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ABSTRACT
One of the crucial elements that is directly tied to the quality of living organisms is the quality of the water. How-

ever, water quality has been adversely affected by plastic pollution, a global environmental disaster that has an effect on 
aquatic life, wildlife, and human health. To prevent these effects, better monitoring, detection, characterisation, quanti-
fication, and tracking of aquatic plastic pollution at regional and global scales is urgently needed. Remote sensing tech-
nology is regarded as a useful technique, as it offers a promising new and less labour-intensive tool for the detection, 
quantification, and characterisation of aquatic plastic pollution. The study seeks to supplement to the body of scientific 
literature by compiling original data on the monitoring of plastic pollution in aquatic environments using remote sensing 
technology, which can function as a cost saving method for water pollution and risk management in developing nations. 
This article provides a profound analysis of plastic pollution, including its categories, sources, distribution, chemical 
properties, and potential risks. It also provides an in-depth review of remote sensing technologies, satellite-derived in-
dices, and research trends related to their applicability. Additionally, the study clarifies the difficulties in using remote 
sensing technologies for aquatic plastic monitoring and practical ways to reduce aquatic plastic pollution. The study will 
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1. Introduction

The survival of all known life forms depends on wa-
ter, a scarce and valuable resource [1]. Lagoons, streams, 
dams, rivers, and seas are examples of water resources that 
are crucial for aquatic life and human well-being [2]. They 
are essential resources for aquatic habitation, reproduction, 
domestic use, economic productivity, leisure, agricultural 
endeavours, and industrial growth [3]. Since plastics have 
short-lived or single-use uses, they are frequently thrown 
away as waste [4], making them a major source of pollu-
tion for water which is an essential component of life [5]. 

Plastic waste is a major environmental issue, especially 
in countries with emerging and developing economies [6]. 
An estimated 370 million tonnes of plastic were produced 
worldwide in 2019, with Asia accounting for the majority 
at 51%, America at 23%, Europe at 16%, Africa at 7%, 
and other independent states at 3% [7]. Plastics wind up in 
the aquatic environment as a result of inadequate waste 
management techniques like unregulated open disposal of 
waste, littering, fishing, shipping, and other industrial op-
erations [8]. According to Iskakova et al. [9], plastic contami-
nation is the amount of plastic particles and products in the 
environment that negatively affects people, ecosystems, 
and natural habitats. Worldwide release of plastic waste 
is projected to be 400 million tonnes annually, and if left 
unrestrained, production rates are predicted to double over 
the next several decades [10]. Every year, over 10 million 
tonnes of plastic fragments end up into the aquatic envi-
ronment [11]. 

Notwithstanding the fact that there are thousands 
of different kinds of plastic polymers, substances such as 
polypropylene (PP), polyethylene (PE), polyvinyl chloride 
(PVC), polyurethane (PUR), polyterephthalate (PET), and 
polystyrene (PS) dominate the market and the litter found 
in aquatic environments: polypropylene (PP), polyethylene 
(PE), polyvinyl chloride (PVC), polyurethane (PUR), poly-
terephthalate (PET), and polystyrene (PS). These substanc-
es together account for about 80% of the overall amount of 

plastics produced [6]. These plastic waste materials (macro-
plastics) may take thousands of years to decay once they 
are in the environment, but through the photo-oxidation 
process they eventually fragment into smaller pieces that 
are below 5 mm in size (micro-plastics) to a few nanome-
tres (nano-plastics) [12]. In addition to seriously harming 
aquatic life, plastic contamination also has a deleterious 
effect on human health and impacts the travel and tourism 
sector [13]. It is projected that over 16,000 diverse chemi-
cals are in plastic materials and thus in plastic waste [14],  
with approximately 4,200 of them being toxic [15]. They 
pose serious problems for aquatic ecosystems because 
tiny plastic particles are easily consumed by aquatic life, 
changing hormone levels, affecting tissues, metabolism, 
the neurological, reproductive, and respiratory systems, 
and potentially causing death [16–18]. Several plastic con-
taminants are recognised to be endocrine disruptors [19]. 
Aquatic organisms that consume microplastics run the 
risk of causing a gradual build-up of bioaccumulation and 
concentration increase in the food chain, which is harmful 
to both humans and animals [20]. Certain plastics can cause 
allergies, asthma, and abnormalities in living things [21]. 
Additionally, plastic pollution costs the world’s shipping, 
fishing, and tourism industries money [22]. 

In aquatic environments, research and mitigation of 
plastic pollution are essential due to the effects on environ-
ment, organisms, and human health [9]. These can assist in 
creating efficient plans for managing, preventing, and mon-
itoring plastic pollution in various aquatic environments [20]. 
Traditionally, floating aquatic plastic pollutants are identi-
fied via in situ spatial and temporal sampling surveys, with 
visual census for macro-plastics and manta trawl sampling 
for micro-plastics being the main methods to monitor plas-
tic pollution [23]. Furthermore, for physiochemical proper-
ties determination, in situ water samples are collected at 
various depths using boats [24]. Notwithstanding the fact 
that these techniques are always necessary to provide accu-
rate information about the study area, they are frequently 
costly, timewasting, and have limited coverage [25,26]. These 

improve the understanding of aquatic plastic pollution, health hazards, and the suitability of remote sensing technology 
for aquatic plastic contamination monitoring studies among researchers and interested parties.
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elements fuel the pressing need for improved aquatic plas-
tic pollution detection, characterisation, quantification, 
monitoring, and tracking at the local and global scales [27]. 
For the quantification and characterisation of aquatic plas-
tic pollution, remote sensing technology offers a promising 
new and less labour-intensive tool that can be used as a 
cost-saving approach to water pollution and risk manage-
ment in many developing nations [28].

