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ABSTRACT
Deforestation is the purpose of converting forest into land and reforestation compared to deforestation is very 

low. That’s why closely and accurately deforestation monitoring using Sentinel-1 and Sentinel-2 satellite images for 
better vision is required. This paper proposes an effective image fusion technique that combines S-1/2 data to improve 
the deforested areas. Based on review, Optical and SAR image fusion produces high-resolution images for better de-
forestation monitoring. To enhance the S-1/2 images, preprocessing is needed as per requirements and then, collocation 
between the two different types of images to mitigate the image registration problem, and after that, apply an image fu-
sion machine learning approach, PCA-Wavelet. As per analysis, PCA helps to maintain spatial resolution, and Wavelet 
helps to preserve spectral resolution, gives better-fused images compared to other techniques. As per results, 2019 S-2 pre-
processed collocated image enhances 42.2508 km2 deforested area, S-1 preprocessed collocated image enhances 23.7918 km2  
deforested area, and after fusion of the 2019 S-1/2 images, it enhances 16.5335 km2 deforested area. Similarly, the 2023 
S-2 preprocessed collocated image enhances 49.2216 km2 deforested area, S-1 preprocessed collocated image enhances 
23.8459 km2 deforested area after fusion of the 2023 S-1/2 images, enhancing 35.9185 km2 deforested area. These im-
provements show that combining data sources gives a clearer and more reliable picture of forest loss over time. The 
overall paper objective is to apply effective techniques for image fusion of Brazil’s Amazon Forest and analyze the dif-
ference between collocated image pixels and fused image pixels for accurate analysis of deforested area.
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1.	 Introduction

Land Use (LU) and Land Cover (LC) are fundamen-
tal components in understanding environmental change. 
Land cover refers to the physical characteristics of the 
Earth’s surface, such as forests, water bodies, or urban 
structures, while land use describes how these surfaces are 
utilized by humans, such as for agriculture, infrastructure, 
or recreation. Monitoring changes in LU and LC is essen-
tial for managing natural resources, planning sustainable 
development, and addressing environmental challenges 
like deforestation, which is a significant challenge due to 
the complexity of covering vast areas with diverse land 
features [1–3]. Deforestation—the large-scale removal of 
forest covers a major global concern due to its impact on 
biodiversity, climate regulation, and human health. The 
Amazon forest has been facing this problem for many 
years [4,5]. Deforestation is happening in large areas because 
people are farming and logging in forests. Deforestation 
(the removal of trees) is happening more quickly than new 
trees are being planted, which is causing environmental 
and health problems [6–8]. Tracking these changes accu-
rately and efficiently across time and space is crucial for 
informed policymaking and intervention. Remote sens-
ing has become a powerful tool in this context, enabling 
systematic observation of land dynamics using satellite 
imagery. Current best practices in deforestation monitor-
ing involve the use of high-resolution satellite imagery, 
integration of multi-source data, and advanced analytics 
to provide timely and reliable information for policymak-
ers and conservation efforts [9,10]. This paper focuses on 
reviewing and evaluating different techniques used for 
deforestation analysis, particularly those involving remote 
sensing and image fusion.  

However, accurately detecting deforestation contin-
ues to be a challenge, particularly in regions with frequent 
cloud cover or complex terrain. To address these chal-
lenges, recent studies have emphasized the value of com-
bining different types of satellite data, such as optical and 
Synthetic Aperture Radar (SAR) imagery. Techniques such 
as those using Sentinel-1 (SAR) and Sentinel-2 (optical) 
imagery have become standard tools in global deforesta-
tion monitoring due to their free availability, high revisit 
frequency, and complementary sensing capabilities [11,12]. 

Optical satellite imagery, such as that from Sentinel-2, pro-
vides rich spectral information under clear sky conditions but 
is often hindered by cloud cover and limited daylight [13,14].  
In contrast, Synthetic Aperture Radar (SAR) systems, 
such as Sentinel-1, can penetrate cloud cover and operate 
regardless of lighting conditions. This makes SAR par-
ticularly valuable in tropical regions where clouds are fre-
quent. The complementary nature of these two data types 
has led to the adoption of data fusion techniques. By inte-
grating information from both sources, fusion techniques 
can enhance land cover classification and deforestation 
detection beyond the capabilities of individual sensors [15–17]. 
Deforestation has far-reaching effects on ecosystems and 
climate systems; therefore, improved monitoring is essen-
tial to support sustainable land management. Monitoring 
and managing LULC is essential to mitigate these impacts 
and ensure that land use is sustainable [3,10,18]. By balanc-
ing human needs with environmental conservation, it’s 
possible to reduce deforestation and protect ecosystems, 
ensuring the health of both the planet and its inhabitants. 
By reviewing state-of-the-art approaches and proposing 
an improved methodology, this work aims to support more 
accurate monitoring and better decision-making in envi-
ronmental management.

Recent advancements in deforestation monitoring 
have leveraged machine learning, time-series analysis, and 
high-resolution remote sensing to improve accuracy and 
scalability. Operational systems like Global Forest Watch, 
the Hansen dataset, and national monitoring platforms al-
ready utilize optical and/or radar imagery to detect forest 
change. However, many existing methods rely on single-
sensor data, which can limit their effectiveness in regions 
with persistent cloud cover or highly variable terrain. This 
study contributes to the ongoing development of deforesta-
tion monitoring practices by critically reviewing and syn-
thesizing techniques that combine SAR and optical data. 
By focusing on fusion-based approaches, this paper aims 
to highlight how integrating multiple data sources can ad-
dress current limitations, improve temporal consistency, 
and support more robust and responsive monitoring frame-
works [19–21].

This paper aims to critically review existing defor-
estation monitoring techniques that utilize optical and 
SAR satellite data, with a particular focus on fusion-based 
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approaches. By analyzing recent advancements and pro-
posing a framework that integrates both data sources, this 
study contributes to developing more resilient, accurate, 
and scalable solutions for deforestation monitoring. This 
work is especially relevant in the current context of climate 
change and biodiversity loss, where timely forest change 
detection is critical for informed environmental manage-
ment and policy decisions. Furthermore, the general aim of 
this investigation is to explore how the fusion of SAR and 
optical remote sensing data can provide a more robust and 
scalable solution to deforestation monitoring, particularly 
in regions affected by rapid land-use change. The scope 
of the investigation covers both methodological advance-
ments and their practical implications in environmental 
monitoring. The innovative aspect of this study lies in its 
synthesis of recent fusion-based techniques and its em-
phasis on improving temporal and spatial consistency in 
forest change detection. This work is highly relevant in the 
context of intensifying interactions between human activi-
ties—such as agriculture, logging, and urban expansion—
and their impact on natural resources, ecosystem integrity, 
and climate dynamics. By enhancing monitoring capabili-
ties, the study contributes to more informed decision-mak-
ing in land governance, conservation planning, and climate 
adaptation strategies. It directly addresses the urgent need 
for resilient monitoring systems in the face of global envi-
ronmental change. 

