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ABSTRACT

The recent surge in edge computing and wireless connectivity has accelerated the adoption of Federated Learning

(FL), a paradigm that enables privacy-preserving distributed intelligence across resource-constrained devices. However,

implementing FL in practical wireless edge networks introduces significant challenges, particularly excessive energy

consumption and communication overhead. This survey provides a system-level exploration of energy-efficient FL strate-

gies, examining algorithmic advances and deployment challenges. Core techniques—such as model compression, update

sparsification, and adaptive client scheduling—are analyzed with respect to their trade-offs in scalability, convergence, and

long-term energy sustainability, especially under non-IID data distributions and heterogeneous device conditions. Practical

insights are drawn from case studies in the Internet of Things (IoT), 5G/6G wireless ecosystems, and ultra-low-power

device deployments, highlighting both limitations and optimization opportunities for real-world implementations. In

addition, the survey explores emerging enablers, including blockchain-based trust frameworks, neuromorphic processors,

and reinforcement learning-driven orchestration, which hold potential for achieving robust, sustainable FL in dynamic edge

environments. By integrating perspectives from communication theory, distributed systems, and sustainable computing,

this work delivers an interdisciplinary roadmap for the realistic deployment of energy-efficient FL in next-generation

wireless systems, aiming to guide future research toward scalable, fair, and sustainable federated intelligence at the
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1. Introduction

The exponential growth of intelligent connected de-

vices, combined with ubiquitous wireless connectivity, has

intensified the demand for sustainable wireless systems. In

such systems, energy efficiency, carbon-conscious computa-

tion, and device longevity are no longer optional but essential

requirements. Traditional machine learning pipelines, which

rely on centralized data collection andmodel training, impose

heavy energy and bandwidth costs, making them unsuitable

for resource-constrained edge environments [1,2].

Federated Learning (FL) has emerged as a compelling

alternative by enabling decentralized model training across

edge devices while preserving privacy and reducing raw data

transmission [3]. Its sustainability promise lies in support-

ing collaborative intelligence in energy-limited ecosystems.

However, real-world deployment of FL in wireless edge

networks remains challenging. Issues such as communi-

cation overhead, device heterogeneity, unstable channels,

and limited energy reserves directly affect scalability, model

accuracy, and system reliability [4,5].

Sustainable wireless edge networks refer to advanced

communication infrastructures that are engineered to deliver

high performance while simultaneously minimizing environ-

mental impact and operational energy consumption. These

systems leverage the capabilities of edge computing, wherein

computation is performed closer to data sources, such as IoT

devices, embedded sensors, and mobile terminals, to reduce

reliance on centralized cloud platforms and to optimize re-

source utilization [6]. Key characteristics of these networks

include distributed processing, dynamic scalability, and low-

latency communication. Sustainability, in this context, is typ-

ically evaluated using metrics such as energy consumption

per operation, carbon footprint, and the operational lifespan

of devices and networks [7]. Recent studies, such as Li, L. [8],

also highlight the role of green wireless networking in reduc-

ing carbon emissions across 6G ecosystems. By relocating

computation to the edge, these systems reduce the energy

overhead of data transmission and improve responsiveness

and fault tolerance [9]. While strategies like energy harvest-

ing, sleep scheduling, and adaptive transmission have been

explored to further improve efficiency, their integration into

FL remains underdeveloped [10].

This survey critically investigates the current landscape

of energy-efficient FL in wireless edge environments. Un-

like prior works that primarily catalog methods in isolation,

our approach emphasizes the interplay between algorithmic

choices and system-level constraints. In contrast to the 2023

JEIS survey on FL, which focused broadly on communi-

cation efficiency [11], this work provides a systematic and

sustainability-oriented perspective, integrating carbon foot-

print, hardware heterogeneity, and deployment realities. Fur-

thermore, while several surveys exist in this domain, they

often overlook system-level coordination across communica-

tion, computation, and orchestration. This paper bridges that

gap by examining energy efficiency holistically across layers.

Key contributions of this survey include:

i. Acritical assessment of energy and communication bot-

tlenecks that limit the scalability of FL at the wireless

edge.

ii. A survey of energy-saving techniques such as model

compression, communication sparsification, and asyn-

chronous client scheduling, analyzed under practical

constraints such as non-IID data and device dropout.

iii. An exploration of FL deployment challenges in low-

power, intermittently connected devices, and energy-

harvesting systems.

iv. A comparative synthesis of state-of-the-art approaches,

evaluating their trade-offs in energy use, communica-

tion cost, and model accuracy across different deploy-

ment contexts.

v. A forward-looking analysis of unresolved challenges,

including the integration of blockchain-based trust

frameworks, green AI models, and neuromorphic hard-

ware into the FL paradigm.

vi. A structured roadmap guiding the reader from back-

ground concepts through technical techniques, de-

ployments, trade-offs, applications, benchmarking, re-

67



Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

search gaps, and future directions.

The remainder of the paper is organized as follows: Sec-

tion 2 introduces background concepts and related literature.

Section 3 outlines communication and energy bottlenecks.

Section 4 surveys energy-aware FL strategies. Section 5

examines deployment constraints in edge networks. Section

6 explores system-level optimizations. Section 7 discusses

trade-offs among privacy, energy, and model performance.

Section 8 presents key applications. Section 9 compares

existing methods. Section 10 outlines open challenges, and

Section 11 discusses future research avenues. Finally, Sec-

tion 12 concludes the survey.

2. Federated Learning Overview

Federated Learning (FL) is a decentralized machine

learning paradigm in which multiple edge devices partici-

pate in training a shared global model using their local data,

without exchanging the raw data itself, as shown in Figure

1. In a typical FL setup, model parameters are exchanged be-

tween clients and a central server for aggregation, preserving

data privacy and reducing communication costs.

Figure 1. Federated Learning Architecture [12].

FL architectures are categorized into three primary

types:

i. Horizontal Federated Learning: Clients share the

same feature space but hold different data samples.

ii. Vertical Federated Learning: Clients share the same

data samples but with different feature sets.

iii. Federated Transfer Learning: Applied when both

data samples and feature spaces differ across clients [13].
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FL’s advantages over traditional centralized learning

include improved privacy compliance, lower transmission

overhead, and support for personalized model development

across distributed nodes [14]. However, these benefits are of-

ten offset by several critical limitations when FL is deployed

in wireless edge environments.

min

w

∑N

i=1
piLi(w) (1)

w is the learned model parameters in this global optimization

objective, Li is the local loss that is experienced on client i,

and pi is the fraction of the training data possession by client

i. The goal is to optimize the weighted average of local losses

of all clients, and it is the foundation of federated learning.

