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ABSTRACT

Recent studies have demonstrated a growing global interest in utilising agricultural waste to remediate wastewater.

This stems from growing apprehensions about high levels of heavy metals, especially Pb2+ ions, in wastewater produced

by industrial processes such as mining, paint production, oil refining, smelting, and electroplating. This study examined

apple pomace’s Pb2+ ions adsorption from wastewater. Response Surface Methodology (RSM) was employed, utilising the

central composite face-centred design (CCFD) with three variables: initial concentration (1–50 mg/L), adsorbent dosage

(0.1–1 g), and particle size (75–425 µm) to formulate a mathematical model for the biosorption of Pb2+ ions on apple

pomace. An artificial neural network (ANN) was developed using data generated from the RSM design. The CCFD and

ANN models showed considerable efficacy in the adsorption process, exhibiting correlation coefficient values of 0.9921

and 0.9999, respectively. The isotherm and kinetic studies were performed, and the Freundlich Isotherm model best fitted

the equilibrium data, with a correlation coefficient of 0.972 and a qe of 5.145 mg/g. Additionally, the pseudo-second-order

model proved to be the most appropriate for the kinetic data, with an R2 of 0.9996. These results confirm that apple pomace

functions as an effective, low-cost, and environmentally and sustainably biosorbent for the removal of Pb2+ ions from

wastewater. Both RSM and ANN models exhibited high predictive capability for the biosorption process. While ANN
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provides more flexibility in modelling complex non-linear relationships, it is prone to overfitting, particularly with limited

datasets, and this was addressed through a 5-fold cross-validation technique.

Keywords: Wastewater; Potable Water; Biosorption; Apple Pomace; Response Surface Methodology; Deep Learning

Modelling; ANN

1. Introduction

The global demand for clean water continues to escalate

due to population growth, driving the expansion of indus-

trial and domestic activities, alongside rapid urbanisation to

accommodate rising human settlements [1,2]. These changes

complicate the management of a consistent supply of clean

water due to the increased production of wastewater laden

with contaminants, particularly heavy metals from industrial

effluents and other anthropogenic sources [2–7]. In nearly

all major industrial sectors, it is unavoidable to circumvent

lead-containing compounds during processing. Hence, Pb2+

ions are among the most prevalent heavy metals in indus-

trial effluents, with the mining, battery, paint, oil refining

and smelting industries being the major contributors to their

discharge [8,9]. Lead ions have high solubility in aquatic or-

ganisms such as fish, and are easily absorbed through their

skin and soft tissues. Once absorbed, they enter the food

chains, ultimately affecting human health upon consump-

tion. The lead ions interact vigorously with proteins and

other macromolecules, thereby deactivating them and caus-

ing potential accumulation of Pb2+ ions in certain organs,

which can result in chronic poisoning. Some of the negative

impacts caused by lead ions include Alzheimer’s disease,

damage to renal and reproductive systems and other nervous

system disorders [10,11].

The Environmental Protection Agency (EPA) and the

World Health Organization (WHO) set stringent maximum

permissible concentrations for heavymetals in drinkingwater

and wastewater to safeguard both human and environmental

health. For Pb2+ ions, the EPA limit is 0.015 mg/L, while the

WHO guideline is even more conservative at 0.01 mg/L [8,12].

These guidelines incorporate not only the environmental con-

cerns but also the toxicological limits beyond which lead can

trigger neurological, renal, and developmental disorders in

humans. These benchmarks serve as critical performance

targets for water treatment technologies. In the context of

this research, these limits by the WHO and the EPA were

used as benchmark criteria for the evaluation of the effec-

tiveness of apple pomace as a biosorbent. Reducing Pb2+

ion concentrations below these benchmarks is imperative for

any treatment technology to be deemed viable for practical

and regulatory compliance.

Furthermore, Pb2+ ions may also infiltrate groundwater

and natural water bodies via geogenic processes, such as

leaching, and can also be present in antiquated lead water

pipes, particularly in older cities, due to pipe deterioration.

This presents a substantial threat to the quality standards of

potable water, since it may become polluted by the time it

reaches the end user’s tap, despite appropriate treatment at

the treatment plants.

To solve this water crisis, researchers worldwide are

exploring biosorption as a cost-effective solution to remove

heavy metals in wastewater due to its eco-friendliness, flexi-

bility of design, and high efficiency. It is a phenomenon in

which ions or molecules from an aqueous solution bind to the

biomass by diverse methods, contingent upon the structure

and functional groups of the biosorbent [10,13,14]. Further-

more, biosorption has a high capability of occurring across a

broad temperature spectrum, pressure and pH, and there is a

high probability of the recovery of the adsorbates for reuse in

other applications [10,15,16]. Presently, sanctioned biosorption

mechanisms include surface complexing, ion exchange, elec-

trostatic action, enzymatic mechanism, redox mechanism,

and inorganic precipitation.

Apple pomace is among the most underutilised biosor-

bents with significant potential. It is a lignocellulosic solid

residue generated during the mechanical extraction of juice

from apples. This by-product is generated during the pressing

stage of juice and cider manufacturing. It primarily consists

of peels, pulp, seeds, and stems, and accounts for approxi-

mately 25–35% of the original fruit mass, depending on the

cultivar variety of apple and the processing conditions. Due

to its high moisture content, rapid perishability, and very low

commercial value, apple pomace is often discarded or used

as low-value animal feed [17,18]. Annually, 12 million tons of

2



Journal of Environmental & Earth Sciences | Volume 07 | Issue 10 | October 2025

apple pomace are generated worldwide, and the quantity is

anticipated to continue increasing due to the ever-expanding

global population [17,19]. Functional groups present in ap-

ple pomace include –COO (carboxylate), –CO (carbonyl),

–NH2 (amino), –OH (hydroxyl), among others, and these

are responsible for binding heavy metals [19]. Utilising apple

pomace as a biosorbent aligns with circular economy princi-

ples by converting waste into a valuable resource for water

treatment.