In modern remote sensing applications, particularly 
for deforestation monitoring, data from both optical and 
Synthetic Aperture Radar (SAR) satellites play crucial 
roles [6,21–23]. Rather than presenting a basic introduction to 
these technologies, this section highlights their relevance 
and complementary strengths in the context of this study. 
An optical satellite is a passive satellite that takes sunlight 
as a source of energy to capture images. It gives more vis-
ible images than the human eye does. Laser data offers 
extra information about the properties of the topography 
or vegetation, whereas optical satellite data provides color 
information that can distinguish between different vegeta-
tion kinds [7,19]. Optical satellites take imagery in the visible 
or near-visible portion of the electromagnetic spectrum, 
using the sun’s radiation as it reflects from our planet and 
atmosphere [9,20]. Another type of remote sensing is SAR 
(synthetic Aperture Radar satellite), which is an active sat-

ellite that uses waves to collect active data from the sensor 
which produces its energy (radio wave or microwave) and 
records the reflected energy back after earth interaction. 
The help of these scattering signals with a different surface 
of the earth creates images that are good for observing 
characteristics of the surface like moisture, structure, for-
est biomass, etc [3,21]. SAR is good in penetrating clouds 
but optical is not good. SAR can capture images in bad 
weather but optical is not good to capture images in bad 
weather. SAR gives day and night view but optical gives 
only day view [6,16]. The combination of Optical satellite 
images with SAR satellite images using time series concept 
gives better resolution and helps us for identification and clas-
sification [17,24]. In the past few years for LULC applications, 
image fusion of Optical and SAR satellite image concepts 
has been used for accurate monitoring. Sentinel-1 and Sen-
tinel-2 satellites, developed by the European Space Agency 
(ESA) under the Copernicus program, offer freely avail-
able, high-resolution, and frequently acquired datasets [10,25].

SENTINEL-1: It is a composition of two constella-
tions of satellite Sentinel-1A (launched on 3 April 2014) 
and Sentinel-1B (25 April 2016) which share the same 
polar-orbiting. Sentinel-2B is retired, only Sentinel-1 A is 
working and planning to launch Sentinel-1C and Sentinel-
1D. Sentinel-1A uses C-Band SAR because the spatial 
resolution of SAR depends on the ratio of the length of the 
antenna and wavelength of the sensor, that’s why C-band 
has a 5m wavelength sensor to get 10m spatial resolution 
to capture images or data in day and night during all kind 
of weather. It can revisit in 12 days and gives 175 resolu-
tions per cycle. This satellite is used for Marine monitor-
ing, Land monitoring, and Emergency responses [6,11,18,26]. 

SENTINEL-2: It is based on a Copernicus program 
called Earth observation which gives high resolution up to 
10m to 60m of land and coastal areas. It is also a constel-
lation of two satellites Sentinel-2A (launch 23 June 2015) 
and Sentinel-2B (launch 7 March 2017) and Sentinel-2C 
is planning to launch [10,25]. It gives multi-spectral data with 
13 bands of visible (red, green, blue), infrared (IR), and 
short-wave infrared (SWIR). It covers a globally large area 
from South to North. It can revisit every 10 days in the 
same orbit and one orbit was completed in 5 days, so some 
regions were observed twice but with different viewing 
angles. This satellite is used for many services and applica-
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tions like agriculture monitoring, emergency response and 
management, water quality detection and LULC applica-
tions [12,13,27,28].

Sentinel 1 and Sentinel 2 satellite images are suitable 
for earth observation. Sentinel 1 is good for penetrating 
cloud and weather dependent, which creates a problem of 
speckle noise which is multiplicative in nature. Similarly, 
Sentinel 2 gives good resolution due to the Sun as a source 
of energy to capture high-resolution images in the daytime 
which creates a problem of mixed pixels. The problem 
can be mitigated by using image fusion to combine both 
features in one image for better analysis [29–32]. These two 
satellite systems are particularly well-suited for image fu-
sion applications, where their combined strengths enhance 
deforestation monitoring by mitigating each sensor’s limi-
tations. 

This paper is organized into seven sections. The first 
section is the introduction that provides relevant informa-
tion about the importance of LULC for deforestation moni-
toring including technical overview of the satellite imagery 
used—specifically Sentinel-1 and Sentinel-2—and their 
relevance to deforestation monitoring and their features. 
The second section is a literature review of deforestation 
detection techniques. The third section is based on the 
proposed methodology followed by materials used in this 
paper. The fourth section is based on methodology and di-
vided into three sub-sections: Preprocessing, Intermediate 
processing and Final processing. For better visualization 
of the proposed model, the fifth section is based on results 
which are divided into three sub-sections same as meth-
ods: preprocessing results, intermediate results, and Final 
results. At the end of the paper, we discussed the pros and 
cons of the paper in the Discussion section. In the end, we 
concluded the paper with justification. 

2.	 Related Work: Literature Review 
of Deforestation Detection
The objective of the paper is to provide a compre-

hensive review of different techniques used for deforesta-
tion detection with their motivations and their issues. For 
the literature survey, the reviewer reviewed quality papers 
with a description of the dataset and methods used. Based 
on Table 1 [33–44], future discussion and conclusions are pre-
pared. With the help of this survey, the author can analyze 

and identify which techniques are good for deforestation 
detection and understand the benefits of both Optical and 
SAR satellite image fusion for LULC applications.

Research Gap and Methodology Analysis: Based 
on the above literature survey, the author analyzes the re-
search gap between multiple machine learning models and 
finds a suitable methodology for image fusion. The PCA-
Wavelet method is chosen for its ability to effectively retain 
both spectral and spatial information, making it superior to 
other approaches in deforestation detection. Traditional ma-
chine learning methods, such as Decision Trees and Random 
Forest [5,8,23], have been widely used due to their interpretabil-
ity and classification efficiency. However, these techniques 
struggle with high-dimensional, multi-temporal datasets, 
resulting in reduced accuracy in spectral variation analysis. 
Similarly, Support Vector Machine (SVM) and Linear Discri-
minant Analysis (LDA) offer strong classification capabilities 
but face challenges related to collinearity and the need for 
extensive feature selection [33,35,41].

Deep learning-based approaches [4,34–36,42,44] provide 
high accuracy in deforestation detection by leveraging 
multi-temporal satellite data. However, these methods 
require large, labeled datasets, making them computation-
ally expensive and susceptible to overfitting. Additionally, 
SAR-optical image fusion techniques using Sentinel-1 and 
Sentinel-2 [33,38,39] enhance structural and spectral informa-
tion but often suffer from misregistration errors, leading to 
the loss of spectral details. PCA-Wavelet, as demonstrated 
in studies [45,46], overcomes these issues by preserving both 
spatial resolution and spectral fidelity, making it a robust 
choice for multi-sensor image fusion in deforestation anal-
ysis.

PCA-Wavelet offers a well-balanced approach by 
retaining spectral information, improving computational 
efficiency, and enhancing feature extraction. Unlike stan-
dalone PCA, which may compromise spectral details, 
PCA-Wavelet effectively balances spatial and spectral 
resolution. Moreover, it requires fewer computational re-
sources than deep learning models, making it a practical 
choice for large-scale deforestation mapping. The wavelet 
transformation component enhances edge detection and 
classification accuracy, which is crucial for distinguishing 
deforested areas from surrounding vegetation.
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accurate deforestation detection. First, satellite images 
from Sentinel-1, Sentinel-2, and Landsat 8 datasets are 
acquired. Preprocessing techniques, including cloud re-
moval, radiometric correction, and geometric correction, 
are applied to refine the data. The PCA-Wavelet fusion 

process begins with Principal Component Analysis (PCA) 

for dimensionality reduction, followed by a multi-reso-
lution wavelet transformation to preserve spatial details. 
The transformed components are then fused to generate 
high-resolution deforestation maps. Finally, classification 
techniques such as Random Forest and SVM are applied 

Table 1. Literature Review.

No. Authors/Year
Study Motivation & Key 
Issues

Journal (Name, Not 
Publisher)

Dataset Methods & Results

1 Mngadi et al., 2021 [33]

Uses SAR and Optical 
image fusion for large-scale 
deforestation detection; pixel-
level fusion loses spectral info; 
feature-level fusion used instead 
with less accuracy.