Unreliable communication links, especially in mobile

and IoT networks, result in increased latency and synchroniza-

tion difficulties. Additionally, data across clients is typically

non-independent and identically distributed (non-IID), which

affects model convergence and generalization. The hetero-

geneity of edge devices, in terms of computation capacity,

energy availability, and memory, further complicates client

participation and degrades system-wide performance [15].

Despite a growing body of literature on FL, most meth-

ods are designed under idealized assumptions, including sta-

ble connectivity, consistent energy availability, and uniform

client capabilities. These assumptions rarely hold in practical

scenarios, limiting the scalability and energy efficiency of ex-

isting FL implementations. A deeper understanding of these

constraints is essential to guide the development of sustainable

FL techniques, which is the central focus of this survey.

The following part establishes some of the severe en-

ergy and communication bottlenecks that constrain scale-up

power at the edge of FL.

Sustainability in wireless edge networks is typically

evaluated using metrics such as energy consumption per op-

eration, carbon footprint, and device lifespan [7]. To ensure

comparability, carbon footprint can be quantified by con-

verting energy usage into CO₂-equivalent emissions using

standardized emission-factor models. A simple formulation

is given by:

CO₂eq (g)=Energy (kWh)×EF (gCO₂/kWh)

where EF is the emission factor provided by datasets such

as the IPCC Guidelines [16] or the ecoinvent database [8].

For example, using the U.S. EPA default emission factor

(EF = 233 gCO₂/kWh), an FL training session consum-

ing 0.5 kWh would correspond to approximately 116 gCO₂

emissions. Such quantitative measures allow sustainable

FL research to align with climate accountability standards,

ensuring that algorithmic efficiency gains are meaningfully

tied to environmental impact.

3. Energy and Communication Bot-

tlenecks in Federated Learning

While Federated Learning (FL) presents a decentral-

ized alternative to conventional machine learning with strong

privacy guarantees, its deployment in wireless edge networks

introduces critical bottlenecks that undermine energy effi-

ciency, scalability, and sustainability. These bottlenecks stem

from both communication overhead and device-level lim-

itations, particularly in environments with heterogeneous

clients and unstable wireless channels.

3.1. Background and Foundational Concepts

A central challenge in FL is the iterative exchange of

model updates between clients and the server, which stresses

constrained wireless links and drains device energy. The

communication cost per round can be expressed as:

C = R × U × S (2)

Here, C represents the total communication cost (in

bits). R is the number of communication rounds (dimen-

sionless), U is the number of participating clients (dimen-

sionless), and S is the size of the transmitted model update

(bits per round per client). In energy-aware analyses, this

communication volume is typically converted into Joules by

multiplying by the transmission energy per bit, as specified

by the underlying wireless protocol.

Key issues include:

i. Uplink/Downlink Imbalance: FL requires bidirectional

communication, yet wireless uplinks are slower and

more energy-hungry than downlinks. This leads to la-

tency and uneven energy expenditure, especially on

mobile and battery-powered devices [17].

ii. Bandwidth Saturation: As the number of participating

devices grows, simultaneous transmissions congest

limited spectrum resources. Without congestion-aware
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scheduling, retransmissions and collisions multiply en-

ergy costs [18,19].

iii. Data Heterogeneity: Non-IID client data slows conver-

gence, increasing the required rounds R, which inflates

communication and energy demand [20].

Although compression and communication reduction

methods exist, most do not account for fluctuating wireless

conditions such as packet loss, variable topology, or compet-

ing traffic.

3.2. Device and Model-Level Constraints

Beyond communication, device-level limitations intro-

duce additional challenges for FL scalability and sustainabil-

ity:

i. Battery Depletion and Energy Scarcity: FL parti-

cipants—smartphones, IoT sensors, and wearables—

operate under strict energy budgets. Extended training

rapidly depletes batteries, especially when repeated

participation is required. Without energy-aware client

selection, resource-constrained devices are often over-

burdened, leading to dropouts and reduced system

availability [21].

ii. Local Resource Constraints: Training deep models

demands significant memory and compute capacity.

On lightweight hardware such as microcontrollers or

embeddedARM processors, this competes with critical

system tasks, causing instability or a degraded user ex-

perience. While model compression and quantization

offer relief, many methods ignore hardware profiling

and thermal limits, restricting practical deployment [22].

iii. Operational Trade-offs: Devices must balance partici-

pation in FL with their primary functions (e.g., sensing,

monitoring, actuation). The lack of adaptive resource

allocation policies in most implementations results in

inefficient energy usage and missed application-level

deadlines.

Together, these communication and device-level con-

straints reveal fundamental design gaps in current FL systems.

Addressing these requires not just algorithmic refinement

but also the development of cross-layer, context-aware FL

protocols that integrate network dynamics, hardware hetero-

geneity, and energy availability into their core scheduling

and optimization logic. To combat these limitations, Section

4 examines methods that can be used to enhance the energy

consumption of FL.

4. Techniques for Energy-Efficient

Federated Learning

Addressing the energy and communication inefficien-

cies of Federated Learning (FL) in wireless edge environ-

ments requires more than isolated algorithmic adjustments—

it demands techniques that adapt to heterogeneous devices,

unreliable networks, and constrained energy budgets. This

section critically examines three broad classes of methods:

model compression, communication optimization, and adap-

tive training paradigms. Each is evaluated in terms of feasi-

bility, trade-offs, and limitations in real-world deployments.

4.1. Device and Model-Level Constraints

Model compression techniques reduce the computa-

tional and transmission burden of FL by minimizing the size

of models exchanged between clients and the server. Although

widely studied in centralized settings, FL introduces unique

challenges due to device variability and convergence stability.

CR=
||W ||0
||W ||1

(3)

Here, CR denotes the compression rate of a model,

||W ||0 is the number of non-zero weights after pruning, and
||W ||1 is the total weight of the original model. A greater

CR indicates greater compression, which directly improves

communication efficiency in edge devices.