This study aims to evaluate the performance of apple

pomace as a biosorbent for Pb2+ ion removal from aqueous

media. The research focuses on both experimental charac-

terisation and predictive modelling using RSM and ANNs.

The study began with the preparation and characterisation

of the biosorbent pre- and post-adsorption using the Fourier

transform infrared spectroscopy (FTIR) to determine the

functional groups present on the biosorbent surface, scan-

ning electron microscopy (SEM) to determine the surface

structure of the biosorbent, and energy dispersive X-ray

(EDX) for elemental analysis. The second objective was

to model the experimental data by employing RSM and

ANN modelling. RSM is a statistical approach utilised for

experimental design and optimisation of process variable

effects, and it was founded on the principles of design of

experiments (DOE). It is employed to determine if a set of

factors affects the response and if they interact. It also helps

to formulate and optimise response behaviour as a function

of independent factors, while deep learning within machine

learning uses layered neural networks to predict complex

data patterns, usually from huge datasets. ANN modelling

is a deep learning approach that serves as an intelligent sys-

tem capable of predicting output patterns by recognising

input patterns. ANNs employ a mathematical framework

to analyse information and solve complex problems using

concepts inspired by a biological brain model [20,21]. The

RSM model provides a direct assessment of variable in-

teractions, and from a computational standpoint, RSM is

lightweight and easy to implement, especially when dealing

with a limited number of variables and experimental runs. It

requires solving a set of regression equations, which is less

resource-intensive and more transparent, rendering it advan-

tageous for preliminary process evaluation. RSM, while

potentially less flexible in modelling complex behaviours,

is often more stable under small input variations. In con-

trast, ANN functions as a black-box model that is superior

in handling intricate, non-linear systems, including subtle

variations, which may be overlooked by RSM’s polynomial

structure [22]. While ANN is powerful in capturing deep pat-

terns in large, high-dimensional datasets, it may suffer from

overfitting and lower interpretability. ANN demands more

computational power and training time, particularly when

working with larger datasets or using more complex network

architectures. However, with modern computing resources,

this cost is often manageable.

Isotherm and kinetic studies for Pb2+ ions removal us-

ing apple pomace were also conducted to evaluate the biosor-

bent capacity and adsorption rate, respectively. The adsorp-

tion isotherms at a fixed temperature delineate the correlation

that exists between the concentrations of the adsorbate and

the degree of its adsorption on the adsorbent surface at equi-

librium. The kinetic experiments offer essential insights into

the possible mechanisms of biosorption and elucidate the

rate at which sorbate adheres to the surface of the biosorbent.

Numerous kinetic models have been documented in the lit-

erature; however, those focused on the order of reactions,

namely the Pseudo-first-order (PFO) and the Pseudo-second-

order (PSO) models, are of significant interest [12].

2. Materials and Methods

2.1. Preparation of Adsorbent

Apple pomace used as an adsorbent was sourced from

Elgin Fruit Juices (Pty) Ltd, situated in Cape Town, South

Africa. It was initially collected in a wet state from the plant

and dried at 110 °C for 24 hr at the company. Prior to ap-

plication, it was re-dried at 60 °C to eliminate any moisture

that may have accumulated during transportation and storage.

Afterwards, it was ground into powder using a laboratory

grinder (Retsch GmbH 5657 HAANWEST-GERMANY).

Afterwards, it was sieved into particles of different sized par-

ticles of sizes, ranging from 75 µm to 425 µm. FT-IR (Cary

630, Agilent, USA), SEM-EDX (Zeiss Ultra Plus FEG SEM

(Germany); with the Oxford X-Max EDX detector (UK))

were then used to analyse the biosorbent before and post

adsorption.
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2.2. Preparation of Adsorbate Stock Solution

A stock solution of 500 mg/L of Pb2+ ions was

generated through dissolving 0.799 g of lead (II) nitrate

[Pb(NO3)2] in 1000 mL of deionised water in a volumet-

ric flask, followed by meticulous agitation to guarantee the

full dissolution of all lead nitrate. Deionised water was used

to ensure the absence of competing ions in the solution.

2.3. Response Surface Methodology

To conduct RSM, the DOE was employed using De-

sign Expert 13 software under the central composite face-

centred design (CCFD) with three variables at 3 different

levels namely −1, 0, and +1, and with 6 central points, yield-

ing 20 experimental runs. The CCFD was selected for its

efficiency in exploring quadratic response surfaces and abil-

ity to estimate second-order models without requiring a full

three-level factorial experiment. This design has high effi-

ciency in capturing non-linear curvature, providing rotata-

bility, and ensuring uniform precision in prediction across

the experimental domain, thereby enhancing the reliability

of optimisation results. The investigated parameters com-

prised the initial concentration (A), adsorbent dosage (B),

and particle size (C). These variables, along with their re-

spective domains, were chosen based on preliminary batch

experiments and were aligned with ranges that are regularly

reported in the literature for biosorption studies [8,22]. This

safeguarded the relevance and feasibility of the selected ex-

perimental domain. Experimental independent variables and

their coded levels are outlined in Table 1. The experiment

produced a single response, the Pb2+ ions removal efficiency

(%). Analysis of variance (ANOVA) was implemented to

determine the correlation between the inputs and responses,

as well as the significance of the regression model.