Geocarto International Sentinels 1 and 2

LDA; improved 
discrimination but lower 
accuracy due to feature-level 
fusion.

2 Marujo et al., 2020 [34]
Semantic segmentation for 
multi-temporal image analysis; 
cloud cover poses challenges.

International Archives 
of the Photogrammetry, 
Remote Sensing and Spatial 
Information Sciences

Landsat 8
Deep learning with U-Net 
variations; good detection 
under clear skies.

3
Ortega Adarme et al., 
2020 [35]

Deep learning vs. SVM for 
classification in small areas; 
requires large training data.

Remote Sensing Landsat 8
DL and SVM; DL 
outperformed SVM in spatial 
accuracy.

4 Torres et al., 2021 [36]
Detection of deforestation 
polygons; false degradation and 
image shifts cause issues.

Remote Sensing
Landsat 8, 
Sentinel 2

Fully CNN; effective but 
challenged by false positives/
negatives.

5 Fonseca et al., 2021 [37]
Pattern recognition with DL; 
mapping accuracy improved; 
slow processing due to clouds.

Pattern recognition letters
Landsat 8 and 
MODIS

Deep learning; accurate but 
computationally expensive.

6 De Luca et al., 2022 [38]

SAR and Optical data 
for LULC; good spatial 
classification, lacks detail in 
small features.

European Journal of 
Remote Sensing

Sentinels 1 and 2
Supervised RF; strong for 
forest types, weak for fine 
features.

7
Pacheco-Pascagaza et 
al., 2022 [39]

NRT change detection; 
differentiation between forest 
types difficult under clouds.

Remote Sensing Sentinel 2
ML + PYEO Python; 
responsive but limited by 
spectral overlaps.

8 Silva et al., 2022 [40]
NRT monitoring in rainy season 
using SAR; overfitting in NN 
needs early stopping.

 European Journal of 
Remote Sensing

Sentinel 1
NN with MLP and MMD; 
good temporal response, 
tricky validation.

9 Saha et al., 2022 [41]
ML in Himalayan Foothill; 
SVM best; multicollinearity 
checked.

Resources, Conservation & 
Recycling Advances

Landsat 8
SVM, NB, RF, etc.; high 
accuracy, best with SVM.

10
Matosak et al., 2022 [42]

Hybrid DL on two datasets; 
mislabeled samples reduce 
accuracy.

Remote Sensing
Landsat 8 and 
Sentinel 2

LSTM + U-Net; effective, 
sensitive to label quality.

11 Mateen et al., 2023 [43]
Classification of fused Sentinel, 
Landsat, and Airbus data; RF & 
ANN outperform SVM.

Open Geosciences
Sentinel 2, 
Landsat 8, Airbus 
Vision 1

RF, ANN, SVM; best results 
with RF and ANN, 10–3.48m 
resolution.

12 Kuzu et al., 2024 [44]

Self-supervised learning for 
forest change; contrastive 
learning effective but pretraining 
is complex.

 IEEE Journal of Selected 
Topics in Applied Earth 
Observations and Remote 
Sensing

Sentinels 1 and 2
Self-supervised DL; 
promising with pixel-level 
contrastive learning.

The methodology involves multiple steps to ensure 
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ing ground-truth data and existing forest cover maps. In 
conclusion, PCA-Wavelet is selected due to its ability to 
maintain both spectral and spatial details while ensuring 
computational efficiency. The literature review confirms its 
effectiveness over other techniques in deforestation detec-
tion, making it an optimal approach for this study.

3.	 Materials and Methods 

The Materials and Methods section is crucial in any 
scientific study, as it provides transparency and reproduc-
ibility. By detailing the dataset, tools, workflow, and study 
area, as well as the steps of preprocessing, intermediate, 
and final processing, other researchers can replicate the 
study, validate its findings, or build upon its work. Each 
component, from the selection of data to the application 
of specific tools and methods, plays a vital role in ensur-
ing the integrity, reliability, and validity of the research 
outcomes. This section also serves as a roadmap, guiding 
readers through the systematic approach used to arrive at 
the study’s results. In this paper, the materials are repre-
sented by the datasets and tools utilized throughout the 
research, as well as the description of the study area and 
the workflow followed. These resources are essential for 
the execution of the study and are meticulously selected 
to ensure that the research objectives can be effectively 
addressed. The datasets form the foundation of the analy-
sis, while the tools, which include software and compu-
tational resources, facilitate data processing and analysis. 
The study area provides the geographical or contextual 
scope for the research, and the Methods explained in the 
workflow offer a systematic approach to managing the en-
tire research process, which is divided into three sections 
preprocessing, intermediate processing, and final process-
ing, ensuring that each phase is carried out effectively and 
efficiently. Together, these materials ensure the rigor and 
reproducibility of the study’s findings.

3.1.	 Dataset 

The dataset forms the foundation of the research. 
Its quality and relevance are critical for ensuring the reli-
ability of the results. A well-curated dataset, representative 
of the study’s objectives, is key to accurate findings. The 

cline in tree cover between 2010 and 2022. In terms of tree 
loss between 2001 and 2022, Novo Progresso specifically 
came in third place in Pará. The region saw a high volume 
of deforestation alerts in October 2023, mostly as a result 
of fires [47]. Pará is the second-largest deforestation region 
in the Brazilian Amazon, according to REDD+ (Reducing 
Emissions from Deforestation and Forest Degradation) 
research done over the past 15 years [44,48]. Based on these 
findings, the author investigated a model that was put out 
to solve the mixed pixel problem and categorize defor-
ested areas using Pará data. The dataset is described by the 
Google Earth Pro visualizations in Figure 1 and Table 1.

Figure 1. Graphical Representation of Research Area. 

3.2.	 Research Area

Defining the study area is important as it contextual-
izes the research within a specific domain or geographical 
boundary. This ensures that the findings are relevant to 
the intended scope and audience. The dataset used in this 
study was sourced from both NASA and the European 
Space Agency’s (ESA) Copernicus program. The analysis 
of the proposed model involved Sentinel-1 Ground Range 
Detected (GRD) images from 2019 and 2023, which, due 
to its synthetic aperture radar (SAR) capabilities, allow for 
accurate Earth observation regardless of weather condi-
tions or time of day. Additionally, the Sentinel-1 system’s 
Dual Polarization GRD mode enhances its ability to cap-
ture precise data. To complement this, Sentinel-2 Mul-
tispectral Instrument (MSI) images from the same years 
were employed, utilizing its 13 spectral bands that provide 
high-resolution daytime observations for effective envi-
ronmental monitoring and analysis. Detailed information 
about the dataset can be found in Table 2.

Brazilian state of Pará has been the main cause of the de-to classify deforested areas, with validation performed us-
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3.3.	 Tools

The tools used for data analysis and processing are 
essential for ensuring precision, efficiency, and accuracy. 
These tools enable the handling of large datasets, statisti-
cal computation, and the visualization of results, making 
complex processes manageable and repeatable. The dataset 
preprocessing was carried out using the SNAP tool’s latest 
version 9.0.8, a software developed by ESA Copernicus 
for Earth observation data processing. For the analysis of 
image fusion, the SNAP tool and Python3 Jupyter Note-
book version 7.0.8 were utilized, while the classification 
of deforested areas and area calculations were performed 
using MATLAB R2023b. The Sentinel Application Plat-
form (SNAP) is particularly suited for processing satellite 
images and Python3 Jupyter Notebook 7.0.8v was used for 
intermediate analysis, enabling more efficient and rapid 
fusion of SAR and optical images. MATLAB R2023b fur-
ther facilitated the fast processing of large satellite image 
datasets during the deforestation classification and area 
calculation using the proposed model. 

