

2 0.9400 0.9400 0.9405 0.9419

3 0.9700 0.9700 0.9599 0.9730

4 0.9800 0.9700 0.9698 0.9207

5 0.9700 0.9700 0.9713 0.9777

7 0.9300 0.9700 0.9710 0.9757

7 0.9700 0.9700 0.9700 0.9700

8 0.9700 0.9600 0.9700 0.9500

9 0.9700 0.9700 0.9580 0.9719

10 0.9875 0.9567 0.9675 0.9500

Figure 3. Outcomes of (10-Fold) Cross Validation. (a) Accuracy 
and Precision. (b) Recall and F1-Score.

Table 2 provides a statistical summary of the evalua-
tion metrics regarding the AI-powered model on renewable 
energy education. Mean values and standard deviations 
are presented, which deal with the performance in terms 
of accuracy, precision, recall, and F1-score. These usefully 
portend the model’s general effectiveness in making accu-
rate predictions regarding student engagement and learn-
ing outcomes. The values suggest that the model is well-
performing, reliable, and balanced across all evaluated 
student performance.

Table 2. Statistical Summary of Evaluation Metrics.

Metric Mean Standard Deviation

Accuracy 0.9770 ±0.0173

Precision 0.9760 ±0.0165

Recall 0.9790 ±0.0173

F1 Score 0.9751 ±0.0172

The impressive mean accuracy rate (97.70%) and 
low standard deviation (±1.73%) indicate the strong ability 
of the model to well classify student performance and ac-
tivity across different sets of data. Similarly, the similarly 
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close precision value (97.60%) and recall value (97.90%) 
demonstrate that the model, in addition to identifying sig-
nificant student patterns with correct accuracy, prevents 
false negatives. F1 Score (97.51%), or harmonic mean 
of precision and recall, also confirms that the model pos-
sesses great balance between sensitivity and specificity. 
Low variance across all the measures indicates strong and 
generalizable performance, further contributing to the reli-
ability of the model in real-world education.

The ROC-AUC curve indicates the classification 
ability of the proposed SFO-IRNN model for five classes, 
as Shown in Figure 4. The AUC for all classes is high, 
which reflects the good accuracy of the model in separate 
classes. The Proximity of the curve to the top-left corner 
indicates high true positive rates with low false positives, 
which verifies the strength and robustness of the model in 
multi-class prediction.

Figure 4. ROC-AUC Curve Based on Proposed SFO-IRNN.

The improved paradigm aims to optimize the per-
formance of a system based on many factors such as cus-
tomer satisfaction, system response, scalability, fidelity 
of the contents, etc. Contrasting with anticipated values 
(anticipated or designed) and measured values (true out-
come) captures the disparity of the system’s performance 
as shown in Figure 5. An example is that user satisfaction 
had been predicted as 85% but actual values at 82%, where 
there has been room for improvement. Also, the system re-
sponse time was larger than the target value, and scalabil-
ity should be enhanced to support more users. These vari-
ations from target values are precious information, which 
can further be used to make the adjustments required to 
meet the target values so that the overall system perfor-
mance and user experience are enhanced.

Student performance scores across different ages, 
genders, and departments were calculated using the pro-
posed SFO-IRNN method during AI-assisted teaching of 
renewable energy (Figure 6). Figure 6a shows student 
performance scores categorized by age and gender. Both 
male and female students exhibit comparable performance 
distributions, indicating that the proposed method achieves 
balanced learning outcomes across genders. Figure 6b pre-
sents student performance scores by department. Students 
from the Mechanical, Computer Science, Civil, and Elec-
trical departments all show strong engagement, with those 
in Electrical and Computer Science performing slightly 
better. These results suggest that the model is broadly ef-
fective across a range of academic disciplines.

Figure 5. Performance Evaluation Comparison of Prediction vs. Actual Values.
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4.3.	 Discussion

Examined the optimization of learning programs 
in renewable energy based on sustainable environmental 
development principles as a guideline. In light of the help 
provided by the Internet and artificial intelligence, the re-
search seeks to optimize the efficiency and responsiveness 
of education strategies in this area. The SFO-IRNN uses 
cross-fold validation for the evaluation of an AI-powered 
learning system in renewable energy education. The sub-
stantiation provided by (10-fold) cross-validation also for-
mulates solid outcomes for the performance metrics, there-
fore having a comprehensive assessment of the method’s 
ability to adapt and personalize learning. The experiments 
show that the model performs consistently with minimum 
variance, indicating its effectiveness in customized learn-
ing contexts. In addition, the statistical summary also im-

proves the model’s balance and reliability when identifying 
diverse facets of student engagement and learning achieve-
ments. GRNN requires complex implementation [9], which 
demands specialized technical competencies, resulting in 
difficulty when used by the general scholarly population. 
The implementation of multiple complex algorithms leads 
to enhanced cost and complexity in computations and dif-
ficulties for practical use. The features of the model show 
reduced effectiveness when working with inconsistent or 
insufficient data quality from input sources. The suggested 
research overcomes the conventional teaching constraints 
by integrating AI-driven personalized learning, IoT real-
time information, and adaptive strategies. Unlike fixed 
strategies, it provides dynamic data-driven learning that 
suits individual students’ requirements. It increased par-
ticipation, experiential learning, and critical analysis. The 

Figure 6. Age and Performance Score Comparison: (a) Gender-Based Comparison. (b) Department-Based Comparison.  
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SFO-IRNN model guarantees high performance with im-
proved deeper understanding of renewable energy through 
live simulation and interactive learning.

5.	 Conclusions

The SFO-IRNN framework has assurances to be an 
innovative way to charge into renewable energy education 
with the potential to provide an engaging and personalized, 
adaptive learning course. The proposed system blends the 
use of AI-based recommendations of content with real-
time IoT data obtained from renewable energy sources to 
create an interactive environment for students, promoting 
critical thinking and problem-solving skills. The data was 
preprocessed with handling missing values and min-max 
scaling. The data features were extracted using FT. The 
dynamic and efficient optimization of teaching strategies 
making use of the SFO algorithm could ensure the bal-
ance between the exploration and exploitation of the best 
educational approaches. The further use of (10-fold) cross-
validation enhances the reliability of the model as it could 
evaluate its performance metrics like accuracy, f1-score, 
recall, and precision on different subsets of student data, 
thus improving its robustness and preventing overfitting. 
This method provides an innovative, scalable platform for 
enhancing renewable energy education. Students can logi-
cally relate theoretical knowledge to the real-world chal-
lenges faced. The results affirm the effectiveness of SFO-
IRNN in improving learning outcomes, engagement, and 
hands-on knowledge of sustainable energy technologies. 
The current system heavily relies on real-time IoT data, 
that cannot always be accessible in some places. Besides, 
the complexity of the SFO-IRNN model may require 
higher computational resources. Future improvements 
could expand the system by integrating more diverse 
renewable energy sources and additional AI algorithms 
for increased predictive accuracy. Further research could 
then be directed towards exploring ways to improve the 
system’s scalability and real-time adaptability. The online 
demo platform can be expanded to support real-time data 
integration, multi-language interfaces, advanced analytics 
dashboards, and broader educational applications, enabling 
scalable adoption in diverse learning environments and 
fostering enhanced personalization for global educational 
initiatives.
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