Table 1. Experimental variables and their coded levels (CCFD).

Factor Variable Units Coded Low Mean Coded High

−1 0 1

A Initial Concentration mg/l 1.00 25.50 50.00

B Adsorbent Dosage g 0.10 0.55 1.00

C Particle Size µm 75.00 250.0 425.00*

Note: *Due to the unavailability of sieve plates with a 250 µm mesh size, a 300 µm mesh size was used instead.

Removal Efficiency

The Pb2+ ions removal percentage (%) and biosorp-

tion capacity of the biosorbent (q) were calculated using

Equations (1) and (2).

Percentage removal (%) =
Ci − Cf

Ci

× 100 (1)

Biosorption capacity (q) =
(Ci − Cf) · V

m
(2)

Where Ci represents initial adsorbate concentration

(mg/L), Cf denotes the final adsorbate concentration (mg/L),

V signifies the volume of the solution (L), while m represents

the biosorbent mass (g).

2.4. ANN Modelling

ANN was developed in MATLAB R2024b using the

dataset generated from the RSMmatrix based on central com-

posite design (CCFD) and its corresponding experimental

responses, to predict removal efficiency. The ANN model

was implemented using a feed-forward backpropagation neu-

ral network consisting of three input nodes in the input layer,

initial concentration, particle size, and adsorbent dose, along

with a hidden layer consisting of six neurons that utilise a

tangent sigmoid transfer function and a single output node,

demonstrating the removal efficiency [4,23]. The architecture

of the ANN employed is shown in Figure 1.

RSM-derived synthetic dataset consisted of 100 ob-

servations with a desirability of 1, each characterised by

the three input variables and a corresponding removal effi-

ciency. Prior to training, all the input and output variables

were normalised using min-max scaling to the (0,1) range,

to ensure consistent scaling across all features and facilitate

faster convergence during training. The partitioning of the

data into training, testing, and validation sets was conducted

randomly into 70% training data, 15% validation data and

15% testing data. This typical partitioning ensured that the

model training and evaluation were conducted on mutually
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exclusive subsets. Model training was performed using the

Levenberg–Marquardt optimisation algorithm, which is well-

suited for small- to medium-sized datasets and provides fast

convergence. Model training was performed over a maxi-

mum of 1000 epochs. To reduce overfitting and improve

generalisation, early stopping was implemented based on

validation performance. No supplementary regularisation

techniques were employed; the default mean squared error

(MSE) function and correlation coefficients (R2) served as

the performance metrics for the single split evaluation.

Figure 1. Structure of ANN.

Given the relatively small dataset size, which can be

a limiting factor in deep learning applications, the k-fold

cross-validation technique was employed to provide a more

robust estimate of model performance. This technique helps

reduce the variance associated with a single train-test split

and provides a more conservative and reliable assessment of

the ANN’s generalisation capacity.

While other models, such as Random Forests, offer

strong predictive power, effectively handle nonlinearities,

and provide feature importance metrics, they balance be-

tween interpretability and performance. ANN stands out

for its customizable architectures and its ability to capture

deeper patterns in large, high-dimensional datasets tailored

to specific problems [24]. Meanwhile, RSM, beyond its in-

terpretability, provides explicit equations and clear insights

into variable effects and interactions, making it well-suited

for process optimisation [22].

2.5. Isotherm Study

A series of Pb(NO3)2 solutions with a range of con-

centrations between 5 and 50 mg/L was generated from a

stock solution by serial dilutions. Each 100 mL aliquot was

transferred into a labelled conical flask. Afterwards, the pH

of each solution was measured with a pH meter (SensoDirect

150), and adjusted to 5.5 to prevent precipitation of Pb as

Lead hydroxide [Pb(OH)2], which will exaggerate the re-

moval efficiency and conceal the true adsorption behaviour.

This was followed by the loading of 0.55 g of adsorbent (150

µm particle size) to each flask. The mixtures were consis-

tently agitated on a linear shaker (Model 262, Trilab Support,

CC, South Africa) at 180 rpm for 120 minutes at room tem-

perature (25 ± 1 °C) to ensure equilibriumwas attained. After

agitation, the solutions were filtered using Whatman filter

paper, followed by 0.45 µm pore-sized syringe filters. The
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spent adsorbent residues were dried in a standard oven (Sci-

entific 221) at 60 °C until a constant weight was attained. The

residueswere then characterised using FT-IR, SEM, and EDX

methods. The filtrates were analysed with a micro-plasma

atomic emission spectrophotometer (MY 18379001, Agilent,

USA) to measure the remaining Pb2+ ions post-adsorption.

All the experiments were carried out in duplicates, and the

mean values were used to enhance the reliability of the re-

sults. The Langmuir and the Freundlich isotherm models

were employed to model the experimental data.

The Langmuir isotherm model is represented by the

following Equation (3).

Qe =
QmaxbCe

1 + bCe

(3)

The terms in the above equation represent the following:

Qmax is the maximum adsorption capacity of the metal ion in

mg/g, while b represents the Langmuir constant (L/mg); qe

denotes the adsorption capacity at equilibrium (mg/g); and

Ce represents the final adsorbate concentration at equilibrium

(mg/L).