Remote sensing is a very cost-effective approach 
used in a variety of studies [29]. Because of its wide cover-
age and regular monitoring, it is one of the instruments 
required for the detection of aquatic plastic pollution [30,31]. 
Large areas are covered by satellite sensors, which are 
becoming more and more free and capable of capturing 
images almost instantly [32]. Remote sensing that gath-
ers multi- to hyperspectral imagery has recently begun to 
demonstrate extensive possibility for detection of aquatic 
plastic pollution [33–36]. Satellite images such as Sentinel-2, 
WorldView-2, Landsat, SAR, etc. can be used to identify 
plastics in aquatic environment [33,37–39]. Using Sentinel-2 
imagery, Topouzelis et al. and Themistocleous et al. suc-
cessfully detected huge plastic targets in coastal zones [40,41]. 
Based on the differences in spectral reflectance of various 
materials, a number of researchers have classified float-
ing pollutants in aquatic environments [42–44]. Plastic waste 
has undoubtedly exacerbated environmental pollution, 
and given that remote sensing technology is applicable in 
aquatic plastic pollution detection, taking advantage of this 
existing technology should be considered, as it may serve 
as a cost-effective method in water pollution and risk man-
agement for developing countries [28]. 

To date, there has been insufficient work on the 
detection of plastic pollution in aquatic environments us-
ing remote sensing technology, particularly in developing 
countries. However, none of them have ever attempted to 
offer an all-inclusive review of plastic pollution, including 
types, sizes, chemical properties, and health risks, as well 
as the use of remote sensing technologies. The majority of 
them concentrated on specific elements of either empha-
sising remote sensing technologies or plastic pollution. 
Therefore, the categories, sizes, characteristics, sources, 
potential hazards, and use of remote sensing technology 
in plastic pollution detection must all be covered in a 
thorough review that provides a comprehensive picture of 

aquatic plastic pollution. The scope of this work is to:
(1) Review the available literature on aquatic plastic 

pollution, categories, sources and distribution. 
(2) Review the chemical characteristics and associ-

ated health risks of plastic pollution.
(3) Discuss the types of remote sensing technologies 

and satellite derived indices available for monitoring of 
aquatic plastic pollution. 

(4) Provide research trends and challenges in ap-
plication of remote sensing technologies in aquatic plastic 
contamination monitoring.

(5) Discuss strategies for minimisation of the aquatic 
plastic pollution.

2. Aquatic Plastic Pollution

2.1. Plastic Pollution: Concept, Definition 
and Sizes

Often composed of polymers, plastics are synthetic 
or semi-synthetic materials that are adaptable and can be 
moulded into a variety of shapes [16]. They are composed of 
synthetic organic polymers that find extensive use in a va-
riety of products, including construction materials, medi-
cal supplies, food packaging, apparel, water bottles, and 
electronic devices [45]. There are two categories of plastics: 
thermosetting and thermoplastic. Through a process known 
as curing, a soft solid or liquid prepolymer (resin) is per-
manently hardened to create thermosetting plastics, which 
have a cross-linked arrangement that assures high mechan-
ical strength, thermal stability, and corrosion resistance [46].  
Thermoplastics, which include polyethene (PE), polypro-
pylene (PP), polyvinyl chloride (PVC), and polyethene 
terephthalate (PET), are a class of polymers that can be 
softened by heating and then processed using techniques 
like extrusion, injection moulding, thermoforming, and 
blow moulding [47]. As a result of their affordability and du-
rability, plastics are produced at high rates by humans [48]. 

Although plastic is a fantastic material that contrib-
utes to economic development and synthetic modernity, it 
is known as plastic pollution when it is disposed of care-
lessly and unethically in any environment [16]. Iskakova et 
al. defined plastic pollution as the presence of plastic prod-
ucts and particles in the environment that harm ecosys-
tems, natural habitats, and humans [9]. Plastic contaminants 
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are categorised on the basis of their size: macro-plastics 
(over 20 mm), meso-plastics (between 5 and 20 mm), 
micro-plastics (below 5 mm), and nano-plastics (below 1 
μm) [49,50]. Because plastics are difficult to break down, they 
pose a special threat as pollutants. They consist of a range 
of substances, including polymers, plasticisers, and dyes, 
which are linked to numerous environmental and health 
problems because of their incredibly slow natural biodeg-
radation and the discharge of hazardous elements [51]. In ad-
dition to seriously harming living organisms, plastic pollu-
tion may have effects on the travel and tourism industry [13]. 
The outflow of plastic pollutants into the environments is 
taking place at an unparalleled amount, posing substantial 
tasks to waste management for intensifying populations, 
particularly in developing nations, necessitating the need 
for cost-effective methods in water pollution monitoring 
and risk management [52]. It is worth noting that, smaller 
plastic particles (micro-plastics) might be challenging to 
resolve with the usual spatial resolution of satellite data, 
while larger ones (macro-plastics) are easier to detect be-
cause they have a more noticeable optical signature that 
helps them stand out from the background [49,50].

2.2. Categories of Plastics in Aquatic Envi-
ronment

Plastics are classified into different types based 
on their constituents and the materials used in their  
production [53]. To date, a wide variety of plastics have 
been synthesised. Nonetheless, polyethylene terephthalate, 
polypropylene, polystyrene, low-density polyethylene, 
high-density polyethylene, and polyvinyl chloride are the 
most often utilised plastics [47]. 

The plastic known as polyethylene terephthalate 
(PET) is smooth, transparent, and comparatively thin. It 
is one of the most commonly used thermoplastic polymer 
resins in the polyester family, and it is used in manufactur-
ing, clothing fibres, and food and liquid containers. This 
type of plastic is thought to be anti-inflammatory and anti-
air [53,54]. High temperatures must be avoided to stop the 
leaching of harmful additives like phthalates, antimony, 
and acetaldehyde. Additionally, PTEs are made to be used 
just once [45].

The thermoplastic polymer known as high-density 
polyethylene (PE-HD) is made from the monomer eth-

ylene. They are more appropriate for a variety of uses, 
such as cutting boards, pipes, and containers, due to their 
strength, resilience to heat, and resistance to chemicals. 
They are also a key component of many types of plastic 
grocery bags, toys, milk containers, detergent bottles, re-
frigerators, and other items [45,53].