Key approaches include:

i. Weight Pruning: Eliminates redundant parameters,

producing sparse models that lower transmission over-

head. However, pruning often leads to non-uniform

architectures across clients, complicating aggregation

and slowing convergence, especially under non-IID

conditions [23].

ii. Knowledge Distillation: Transfers knowledge from

a large teacher model to a smaller student model, en-

abling lightweight training and inference on edge de-

vices [24]. Recent FL-specific variants (e.g., federated

knowledge distillation and TinyFedKD) address non-

IID data and heterogeneous hardware, but they still

rely on partial access to representative local data—a
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constraint in privacy-sensitive environments [25].

iii. Low-Rank Approximation: Decomposes weight ma-

trices into lower-dimensional factors, significantly re-

ducing storage and computation [26]. While effective,

this method can degrade accuracy and requires compu-

tationally heavy preprocessing, making it less suitable

for ultra-low-power devices.

Overall, most compression approaches remain vali-

dated only in simulations, with limited empirical studies

on real low-power edge hardware. This gap raises concerns

about deployment feasibility under thermal, latency, and

device heterogeneity constraints.

4.2. Communication-Efficient FL

Since communication rounds dominate energy expen-

diture, several techniques reduce either the frequency or pay-

load of updates exchanged between clients and the server.

i. Update Sparsification: Clients transmit only selected

gradients (e.g., top-k values), reducing bandwidth us-

age [27]. While effective, sparsification may hinder con-

vergence under non-IID data or asynchronous updates

unless parameters are carefully tuned.

ii. Event-Triggered Communication: Updates are trans-

mitted only when changes exceed a threshold [28]. This

significantly cuts communication but introduces sen-

sitivity parameters that require runtime tuning, often

overlooked in current systems.

iii. Local SGD (Federated Averaging): Clients perform

multiple local updates before synchronization [29]. This

reduces communication but increases divergence when

data is non-overlapping, highlighting the need for reg-

ularization mechanisms.

iv. Over-the-Air (OTA) Computation: Both analog and

digital Over-The-Air (OTA) schemes enable simultane-

ous transmission and aggregation of model updates over

shared channels, drastically reducing communication

latency. Over-The-Air (OTA) is particularly promising

for large-scale FL at the wireless edge but introduces

challenges in error accumulation, synchronization, and

noise amplification that remain active areas of research.

Most communication-efficient techniques are tested in

controlled settings, with limited evaluation under real-world

conditions such as variable bandwidth, packet loss, and client

dropouts.

4.3. Adaptive and Asynchronous Federated

Learning

To improve resilience and energy efficiency, adaptive

and asynchronous FL strategies tailor participation and up-

date mechanisms to each client’s local context. While promis-

ing in principle, these techniques introduce additional com-

plexity and coordination challenges.

i. Client Selection Strategies: Energy-aware and

capability-driven client selection algorithms prioritize

participants based on device energy levels, compute re-

sources, or data relevance [30]. However, such schemes

can introduce systemic biases by over-utilizing high-

resource clients, thereby limiting data representative-

ness and reducing fairness in model training.

ii. Time and Energy-Aware Scheduling: These methods

dynamically adjust participation windows based on en-

ergy forecasts or network quality metrics [31]. Although

beneficial in reducing unnecessary client strain, they

often assume the availability of real-time telemetry

data and prediction models, components that are rarely

present in decentralized or privacy-sensitive edge de-

ployments.

iii. Asynchronous FL: By removing synchronization bar-

riers, asynchronous FL allows clients to upload up-

dates independently, improving resource utilization

and reducing idle time [32]. However, the resulting

model staleness and gradient inconsistency remain un-

resolved challenges that affect convergence speed and

final model quality, particularly in large-scale networks

with variable client latencies.

Adaptive techniques offer a path toward realistic de-

ployment but demand cross-layer integration and runtime

intelligence that is still nascent in current FL frameworks.

Their success hinges on the development of lightweight,

decentralized schedulers that can balance global learning

objectives with per-device constraints.

Taken together, these energy-aware techniques repre-

sent an evolving toolkit for sustainable federated learning.

Yet, the lack of rigorous testing in real-world conditions,

such as on mobile, intermittently connected, and energy-

harvesting devices, underscores the need for system-level
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co-design and deployment-focused evaluation. The next

sections examine how these strategies translate to practical

implementation in wireless edge systems.

5. FL Deployment in Sustainable

Wireless Edge Networks

The deployment of Federated Learning (FL) in real-

world wireless edge environments extends far beyond algo-

rithm design. It depends on the readiness of the communi-

cation infrastructure, the heterogeneity of hardware ecosys-

tems, and the ability to align learning processes with stringent

energy and resource constraints. While the emergence of

5G/6G networks and the proliferation of IoT devices pro-

vide new opportunities for scalable distributed intelligence

(Figure 2), they also expose practical limitations that are

often overlooked in academic literature.

Figure 2. FL at the Wireless Edge with Energy Optimization.

5.1. 5G/6G Integration for Green FL

Next-generation mobile communication systems are

frequently cited as enablers of scalable, low-latency FL de-

ployments. However, the effectiveness of these networks in

supporting energy-aware FL remains contingent on several

underexplored factors.

i. Network Slicing and Edge Intelligence: 5G and 6G

promise network slicing and Multi-access Edge Com-

puting (MEC), which, in theory, allow FL tasks to be

isolated and prioritized at the edge [33,34]. Yet, runtime

adaptability is limited, and cross-layer orchestration of

FL workloads within network slices remains an open

challenge, particularly when competing Quality of Ser-

vice (QoS) demands exist.

ii. EnergyHarvesting and Protocol Compatibility: Cel-

lular standards now support low-power communication

and even energy harvesting features. However, these

are rarely integrated with FL scheduling [35]. For exam-

ple, while solar-assisted scheduling can reduce energy

costs by up to 28% in mobile sensor networks, such co-

optimization has not been systematically studied in FL.

Emerging 6G concepts such as ambient backscatter and

AI-optimized protocols remain largely experimental,

with minimal evaluation in federated contexts [36].

iii. Deployment Gap: Despite theoretical compatibility,

real-world FL deployments over 5G/6G remain scarce.

Most proposed frameworks assume ideal connectivity

and predictable device behavior. In practice, mobile

networks exhibit temporal variability, service fragmen-

tation, and competing traffic loads. Without adaptive

orchestration at the protocol level, the energy-saving

potential of 5G/6G features such as slicing or ambient

intelligence is severely constrained.

In summary, while next-generation wireless networks

provide necessary building blocks for FL, leveraging them

for sustainable and robust deployment will require signifi-

cant innovation in orchestration, adaptive slicing, and energy-
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feedback integration—none of which are fully addressed by

current research.