The Freundlich model is presented by Equation (4).

qe = KfC
1
n
e (4)

The terms of the equation above signify the following,

Kf and n are constants, while qe represents the equilibrium ad-

sorption capacity (mg/g), and Ce denotes the final adsorbate

concentration at equilibrium (mg/L).

The Langmuir isotherm model assumes that the adsor-

bent’s surface is homogeneous and smooth, with minimal

lateral interactions among adsorbed molecules. It also pre-

sumes uniform adsorption energy across all adsorption sites,

irrespective of the substances adsorbed in adjacent sites [25].

In contrast, the Freundlich isotherm model assumes that the

adsorbent’s surface is heterogeneous, comprising various ad-

sorption sites with differing affinities for the adsorbate. This

model accommodates multilayer adsorption, where multiple

layers of adsorbate molecules may develop on the adsor-

bent’s surface [25]. It also suggests that adsorption capacity

increases continuously with concentration, implying a the-

oretically unlimited adsorption capacity. Furthermore, it

also assumes that the adsorption energy fluctuates across the

surface of the adsorbent, leading to a nonlinear adsorption

behaviour.

2.6. Kinetic Study

To investigate the adsorption kinetics of Pb2+ ions, 50

mg/L lead nitrate solutions were prepared by precise serial

dilutions of the stock solution. These solutions were trans-

ferred into two separate 1000 mL beakers, labelled A and

B, to facilitate parallel experimentation. The beakers were

placed on a jar test apparatus (VELP JLT6), a device com-

monly used for controlled mixing in water treatment studies.

Afterwards, 2 g of adsorbent was added to each beaker and

the solutions were agitated at 180 rpm for 24 hours at ambi-

ent temperature. We employed sampling intervals of 5, 10,

15, 20, 30, 45, 60, 90, 120, 150, 180, 240, 300, and 360 min-

utes, with the final samples taken at 24 hours. This interval

spacing afforded adequate precision to fully document the

swift initial adsorption and the eventual attainment of the

equilibrium.

The experiments were conducted in duplicate to ensure

the reproducibility of the results. The PFO and PSO kinetic

models were used to validate the authenticity of the kinetic

data. Both models assume that the sorption rate is directly

proportional to the quantity of available active sites on the

biosorbent surface, following either a first or second order

rate relationship [14]. However, the two models differ in their

assumptions concerning the adsorption mechanism. PFO is

generally associated with physisorption, while PSO is for

chemisorption as the rate-limiting step [26].

Pseudo-first-order reaction:

ln(qe − qt) = ln qe − k1t (5)

Pseudo-Second-Order reaction:

t

qt
=

1

k2q2e
+

t

qe
(6)

In the above equations, qe stands for the amount of ad-

sorbate (mg/g) adsorbed at equilibrium, while qt corresponds

to the quantity of adsorbate adsorbed at a specific time (t). t

stands for time (h), k1 for the PFO reaction rate constant (h),

and k2 for the PSO reaction rate constant (g mg−1 h−1). We

choose the best model based on the numerical value of the

coefficient of determination.
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3. Results and Discussion

3.1. FT-IR Spectroscopy Analysis

The FTIR spectra of apple pomace powder were anal-

ysed before and after Pb2+ ion adsorption (Figure 2), within

the wavenumber range of 398 to 4000 cm−1 and a resolution

of 4 cm−1, to determine the adsorbent’s functional groups

using FT-IR (Cary 630, Agilent, USA). The FT-IR spectrum

prior to adsorption exhibited multiple significant peaks, indi-

cating the presence of active functional groups on the biosor-

bent surface. The peaks observed in the range of 3000 to

3600 cm-1 and around 1000 cm-1 correspond to –OH stretch-

ing vibrations. A peak between 2800 and 3000 cm-1 was

attributed to C–H stretching in aliphatic chains, while the

region between 1400 and 1700 cm-1 was associated with

–C=O, NH and C=C groups. After adsorption, noticeable

shifts and changes in transmittance intensity were observed

in these regions, indicating interactions between metal ions

and the surface functional groups. Upward shifts in peak

positions and spectral changes suggest that the identified

functional groups actively participated in the binding of Pb2+

ions. The existence of negatively charged functional groups

like the hydroxyl and carboxylic groups led to the conclusion

that the adsorption of Pb2+ ions occurred primarily through

electrostatic attraction. The adsorption mechanism likely

involves ion exchange, whereby Pb2+ ions substitute other

native cations (Ca2+, K+, or H+) present on the surface of

the adsorbent. Additionally, hydrogen bonding and Van der

Waals forces may contribute to Pb2+ ions retention due to the

involvement of oxygen- and hydrogen-containing groups.

Figure 2. FT-IR spectra (before and after adsorption).

3.2. SEM-EDXAnalysis

Surface morphology analysis of apple pomace was per-

formed using Zeiss Ultra Plus FEG SEM (Germany). The

samples were mounted on aluminium SEM stubs using adhe-

sive carbon tape, and subsequently gold sputter-coated with

the Quorum Q 150 RES sputter coater (UK) to enhance con-

ductivity prior to imaging. SEM images were captured at a

working distance of 8.9 mm and a magnification of 5,000x at

an accelerating voltage of 20 kV, to provide detailed insights

into the porous and uneven surface topology of the apple

pomace. EDX was performed simultaneously with SEM for

elemental mapping, using an Oxford X-Max EDX detector

(UK).

