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Signal decomposition into the frequency components is one of the oldest 
challenges in the digital signal processing. In early nineteenth century, 
Fourier transform (FT) showed that any applicable signal can be decom-
posed by unlimited sinusoids. However, the relationship between time 
and frequency is lost under using FT. According to many researches for 
appropriate time-frequency representation, in early twentieth century, 
wavelet transform (WT) was proposed. WT is a well-known method 
which developed in order to decompose a signal into frequency compo-
nents. In contrast with original WT which is not adaptive according to 
the input signal, empirical wavelet transform (EWT) was proposed. In 
this paper, the performance of discrete WT (DWT) and EWT in terms of 
signal decomposing into basic components are compared. For this pur-
pose, a stationary signal including five sinusoids and ECG as biomedical 
and nonstationary signal are used. Due to being non-adaptive, DWT may 
remove signal components but EWT because of being adaptive is appro-
priate. EWT can also extract the baseline of ECG signal easier than DWT.
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1. Introduction 

Signal decomposition into the frequency compo-
nents is one of the oldest challenges in the digital 
signal processing. In early nineteenth century, 

Fourier transform (FT) showed that any applicable signal 
can be decomposed by unlimited sinusoids. Moreover, 
the relationship between time and frequency is lost in FT. 
In order to overcome the mentioned problem, short time 
Fourier transform (STFT) was proposed, where a signal is 
windowed in time domain and the FT is individually com-
puted for each window. Through this, the signal spectrum 
corresponding to every window is obtained separately. 
Although using STFT preserves the time-frequency rela-
tionship, and it is known as a time-frequency representa-

tion, increasing the width of used window is equivalent to 
decrease the time resolution [1]. Since basis functions of 
both FT and the STFT are in exponential form, under no 
similarity between the signal and the exponential element 
function, the resultant frequency spectrum cannot offer 
an appropriate representation about the signal frequency 
components. In early twentieth century, according to many 
researches for appropriate time-frequency representation, 
wavelet transform (WT) was proposed [2]. As, the mother 
wavelet is not necessarily exponential, it can be used for 
time-frequency analysis of those signals which are not 
combinations of exponential functions. The first basis 
function proposed for the WT called Haar [3], different ba-
sis functions as Little-Paley [4], Meyer [5], and Daubechies [1] 
were proposed.
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Although, many advantages of WT as a time-frequency 
decomposition method is known, the bottle neck of using 
wavelet is nonadaptivity to the input signal. So empirical 
mode decomposition (EMD) which operates adaptively 
according to the input signal was proposed [6]. In general, 
EMD decomposes a signal to different intrinsic mode 
functions (IMFs). It is a reversible operation that means 
sum of obtained IMFs and the residual signal synthesize 
the original input signal. Although, EMD algorithm has 
primarily been considered in several signal processing 
applications, lack of closed-form mathematical expres-
sion, time consuming, and also sensitivity to the noise are 
always known as its limitation factors.

In 2013, an approach called empirical wavelet trans-
form (EWT) was proposed to overcome the mentioned 
drawbacks [7]. EWT is adaptive similar to EMD but instead 
of EMD, it is not noise sensitive. Also, having a mathe-
matical expression, capable EWT to analyze signals faster 
than EMD. Comparison among EMD, EWT and discrete 
WT (DWT) as a well-known non adaptive time-frequency 
signal representation were reported [8-10]. In this paper, as a 
case study of processing a stationary signal and also ECG 
as a nonstationary signal, we compare the performance of 
the DWT and EWT as well. 

The paper is organized as follows. In Section 2, the the-
ory of original WT and EWT are explained. Then in Sec-
tion 3, two signals are decomposed by EWT and DWT. 
Finally, both decomposition algorithms are evaluated. The 
paper conclusion is given in Section 4.

2. WT And EWT

In general, WT by using the filter bank decomposes a 
signal into specified frequency sub-bands. The cut-off 
frequency of the filter bank at the first and the second 
decomposition level, are  2/π  and 4/π  in order, so it is 

n2/π  at the nth decomposing level. In other word, for the 
nth decomposition level, the bandwidth of low-pass filter 
is [0, n2/π ] and the bandwidth of high-pass filter is [ n2/π
false, 12/ −nπ ]. Two functions called Φ as scaling function 
(SF) and Ψ as wavelet function (WF) have key roles in 
signal decomposition, 
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For every decomposition level, the signal projection 
with low-pass filter and high-pass filter are called approx-
imation and detail. However, the cut-off frequencies in 
WT for all decomposition levels are constant that means 
the WT is not adaptive to the input signal. In contrast, 
for EWT, the filter bank cut-off frequencies are not con-
stant and vary according to the input signal components 
[7]. Using FT, the frequency spectrum of the input signal 
is obtained in  [0, 𝜋] and the local maxima of frequency 
spectrum are marked, and then midpoints of every pair 
maximum are used as the filter bank cut-off frequency. It 
should be noted that the number of required local max-
ima depends on the number of decomposition levels. In 
other words n largest local maximums are required for n 
decomposition levels, also the first cut-off frequency falls 
between zero and the maximum at the lowest frequency. 
After specifying the cut-off frequencies, the filter bank 
is formed according to the idea of Littlewood–Paley and 
Meyers wavelets [11]. For EWT, the SF and the WF func-
tions are defined in Fourier domain as [7], 