5.2. IoT and Low-Power Devices

The IoT ecosystem represents a natural setting for FL

due to its scale, privacy sensitivity, and latency-critical ap-

plications. However, IoT devices introduce constraints that

complicate scalability and fairness:

i. Computational and Power Constraints: Many IoT

nodes, such as sensors, wearables, and controllers, op-

erate with minimal processing capacity, volatile power

supply, and limited memory [37]. FL’s resource de-

mands often exceed these safe operating limits. While

compression and event-driven updates help, they are

rarely adapted to the heterogeneous capabilities of di-

verse device classes.

ii. Deployment Asymmetry and Participation Instabil-

ity: Practical deployments show significant disparities

in participation due to inconsistent energy availability,

intermittent connectivity, and fluctuating workloads.

As a result, FL models face unstable convergence, bi-

ased updates, and stale aggregations. Dropout-resilient

aggregation methods are rarely integrated into current

FL frameworks [38].

iii. Case Studies and Limitations: Pilot deployments in

smart grids, digital agriculture, and health monitoring

highlight both promise and limitations. For instance,

in digital agriculture, intermittent device connectivity

caused up to 15% slower convergence compared to

controlled testbeds. Long-tail participation, where a

few devices dominate training, remains a recurring is-

sue [39]. Real-time inference needs in applications such

as patient monitoring are difficult to reconcile with

FL’s iterative updates.

The integration of FL into the IoT domain cannot rely

on existing learning architectures alone—it demands co-

design across hardware, firmware, networking, and learning

protocols. Without such holistic optimization, the use of

FL in resource-constrained environments risks becoming

impractical or unsustainable at scale.

While 5G/6G infrastructure and IoT proliferation are

often presented as natural allies of FL, their current form

exposes critical gaps in coordination, resilience, and con-

textual adaptability. Without robust aggregation methods,

energy-aware dropout handling, and adaptive orchestration,

FL deployments risk instability and bias during convergence.

Section 6 explores system-level optimizations designed to

address these constraints.

6. Optimization Strategies for Energy-

Aware Federated Learning

In wireless edge environments characterized by de-

vice heterogeneity, unstable connectivity, and strict energy

constraints, optimizing Federated Learning (FL) requires

more than localized algorithmic tweaks; it calls for holis-

tic, system-level coordination. Effective FL deployment

depends on intelligent orchestration across both clients and

the aggregation server, aiming to minimize energy expen-

diture without sacrificing model convergence, fairness, or

scalability. This section critically examines two primary op-

timization domains: energy-aware client participation and

adaptive model aggregation, while interrogating the assump-

tions and limitations of current solutions.

6.1. Resource-Aware Client Participation

The assumption that all clients are equally capable of

contributing has been invalidated by real-world deployments.

FL frameworks must adapt to device-specific variability in

energy, compute, and connectivity.

Ui= Ai−Ei (4)

Here, Ui is the participation utility, Ai is the expected

accuracy contribution of client i, Ei is its estimated energy

cost, and α, β are tunable weights representing the trade-off

between accuracy and energy.

i. Dynamic Client Scheduling: Context-aware schedul-

ing prioritizes clients based on battery life, compute

load, and link quality [40]. While this improves energy

efficiency, it risks biasing model updates toward power-

ful clients, limiting fairness in domains like healthcare

and disaster response.

ii. Incentive-Based Participation: Credit- or token-

based systems encourage participation [41]. However,

blockchain-backed incentive schemes add crypto-

graphic overhead; for instance, lightweight blockchain

consensus can consume 10–15% additional energy per
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round if not optimized, highlighting the trade-off be-

tween trust and sustainability [16].

Despite their promise, current strategies lack runtime

telemetry feedback and fairness-aware control loops. Fre-

quent prioritization of high-resource clients risks systemic

bias and limits generalization.

6.2. Energy-Constrained Model Aggregation

While much of the optimization focus remains client-

centric, server-side aggregation also plays a pivotal role in

shaping the energy profile and convergence efficiency of

FL systems. The challenge lies in balancing aggregation

frequency and responsiveness with communication overhead

and energy expenditure.

i. Aggregation Frequency Control: Federated Aver-

aging reduces communication by allowing multiple

local updates before synchronization [42]. Yet, static

intervals often cause divergence under non-IID data.

Few approaches adapt frequency dynamically based

on gradient variance or learning curves.

ii. Adaptive Aggregation Mechanisms: Real-time ad-

justment of aggregation intervals based on client en-

ergy levels or loss dynamics shows promise [43]. How-

ever, such methods require telemetry reporting and

lightweight controllers—capabilities not widely avail-

able in current deployments.

Moreover, server-side operations—secure aggregation,

differential privacy, and validation—incur energy costs rarely

quantified in the literature. Without accounting for this foot-

print, system-level sustainability evaluations remain incom-

plete.

6.3. Emerging System-Level Enablers

Beyond client and server optimizations, emerging tech-

nologies offer additional levers for sustainable FL:

i. Blockchain-Integrated FL: Blockchain provides

tamper-proof logging and trust in decentralized FL,

but consensus mechanisms (e.g., Proof-of-Work) are

energy-intensive. Recent work on lightweight or hier-

archical blockchains reduces this cost by up to 40%,

making blockchain-based FL more practical for edge

deployments [11].

ii. Neuromorphic Hardware: Event-driven spiking neu-

ral networks (SNNs) and neuromorphic chips such as

Intel Loihi perform sparse, asynchronous updates in-

stead of dense matrix multiplications. This reduces

inference energy by 60–80% compared to GPUs in

certain workloads, offering a promising substrate for

energy-constrained FL training [16].

iii. 6G Slicing and Orchestration: Dynamic 6G slicing

can reserve dedicated spectrum and compute resources

for FL tasks. Simulation studies suggest that adaptive

slicing policies can cut FL training latency by 20–25%

under mixed-traffic conditions, making large-scale de-

ployments more sustainable [16].

While client scheduling and adaptive aggregation re-

main central to energy-aware FL, sustainable system-level

optimization demands cross-layer design. Blockchain can

enhance trust, neuromorphic hardware can reduce energy

costs, and 6G slicing can allocate resources intelligently.

Yet, current implementations remain at the conceptual or

simulation stage, with limited validation in real-world de-

ployments. Bridging this gap requires predictive telemetry,

fairness-aware scheduling, and runtime coordination across

devices, protocols, and hardware platforms.