3.4.	 Methods: Proposed Workflow Model

The workflow outlines the structured approach to 
data handling, ensuring that each phase is conducted 
systematically. A clear workflow is vital for maintaining 
consistency and enabling researchers to trace the steps 
taken during the study. The main objectives of the research 
paper are the classification of deforestation and the analy-
sis of the fusion of optical SAR satellite images. As seen 
in Figure 2, the suggested technique has been split into 
three separate phases each of which consists of three steps 
specifically. While optical satellite imaging provides clean, 
high-resolution images, the mixed pixel problem makes it 
more difficult to accurately identify objects within the im-
ages. A mixed pixel problem is one where a pixel has vari-
ous class memberships that affect the resolution. Speckle 

noise is the only problem with SAR satellite imaging, yet 
it offers excellent-resolution photos in the daytime and 
nighttime regardless of the weather. Because speckle noise 
is multiplicative in nature, coherent imagery is similarly 
impacted [29]. The Image Fusion of Optical and SAR is fac-
ing a problem called Image registration. Image registration 
means collocation of images [30–32].

Figure 2. Flowchart of Proposed Methodology SIF.

This study aims to develop and evaluate an effective 
image fusion technique that integrates Sentinel-1 (SAR) 
and Sentinel-2 (optical) satellite imagery to enhance the 
accuracy of deforestation detection in the Amazon For-
est. By leveraging machine learning–based image fusion, 

Table 2. Research Area Description.

Data Type Year Product Type Acquisition Date and Time Band Polarization 

Sentinel-2
2019

MSI
30/08/2019 13 Bands (1,2,3,4,5,6,7,

8,8A,9,10,11,12)2023 19/08/2023

Sentinel-1
2019

IW_GRD
21/07/2019

VV and VH 
2023 24/07/2023
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specifically the PCA-Wavelet approach, the study aims to 
improve the spatial and spectral resolution of satellite im-
agery, enabling more precise quantification and monitoring 
of deforested areas over time. This is accomplished by us-
ing the pre-processing and intermediate processing meth-
ods specified in the suggested methodology. This entails 
evaluating the proposed method against existing approach-
es to determine its accuracy and effectiveness in detecting 
deforested regions. The goal of this comparison is to gain 
a better understanding of the method’s performance and 
to accurately quantify the extent of deforestation. By im-
proving the precision of deforestation detection, the study 
aims to enhance the reliability of long-term environmental 
monitoring and analysis.

3.4.1.	 Preprocessing 

Preprocessing is crucial for ensuring the dataset’s 
quality and integrity. Cleaning and preparing the data helps 
avoid biases or inaccuracies that could otherwise skew the 
results, making it a vital first step in any data-driven study. 
The preprocessing of Sentinel 1 and Sentinel 2 is done us-
ing the SNAP tool latest version 9.0.8. 

Thirteen spectral bands make up Sentinel-2 MSI; 
four of the bands have a spatial resolution of 10 m (Red, 
Green, Blue, Near-infrared), six have a resolution of 20 m 
(bands 5, 6, 7, 8a, 11, 12), and three have a resolution of 
60 m (band 1, 9, 10). Sentinel-2 MSI’s main objective is 
to phase two satellites 180 degrees apart in the same orbit 
so that they can take pictures every five days. To enable 
accuracy and loss validation in deep learning models, pre-
processing multispectral pictures is essential. To prepare 
the data, this technique starts with stacking multiple bands. 
Only the SWIR 11 and SWIR 12 were used in the study 
that is cited, specifically the Short-Wave InfraRed band 
(B11 and B12) is used to analyze the deforestation due to 
less effective by smoke and cloud and provide more sensi-
tive information of land changes. After that, resampling is 
carried out to modify and adapt image resolution utilizing 
bilinear up-sampling and mean down-sampling to adjust 
image resolution and alter pixel values. 

Sentinel 1 is a satellite mission operated by the Eu-
ropean Space Agency (ESA) as part of the Copernicus 
Program. With the ability to take pictures of the Earth’s 
surface day or night and in any weather, it offers high-res-

olution Synthetic Aperture Radar (SAR) data. Applications 
such as mapping, environmental monitoring, and disaster 
management can benefit greatly from this. A C-band SAR 
sensor, which operates in the microwave frequency range 
with wavelengths of about 5.6 cm, is what Sentinel-1 
employs. The satellite picks up the reflected signals from 
SAR systems, which shoot microwave energy pulses at the 
surface of the Earth. Sentinel-1 works in the microwave 
frequency range, with wavelengths of about 5.6 cm, thanks 
to the usage of a C-band SAR sensor. Microwave energy 
pulses are sent to the surface of the Earth by SAR devices, 
and the satellite records the reflected signals. Sentinel-1 
functions in many modes, including Extra-Wide Swath 
(EW), Strip map (SM), and Interferometric Wide Swath 
(IW). The most popular mode for Earth observation is IW 
mode, which yields images with a resolution of roughly 
5 meters. An IW mode image is utilized in this paper. 
Preprocessing of the SAR pictures is necessary before 
employing them for applications like change detection or 
surface analysis. The preprocess ensures that the data are 
accurate and usable for a wide variety of Earth observation 
applications, providing reliable and high-quality SAR im-
ages. In this paper, the authors used VH polarization band 
compared to VV polarization because VH polarization 
is highly effective for deforestation monitoring due to its 
ability to detect changes in forest structure, biomass, and 
canopy complexity, making it sensitive to both large-scale 
deforestation and subtle forest degradation.

3.4.2.	 Intermediate Processing

Intermediate processing refines the dataset further 
by selecting and transforming features, which increases 
the efficiency and accuracy of the analysis. This step is 
essential for building robust models and ensuring that 
the results are based on relevant and well-processed data. 
After preprocessing, apply the collocation method. The 
Collocation Tool is used to merge or align multiple spatial 
datasets (referred to as products) so they share a common 
geographic reference. The data from one or more “slave” 
products is resampled to fit the geographic grid or raster 
of a “master” product; this process is called “collocating.” 
To avoid conflicts between data with similar names from 
different products, users can rename the data components 
using this tool. A new product is generated that combines 
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all the components of the master product with selected 
components of the slave products. As you can see in Fig-
ure 2, we collocate Sentinel 1 with Sentinel 2 and vice 
versa using resampling, the primary operation in collocat-
ing which involves transforming the pixel values from the 
slave product to match the spatial grid of the master prod-
uct. For resampling Nearest Neighbor is used which pro-
vides the closest geographical point from the slave product 
is assigned to the master product grid. the Collocation Tool 
allows spatially aligning data from different sources (prod-
ucts), ensuring that the pixel values of slave products fit 
the grid of the master product. 

After applying collocation, a mathematical model is 
used called Band Math, using existing data layers, such 
as bands, tie-point grids, and flags, the Band Maths Tool 
applies mathematical operations to create new pixel val-
ues for images. With the help of these processes, you can 
produce unique data from preexisting sources. The tool 
can help to create custom formulas to handle the data. The 
tool allows you to create new “derived” image data (sam-
ple values) by applying mathematical formulas to existing 
data. With the help of the robust Band Maths Tool, you 
may create new image data by modifying pre-existing data 
layers from geographically compatible goods using unique 
mathematical expressions. Complex analysis is possible 
because to the tool’s flexibility, and you have the option of 
automatically displaying the resultant image or not. With 
the help of Band Math, more data collection and prepara-
tion can be done for deep neural networking for the final 
analysis of this paper.  