SEM-EDX analysis showed how the surface morphol-

ogy of the adsorbent material appeared before and after Pb2+

ion adsorption. When scanned under the SEM, the initial

adsorbent surface featured large irregularities, as shown in

Figure 3a. The uneven surface promotes heavy metal ad-

sorption through deposition and stronger ion-bonding of Pb2+

ions at those uneven points. A substantial surface morpholog-
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ical modifications of the adsorbent were observed through

the SEM image in Figure 3b after Pb2+ ions were adsorbed.

The surface developed a flatter texture because Pb2+ ions

settled tightly into biosorbent pores and obstructed the holes.

The Pb2+ ion show chemical bonding through carboxylic and

hydroxyl surface functional sites of the adsorbent. The sur-

face transformation patterns that occurred during Pb2+ ions

adsorption revealed that our adsorbent material successfully

captured heavy metals from solution. The study reveals how

the material’s surface structures participate in assessing the

possible occurrence of adsorption and the effectiveness of

the adsorbent in removing Pb2+ ions from wastewater.

Figure 3. SEM analysis of AP: (a) Before adsorption; and (b) After adsorption.

3.3. EDXAnalysis

Figure 4 shows the spectra of apple pomace before and

after Pb2+ ion adsorption. EDX analysis of the raw apple

pomace, shown in Figure 4a, indicates that it contains car-

bon (63.89 wt%) and oxygen (35.73 wt%). It also has trace

amounts of calcium (0.07 wt%) and potassium (0.30 wt%) as

shown in Table 2. These findings indicate that apple pomace

can be useful as an adsorbent material, with its surface chem-

istry being the pivot of adsorption. During the adsorption

process, Pb2+ ions were deposited on the biosorbent surface,

resulting in significant alterations in elemental composition.

The decrease in carbon content and increased oxygen levels

proved that apple pomace reacted with Pb2+ ions through

its carboxylic and hydroxyl groups. The biosorbent surface

showed evidence of ion exchange as potassium disappeared

after adsorption, as shown in Figure 4b.

Figure 4. Cont.
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Figure 4. EDX spectra of AP: (a) Before Pb2+ ions adsorption; and (b) After Pb2+ ions adsorption.

Table 2. Percentage composition of elements in apple pomace.

Element C O K Ca Pb

Wt % before adsorption 63.89 35.73 0.30 0.07 0

Wt % after adsorption 59.53 39.75 0 0.07 0.65

3.4. RSMModelling

The RSM was analysed using Design-Expert 13 soft-

ware. Table 3 presents the design matrix, which includes the

independent variables, actual experimental responses, and

predicted outcomes.

A quadratic model [Equation (7)] was formulated to

describe the removal efficiency of Pb2+ ions from wastew-

ater. This model was presented using coded factors based

on the independent variables A, B and C. It is validity and

statistical significance were evaluated using ANOVA, which

confirmed its capacity to predict the adsorption process.

Table 3. RSM experimental design matrix with responses.

Factor 1 Factor 2 Factor 3 Response Response

Std. Run A: Initial Concentration B: Adsorbent Dosage C: Particle Size Removal % Removal%

mg/l g um Experimental Predicted

6 1 50 0.1 425 29 29.43

18 2 25.5 0.55 250 78.94 80.11

9 3 1 0.55 250 88,00 87.88

13 4 25.5 0.55 75 89.21 88.7

15 5 25.5 0.55 250 78.94 80.11

17 6 25.5 0.55 250 78.94 80.11

16 7 25.5 0.55 250 78.94 80.11

2 8 50 0.1 75 54.09 55.07

12 9 25.5 1 250 77.53 79.04

14 10 25.5 0.55 425 73.37 72.92

1 11 1 0.1 75 77.65 77.92

4 12 50 1 75 68.97 68.43

20 13 25.5 0.55 250 84.01 80.11

3 14 1 1 75 90.38 90.18

11 15 25.5 0.1 250 63.1 60.64

10 16 50 0.55 250 62.15 61.31

19 17 25.5 0.55 250 79,00 80.11

8 18 50 1 425 54,00 53.97

5 19 1 0.1 425 60.05 60.83

7 20 1 1 425 85.01 84.27

9
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(Y) = 80.11− 13.29A+ 9.2B− 7.89C+ 0.27AB

−2.14AC+ 2.79BC− 5.52A2 − 10.28B2
(7)

The model’s overall performance was assessed by

analysing the magnitude of its regression coefficient of deter-

mination R2 (0.9921), adjusted R2 (0.9850) and the predicted

R2 (0.9703). All the coefficients of the regression models

were close to 1, signifying a strong positive correlation and

a strong fit between the model’s predicted and experimental

data. A low coefficient of variance (1.85%) indicated low

variability between predicted values and actual values, as

presented in Table 4.

Table 4. Model fit statistics.

Parameter Value Parameter Value

Std. Dev. 1.85 R² 0.9921

Mean 72.56 Adjusted R² 0.9850

C.V. % 2.55 Predicted R² 0.9703

Adeq Precision 46.4795

The predicted R² (0.9703) is in strong agreement with

the Adjusted R² (0.9850), showing a discrepancy of less than

0.2.

3.4.1. ANOVAResults

ANOVA results showed that the developed model has

high statistical significance, with an F-value of 139.55, indi-

cating a 0.01% chance that this high value could result from

random variation. p-values less than 0.05 represented the

significant terms of the model, and in this analysis, terms

A, B, C, AC, BC, A² and B² were identified as significant

contributors to the model’s predictive ability. Moreover, the

F-value of 0.60 for lack of fit suggests that the lack of fit is

not statistically significant relative to the pure error, reinforc-

ing the adequacy of model fit. These F-values and p-values,

summarised in Table 5, confirm the model’s effectiveness in

modelling the relationship between variables and responses.