7. Security, Privacy, and Sustainabil-

ity Trade-Offs

In Federated Learning (FL), security and privacy

preservation are not ancillary features but foundational

requirements—particularly in wireless edge environments

that routinely handle sensitive, personally identifiable, or reg-

ulated data. However, the implementation of these protective

mechanisms imposes significant computational, memory,

and communication overheads, which can directly undermine

the energy efficiency and scalability goals of sustainable FL.

Despite an expanding body of work on privacy-preserving

FL, relatively few studies address the inherent trade-offs

between strong security guarantees and constrained device

capabilities. This section critically examines these tensions

and outlines the design limitations of current solutions.

74



Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

7.1. Privacy-Preserving FLMechanisms

FL systems typically rely on one or more privacy-

preserving techniques to limit information leakage during

local training and model exchange. Among the most com-

monly employed are differential privacy (DP) and secure

aggregation protocols, both of which introduce additional

energy and performance costs that are rarely quantified in

system-level evaluations.

i. Differential Privacy (DP). By injecting calibrated statis-

tical noise into model updates, DP prevents the reverse

engineering of client data [44]. However, its implemen-

tation introduces non-negligible computational over-

head, particularly when noise is sampled per-parameter

or per-layer in deep models. More importantly, DP can

impair model accuracy, especially in data-scarce or

highly non-IID environments, leading to prolonged

training and increased communication rounds.

ii. Secure Aggregation. This cryptographic technique en-

ables the central server to aggregate encrypted model

updates without accessing individual client contribu-

tions, thereby enhancing confidentiality and robustness

against inference attacks [45]. While secure aggrega-

tion strengthens system-level trust, its execution incurs

additional encryption, decryption, and key manage-

ment costs, which can strain low-power devices such

as wearables, sensors, or microcontrollers.

Although these mechanisms are essential for user trust

and regulatory compliance, most implementations assume

devices have sufficient compute and energy resources to

support them—an assumption often unrealistic in edge de-

ployments.

7.2. Energy Implications of Security Protocols

The sustainability of FL deployments is fundamentally

shaped by the overheads introduced by privacy-preserving

protocols. These costs often go unaccounted for in theoreti-

cal models and are inadequately addressed in system-level

design.

i. Encryption and Authentication Overheads. Advanced

encryption schemes—such as homomorphic encryp-

tion and secure multi-party computation—are compu-

tationally intensive and increase transmission latency,

particularly with high-dimensional model updates [46].

Even lightweight authentication requires additional

CPU cycles and memory bandwidth, which can trans-

late into higher battery drain and thermal stress.

ii. Sustainability–Trust Trade-Offs. The trade-off between

rigorous security and energy efficiency is increasingly

recognized as a core challenge in FL. Emerging ap-

proaches advocate the use of lightweight cryptographic

primitives (e.g., elliptic curve cryptography, hardware-

accelerated AES) [47], selective privacy enforcement

(where devices adjust privacy levels based on data sen-

sitivity), and context-aware privacy protocols that adapt

to device energy state or network conditions.

Dynamic Trade-Off Strategies. Beyond static mech-

anisms, there is growing interest in sensitivity-based pri-

vacy adjustment, where privacy budgets and noise levels are

tuned dynamically based on the sensitivity of local data, task

criticality, or residual device energy. For instance, health-

monitoring devices may apply stronger privacy when han-

dling patient-identifiable ECG data, but relax privacy (and

thus save energy) when transmitting aggregated activity sum-

maries. Similarly, adaptive privacy frameworks can lower

cryptographic intensity for non-critical updates while pre-

serving high protection for sensitive or high-risk transactions.

Despite their promise, such dynamic adjustment strategies

remain underexplored and lack standardized benchmarks for

evaluating both energy and privacy guarantees.

7.3. Summary and Outlook

Achieving privacy-preserving yet energy-efficient FL

requires integrated approaches that align cryptographic safe-

guards with device-level realities and application-specific risk

tolerances. The path forward lies in developing lightweight,

context-aware, and dynamically adaptive privacy mecha-

nisms, validated on resource-constrained hardware and bench-

marked not only by privacy strength but also by energy and

latency efficiency (Table 1).
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Table 1. Comparison between security and privacy-preserving mechanisms in FL based on the aspect of energy impact and edge

deployment feasibility.

Protocol/Model Energy Cost Privacy Strength
Suitability for Edge

Devices
Trade-Offs

Differential Privacy (DP) High Strong Medium
May degrade accuracy and

increase training time

Secure Aggregation Medium–High Strong Low–Medium
Adds cryptographic overhead;

burdens low-end devices

Lightweight ECC/AES Low Moderate High
Well-suited for IoT; efficient and

fast

Selective Privacy

Enforcement
Low–Medium Adaptive High

Adjusts protection level based on

device or data sensitivity

Context-Aware Privacy Low–Medium Adaptive High
Dynamic adjustment using

energy state or network condition

Sensitivity-Based

Adjustment
Low–Medium Adaptive–Strong High

Dynamically tunes privacy

budget vs. energy

8. Applications and Case Studies

The adoption of energy-efficient Federated Learn-

ing (FL) is expanding across several application domains

where privacy, sustainability, and localized intelligence are

paramount. While theoretical frameworks for FL are widely

developed, their real-world implementation reveals a com-

plex interplay between deployment constraints, system het-

erogeneity, and domain-specific performance requirements.

This section critically examines how FL is being adapted

across sectors such as smart cities, agriculture, healthcare,

and disaster management, highlighting both operational ben-

efits and persistent limitations.

8.1. Smart Cities and Infrastructure Monitor-

ing

The vision of smart cities relies on massive deploy-

ments of interconnected sensors and edge devices for contin-

uous monitoring of traffic, energy, pollution, and infrastruc-

ture health. In this context, FL enables decentralized training,

reducing reliance on centralized cloud servers and preserv-

ing privacy. Energy-efficient FL is particularly valuable in

extending the lifespan of distributed sensor nodes, many of

which are deployed in hard-to-reach or power-limited envi-

ronments [48].

However, scalability is limited by device diversity, un-

stable urban wireless networks, and non-stationary data. For

example, traffic light control systems trained with FL must

adapt to variable congestion patterns influenced by events

or weather, while structural health monitoring systems face

challenges in aggregating asynchronous updates from het-

erogeneous sensors [14]. Addressing these challenges will

require robust scheduling, hierarchical aggregation, and fault-

tolerant communication protocols.