Polyvinyl chloride (PVC) plastics are high-strength 
thermoplastic materials. It is mostly utilised in construc-
tion materials, electronics, packaging, and health care due 
to its affordability, durability, and chemical resistance. 
Additionally, toys, furniture, shoes, and other consumer 
goods use it [55]. Environmental issues are brought up by 
its manufacture and disposal, including the discharge of 
hazardous chemicals like as phthalates, dioxins, BPA, and 
heavy metals [45]. 

Plastics made of low-density polyethylene (LDPE) 
are regarded as being lightweight, pliable, and soft. Their 
low temperature flexibility, toughness, heat resistance, and 
corrosion resistance are well known. These plastics are 
mostly used to package food, milk, and beverages because 
they contain no components that are harmful to human 
health [53].

Plastics made of polypropylene (PP) are thermo-
plastic polymers with superior mechanical, flame, and 
gas and water permeability resistance as well as high heat 
distortion temperature. Its uses span a wide range of in-
dustries, including food containers, textiles, automobile 
bumpers, industrial pipes, medical devices, and electronic  
gadgets [47,55]. 

Polystyrene (PS) is a synthetic polymer derived 
from styrene, an aromatic hydrocarbon. It can be solid or 
foamed and is used in a variety of applications, including 
packaging, insulation, and consumer products [53]. It is a 
type of petroleum-based plastic that contains benzene, a 
carcinogen to humans [56].

A class of thermoplastic polymers with carbonate 
groups in their molecular structures is known as polycar-
bonate (PC) plastics. Reusable bottles and other consumer 
goods are packaged with polycarbonates. Because of their 
strength, durability, and optical transparency, they can be 
used for a variety of products, including roofing materials, 
bulletproof glass, and safety goggles. Because polycarbon-
ated plastics contain the toxic BPA, their use has signifi-
cantly decreased [45].
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These plastics can be identified using remote sensing 
methods because of their distinct chemical makeup, espe-
cially the way they absorb light at particular wavelengths. 
By examining the reflected or emitted light, these spectral 
characteristics which frequently involve absorption fea-
tures in the visible and near-infrared to short-wave infrared 
regions of the electromagnetic spectrum make it possible 
to identify plastics in aquatic environment [53–55].

2.3. Sources and Distribution of Plastics in 
Aquatic Environment

Plastic pollution in water sources can emanate from 
numerous sources and manifest itself in different ways. 
Both land-based (such as littering, stormwater discharge, 

industrial operations, wastewater effluent, solid waste 
disposal, and landfills) and sea-based (such as commer-
cial fishing, recreational boating, and sea exploration) are 
sources of plastics found in aquatic environments [4]. One 
of the possible causes of plastic pollution in aquatic envi-
ronments is the unlawful disposal of waste from domestic 
and commercial operations. During rainy seasons, these 
unlawfully dumped wastes may wash into stormwater 
drains, where they may be released straight into a nearby 
stream and ultimately into the ocean [57]. If industrial prod-
ucts, like plastic pellets, accidentally spill during produc-
tion, processing, transportation, and handling, or are dis-
posed of illegally, they could end up as aquatic pollutants 
(Figure 1) [58]. 

Figure 1. Sources and Distribution of Plastics in Aquatic Environment.

Micro-plastic traces may be introduced into neigh-
bouring streams by wastewater treatment plant effluent re-
leases, and these traces may eventually find their way into 
the oceans [59]. Pawar et al. claim that runoff from landfills 
near rivers or along the coast may introduce plastics into 
the aquatic environment [60]. When commercial fisher-
men are unable to repossess fishing equipment or throw 
fishing gear or other waste overboard, they create aquatic 
pollutants such as bags, household waste, gillnets, lines, 
and ropes, among other things [61]. Activities like marine 
exploration may be a contributing factor to marine pollu-
tion as a result of the intentional or unintentional release of 

debris like electronic devices, plastic bags, hard hats, stor-
age drums, etc. [11]. Bags, food packaging, and fishing gear 
are examples of trash that boaters may throw overboard [60].  
Aquatic debris can emanate from numerous sources, in-
cluding ships, boats, and offshore industrial platforms. 
These sources could include careless littering, unlawful 
disposal, or inadequate waste management procedures [62]. 

Streams and rivers carry pollutants to the coast, caus-
ing the ever-increasing issue of aquatic plastic pollution [63].  
The pollutants are subsequently carried by ocean currents 
to isolated locations, where it might take centuries for 
them to decompose. Unavoidably, a portion of the grow-
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ing quantities of post-consumer plastic materials gets 
past the recycling and waste streams and ends up in the 
oceans [57,64,65]. The oceans serve as the final destination for 
the world’s plastic waste. Ocean tides play an important 
role in scattering plastics over long distances, resulting in 
widespread contamination of marine environments. Fur-
thermore, the seawater salt may affect the physicochemi-
cal properties of micro-plastics, possibly prompting their 
behaviour and interactions with marine organisms [66]. 
Aquatic organisms’ consumption of micro-plastics poses 
environmental problems for both freshwater and marine 
ecosystems, potentially resulting in gradual build-ups and 
concentration increase within the food web [20].

2.4. Chemicals Characteristics and Potential 
Risks of Plastics in Aquatic Environment

The manufacturing process of plastics and poten-
tial additives can involve chemicals that are toxic or pose 
environmental concerns [67]. Plastics are mass-produced 
with several chemicals and additives like Di (2-ethyl-
hexyl) phthalate used as plasticiser; nonylphenol used 
as antioxidants, stabilizers, and plasticizers in the rubber 
and plastic industry; bisphenol A (BPA) which serves as a 
precursor and stabiliser; triclosan which is a biocide and 
polybrominated diphenyl ethers (PBDEs), polybrominated 
biphenyls (PBBs), polybrominated phenols (PBPs) which 
acts as flame retardants in the fabrication of electrical  
appliances [68]. Additionally, plastics have been shown to 
serve as carriers of chemicals and hydrophobic organic 
pollutants like organochlorine pesticides, polychlorinated 
biphenyls, and polycyclic aromatic hydrocarbons, as well 
as inorganic pollutants like heavy metals that are absorbed 
from the environment [13]. Chen et al. stated that numerous 
chemicals found in plastics have been connected to pos-
sible health hazards [69]. Due to their high stability, plastics 
have the prospect of accumulating and harming human 
health over time [70,71]. 