Figure 5 illustrates that the predicted values closely corre-

spond with the actual values, further indicating a high degree

of model accuracy and minimal error.

Table 5. Analysis of variance (ANOVA) of the model for the removal of Pb2+ ions.

Source Sum of Squares df Mean Square F-Value p-Value

Model 4,291.00 9 476.78 139.55 < 0.0001 Significant

A-Initial Concentration 1,765.71 1 1765.71 516.80 < 0.0001

B-Adsorbent Dosage 846.40 1 846.40 247.73 < 0.0001

C-Particle Size 622.05 1 622.05 182.06 < 0.0001

AB 0.5995 1 0.5995 0.1755 0.6842

AC 36.51 1 36.51 10.69 0.0084

BC 62.44 1 62.44 18.28 0.0016

A² 83.75 1 83.75 24.51 0.0006

B² 290.54 1 290.54 85.04 < 0.0001

C² 1.33 1 1.33 0.3903 0.5461

Residual 34.17 10 3.42

Lack of Fit 12.84 5 2.57 0.6024 0.7042 not significant

Pure Error 21.32 5 4.26

Cor Total 4,325.17 19

3.4.2. 3D Surface Plots

Figure 6 aids in comprehending the influence of inde-

pendent variables and their interactions on the dependent

variable. The interactive effects of adsorbent dosage and

particle size are illustrated in the three-dimensional surface

plot representing factor BC in Figure 6a. The initial concen-

tration of Pb2+ ions is consistently maintained at 25 mg/L.

The removal efficiency increased gradually as the dosage

increased and the size of the adsorbent particles decreased.

This phenomenon can be ascribed to the increased avail-

ability of surface area and the increasing ratio of adsorbent

to Pb2+ ion concentration, which increases the number of

active sites. The percentage of removal, however, begins to

10
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decrease as the dosage increases. This is due to agglomer-

ation, which reduces the amount of surface area available

and the total number of active sites for metal adsorption by

obscuring some active sites on the adsorbent surface.

Figure 5. Predicted vs. actual plot.

Figure 6. 3D Surface plots: (a) Effect of particle size and dosage on removal efficiency of Pb2+ ions; (b) Effect of initial concentration

and adsorbent dosage on removal efficiency of Pb2+ ions; and (c) Effect of particle size and initial concentration on removal efficiency of

Pb2+ ions.

11
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In Figure 6b, at a fixed particle size (C) of 250 µm, the

3D surface plot shows that a rise in the initial concentration

coupled with a decrease in dosage results in a decrease in the

percentage of removal. This is due to the reduced surface

area and due to the reduced number of particles in the solu-

tion. Removal efficiency increases as the adsorbent dosage

is increased because more particles present an enhanced sur-

face area. The most favourable percentage removal occurs at

lower initial metal ion concentrations with a high dosage of

adsorbent (1 g). In the surface plot in Figure 6c, we observe

that at fixed adsorbent dosage, the increase in the initial con-

centration of Pb2+ ions and particle size of the biosorbent

leads to the decline of the removal percentage of the Pb2+

ions. This is because the larger the particle size, the smaller

the surface area, and hence the fewer active sites for metal

adsorption from the solution to occur. Higher removal is

obtained at lower initial concentration and smaller particle

size due to increased surface area to solute concentration

ratio.

3.4.3. Optimization

The evaluation of the most effective conditions for re-

moving Pb2+ ions was performed to determine the factors

that removing removal efficiency. The optimal parameters

identified for the maximum removal of Pb2+ ions included

an initial concentration of 15.08 mg/L, an adsorbent dosage

of 0.789 g, and a particle size of 98.82 µm, resulting in a

removal efficiency of 91.95%, along with a desirability fac-

tor of 1. The analysis of observed trends and implemented

optimisations indicates that the efficacy of apple pomace

in removing Pb2+ ions is enhanced at lower concentrations.

Specifically, at concentrations below 20 mg/L, apple pomace

can eliminate nearly 90% of Pb2+ ions from the aqueous so-

lution. The optimisations constraints considered are shown

in Table 6.

Table 6. Optimisations constraints.

Name Goal Lower Limit Upper Limit LowerWeight UpperWeight Importance

A: Initial Concentration is in range 1 50 1 1 4

B: Adsorbent Dosage is in range 0.1 1 1 1 3

C: Particle Size is in range 75 425 1 1 3

Removal Efficiency maximize 29 90.38 1 1 5

3.5. ANN Modelling Results

3.5.1. Regression Plots

Figure 7 displays four regression plots that show the

relationship of output to target values across training and val-

idation sets, test sets and the full dataset. The regression line,

along with the correlation coefficient (R-values), indicates

the degree of alignment between the network’s predictions

and the actual target values. The model is highly effective

in learning the features of the training data, as evidenced by

its R-value of 0.9999, indicating a strong correlation. The

system has a high capacity to successfully extend to new data

because its validation set yields an exceptionally strong cor-

relation of 0.9999. The test data sets show a high R-value of

0.9999, which proves a strong performance level. The com-

bined R-value measurement of 0.9999 supports the notion

that our neural network can successfully predict the corre-

lation between input variables and output values in every

data arrangement. Model training results are summarised in

Table 7.