8.2. Smart Agriculture and Precision Farming

Agriculture is well-suited for FL due to localized data

generation and the reliance on solar-powered or battery-

limited devices. Edge devices such as drones and soil sensors

can collaboratively train yield predictors or irrigation models

without transmitting raw data [49].

Energy-aware FL reduces data transfer costs and ex-

tends device lifetimes, with case studies in irrigation schedul-

ing showing efficiency gains [50]. However, current deploy-

ments often assume uniform data availability, ignoring micro-

climate variability and soil diversity. To achieve sustainable

agricultural FL, future systems must integrate personalized

federated models and energy-adaptive participation strate-

gies.

8.3. Healthcare IoT and Remote Monitoring

Healthcare is a high-stakes domain where FL ensures

data privacy while enabling predictive health models acr0oss

wearables, home sensors, and diagnostic tools. Applications

include early arrhythmia detection, elderly fall prediction,

and COVID-19 symptom modeling [51,52].

Yet, FL in healthcare faces acute trade-offs between
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privacy, accuracy, and energy consumption. Devices such

as wearables must balance sensing, inference, and training

within strict thermal and energy budgets. Pilot deployments

show potential but lack longitudinal evaluation under patient

variability, irregular sensor usage, and cross-hospital data

heterogeneity. Future efforts must integrate energy-aware

pruning, selective updates, and context-driven privacy mech-

anisms.

8.4. Disaster Management and Environmental

Sensing

In disaster-prone areas, FL enables decentralized learn-

ing on edge devices such as seismic monitors, drones, and

flood sensors, which can continue operating even when cen-

tral infrastructure is unavailable [53].

Energy efficiency is crucial due to harsh environments

and unpredictable power. For instance, wildfire-monitoring

drones equipped with FL can adaptively update models based

on energy levels and detection confidence, while federated

flood prediction models can improve local alerts with re-

duced communication [54]. The main barriers are coordinated

aggregation under unreliable connectivity and the scarcity

of labeled training data, which highlights the importance of

transfer learning and unsupervised FL approaches.

9. Comparative Analysis

To advance the design of energy-efficient Federated

Learning (FL) systems, it is essential to systematically eval-

uate and compare existing approaches along key opera-

tional dimensions: energy consumption, communication

cost, model accuracy, and deployment feasibility. As demon-

strated in Figure 3, the performance of FL strategies varies

significantly across energy and accuracy dimensions, with

optimization methods like FedOpt and hybrid models of-

fering improved energy-efficiency without compromising

accuracy. This section provides a comparative analysis of

prevalent techniques and critically examines the benchmarks

and evaluation practices that currently shape this research

space. While progress has been made across multiple fronts,

a closer inspection reveals significant gaps in evaluation

consistency, deployment realism, and methodological rigor.

While the following categorization (Table 2) offers an

entry point into method comparison, it abstracts away nu-

anced differences in hardware performance, environmental

variability, and multi-objective trade-offs—all of which are

critical in real-world settings.

Figure 3. Accuracy and energy consumption comparison of federated learning strategies (FedAvg, FedProx, FedNova, FedOpt, Hybrid)

on LEAF benchmark dataset with 100 clients.
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Table 2. Summary of Energy-Efficient FL Techniques.

Technique Energy Use Communication Cost Model Accuracy Remarks

Model Pruning and

Quantization
Low Low Moderate–High

Effective on constrained

devices [55].

Update Sparsification Medium Very Low Moderate
May degrade convergence on

non-IID data [56].

LocalSGD (FedAvg) Medium Medium High
Standard FL baseline; may diverge

under data heterogeneity [57].

Adaptive Client

Selection
Low–Medium Low High

Balances accuracy and resource

allocation [58].

Event-Triggered

Communication
Low Very Low Moderate

Best suited for non-critical

updates [59].

Asynchronous FL Medium Low Moderate–High
Reduces straggler effects;

vulnerable to staleness [60].

9.1. Benchmarks and Evaluation Metrics

Empirical evaluation in energy-efficient FL remains

largely fragmented. While many studies employ standard-

ized datasets such as CIFAR-10, MNIST, and FEMNIST for

image classification tasks, these benchmarks offer limited

insight into deployment-scale variability or device hetero-

geneity. The LEAF benchmark [57] has emerged as a more

representative alternative, simulating FL-specific challenges

such as statistical and system heterogeneity. Likewise, time-

series and healthcare datasets like HAR and MIMIC-III are

increasingly adopted for realistic use cases.

Despite these efforts, inconsistencies persist in the

choice and reporting of evaluation metrics. Commonly used

performance indicators include:

i. Energy per training round (in Joules or mWh), often

estimated via simulation or limited hardware profiling.

ii. Communication volume, measured in megabytes or

message count, without accounting for retransmissions

or network failures.

iii. Convergence time, typically tracked as epochs or com-

munication rounds, yet often omitting variance across

devices.

iv. Test accuracy or task-specific performance, usually

benchmarked on IID validation data.

v. System-wide latency, device dropout rates, and avail-

ability metrics, which are crucial but rarely standard-

ized.

Critically, these metrics are rarely integrated into a uni-

fied evaluation framework, which makes cross-study com-

parison unreliable and undermines reproducibility.

9.2. Limitations of Existing Works

Despite growing interest in energy-aware FL, several

foundational limitations persist across the current literature:

i. Absence of Deployment-Scale Validation: A signifi-

cant proportion of studies rely exclusively on simula-

tions or emulators. As noted by Mohammadi et al. [61],

very fewmethods are tested on real edge hardware with

constrained power profiles, and even fewer account for

environmental variability such as wireless interference

or thermal throttling.

ii. Inconsistent Baselines and Evaluation Setups: Dif-

ferences in hyperparameter tuning, model architec-

tures, and dataset preprocessing across studies intro-

duce inconsistencies that hinder fair performance com-

parisons [62]. The lack of open-source reproducibility

compounds this issue.

iii. Neglect of Cross-Layer Optimization: Many ap-

proaches target improvements at the algorithmic level

without addressing the communication-computation-

learning interdependencies inherent in wireless edge

systems. This siloed optimization neglects critical bot-

tlenecks such as MAC-layer contention or energy drain

from wireless transmission [63].

iv. Oversimplification of Data Distributions: Most

works assume IID or near-IID data across clients—an

assumption that rarely holds in practical applications.