To validate whether the collocated images of Sen-
tinel-1 and Sentinel-2 images are registered in a specific 
point or not, the author applied Image registration in col-
located images of both datasets using equation (3). The 
next step of intermediate processing is Image Fusion, the 
main objective of this paper. To increase quality and en-
hance information content for better analysis, image fusion 
merges images from various sensors (e.g., Sentinel-1 and 
Sentinel-2). Synthetic aperture radar (SAR) data is pro-
vided by Sentinel-1, a radar sensor, and multispectral opti-
cal imaging by Sentinel-2. These datasets are combined to 
better utilize the complimentary properties of optical and 
SAR data for a range of remote sensing applications, such 

urban area detection. For the image fusion of Sentinel 1 
and Sentinel 2 machine learning algorithms are applied us-
ing collocated images. In this paper, the author used only 
Band 11 and Band 12 collocated images of sentinel 2 due 
to the SWIR band is crucial for deforestation monitoring 
due to its ability to detect moisture content, burned areas, 
and surface changes, making it a highly effective tool in 
identifying and analyzing deforested areas. Sentinel 1’s 
VH band collocated images are sensitive to both significant 
and subtle forest degradation; in particular, VH polariza-
tion is a very helpful tool for tracking deforestation since it 
can detect changes in the biomass, canopy complexity, and 
structure of the forest for fusion for monitoring deforesta-
tion. 
	

FusionS2= B12 collocated-B11 collocated
FusionS1= BVHcollocated-BVV collocatedImage

Registration = CollocatedS1 - CollocatedS2Fusions1
s2
=PCA Wavelet Fusion (FusionS2-FusionS1)

	 (1)	 FusionS2= B12 collocated-B11 collocated
FusionS1= BVHcollocated-BVV collocatedImage

Registration = CollocatedS1 - CollocatedS2Fusions1
s2
=PCA Wavelet Fusion (Fusion

S2-FusionS1)

	 (2)	
FusionS2= B12 collocated-B11 collocated
Fusion

S1
= B

VHcollocated-BVV collocated
ImageRegistration = CollocatedS1 - CollocatedS2Fusions1

s2
=PCA Wavelet Fu

sion (FusionS2-FusionS1)

	 (3)

FusionS2= B12 coll

ocated-B11 collocated

FusionS1= BVHcoll

ocated-BVV collocated

ImageRegistration = Collocated
S1 - CollocatedS2

Fusions1
s2
=PCA Wavelet Fusion (FusionS2-FusionS1)  (4)

Random Forest is a machine learning technique that 
can be used to fuse Sentinel-1 and Sentinel-2 datasets by 
training on labeled data to predict fused output, focusing 
on maximizing classification accuracy or feature extraction 
but requires ground truth data for better classification. PCA 
fuses images by transforming both datasets (Sentinel-1 and 
Sentinel-2) into principal components and selecting those 
that preserve the most significant information. The princi-
pal components are then transformed back into the spatial 
domain, producing a fused image that loses the spectral 
information. Wavelet Transform is a multiresolution analy-
sis technique that decomposes an image into different fre-
quency components, allowing for the fusion of spatial and 
spectral information at multiple scales and helps to pre-
serve the spectral and spatial information but bit complex 
for fusion rule selection. Based on the above analysis, the 
author used a combination of PCA and Wavelet image fu-
sion techniques to maintain both spatial and spectral infor-
mation without any loss using Sentinel 2 SWIR collocated 

as vegetation monitoring, land cover categorization, and 
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3.4.3.	 Final Processing

With the help of collocated images of Sentinel 1 and 
Sentinel 2 including Band Math images creates the number 
of observations to analyze the deforestation classification 
using the proposed model. To calculate the deforested and 
non-deforested area, the author used a collocated sentinel 2 
short wave infrared image of 2019 and 2023 and, similarly 
collocated sentinel 1 vertical horizontal polarization image 
of 2019 and 2023. Apply binary segmentation with global 
thresholding of 100 in both datasets calculate pixel areas 
and convert it into kilometre squares using equations 4 and 
5. These segmented images are then converted into binary 
masks to highlight the deforested regions. The deforested 
area is computed by converting the number of pixels in the 

binary mask into square kilometers. Sentinel 2 SWIR im-
age has 20 m resolution means 20x20 area per pixels, that’s 

why 0.0004 is used and Sentinel 1 VH image has 10  m 

	
S2 Deforestation (Number of Pixels*0.0004)	 (4)

	
S1 Deforestation (Number of Pixels*0.0001)	 (5)

4.	 Results 

The results analysis is divided into three sections. 
Pre-processed images, as listed in Table 3, are covered in 
the first section and are utilized as input for further analy-
sis. The intermediate processing results are discussed in 
the second part, which uses Table 4 as a guide to analyze 
collocated machine learning image fusion and apply Band 
Math to create new bands for data preparation for final 
processing based on “Equation (1),” “Equation (2),” and 

Table 3. Preprocessing of Sentinel 2 and Sentinel 1.

Data Type Pre-processing Parameters Description 
Processing Time 

2019 2023

Sentinel 2
Resampling is a technique used in image processing to change the spatial resolution of an image by altering the number of pixels. 
This process adjusts the pixel values in a way that ensures the image retains as much information as possible while being resized to a 
higher or lower resolution.

Upsampling method 
The method used for interpolation (upsampling to a finer 
resolution). The value must be one of {“Nearest”, “Bilinear”, 
“Bicubic”} 

19 minutes 17 
seconds 

46 minutes 1 
second 

Downsampling method 
The method used for aggregation (downsampling to a coarser 
resolution). Value must be one of {“First”, “Min”, “Max”, 
“Mean”, “Median”} 

Flag downsampling method 
The method used for aggregation (downsampling to a coarser 
resolution) of flags. Value must be one of {“First”, “FlagAnd”, 
“FlagOr”, “FlagMedianAnd”, “FlagMedianOr”} 

Resample on pyramid levels
This setting will increase performance when viewing the 
image, but accurate resamplings are only retrieved when 
zooming in on a pixel.

“Equation (3).” Referencing Table 4, the third section 
compares four distinct datasets of sentinel 1 and sentinel 
2 image fusion of 2019 and 2023, similarly sentinel 2 and 
sentinel 1 image fusion of 2019 and 2023 for better analy-
sis of the outcomes of the proposed model. Lastly, utilizing 
Equation (4) and Equation (5) and a difference analysis of 
the deforested area computation. 

meter resolution means 10x10 area per pixels, that’s why 
0.0001 is used. 

band math data and Sentinel 1 VH collocated band math 

data for fusion. Refer to the Image Fusion Algorithm: See 

Appendix A at the end of the paper. 
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4.1.	 Preprocessing 

The preprocessing stage ensured that the dataset was 
thoroughly cleaned, removing any inconsistencies that 
could compromise the analysis. This process was fundam-

ental analysis. This process was fundamental to preparing 

accurate intermediate and final processing. The visualiza-

tion of  pre-processed steps based on Table 3 for both

datasets is shown in Table 5.. 

Data Type Pre-processing Parameters Description 
Processing Time 

2019 2023

Apply Orbit Correction 
The orbit file provides accurate satellite position and velocity 
information. Orbit Type: The user can select the type of orbit 
file for the application. 

75 seconds 119 seconds

Calibration 

SAR calibration is to provide imagery in which the pixel 
values can be directly related to the radar backscatter of the 
scene. Source Band: All bands (real or virtual) of the source 
product. The user can select one or more bands for calibration 
Auxiliary File: The user selected the XCA file for antenna 
pattern correction. Some checkboxes need to be selected by 
the user like Scale in dB, Create gamma0 virtual band, and 
Create beta0 virtual band. 