Table 7. Model training results on single-split performance.

Observations MSE R R2

Training 70 0.0024 0.9999 0.9999

Validation 15 0.0065 0.9999 0.9999

Test 15 0.0031 0.9999 0.9999

The histogram in Figure 8 shows how neural network

outputs compare to target values and displays the accuracy

of each dataset type. The blue, green, and red bars in the

histogram display the training, validation, and test datasets,

respectively. The number of errors indicates excellent net-

work performance, as most errors appear close to the zero-

error line. A symmetrical distribution centred around this

line suggests a well-balanced model.

12
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Figure 7. Model regression plots.

Figure 8. Error histogram.
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The network system shows great prediction accuracy,

with the majority of errors falling within the range of −0.05

to 0.05, indicating close proximity to zero error. All the er-

rors, training, validation and test errors are well distributed

around the zero error line, indicating good generalisation

capability and minimal overfitting.

3.5.2. Performance Plot

Figure 9 shows the performance plot of MSE for the

training, validation, and test datasets over 182 epochs. The

point of optimal validation performance is highlighted at

epoch 176. The MSE drops markedly in the early epochs,

indicating rapid learning by the network, with convergence

observed around epoch 100. At epoch 176, the validation

error reaches its lowest value (0.0064742), after which no sig-

nificant improvements were observed. The test error closely

follows the validation error, which supports the model’s abil-

ity to generalise well to unseen data. Furthermore, the low

and stable MSE observed across all data subsets shows ef-

fective training and minimal signs of overfitting.

Figure 9. Model performance plot.

3.6. K-Fold Cross-Validation

K-fold cross-validation was employed by splitting the

dataset into five equal segments (5-fold cross-validation),

where the model was trained on four segments and validated

on the remaining one, rotating through all combinations. The

technique confirmed the model’s generality, as reflected in

the consistent performance across all folds, as evidenced by

the average training RMSE of 0.0311, average validation

RMSE of 0.1743, average validation R2 of 0.9996, and aver-

age validation MSE of 0.0385. Figures 10–12 present the

fold-wise MSE, RMSE and R2 values, respectively. The rel-

atively lower average error metrics indicate enhanced predic-

tive accuracy. However, the noticeable increase in validation

error in fold 5 indicates variability in model generalisation,

which may warrant further examination. This could be at-

tributed to underlying data characteristics within that subset,

such as distribution shifts or the presence of influential data

points.

14
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Figure 10. 5-fold cross-validation (MSE per fold).

Figure 11. 5-fold cross-validation (RMSE per fold).
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Figure 12. 5-fold cross-validation (R2 per fold).

Figure 13a–e shows the validation results from all

folds, illustrating direct comparison between predicted and

actual Pb2+ ion removal efficiencies. These predicted values

closely align with the true experimental values, with very

minimal deviation throughout all five datasets. This strong

alignment reinforces the model’s high predictive capability,

indicating that the developed ANN model effectively cap-

tures all the underlying nonlinear relationships within the

experimental data. The removal efficiency values ranged

from nearly 29% to 91.50 %; thus, the model was able to ac-

curately predict both low and high removal scenarios. These

results validate the robustness and dependability of the ANN

model for simulating the biosorption of Pb2+ ions utilising

apple pomace as a biosorbent.

Figure 13. Cont.
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Figure 13. Cont.
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Figure 13. True vs predicted validation output: (a) Fold 1-validation output; (b) Fold 2-validation output; (c) Fold 3-validation output;

(d) Fold 4-validation output; and (e) Fold 5-validation output.

While deep learning models generally require larger

datasets, the feed-forward ANN employed in this study ex-

hibited sufficient flexibility in modelling non-linear relation-

ships between the parameters, resulting in commendable

prediction accuracy.

3.7. Adsorption Isotherms

To validate the adsorption data, two isotherm mod-

els were applied, the Freundlich model and the Langmuir

model (Figure 14). As shown in Figure 14a, the Freundlich

isotherm presented an excellent fit for the adsorption data,

with a higher correlation (R2 = 0.973) and an estimated ad-

sorption capacity (qe = 5,145 mg/g), compared to the Lang-

muir model with R2 (0.938) (Figure 14b). This superior fit

suggests heterogeneous surface adsorption and the poten-

tial for multilayer formation, as assumed by the Freundlich

isotherm model. This aligns with the inherent structural com-

plexity of apple pomace, which contains diverse functional

groups unevenly distributed across the biosorbent surface.

These groups offer multiple binding sites with varying affini-

ties, which deviates from the monolayer, uniform surface

assumption of the Langmuir model. Moreover, the com-

puted value of n (greater than 1) shown in Table 6 indicates

exceptional adsorption.

Figure 14. Isotherm models: (a) Freundlich; and (b) Langmuir.
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Although the Freundlich model showed a better fit, it

indicates multilayer adsorption on a heterogeneous surface.

However, the Langmuir model still provided a useful theoret-

ical estimate of monolayer adsorption maximum adsorption

capacity (Qmax = 6.80 mg/g), representing monolayer cov-

erage. This suggests the surface approaches saturation at

higher Pb²⁺ concentrations. Therefore, integrating insights

from both models along with the consideration of biosorbent

uneven structure provides a more comprehensive understand-

ing of the adsorption behaviour, suggesting the coexistence

of both multilayer and monolayer mechanisms, which re-

flects surface heterogeneity and saturation limits.