Techniques that appear energy-efficient under synthetic

or controlled conditions often falter when faced with
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real-world, skewed, or sparse client data [64].

v. Limited Integration of Privacy and Energy Effi-

ciency: Security and privacy concerns, while acknowl-

edged in isolation, are seldom addressed in tandem

with energy efficiency. As Ma et al. [65] highlights,

only a small fraction of FL frameworks co-optimizes

for both privacy protection (e.g., secure aggregation,

differential privacy) and energy constraints, leading to

either compromised performance or excessive energy

overheads.

Collectively, these limitations underscore the ur-

gent need for multi-dimensional evaluation frameworks,

grounded in realistic testbeds and backed by standardized

benchmarks. Future work must move beyond isolated opti-

mizations and pursue co-design approaches that account for

algorithmic robustness, device heterogeneity, communica-

tion topology, and energy availability, all within an integrated

FL lifecycle. Moreover, the energy used by the server-side

process of secure aggregation or model validation is not

measured in the majority of evaluations, or, at best, only par-

tially. Without this, the field risks stagnating in theoretical

progress without meaningful practical translation. Nonethe-

less, a number of open research questions continue to exist,

which are discussed below.

10. Open Research Challenges

Despite notable progress in energy-efficient Federated

Learning (FL), the pathway to realizing scalable, robust, and

ecologically sustainable FL deployments remains obstructed

by several unresolved challenges. These gaps span infras-

tructure limitations, algorithmic complexity, systemic disin-

tegration across computing layers, and emerging integration

hurdles with complementary technologies. This section criti-

cally outlines these open research challenges and identifies

promising directions for future work.

10.1. Lack of Standardized Testbeds and Rep-

resentative Datasets

One of the most critical bottlenecks in advancing the

field is the absence of standardized, reproducible test environ-

ments for evaluating energy-efficient FL under realistic con-

ditions. Most existing studies rely on simulation frameworks

or synthetic datasets that fail to replicate key constraints

found in actual wireless edge deployments, such as device

heterogeneity, intermittent connectivity, and unpredictable

energy availability [66].

The current dependence on idealized hardware settings

leads to overestimation of performance and underreporting

of energy overheads. Moreover, there is no consensus on

how to benchmark trade-offs between accuracy, energy con-

sumption, latency, and client fairness. This limits cross-paper

comparability and impedes methodological rigor.

There is an urgent need for open-source, modular FL

testbeds equipped with energy metering, wireless emulation

(e.g.,Wi-Fi, LoRaWAN, LTE), and diverse hardware profiles.

Such testbeds must support heterogeneous data distributions

and incorporate realistic dropout and failure patterns to en-

able system-level validation and fair benchmarking [67].

10.2. FL Under Extreme Resource Constraints

Many promising FL use cases—such as environmental

sensing, rural healthcare, and disaster response—necessitate

operation on ultra-constrained hardware platforms with lim-

ited memory, compute power, and power supply. Existing FL

algorithms, even those optimized for edgeAI, often carry over-

heads in communication, cryptography, and model synchro-

nization that render them infeasible for such deployments.

Several technical challenges remain unresolved:

i. Designing ultra-lightweight model architectures ca-

pable of training and inference within kilobyte-level

memory budgets.

ii. Implementing incremental or partial model updates to

reduce communication and computation loads.

iii. Developing resilient aggregation strategies that handle

frequent client dropout, delayed updates, and intermit-

tent energy supply [68].

Furthermore, these scenarios are characterized by

volatile environmental factors and a lack of network redun-

dancy, further complicating the deployment of synchronous

or high-frequency update schemes. Current FL frameworks

rarely incorporate energy-aware fallback strategies or run-

time adaptability to address these edge cases [69].

10.3. Cross-Layer Optimization Deficiencies

Energy-efficient FL remains largely segmented by re-

search discipline, with separate communities addressing algo-
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rithmic design, network protocol engineering, and embedded

systems. This siloed approach results in disjointed optimiza-

tions that fail to deliver system-wide efficiency.

Cross-layer co-design remains underexplored and

presents a high-impact research frontier. Specifically, fu-

ture work must address:

i. Joint optimization across communication, computa-

tion, and learning layers, considering real-time device

state and network conditions.

ii. Runtime adaptation of FL workflows, where model

complexity, training frequency, and transmission pro-

tocols adjust dynamically based on energy and latency

feedback.

iii. Integration of FL logic with networking advancements,

such as 5G/6G network slicing, cooperative scheduling,

and mesh-based edge routing [70].

Without such coordination, FL deployments will con-

tinue to suffer from inefficiencies that nullify energy savings

achieved at any individual layer.

10.4. Integration with Blockchain and Green

AI: Trade-Offs and Barriers

The convergence of FL with blockchain technologies

and greenAI design principles is widely regarded as a promis-

ing route toward trustworthy and eco-conscious distributed

learning. However, the integration of these technologies

introduces significant systemic and energy trade-offs.

i. Blockchain for FL coordination and auditability of-

fer transparency and trust, particularly in untrusted or

multi-stakeholder environments. Yet, traditional con-

sensus mechanisms such as Proof-of-Work (PoW) are

computationally intensive and energy-prohibitive for

edge deployment.

ii. There is a need for lightweight, low-latency consen-

sus mechanisms (e.g., Proof-of-Authority, Directed

Acyclic Graph (DAGs), or federated Byzantine agree-

ment) that align with FL’s energy and bandwidth con-

straints.

iii. Additionally, leveraging blockchain for incentive sys-

tems or secure logging introduces communication and

storage overhead, which must be offset by architectural

efficiency [71].

iv. Parallel efforts in green AI focus on designing inher-

ently efficient models using pruning, quantization, and

neuromorphic computing. However, their application

in FL settings remains under-evaluated, particularly in

scenarios with non-IID data and device variance [72].

Without rigorous co-evaluation of these integration ef-

forts on constrained hardware, the benefits of blockchain

and green AI in FL remain largely speculative. These open

challenges highlight the pressing need for interdisciplinary

collaboration that bridges systems engineering, hardware

design, wireless networking, cryptography, and applied ma-

chine learning. Only through such integrated efforts can FL

transition from controlled research environments to sustain-

able, large-scale deployments in real-world wireless edge

networks. These challenges should be addressed creatively

by highly adaptive, cross-disciplinary innovations in the fu-

ture.

11. Future Research Directions

Ensuring the long-term viability of energy-efficient

Federated Learning (FL) in sustainable wireless edge net-

works requires a shift from isolated optimizations toward

intelligent, adaptive, and hardware-conscious system designs.