25.133 minutes 30.33 minutes 

Thermal to Noise Removal 

The Thermal Noise Removal Operator for Sentinel-1 
satellite data is a processing tool used to correct or manage 
the thermal noise present in synthetic aperture radar (SAR) 
images. This process helps improve the accuracy and quality 
of SAR data for better analysis and interpretation.

35.9 minutes 35.48 minutes 

Terrain Correction 

The simulated image will have the same dimensions and 
resolution as the original. The simulated SAR image 
(reference) is co-registered with the original SAR image 
(secondary) to align each pixel in the simulated image to its 
corresponding position in the original image. For terrain 
correction, each DEM grid cell is mapped to a pixel in 
the simulated SAR image using SAR geometry to ensure 
accurate georeferencing and alignment of SAR data with the 
terrain.

254.6833 
minutes 

100.96667 
minutes 

Table 3. Cont.

Table 4. Intermediate Preprocessing of Sentinel 2 and Sentinel 1.

Dataset Year
Collocation PCA-Wavelet Fusion Band Math

Master Slave S2–S1 Fusion Div Sub

Sentinel 1
2019–2023

S1 S2 S2 SWIR 12 fused with 
S1 VH

VH/VV VH–VV

Sentinel 2 S2 S1 B12/B11 B12–B11

Sentinel 1

Utilize orbit correction, which is beneficial. to give precise geometric correction by providing accurate satellite location and 
velocity information. The process of radiometric calibration guarantees that the SAR image’s pixel values precisely depict the radar 
backscatter from the Earth’s surface. The pixel values are standardized in this step, which is important for comparing photographs 
across different places and over time (temporal analysis). Elimination of Thermal Noise Eliminate any noise that was brought forth 
by the radar system itself (such as instrument electrical noise). The SAR data is enhanced when this noise is eliminated, ensuring that 
the pixel values only reflect the backscatter from the Earth’s surface. Terrain Correction through Geocoding Rectify topographically 
induced geometric distortions in the SAR image. After undergoing terrain correction, the SAR picture with radar geometry (slant 
range) is converted into a map-projected image (ground range) with actual coordinates.
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4.2.	 Intermediate Processing

Intermediate processing helped streamline the data-
set, focusing on the most relevant features while ensuring 
proper scaling and transformation. This step proved es-
sential in optimizing model performance and improving 
the overall accuracy of the analysis. With the help of inter-
mediate processing, the author can analyze the sentinel 1 
and sentinel 2 image fusion using collocation and machine 
learning techniques. In this paper, we used collocated sen-
tinel 1 VH image and collocated sentinel 2 SWIR band 12 
image for fusion using PCA-Wavelet machine learning. 
Based on Table 4, you can see results in Table 6. 

For better understanding of images: Histograms are 
crucial in remote sensing and image fusion as they provide 
insights into the distribution of pixel intensity values. In 
this study, histograms were generated to compare collo-
cated and fused images of 2019 and 2023 years and image 
types (Sentinel-1 and Sentinel-2). These histograms reflect 

variations in image contrast and texture: As you can see 
in Figures 3–8, Collocated images tend to have sharper 
peaks, indicating limited variation in pixel intensity—typi-
cal of single-band data. But Fused images, which combine 
spectral and spatial information from SAR and optical 
sources, show broader histograms. This suggests a richer 
distribution, contributing to improved texture representa-
tion and contrast. Figures 3–8 visualize contrast and tex-
ture differences between collocated and fused images.

Figure 9 illustrates pixel count differences in de-
forested areas across three image types (SAR collocated, 
optical collocated, and fused) (Figure 9(a) and (b)). Each 
bar is color-coded for clarity: Blue: Deforested pixels in 
SAR collocated images, Green: Deforested pixels in Opti-
cal collocated images and Red: Deforested pixels in Fused 
images. This visual representation confirms that fused im-
ages consistently detect more deforested pixels. Figure 9 
effectively supports the claim that fused imagery provides 
more accurate and comprehensive deforestation analysis.

Table 5. Preprocessing Results of Sentinel 2 and Sentinel 1.

Data Type 
Pre-Processed Images

Year 2019 2023

Sentinel 2

Sentinel 1
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Table 6. Intermediate Preprocessing Results of Sentinel 2 and Sentinel 1.

                                                                                                  Collocation 

Year 2019

Data type S2 Master S1 Slave S1 Master S2 Slave 

Year 2023 

  S2 Master S1 Slave S1 Master S2 Slave 

  

Image Registration 

Year 2019 2023

Data Types S1 Collocated VH and S2 Collocated SWIR 

PCA-Wavelet Image Fusion 

Year 2019 2023

Data type 
S2 Collocated SWIR 
Band 12 

S1 Collocated VH Band 
S2 Collocated SWIR 
Band 12 

S1 Collocated VH Band 
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Figure 3. Histogram of 2019 Collocated S1.

Figure 4. Histogram of 2019 Collocated S2.

Figure 5. Histogram of 2019 Fused S1 and S2.

Figure 6. Histogram of 2023 Collocated S1.

Figure 7. Histogram of 2023 Collocated S2.

Figure 8. Histogram of 2023 Fused S1 and S2.
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(a)

(b)
Figure 9. Comparison of Collocated vs Fused Image Outputs for 
Sentinel-1 and Sentinel-2 (2019 (a) & 2023 (b)).

4.3.	 Final Processing

The final processing yielded valuable insights, driven 
by the thoroughness of the previous steps. The results were 
validated and aligned with the study’s objectives, high-
lighting the importance of using robust methods to achieve 
reliable conclusions. By detailing these steps, the Materi-
als and Methods section emphasizes the significance of 
each stage in producing high-quality, reproducible research 
results. The Final objective of this paper is to analyze de-
forested and non-deforested classification. With the help 
of the proposed model, preprocessing and intermediate 
processing help to analyze the image and prepare the fused 
image dataset for deforestation and non-deforestation area 
calculation. For the final analysis of the proposed model, 

the author used collocated optical to sar and sar to opti-
cal observations, and with the help of band math image of 
subtraction is used for both optical to sar and sar to optical 
observations of the 2019 and 2023 datasets. To analyze 
the difference between a collocated image and a fused im-
age, the author used a sentinel 2 collocated SWIR image 
fused with a sentinel-1 VH polarization collocated image 
and applied PCA-Wavelet image fusion in the 2019 and 
2023 datasets. For a better understanding of image fusion 
deforestation classification analysis between deforested 
and non-deforested areas using graphs which are based on 
three types of images called fused image, collocated im-
age, and binary segmented image using equations (4) and 
(5). With the help of graphs, the analysis of image fusion is 
much clearer see Figure 10. The Blue color represents the 
deforested area based on the collocated image of SAR, the 
green color represents the deforested area based on the col-
located image of Optical, and the fused image deforested 
area is represented using red color.  

             

Figure 10. Deforested Area in Pixels and Kilometer Square in 
Sentinel 2 and Sentinel 1 Images of 2019 and 2023.

To analyze the above graph more appropriately and 
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accurately, need to analyze the number of pixel areas in 
collocated images, fused images, and binary segmented 
images see Table 7. As you can see a difference between 
collocated images of deforested areas and fused images of 
deforested areas. With the help of image fusion of sentinel 
1 and sentinel 2 gives more appropriate and accurate de-
forestation analysis. 

To visualize the pixels difference: Image visualiza-
tions are used to give qualitative understanding of differ-
ences between: Collocated images, Fused images, Binary 
segmented images (Figure 11). These visual comparisons 
reveal that fused images display better delineation of de-
forested regions compared to individual SAR or optical 
sources see below Figure 11a,b. 