These plastic particles can evade the human defence 
system and cause genotoxicity and cytotoxicity by enter-
ing blood vessels and forming a protein-plastic complex 
[72]. Generally, exposure to plastic can affect growth, 
behaviour, histopathology, sex hormones, reproduction 
organs, metabolic alterations, and iron transport [18]. Be-
cause plastics take decades to decompose into micro- and 

nanoparticles that impact the aquatic environments and 
food web, aquatic plastic contamination is in particular  
problematic [21,73,74]. BPA, a chemical found in plastics, is 
thought to raise the risk of endometrial hyperplasia, obesi-
ty, metabolic diseases, polycystic ovarian syndrome, breast 
and prostate cancer, and multiple miscarriages [75]. Nonyl-
phenol, phthalates, and flame retardants are considered en-
docrine disrupting substances that can affect the hormonal 
system of many different organisms [9,67]. 

3. Remote Sensing Technology in 
Aquatic Plastic Pollution Moni-
toring

Aquatic plastic contamination is one of the universal 
ecological problems of our time. The aquatic ecosystem is 
being harmed by the annual increase in aquatic plastic pol-
lution. Accurately and promptly determining the sources 
of plastic entering water sources, locating its accumulation 
sites, and monitoring the dynamics of waste movement are 
all essential to effectively combating this kind of pollution. 
In light of this, remote sensing technology has become a 
viable and useful instrument for tracking aquatic plastic 
pollution [76]. Adamo et al. define remote sensing as the 
process of gathering and analysing data about an area (an 
aquatic environment) or an object (plastic waste) without 
having direct physical contact with it [77]. It entails using 
tools or sensors to record the spatial and spectral relation-
ships of objects that can be seen from a distance, then 
evaluating and using the data. Passive and active remote 
sensors are the two varieties of remote sensing imaging 
systems. These two kinds of sensors detect light, which is 
subsequently converted into numerical values that are per-
tinent to the targeted object’s description [31]. 

Passive remote sensors, such as the passive micro-
wave sensor (TMI) and the moderate resolution imaging 
spectroradiometer (MODIS), detect radiation emitted or 
reflected by the object or its surroundings. Passive sensors 
most commonly measure radiation from reflected sunlight 
and microwave emissions [77,78]. Active remote sensors, 
such as RADAR, LiDAR, LADAR, and thermal infrared 
sensing (TIS), generate their own electromagnetic energy, 
which is transferred from the sensor to the targets, interacts 
with the targets, produces a backscatter of energy, and is 
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recorded by the remote sensor’s receivers [27,79]. Although 
passive and active remote sensors exist, the majority of 
advances in remote sensing for aquatic plastic pollution 
monitoring have been made using passive remote sensing 
techniques [27], which will be the focus of this subsection. 
More information on the potential and limitations of pas-
sive and active remote sensors can be found in the work of 
Adamo et al. [77]. 

3.1. RADAR

Synthetic aperture (SAR) is an active remote sensing 
technology that employs microwaves with wavelengths 
of a few centimetres and operates at optical wavelengths. 
Both of these sensors use the echoes’ time delay to deter-
mine the distance between the instrument and the target. 
One of the primary advantages of SAR is the ability to 
capture fine and detailed images through clouds. It can 
function in all lighting and weather conditions [79]. As a 
result of its sensitivity to surface roughness variations, 
it can be used for aquatic monitoring. SAR can detect 
changes in surface roughness caused by the presence of 
plastic litter, which can help identify areas of pollution. It 
can be applied to sense anomalies in the backscattering 
of the water surface, which, with adequate understanding 
of the scene under surveillance, can lead to the discovery 
of floating plastic pollutants [27]. Amongst the presently 
accessible SAR systems, spaceborne SAR sensors can of-
fer sub-metre spatial resolutions [80]. SAR generates 2D 
image data of the study area by utilising a side-looking 
imaging geometry. This SAR imagery is generated from 
the response of an emitted pulse of energy with water 
sources. The produced information is frequently offered 
as two-dimensional intensity images that offer data on the 
quantity of backscattered signal [81]. SAR should be applied 
in conjunction with additional sensors or ground observa-
tions to directly differentiate plastics from other floating  
materials [27]. Many research works have recognised the 
use of the SAR method to detect different types of plastic 
materials [40,82,83].

3.2. Airborne Laser Scanning

 LiDAR, or light detection and ranging, is another 
name for it. Using a pulsed laser, this active remote sens-

ing method can be used to gather data on a size of the 
target’s geometrical-spatial and chemo-physical proper-
ties. This active remote sensing method creates intricate 
3D models of landscapes by measuring the duration and 
intensity of backscatter from three-dimensional targets 
on the surface of the Earth using laser pulses [84]. Since it 
is an active method, it can be applied day or night and, 
theoretically, can also offer observations via aerosols and 
thin clouds [85]. A LiDAR sensor, an inertial measurement 
unit, and a worldwide navigation satellite system (GNSS) 
receiver are installed on an aircraft during airborne laser 
scanning (ALS). After receiving the return signal, ALS 
systems which are usually grounded on a wavering mirror 
and scanning patterns measure the signal’s travel time and 
correlate each return pulse with the GNSS time and scan 
angle at which it was transferred [86]. It is possible to con-
vert the travel time to height and then to distance. In the 
target area, the ALS method can generate georeferenced 
3D point clouds [84]. Single-wavelength single-pulse linear-
mode LiDAR and new multispectral ALS systems (such 
as Geiger-mode LiDAR and single-photon LiDAR) that 
combine LiDARs at various wavelengths are the main 
foundations of ALS systems. The main benefit of this 
method is that the obtained data are shadow-free and unaf-
fected by lighting conditions. Since the laser beam (in case 
it emits in the blue-green spectral range) penetrates the wa-
ter more deeply than natural sunlight, using a laser in the 
UV-VIS range as a source ensures information from both 
the water surface and the water column. Thus, submerged 
plastics can also be detected using the LiDAR technique [87].  
Dependent on the technical requirements of the LiDAR 
system being applied and the signal analysis method, the 
range of procedures that can be evaluated with a LiDAR 
system provides the opportunity to obtain various kinds 
of information [27]. Thus, there is a lot of promise for mul-
tispectral ALS systems to raise the level of automation in 
mapping [79]. Ge et al. detected and categorised marine pol-
lutants, including plastics, using a 3D LiDAR scanner on 
the beach based on their shape characteristics [88].