Furthermore, the adsorption capacity increased with ris-

ing initial adsorbate concentration, from 0.77 mg/g at 5 mg/L

to a maximum of 5.145 mg/g at 50 mg/L. This performance is

significantly higher than that reported by Gryko et al. (2021),

who achieved a maximum of 0.248 mg/g using raw apple

pomace. The variations can be attributed to several factors,

including differences in initial concentrations used (50 mg/L

in this study vs. 10 mg/L in theirs), pre-treatment methods,

and contact time (90 minutes in their study). Their apple

pomace may have had a different phytochemical profile due

to cultivar or processing conditions.

The observed increase in adsorption capacity with Pb2+

ion concentration corresponded to an increase in the driving

force for mass transfer [27]. At lower concentrations, adsorp-

tion increases almost linearly, as sufficient active sites are

available. However, as the concentration approaches higher

values, the rate of increase in adsorption capacity diminishes,

suggesting that the surface is approaching saturation.

Although the linearised models employed here allow

efficient estimation of the constants and comparative evalua-

tion of biosorption performance between models, they do not

accurately depict saturation plateaus at elevated concentra-

tions, but these models remain widely accepted for modelling

adsorption at moderate concentrations. Overall, the results

highlight the strong adsorption potential of apple pomace

and confirm the adsorption capacities consistent with those

reported in the literature. Table 8 summarises the parameters

obtained from all isotherm models evaluated.

Table 8. Isotherm model parameters.

Model Parameter Value Units

Langmuir model Qe =
QmaxbCe
1+bCe

Qmax 6.80 mg/g

b 0.13 L/mg

R2 0.938 None

Freundlich model

R2 0.972 None

qe 5.145 mg/g

Kf 1.01176 L/g

n 1.821 None

3.8. Adsorption Kinetics

The kinetic experimental data were examined by fit-

ting them to both PFO and PSO models (Table 9). The

PFO model had a relatively small negative correlation, as

demonstrated by a weak correlation coefficient of R2 = 0.263

(Figure 15a), but the PSO model revealed an excellent rela-

tionship, with a coefficient of R2 = 0.999 (Figure 15b). The

PSO model indicates that the adsorption process is affected

by the number of active sites on the adsorbent’s surface,

with the adsorption rate directly proportional to the square

of the available vacant sites. This indicates that the adsorp-

tion of Pb2+ ions onto apple pomace is primarily governed

by chemisorption rather than Van der Waals forces or other

molecular interactions. This implies that the rate-limiting

step likely involves valence forces through the sharing or ex-

change of electrons between the metal ions and the functional

groups on the apple pomace. This mechanism is consistent

with literature reports for biosorbents rich in lignocellulosic

material and functional groups [25,28].

Table 9. Kinetic models’ parameters.

Model Parameter Value Units

PFO model qe 5.053 mg/g

ln(qe − qt) = ln qe − k1t k1 6× 10−5 min-1

y = 1.62− 0.00006t R2 0.263 None

19



Journal of Environmental & Earth Sciences | Volume 07 | Issue 10 | October 2025

Table 9. Cont.

Model Parameter Value Units

PSO model
t
qt

= 1
k2q

2
e
+ t

qe

y = 0.0417x− 0.3586

qe 23.98 mg/g

k2 0.00453 g/mg

R2 0.9996 None

Figure 15. Kinetic models: (a) PFO model; and (b) PSO model.

4. Conclusion

Apple pomace demonstrated significant potential as an

economical and sustainable biosorbent for the removal of

Pb2+ ions from both potable and wastewater, with removal

efficiency influenced by the initial metal ion concentration.

The adsorption data were effectively modelled using the

established RSM quadratic model, exhibiting a standard de-

viation of 1.85 and a strong correlation (R2 = 0.9921). The

optimal parameters for Pb2+ ion adsorption identified were

an initial concentration of 15.08 mg/L, a dose of 0.789 g, and

a particle size of 98.98 µm, resulting in a removal efficiency

of 91.95%. All input variables significantly influenced ad-

sorption efficiency, as revealed through interaction effect

analysis.

Additionally, an ANN model was successfully devel-

oped based on the RSM experimental design matrix, achiev-

ing an overall correlation of R2 = 0.9999 in a single split

evaluation and an average R2 exceeding 0.9999 across five-

fold cross-validation, alongside an MSE of 0.0385, indicat-

ing the model’s robustness across all data subsets. While

ANN provided slightly superior predictive accuracy, RSM

offered better interpretability and experimental optimisation

capability.

The Freundlich isotherm (R2 = 0.98) best described the

adsorption process, indicating multilayer adsorption on the

heterogeneous surface. This is consistent with the complex

organic composition and irregular morphology of apple po-

mace [29]. The adsorption kinetics followed the PSO model,

suggesting chemisorption as the rate-limiting step, involv-

ing electron-sharing or covalent bonding between Pb2+ ions

and surface functional groups such as –COOH and -OH, as

supported by FTIR analysis.

Overall, the findings strongly support the viability of

utilising apple pomace as a low-cost biosorbent for the re-

moval of Pb2+ ions in batch-scale treatment systems. Ap-

ple pomace is generated in significant quantities annually

and is often disposed of at minimal cost. Nevertheless, the

study’s scope is limited to batch-scale experiments. To better

evaluate real-world applicability and scalability, future stud-

ies should investigate fixed-bed column systems, dynamic

adsorption behaviour, and the impact of multi-component

wastewater matrices under realistic operating conditions.
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