5.	 Discussion 

As per the above analysis, Satellite images give four 
types of resolutions: Spatial, Spectral, Temporal, and Ra-
diometric [49]. To maintain spatial and spectral information 
of original images, the image fusion concept is coming 
because SAR satellite gives more spectral information, and 
Optical satellite gives more spatial information. Regarding 
temporal resolution, both SAR and optical fusion are the 
best procedures because optical gives high resolution in 
the daytime, but SAR gives both day and nighttime. SAR 

is good in all weather and cloud penetration but optical is 
not. Considering all the pros and cons of both SAR and 
optical satellite image fusion gives more accurate deforest-
ation detection based on image fusion results. By integrat-
ing both datasets through fusion techniques, this study has 
shown that monitoring deforestation can be more accurate 
and comprehensive, capturing information across different 
weather conditions and times of day.

The objective of this paper is how to mitigate the 
issue of two different sources of images using colloca-
tion and machine learning image fusion. As you can see, 

Table 7. Deforestation Pixels Analysis of Sentinel 2 and Sentinel 1.

Year Image Type S1 S2 S2–S1
S1 Area 
(km²) 

S2 Area 
(km²) 

S2–S1 Area 
(km²) 

2019 
Collocated images pixels 237913 105627 - 23.79 42.25 -

Fused Images pixels  - - 66134 - - 16.55

2023
Collocated images pixels 238459 123054 - 23.84 49.22 -

Fused Images pixels  - - 143674 - - 35.91

(a) 2019 Image Visualization

(b) 2023 Image Visualization

Figure 11. Side-by-Side Visualization of Collocated vs Fused Images for Deforestation Classification (2019(a) & 2023(b)).
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Sentinel 1 and Sentinel 2 are two different types of satellite 
images and these satellites operate differently in terms of 
resolution, temporal coverage, and spectral capabilities, 
the fusion of their images allows for more precise and re-
liable detection of deforestation. With the help of image 
registration, the author can only analyze that both datasets 
are registered in a specific point but how much area or 
tiles are registered in both datasets can be analyzed by us-
ing the collocation concept. After analyzing the collocated 
area of both datasets, the author applied different machine 
learning image fusion techniques like random forest, PCA, 
and Wavelet and compared which image fusion is more 
suitable for better visualization of deforestation and non-
deforestation. Through this, we were able to significantly 
enhance the detection of deforested areas, increasing the 
accuracy of monitoring efforts.

While the PCA-Wavelet method offers many advan-
tages, some limitations must be considered. For instance, 
its performance can vary with different degrees of defor-
estation—dense forest clearings are more easily detected 
than scattered or small-scale deforestation events. Further-
more, its application may yield different results depending 
on the geographical region due to terrain variability and 
the spectral characteristics of local vegetation. This sug-
gests a need for region-specific calibration of the model for 
optimal results.

Image fusion with machine learning and deep learn-
ing methodology is used by many papers to give better re-
sults using hybrid combinations. Image fusion can be done 
in three ways: pixel level but needs an accurate registration 
process, which is not possible with SAR satellite images, 
feature level image fusion is good but does not give more 
accurate values compared to pixel level and the last is de-
cision level image fusion which is based on deep learning 
concepts gives better results but not suitable for mislabeled 
data. The application of machine learning and hybrid im-
age fusion techniques has been shown to significantly im-
prove results. While previous studies have applied pixel-
level, feature-level, and decision-level fusion techniques, 
each with its advantages and limitations, the proposed 
PCA-Wavelet method offers a more robust solution. By us-
ing a hybrid PCA-Wavelet approach, we have maintained 
a balanced fusion of both spatial and spectral information. 
PCA, a technique widely used for spatial resolution en-

hancement, was combined with Wavelet transformation, 
which effectively preserves spectral information, providing 
a better fusion compared to traditional methods. This fu-
sion technique also minimizes computational requirements 
compared to deep learning-based approaches, making it an 
ideal choice for large-scale deforestation monitoring. The 
Wavelet transformation’s ability to enhance edge detection 
was crucial for accurately distinguishing deforested areas 
from surrounding vegetation, providing more detailed and 
reliable deforestation maps. Using the mapping concept for 
different time series of SAR and optical satellite images 
gives more accuracy and clarity to monitor deforestation 
both day and night. With the help of hybrid machine learn-
ing using mapping of different time series gives more spa-
tial and spectral information in different temporal which 
helps the government to monitor and generate alerts. It also 
helps in Land use Land cover change detection monitoring 
of deforestation in the future. 

Many studies, who used CNN-based deep fusion for 
deforestation in tropical zones, who explored feature-level 
fusion for land-use mapping, have demonstrated the ef-
fectiveness of hybrid approaches [35,36,42]. Our results align 
with these findings by confirming that hybrid techniques 
like PCA-Wavelet provide better spatial-spectral preserva-
tion compared to single-method fusions. Moreover, limi-
tation in detecting fragmented deforestation, our study’s 
fusion method mitigated such gaps due to the added edge 
sensitivity from the Wavelet transform. Recent studies also 
support this direction, demonstrating that Transformer-
based models fusing bitemporal Sentinel-1 and Sentinel-2 
imagery can achieve high deforestation detection accuracy 
under challenging cloud conditions in the Amazon [5]. 

As per the analysis of applying the hybrid methodol-
ogy to maintain spatial, spectral, and temporal information, 
the author used PCA-Wavelet transformations image fu-
sion techniques. Through the process of collocation, which 
involves aligning the pixel grids of two datasets from dif-
ferent satellite sources, we have improved the accuracy 
of the fusion process. Various resampling methods were 
used to adjust the alignment, ensuring that the fused im-
age retained both spatial and spectral fidelity. The results 
demonstrated that using Sentinel-2 and Sentinel-1 datasets 
after preprocessing, followed by collocation, significantly 
enhanced the deforestation detection accuracy, particularly 
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when using the PCA-Wavelet fusion technique. PCA is 
good for maintaining spatial information but suitable for 
spectral information. Wavelet is good for spectral informa-
tion but not suitable for spatial information. To combine 
both methodologies to analyze the fusion of Sentinel 1 
and Sentinel 2 collocated images for better understanding. 
After preprocessing both datasets, apply the collocation 
concept which allows spatially aligning data from different 
sources (products), ensuring that the pixel values of slave 
products fit the grid of the master product. Different resa-
mpling methods enable flexible approaches to data align-
ment, while the tool handles components like flags and no-
data values intelligently. For detailed comparative review 
of fusion techniques, offering further support for the use of 
hybrid methods in satellite image integration for land-use 
monitoring [50].

In terms of real-world implications, the hybrid ma-
chine learning approach used in this study can significantly 
enhance deforestation monitoring efforts. Governments 
and organizations involved in forest conservation can use 
this methodology to monitor deforestation more effec-
tively, generating timely alerts that help in the prevention 
of illegal logging and other environmentally harmful ac-
tivities. Furthermore, the enhanced accuracy in detecting 
deforestation will improve land-use and land-cover change 
monitoring, providing better insights into how forests are 
being impacted over time. While the model performed well 
with the fusion of Sentinel-2 to Sentinel-1, future research 
is needed to further explore and improve the fusion of 
Sentinel-1 to Sentinel-2, particularly when working with 
different polarization bands. Additionally, integrating other 
datasets, such as harmonized Sentinel-2 and Landsat 8 
images, could provide a more comprehensive approach to 
monitoring deforestation at different spatial and temporal 
scales. Therefore, we suggest that future studies focus on 
testing the PCA-Wavelet approach across multiple ecologi-
cal zones, including tropical rainforests, dry forests, and 
mountainous terrain to evaluate its robustness. In addition, 
optimizing the fusion framework with adaptive algorithms 
or incorporating additional satellite sources such as hyper-
spectral or LiDAR data could further enhance accuracy 
and versatility. The utility of combining Random Forests 
and PCA-based fusion methods for improving land-use 
classification accuracy using SAR and optical images [51].