3.3. Thermal Infrared Sensing

It is a technology that detects and measures ther-
mal radiation using specialised sensors like the Landsat 
thermal infrared sensor (TIRS). The mid-wave infrared 
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(MWIR, 3–5 μm) and long-wave infrared (8–14 μm) are 
the atmospheric windows in thermal infrared (TIR). In 
these cases, TIR sensing could supplement visible and 
short-wave infrared (VIS-SWIR) measurements for clear 
(dark-coloured) plastic materials that are transparent (dark) 
in the VIS-SWIR spectrum but opaque (bright) in the TIR 
spectrum. Contrasting spectral remote sensing in the VIS-
NIR-SWIR, TIS does not require exterior radiance and can 
be carried out at any time of day or night. TIS is only ap-
plicable to plastics floating on the surface of water because 
TIR radiance is absorbed in the first microns of water [89]. 
This approach cannot identify subsurface plastics, with the 
exception of dark coloured plastic particles that may be 
near the surface and warm the surrounding waters. TIS for 
floating plastic pollutants is grounded on thermal emissiv-
ity and surface temperature variances between water and 
plastic. Water has a thermal emissivity (reflectivity) close 
to one (zero), while plastics have a lower (higher) value [27]. 
Garaba et al. were able to detect and characterise plastics 
and natural materials in the laboratory using spectral ab-
sorption features in TIR reflectance [90], but this has not yet 
been applied to air or space.

3.4. MiDAR

This newly patented active multispectral remote 
sensing system uses high-intensity structured narrowband 
laser radiation to define an object’s nonlinear spectral 
reflectance and time-resolved fluorescence response span-
ning the ultraviolet, visible, and infrared bands [91]. For the 
purpose of detecting macro-plastics, it is composed of a 
bistatic active optical transmitter and passive receiver [27]. 
MiDAR is capable of operating in extremely light-limited 
environments and performing fast underwater multi/hyper-
spectral spectral imaging. Additionally, it has fluid lensing 
compatibility, which helps to intensify the passive fluid 
lensing tactic’s depth range for utilisation in deep aquatic 
remote sensing applications. With a signal-to-noise ratio 
between 10 and 103 times greater than passive airborne 
and spaceborne remote-sensing techniques, it can remotely 
sense reflectance at fine spatial and temporal scales, per-
mitting for high-frame rate multispectral sensing. In order 
to sense, and typify aquatic macroplastics (above 1 cm) on 
the surface, shallow seafloor, and coastal zones, a 13-band 
active sensing tool was industrialised. MiDAR instruments 

use UV and other wavelengths to induce fluorescence in 
plastic materials, which is then detected. Its 13 different 
spectral bands, which range from 365 to 880 nm, com-
prise a number of UV bands that are specifically made to 
be sensitive to the different fluorescence signatures found 
in aquatic pollutants. When combined with fluid lensing, 
MiDAR can extend its detection range to deeper water and 
underwater, allowing plastics to be detected even when 
submerged [92]. According to Goddijn-Murphy et al. [27], 
these methods are not yet suitable for imaging across the 
visible optical regime because of serious restrictions in the 
efficiency and chemistry of narrowband laser-diode emit-
ters.

4. Satellite-Derived Indices for 
Aquatic Plastic Classifications

Mukonza and Chiang stated that indices are used as 
classifier input features in plastic pollution monitoring pro-
grams [93]. The likelihood of separating plastics from other 
aquatic debris is increased when indices are used as input 
features [94]. Satellite-derived indices for aquatic pollution 
monitoring include modified NDWI (MNDWI), plastic 
index (PI), normalised difference vegetation index (NDVI), 
normalised difference water index (NDWI), The floating 
debris index (FDI), normalised difference moisture index 
(NDMI), water ratio index (WRI), and automated water 
extraction index (AWEI) [95].

4.1. The Plastic Index

It is a specialist debris-identification index used to 
model and categorise floating plastic trash in water. PI is a 
plastic feature extraction input grounded on Rrs in the red 
and NIR spectral regions, which can be calculated with 
Equation 1. The NIR and RED in PI stand for the reflec-
tance of the pixel in the NIR and red spectrums [93].

 PI = Rrs,NIR
Rrs,NIR+Rrs,RED  (1)

4.2. Floating Debris Index

To identify floating contaminants in aquatic environ-
ments, the FDI algorithm was created [42]. It utilises the 
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distinct spectral properties that floating materials display, 
enabling operators to differentiate them from other image 
features [96]. This version of the floating algae index (FAI) 
is grounded on data from the Moderate Resolution Imaging 
Spectroradiometer (MODIS), Medium Resolution Imaging 
Spectrometer (MERIS), and Landsat [97]. The MSI red edge 
(RE) band, which is located at about 740 nm, takes the place 
of the chlorophyll-sensitive red band in the FDI algorithm. 
Compared to NDVI, PI, and the single band approach, this 
new index has demonstrated effectiveness in identifying 
floating objects [93,98]. FDI is calculated using Equation 2. 

FDI= Rrs,NIR–(Rrs,RE2+(Rrs,SWIR1–Rrs,RE2× 

( λ NIR–λRED
λ SWIR1–λRED )×10 (2)

In FDI, values are calculated using spectral bands from 
satellite imagery. The Rrs, NIR is the baseline reflectance of 
NIR; Rrs, RE2 and Rrs; SWIR1 are the remote sensing re-
flectance of NIR; Red Edge 2 and SWIR1 bands respectively. 
The greater FDI values show a higher chance of floating de-
bris while lower values indicate less debris or its absence [96–98].