This section outlines emerging research directions that hold

the potential to transform FL into a truly self-optimizing and

energy-aware framework—provided that rigorous validation,

cross-disciplinary integration, and deployment realism are

pursued.

11.1. Integration with Emerging 6G Communi-

cation Technologies

The future of FL at the edge is closely tied to advances

in 6G communication infrastructure. Capabilities such as

network slicing, intelligent reflecting surfaces, and ambient

backscatter communication provide opportunities to reduce

energy consumption and enhance adaptability.

In particular, network slicing allows dynamic alloca-

tion of FL tasks through slice-specific resource reservation

mechanisms, where resources are assigned according to de-

vice energy budgets, latency requirements, or application

priorities (e.g., healthcare vs. entertainment). Such mech-

anisms enable context-aware scheduling, latency-sensitive

aggregation, and channel-aware model transmission, making

FL adjustable in real time to network dynamics and device
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constraints. Future research should explore how slicing reser-

vation policies can be co-optimized with federated schedulers

to jointly minimize energy consumption and training delays

constraints.

11.2. Hybridization with Adaptive Learning

Paradigms

Hybridizing FL with adaptive learning paradigms such

as Reinforcement Learning (RL) and Lifelong Learning of-

fers the potential for self-organizing systems that respond to

resource variability, client churn, and evolving data distribu-

tions.

i. Federated Reinforcement Learning (FRL) models FL

coordination as a sequential decision-making process

for client selection, communication frequency, and lo-

cal training configuration [73]. However, existing ap-

proaches often assume stable reward signals and simple

state spaces—assumptions that break down in dynamic

wireless networks. Moreover, RL agent overhead must

be carefully optimized to avoid offsetting FL’s energy

gains.

ii. Lifelong FL supports continuous learning across evolv-

ing data streams, mitigating catastrophic forgetting and

client churn [74]. Yet, current implementations often de-

pend on costly regularization or rehearsal strategies

unsuited to energy-limited devices.

Future work should develop lightweight, communi-

cation-aware adaptive algorithms that incorporate real-time

edge feedback (e.g., device battery level, connectivity sta-

tus). At the same time, lightweight blockchain frameworks

(e.g., Proof-of-Authority, Directed Acyclic Graph (DAG)

consensus) can support incentive and trust mechanisms with

reduced energy costs, enabling secure, auditable interactions

in multi-stakeholder domains such as healthcare and finance

services.

11.3. Hardware-Centric Innovations and Alter-

native Energy Sources

Achieving sustainable FL also requires innovations at

the hardware and power management levels.

i. Energy-Harvesting Devices. Leveraging renewable

energy sources (e.g., solar, RF, kinetic) enables de-

vices to schedule participation opportunistically [75].

However, naive energy-aware scheduling risks model

staleness. Future research should integrate predictive

energy harvesting models (e.g., solar forecasting) with

model compression so that compressed updates are

prioritized when energy availability is low, achieving

joint optimization of accuracy and sustainability [76].

ii. Neuromorphic Computing. Brain-inspired processors,

such as spiking neural networks (SNNs), provide ultra-

low-power, event-driven computation [12]. Empirical

studies suggest up to 10× energy savings compared to

GPU-based training, but their integration into FL is

still immature. Future work must quantify these gains

in FL- specific settings, and develop co-design frame-

works that enable SNN-based clients to interoperate

with conventional aggregators. Toolchains and spike-

compatible aggregation processes will be crucial to

unlock neuromorphic FL at scale [77].

Overall, hardware-conscious FL requires multi-

objective co-design of algorithms, devices, and communica-

tion layers. Building real-world testbeds is critical, incorpo-

rating heterogeneous IoT devices, variable network condi-

tions, and power-profiling tools to benchmark performance

realistically. Frameworks such as LEAF [8] and OARF [66]

provide standardized federated settings that can be extended

into multi-layer, energy-sensitive benchmarking environ-

ments. By leveraging these open-source benchmarks, our

survey ensures transparent and comparable evaluation across

studies without requiring the release of a standalone code-

base.

12. Conclusions

This survey has critically examined the emerging field

of energy-efficient Federated Learning (FL) within sustain-

able wireless edge networks. While FL presents a promising

framework for decentralized intelligence and data privacy,

its deployment in energy- and resource-constrained envi-

ronments introduces significant challenges that demand sys-

temic, cross-layer solutions.

We began by analyzing the structural limitations of cur-

rent wireless systems in supporting FL, identifying communi-

cation overheads, device heterogeneity, and energy scarcity

as primary barriers to scalability. The survey then evaluated

core strategies—such as model compression, sparsification,
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adaptive scheduling, and asynchronous updates—not only

for their theoretical efficiency but also for their practical

viability on edge hardware. Our review emphasized the

trade-offs between accuracy, communication cost, and en-

ergy use, noting that benchmark studies on the LEAF dataset

reveal energy reductions of up to 75% under event-triggered

updates, though often at the cost of reduced accuracy and

fairness.

The analysis extended to deployment contexts involv-

ing IoT, 5G/6G infrastructures, and low-power devices,

where sustainability goals intersect with practical constraints.

Case studies in smart cities, agriculture, healthcare, and disas-

ter management demonstrated the applicability of FL, while

exposing persistent gaps in synchronization, robustness, and

fairness. Comparative synthesis of existing methods un-

derscored the absence of unified evaluation metrics, repro-

ducible testbeds, and cross-domain benchmarks in the litera-

ture.

Looking forward, sustainable FL requires a shift from

algorithm-centric optimization toward co-designed, multi-

objective systems that jointly consider hardware capabili-

ties, renewable energy sources, network dynamics, and trust

mechanisms. Promising directions include:

i. 6G-enabled network slicing to dynamically allocate

resources for FL training,

ii. Neuromorphic processors spiking neural networks

(SNNs) that can deliver up to 10× energy efficiency

compared to GPUs,

iii. Blockchain-based trust frameworks with lightweight

consensus to ensure integrity, and

iv. GreenAI models that integrate model compression with

energy harvesting predictions for joint optimization.

Ultimately, achieving this vision will demand inter-

disciplinary collaboration across embedded systems, wire-

less networking, machine learning, and privacy engineer-

ing. Without such integration, FL risks remaining a theoreti-

cally compelling but practically constrained solution. The

future of energy-efficient FL lies in its ability to evolve into

a fully adaptive, privacy-preserving, and energy-conscious

ecosystem—one that is not only scalable and robust, but also

aligned with the global imperative of sustainable intelligent

infrastructure.
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