φ ω λ ω ω λ ω ( ) cos( ) if (1- ) | | (1 )      f  f  = ≤ ≤ +







πβ λ ω
1 if| | (1- ) 

0 otherwise

( , )
2

 1

ω λ ω

1 1

f  ≤ 1

 (3)

ψ ωi n f=2,.., ( )  =












cos( ) if (1 ) | | (1- ) 

sin( ) if (1 ) | | (1 ) 

πβ λ ω

πβ λ ω

( , )
1 if (1 ) | | (1- ) 

0 otherwise

( , )
2

2
i

i

+1 − ≤ ≤

+ ≤ ≤

+ ≤ ≤ +

λ ω ω λ ω

λ ω ω λ ω

λ ω ω λ ω

 1 1i f i

  1

  

+ +

i f i

i f i

+

� (4)

where,

β λ ω β( , ) ( ) i =
| |  (1 )ω λ ωf i− −

2λωi

 (5)

where },..,,{
21,..2,1 ncutcutcutni fff==ω and )(min ë

i  1i 

i 1i 

ωω
ωω

+
−

<
−

+  

which make sure the EWT coefficient are in )(2 ℜL  space, 

and )(yβ  is,

β β β( ) ( ) (1 ) 1  y  [0,1]y y y= + − = ∀ ∈




 1 if  y 1

0 if  y 0≤

≥
 (6)

Similar to WT, approximation and detail coefficients 
are obtained by using the inner product between the input 
signal and SF and WF, respectively.
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3. Simulation Result 

In order to demonstrate the capability of EWT, in com-
parison with DWT based on Dubeches, a stationary sig-
nal and ECG signal are used. The first signal )t(x  is an 
stationary and multicomponent consists of five sinusoids 
with different amplitudes and frequencies as,

                          )t(x)t(x)t(x)t(x)t(x)t(x 54321 ++++=  (7)

where x1(t) 4sin(4  t)= π , x2 (t) 13sin(16  t)= − π ,
x3 (t) 11sin(40  t)= π , x4 (t) 8sin(64  t)= − π  and
 ) t128sin(5)t(5 π=x . According to the frequency com-

ponents of signal )t(x , the sampling frequency is consid-
ered 256 Hz. The signal )t(x  is decomposed by wavelet 
with 4 decomposition levels and EWT considering 5 sub-
bands, see Figure1. As mentioned before and observed in 
Figure1-a, the bandwidth of filter banks for WT are fixed; 
that means if any frequency component of the input signal 
lay on the cut-off frequency of filter bank, it is removed. 
For the signal )t(x , it happened for the second, fourth and 
fifth components with frequencies equal 8, 32, and 64 Hz. 
As shown in Figure1-b, signal decomposition by EWT, 
at first the frequency spectrum of )t(x  is obtained in [0,], 
then local maximums are specified, and accordingly the 

Figure 1. Decomposing the signal x(t), Eq(7), by (a) WT, (b) EWT
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cut-off frequencies of filter bank are determined. It should 
be noted that the first cut-off frequency lies between zero 
and the first maximum with the lowest frequency. All sig-
nals in nature have higher amplitude in lower frequencies 
compared to high frequencies, in addition a large amount 
of information exists in lower frequencies where high fre-

quencies include noise. According to the explained EWT 
methodology, the most of EWT sub bands are chosen in 
low frequencies

In WT, as the sampling frequency increases, the num-
ber of decomposition level is increased in order to be 
capable of investigating the low frequency components 

Figure 2. Decomposing ECG signal and extracting the baseline by (a) WT, (b) EWT
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accurately. The EWT decomposes the signal regarding to 
local maximums of the frequency spectrum which usually 
exist in low frequency bands, therefore the sampling fre-
quency increment does not directly affect the number of 
EWT decomposition levels. In other words, the EWT can 
investigate low frequency components of the signal with 
few decomposition levels compared to the WT. In order to 
better understand the issue, ECG signal with the baseline 
noise existing in the data base MIT-BIH [12] is considered. 
Generally, the baseline noise has a frequency lower than 
0.7 Hz [13]. The ECG signal sampled with 360 Hz and in-
vestigated during 30 seconds. According to Figure2-a, in 
the WT, 8 levels are required in order to extract the base-
line. According to Figure2-b, employing the EWT, the 
baseline noise is extracted only by one decomposing level. 
Generally by removing the baseline noise (approximation), 
the clean ECG signal is achieved. Figure3 shows the clean 
ECG where the baseline noise extracted by EWT and WT 
as well.

(a)                                             (b)

Figure 3. Removing baseline noise and showing the clean 
ECG signal by (a) WT, (b) EWT

4. Conclusion

In this paper, the performance of WT and EWT as signal 
decomposition methods are compared. Due to the fixed 
filter bank cut-off frequency in WT, some signal com-
ponents may remove. Although, the frequency sampling 
effects on the number of decomposition level in WT, for 
EWT selected local maximum obligate the number of de-
composition levels. So, the baseline in ECG is extracted 
by EWT with only one level decomposition in compared 
with WT which requires 8 decomposition levels. It seems 
that EWT can extract low frequency components by less 
levels compared to WT. Anyway, based on EWT method-
ology and the simulation results, it is recommended for 
multi-component signals modeled as   but it is not advise 
for linear frequency modulation or chirp signal with , 
where the instantaneous frequency is increasing or de-

creasing linearly in time domain.
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