4.3. Water Feature Extraction Spectral Indi-
ces

Water absorbs and redirects light in the near-infrared 
(NIR) and green channels of the electromagnetic spectrum, 
correspondingly, making various satellite-derived water fea-
ture extraction indices applicable to plastic monitoring [96]. 
The spectral characteristics of coloured and clear plastic 
pollutants contrast with those of clear water [98]. Water 
feature extraction indices like the normalised difference 
water index (NDWI), modified NDWI (MNDWI), normal-
ised difference moisture index (NDMI), water ratio index 
(WRI), and automated water extraction index (AWEI) can 
distinguish plastic from clear water due to these different 
spectral characteristics. Their respective Equation (3)–(7) 
are presented below [93,95,99]. 

 NDWI = RGREEN–RNIR

RGREEN+RNIR
 (3)

 MNDWI = RGREEN–RMIR

RGREEN+RMIR
 (4)

 NDMI = RNIR–RMIR

RNIR+RMIR
 (5)

 WRI = RGREEN–RRED

RNIR+RMIR
 (6)

AWEI=4 ×(Green–MIR)–0.25×NIR+2.75×SWIR) (7)

In sentinel-2 imagery, green represent band 3; red 
represent band 4; NIR represent band 8; MIR represent 
band 12; and SWIR represent band 11. Like most indices 
the water feature extraction spectral indices values typi-
cally range from –1 to +1. However, for WRI, the index 
values range from 0 to 3. Areas with high values (indicat-
ing high water content) are likely to be areas where plastic 
debris might accumulate [95,99].

4.4. Normalized Difference Vegetation Index

The normalised difference vegetation index (NDVI) 
can be amended to identify aquatic plastic materials, de-
spite its primary purpose of monitoring vegetation. It is 
founded on the idea that red and near-infrared electromag-
netic light reflections are connected to the pigmentation of 
green vegetation [100]. Spectral characteristics that set ma-
rine debris apart from natural features are common. Using 
Sentinel-2 imagery to calculate the NDVI, spectral differ-
ences can be used to pinpoint possible pollutant locations. 
Based on their distinct spectral responses, it measures the 
variance between the red and near-infrared spectral bands 
and indicates the presence of plastic pollutants [41,101]. Mu-
konza and Chiang state that it is computed by normalising 
the dissimilarity between the reflectance of red and infra-
red light using Equation 8 [93]. 

 NDVI = Rrs,NIR
Rrs,NIR  − Rrs,RED

Rrs,RED  (8)

In NDVI, Rrs, NIR is the reflectance values in the 
near infrared while the Rrs, RED is the reflectance values 
in the red bands respectively. The NDVI values range 
from − 1 to +1 with the greater NDVI values indicating a 
stronger implication while negative values indicate the ab-
sence of plastic debris/vegetation [41,93,101].

Although these indices have been successfully used 
in water pollution monitoring studies, their effectiveness in 
monitoring and classifying aquatic plastic pollutants from 
remote sensing imagery has some advantages and disad-
vantages. In aquatic environments, PI is generally useful 
for mapping and detecting plastic pollutants; however, its 
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capacity to do so may be constrained in waters that are tur-
bid or heavily shaded. Plastic objects can be identified in 
the image with FDI, but natural materials like vegetation 
will cause a definition error. The use of NDVI can assist in 
locating potential concentrations of plastic pollution by ex-
amining the spectral differences between plastic pollutants 
and other materials in aquatic environments. However, 
vegetation and other natural materials can cause NDVI to 
be sensitive, which could result in misidentification [41,93–95]. 

Due to the distinct spectral properties of plastics 
and the possibility of interference from other materials in 
an aquatic environment, water feature extraction spectral 
indices (NDWI, MNDWI, NDMI, WRI and AWEI) can 
be useful in separating water bodies, but their efficacy in 
detecting plastic pollution can vary. Since NDMI is not 
specifically made for mapping water bodies, it may not be 
as good at separating out water features as compared to 
NDWI or MNDWI. Although NDWI is frequently used for 
mapping water bodies and is reasonably easy to compute, 
it may not be very effective at identifying plastic pollutants 
because they can have distinct reflectance characteristics. 
The MNDWI is more adept at differentiating water from 
other features but it might still have trouble picking up on 
minute details about plastic pollution in aquatic environ-
ments. WRI’s primary focus on water surface characteris-
tics may limit its ability to detect plastic pollution. AWEI 
might not be the best tool for spotting complex water fea-
tures like braided rivers, and it might not be very good at 
spotting plastic pollution, which can have a distinct spec-
tral signature [96–100]. 

In general, it can be inferred or concluded that a 

combination of these indices may be required for more ac-
curate identification of plastic pollution in aquatic environ-
ments. Numerous researchers have demonstrated the use-
fulness of these satellite-derived indices for characterising 
aquatic plastic from Landsat data (Table 1) [33,40–44,96,102–106]. 
Sannigrahi et al. used k-NDVI, NDVI, PI, and FDI as 
spectral indices for detecting marine plastic in a number of 
nations [96], including Lebanon, Greece, Cyprus, and Italy. 
According to the study, the most crucial factor for identify-
ing marine floating plastic was FDI. A thorough study by 
Biermann et al. used FDI and NDVI to find plastic patches 
on the ocean surface near Ghana, Scotland, Canada, and 
Vietnam [42]. According to the authors, FDI was used to 
identify the majority of plastic patches. A study by Jamali 
and Mahdianpari [105] on the creation of a cloud-based 
framework for large-scale marine pollution detection in 
Mytilene, Greece, also demonstrated the usefulness of FDI 
and NDVI. When Basu et al. used multispectral Sentinel-2 
remote sensing imagery to develop novel classification 
algorithms for the discovery of floating plastic pollutants 
in Limassol, Cyprus, and Mytilene, Greece [106], they chose 
NDVI and FDI indices. According to their findings, the 
two indices were the most effective at identifying plastic 
waste. Themistocleous et al. monitored floating plastic 
using Sentinel-2 imagery in Limassol, Cyprus [41]. For im-
age processing, the study examined various indices such 
as NDWI, WRI, NDV, AWEI, MNDWI, NDMI, PI and 
RNDVI. The study reported that the newly developed PI 
was the utmost active index in classifying plastic pollution 
in aquatic environment. 