6.	 Conclusions

In conclusion, this study does not merely review 
existing fusion techniques but rather applies and evalu-
ates a specific hybrid methodology—PCA-Wavelet—in a 
novel way by integrating multi-temporal and multi-source 
satellite imagery (Sentinel-1 and Sentinel-2) for deforesta-
tion detection. While PCA-Wavelet has been used in prior 
studies, its application in conjunction with a detailed col-
location framework for aligning SAR and optical datasets 
across different years, and its performance analysis in both 
2019 and 2023 datasets demonstrates a significant method-
ological contribution. This application is especially valu-
able in operational settings where computational efficiency 
and spatial-spectral balance are critical. As per the analysis 
of deforestation analysis of optical and SAR satellite im-
age fusion for land use land cover application is concluded 
the proposed hybrid machine learning approach—coupling 
PCA-Wavelet with time-series image mapping and collo-
cation analysis—offers improved accuracy and spatial cov-
erage for deforestation monitoring and future alert systems. 
It enables better validation and verification by maintaining 
high spatial and spectral fidelity. It helps in validation and 
verification for more accurate spatial and spectral informa-
tion. Specifically, the analysis revealed that the fusion of 
Sentinel-1 and Sentinel-2 images in 2019 enhanced a total 
of 16.53 square kilometers of deforested area, while the fu-
sion of the 2023 datasets enhanced 35.92 square kilometers 
of deforestation. These results highlight the effectiveness 
of the PCA-Wavelet method in providing more accurate 
and detailed maps for deforestation monitoring. The fused 
images captured a broader range of information compared 
to individual Sentinel-1 and Sentinel-2 images, which 
demonstrated improvements of 23.79 and 42.25 square kil-
ometers, respectively, for the 2019 dataset, and 23.84 and 
49.22 square kilometers for the 2023 dataset. As a result, 
maintaining both spatial and spectral information proposed 
model is suitable for deforestation analysis. However, the 
study also identifies key limitations. The proposed method 
shows higher accuracy when fusing Sentinel-2 (optical) 
to Sentinel-1 (SAR) data, but the reverse—Sentinel-1 to 
Sentinel-2—produced reduced performance, particularly 
when using Sentinel-1 VH polarization and Sentinel-2 
SWIR Band 12. This highlights potential bias and reduced 
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sensitivity to certain spectral characteristics during fusion, 
which necessitates further refinement and testing under 
varied polarization and terrain conditions. With the help 
of band math especially subtraction of band including col-
location analysis gives a better understanding of the pixel 
values of master and slave images which helps to under-
stand the image fusion more accurately. As per the results, 
the proposed model is suitable for sentinel 2 to sentinel 
1 image fusion but not suitable for sentinel 1 to sentinel 
2 image fusion. The fusion of Sentinel 1 VH polarization 
image with Sentinel 2 Short Wave Infrared band 12 gives 
less accuracy using the proposed model which needs more 
analysis. In the future, harmonized Sentinel 2 Landsat 8 
images will be used with Sentinel 1 image fusion for more 
understanding of different types of data fusion. Future 
research should also explore adaptive fusion frameworks, 
incorporate other satellite modalities like hyperspectral or 
LiDAR, and test generalizability across different ecologi-
cal zones to enhance robustness. Overall, the PCA-Wavelet 
fusion technique—applied in this novel collocation-based 
framework—provides a valuable and efficient model for 
large-scale deforestation monitoring. By preserving both 
spatial and spectral information, the proposed model pro-
vides a powerful tool for accurately assessing deforestation 
areas, with the potential for large-scale implementation in 
environmental monitoring systems. This approach not only 
contributes to improving existing deforestation detection 
methods but also provides a practical solution for future 
applications in land-use change monitoring. 
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Appendix A

# Image Registration after Collocation done by 
SNAP tools

def load_image(path):
with rasterio.open(path) as src:
image = src.read()
profile = src.profile
return image, profile
# Load Sentinel-1 (SAR) and Sentinel-2 (Optical) im-

ages
sar_image, sar_profile = load_image(‘collocate_

VH.tif’)
optical_image, optical_profile = load_

image(‘collocate_B12.tif’)
# Take the first band (for simplicity) and normalize

sar_band = sar_image[0]	/ np.max(sar_image[0])
optical_band = optical_image[0]	 / np.max(optical_im-

age[0])
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# Convert to uint8 (necessary for feature detection)
sar_band_uint8 = (sar_band * 255).astype(np.uint8)
optical_band_uint8 = (optical_band * 255).astype(np.

uint8)
# Initialize ORB detector
orb = cv2.ORB_create(nfeatures=1000)
# Detect keypoints and descriptors
keypoints_sar, descriptors_sar = orb.

detectAndCompute(sar_band_uint8, None)
keypoints_optical, descriptors_optical = orb.

detectAndCompute(optical_band_uint8, None)
# Match features using the BFMatcher
bf = cv2.BFMatcher(cv2.NORM_HAMMING, 

crossCheck=True)
matches = bf.match(descriptors_sar, descriptors_op-

tical)
# Sort matches by distance
matches = sorted(matches, key=lambda x: 

x.distance)
# Extract the coordinates of the matched keypoints
src_pts = np.float32([keypoints_sar[m.queryIdx].pt 

for m in matches]).reshape(−1, 1, 2)
dst_pts = np.float32([keypoints_optical[m.trainIdx].

pt for m in matches]).reshape(−1, 1, 2)
# Find homography matrix
homography_matrix, mask = cv2.

findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
height, width = optical_band.shape
sar_registered = cv2.warpPerspective(sar_band, 

homography_matrix, (width, height))

# PCA-Wavelet Image Fusion Process after collo-
cated image registration 

# Reshape the optical image for PCA (bands, pixels)
bands, width, height = optical_image.shape
optical_reshaped = optical_image.reshape(bands, 

width * height).T
def apply_pca(sar_image, optical_image):
    # Combine images into a 2D matrix (rows x col-

umns x bands)
    combined_image = np.stack((sar_image, optical_

image), axis=−1)
    combined_image_flat = combined_image.re-

shape(−1, 2)

    # Apply PCA
    pca = PCA(n_components=1)
    pca_result = pca.fit_transform(combined_image_

flat)
    pca_image = pca_result.reshape(sar_image.shape)
    return pca_image
pca_image = apply_pca(sar_image, optical_image)
def wavelet_transform(image):
    coeffs = pywt.wavedec2(image, ‘haar’, level=2)
    cA2 = coeffs[0]
    cH2, cV2, cD2 = coeffs[1]
    return cA2, cH2, cV2, cD2
def inverse_wavelet_transform(cA, cH, cV, cD):
    coeffs = [cA, (cH, cV, cD)]
    return pywt.waverec2(coeffs, ‘haar’)
# Perform wavelet transform on PCA result
cA2, cH2, cV2, cD2 = wavelet_transform(pca_im-

age)
# Combine the wavelet coefficients as needed (exam-

ple combines high and low frequencies)
# You can customize this based on your fusion strat-

egy
fused_image = inverse_wavelet_transform(cA2, cH2, 

cV2, cD2)
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