Table 1. Applicability of Remote Sensing Technology in Aquatic Plastic Monitoring [33,40–44,96,102–106].

Author Country Remote Sensor Satellite Derived Index Aquatic Environment

Themistocleous et al. [41]. Cyprus Sentinel-2 
NDWI, WRI, NDV, AWEI, MNDWI, 
NDMI, PI and RNDVI

Sea

Topouzelis et al. [40]. Greece Sentinel-2 Natural water
Mansui et al. [102]. Tunisia and Syria Sea
Martin et al. [103]. Saudi Arabian UAV Sea
Gabara et al. [44]. AVIRIS Ocean
Kikaki et al. [43]. Honduras Sentinel-2 Marine

Biermann et al. [42]. 
Ghana, North-West America, 
Vietnam, and Scotland 

Sentinel-2 NDVI and FDI Coastal Water bodies

Dubbini et al. [33]. Italy WorldView-2 Rivers
Nivedita et al. [104]. Brazil Sentinel-2 FDI Costal water
Sannigrahi et al. [96]. Lebanon, Greece, Cyprus and Italy k-NDVI, NDVI, PI and FDI Marine
Jamali and Mahdianpari [105]. Greece Sentinel-2 NDVI and FDI Ocean
Basu et al. [106]. Cyprus and Greece Sentinel-2 NDVI and FDI Coastal Water bodies
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5. Monitoring of Aquatic Plastic 
Pollution Using Remote Sensing: 
Research Trends

As shown in Table 1, a number of international re-
search have validated that remote sensing is a promising 
technique that can be used to monitor plastic pollution in 
aquatic environments in an efficient and reasonably priced 
manner [107]. In Cyprus, Themistocleous et al. investigated 
whether Sentinel-2 satellite images could be applied to 
identify plastic pollutants on the water environment [41]. 
They discovered that the plastic pollutants target was eas-
ily detected in NIR wavelengths. Furthermore, the authors 
stated that their developed PI was capable of accurately 
identifying plastic objects floating on the water’s surface. 
In the Hawaiian Islands, aerial imagery and spatial analy-
sis were used to map coastal marine debris. These methods 
accurately measured the quantity, location, type, and size 
of macro-plastics, detecting 20,658 total plastic pollutants. 
The study found that the northeastern shorelines had the 
highest debris density. Plastics, including nets, lines, buoys, 
floats, and foam, made up 83% of the total quantity [108].  
Topouzelis et al. used unmanned aerial systems and satellite 
remote sensing to detect plastics in seawater in Greece [40].  
In their study, floating targets such as PET water bottles, 
LDPE plastic bags, and nylon fishing ghost nets were 
identified. Their research found that plastic debris can be 
detected efficiently. Mansui et al. simulated marine pollut-
ants floating in the Mediterranean and discovered perpetual 
build-ups of plastics [102]. Their study discovered that the 
coastline between Tunisia and Syria had the most plastic 
pollution. Martin et al. used remote sensing to monitor lit-
ter along the Saudi Arabian Red Sea coastline [103]. In their 
study, pollutants were detected using image acquisition 
from an unmanned aerial vehicle, and machine learning 
was used to automatically process the large volume of im-
agery for debris detection and classification.

Gabara et al. used airborne SWIR imagery to detect 
ocean plastics [44]. They documented the position, size, 
colour, and type of each plastic material found in the RGB 
mosaics. The study confirmed that the ~1215 and ~1732 
nm absorption features can detect ocean plastics using 
spectral information. Liubartseva et al. modelling study 
classified Adriatic Sea as a very dissipative basin where 

the plastic pollutants are accumulated at the shoreline [109]. 
Their study showed that the coastline of the Po Delta re-
ceives a plastic flux of approximately 70 kg (km day)–1. 
In Honduras, Kikaki et al. investigated the capability of 
high-resolution multispectral satellites in detecting marine 
plastic debris [43]. According to the study, plastic waste 
from rivers in Guatemala and Honduras finds its way into 
the Caribbean Sea during rainy seasons. The discovered 
spatial trajectories showed that floating plastic pollutants 
travel with a mean speed of 6 km d−1. The study concluded 
that satellite remote sensing is a valuable and cost-saving 
tool for monitoring the sources and pathways of aquatic 
plastic pollutants and thus could ultimately support man-
agement approaches in the global water sources. A case 
study covering the coastal waters of Ghana, North-West 
America, Vietnam, and Scotland conducted by Biermann 
et al. showed that novel FDI was able to detect patches 
of floating macro-plastics [42]. According to the authors, 
floating aggregations were detectable on sub-pixel scales. 
Dubbini et al. employed multispectral proximal sensing to 
detect plastic waste in river ecosystems [33]. The data were 
collected using a proximity sensor in the electromagnetic 
spectrum range that includes the ultraviolet, visible, and 
near infrared bands, similar to the WorldView-2 satellite. 
The in-depth analysis of the spectral signatures obtained 
revealed typical plastics trends and reflectance values in 
the near infrared bands.  Nivedita et al. conducted case 
studies in Brazil to monitor macro-plastics in Sentinel-2 
data using FDI and achieved sub-pixel-scale detection of 
macro-plastics combined with seaweed and sea foam [104].

6. Challenges in Application of Re-
mote Sensing Technology for 
Aquatic Plastic Pollution Moni-
toring 

The application of new-generation satellite imagery 
carries an assurance for enhanced plastic detection owing to 
improved spatial and spectral features that enable more ac-
curate detection of plastic pollutants in the aquatic environ-
ment. However, resolving the remaining obstacles to thor-
ough and precise plastic pollution detection and assessment 
is necessary for these new tools to be effective [110]. Some of 
the limitations of remote sensing technologies are: 
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Since the quantity of plastics in a single pixel defines 
the light intensity, these technologies, like Sentinel-2, have 
a spatial resolution of up to 10 m, which has a substantial 
influence on the detection capability of methods. Given 
that the water sources typically contain a variety of pol-
lutants concentrated in a single patch, this decreased re-
flectance restricts the detection capability [111]. Particularly 
for plastic patch tracking applications, satellite optical 
imagery’s ability to gather continuous data is limited by 
its propensity for cloud cover, inability to generate data 
at night, and lengthy revisiting times. It can be difficult to 
find adequate data for atmospheric correction, and it can be 
expensive to obtain high-quality satellite imagery with the 
required data [112]. 

Disparities in plastic characteristics, shape, surface 
texture, environmental conditions, and the presence of 
algae, debris, or driftwood in aquatic ecosystems can all 
affect the spectral reflectance of floating plastics as meas-
ured by multispectral imaging sensors [42]. Sometimes it 
is difficult to distinguish fine-scale variations in aquatic 
plastic pollution monitoring due to the spatial and spectral 
resolution limitations of remote sensing data, especially 
when closely spaced objects or materials coexist [113]. The 
spectral signature of aquatic plastics can be extremely vari-
able, making it challenging to come up with a one-size-
fits-all spectral index that reliably identifies plastics across 
diverse aquatic environments [114].

7. Minimization of the Plastic Pollu-
tion in Aquatic Environment

Finding a solution to the environmental problem 
caused by single-use plastics is preferable to outright ban-
ning the products [115]. Several methods, strategies, or tech-
nologies have been proposed to reduce plastic pollution [73]. 
Minimisation of plastic pollution in aquatic environment 
can be achieved through:

Policies to decrease the manufacture and utilisation 
of single-use plastics must be developed and put into effect 
by the government and pertinent authorities [116]. Encour-
agement should be given to the adoption of plastic bag 
bans or fees as well as the promotion of alternative uses 
for reusable containers and bags [4,16]. To inform the com-
munities, businesses, and policymakers about the effects of 
plastic contamination in the aquatic environment, aware-

ness programs like community outreach, conferences, and 
fieldwork are essential. Changes in consumption patterns 
and the creation of supportive policies addressing plastic 
pollution can result from this [115]. The government and per-
tinent government agencies should take into consideration 
the development and application of novel and economical 
technologies, such as filtration systems, skimmers, and 
other sophisticated analytical methods, to capture and re-
move plastics from aquatic environments [73]. 

Additionally, nations ought to encourage recycling 
and upcycling also known as creative reuse. People should 
be encouraged to turn waste, unwanted, or useless prod-
ucts, as well as by-products, into new materials or goods 
that are thought to be of higher quality, like those with 
artistic or environmental value [115]. Recycling is widely 
recognised as one of the most effective route to manage 
plastic pollution. It is the process of reusing waste to cre-
ate new products rather than continuously utilising natural 
resources. Recycling and upcycling will both create new 
economic value in addition to assisting in the reduction of 
aquatic plastic contamination [75]. Financial incentives and 
rewards should be introduced worldwide to encourage the 
return of used plastic. Returning used plastics for cash can 
be very important because it will facilitate the collection 
process and aid in the recycling and recovery sorting pro-
cess [117].  

The process of turning plastic pollutants into energy is 
an additional approach to lessen plastic contamination [118].  
Since plastics are mostly made from hydrocarbon-based 
energy feedstock like coal, oil, and natural gas, they can be 
thought of as a type of stored energy [119,120]. According to 
Pratt et al. [121], wastewater effluent is another key source 
of micro-plastics in water sources. The government should 
control and limit the discharge of wastewater in water 
bodies and encourage the use of cutting-edge treatment 
techniques prior to discharge, given that the majority of 
effluents contain micro-plastic traces and are dumped into 
adjacent streams [122]. 

To stop plastic debris from getting into the aquatic 
environment, waste management infrastructure needs 
to be improved, especially in developing countries. To 
decrease the possibility of plastic pollutants inflow into 
aquatic environments, this can be accomplished in full by 
putting in place efficient recycling programs, waste collec-



407

Journal of Environmental & Earth Sciences | Volume 07 | Issue 06 | June 2025

tion systems, and waste disposal facilities [123]. Countries 
should encourage sustainable practices in industries, which 
include promoting eco-friendly packaging, cutting back on 
unnecessary packaging, and implementing the concepts of 
the circular economy, in order to minimise the production 
and introduction of plastic waste in aquatic environments. 
Additionally, to better comprehend the origin, scattering, 
and related risks of plastics, developing nations should 
fund research and ongoing monitoring [124].

8. Conclusions

Uncontrolled plastic waste disposal and degrada-
tion in aquatic environments can undoubtedly result in the 
release of micro- and nano-plastics, which can be harm-
ful to living organisms. To effectively address this issue 
and protect aquatic ecosystems, it is critical to identify 
and monitor areas affected by plastic pollution. According 
to the study’s findings, remote sensing technologies with 
various spatial, spectral, and temporal resolutions have a 
prospect of being a dependable source of long-term quali-
tative and quantitative information on large geographical 
areas. Many researchers have demonstrated that Sentinel-2 
is a cost-saving and valued dataset for monitoring aquatic 
plastic pollution due to its combination of wavebands, high 
spatial resolution imagery, and systematic acquisitions. It 
offers a potential way to cut down on the amount of field-
work needed for conventional techniques, which would 
save money and sampling time. Therefore, it can be said 
that it has a great chance to improve society and help make 
water ecosystems plastic-free. It is recommended that de-
veloped countries transfer technology and knowledge to 
developing countries in order to help reduce aquatic plastic 
pollution, given that remote sensing is not commonly ap-
plied in these nations to monitor aquatic plastic pollution. 
Future research should combine remote sensing and in situ 
surveys to comprehensively track the dynamics of plastic 
debris accumulation. It should also concentrate on creating 
a thorough framework for tracking aquatic plastic pollu-
tion and evaluating the harm that plastic pollutants cause 
to ecosystems and human health. This will assist in direct-
ing choices and activities towards the creation of secure 
and long-lasting remedies for the issues of aquatic plastic 
pollution. This review article is essential because it will 
improve the understanding of aquatic plastic waste, its im-

pacts, and the use of remote sensing technology in moni-
toring studies by researchers and interested parties.
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