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ABSTRACT

The recent surge in edge computing and wireless connectivity has accelerated the adoption of Federated Learning
(FL), a paradigm that enables privacy-preserving distributed intelligence across resource-constrained devices. However,
implementing FL in practical wireless edge networks introduces significant challenges, particularly excessive energy
consumption and communication overhead. This survey provides a system-level exploration of energy-efficient FL strate-
gies, examining algorithmic advances and deployment challenges. Core techniques—such as model compression, update
sparsification, and adaptive client scheduling—are analyzed with respect to their trade-offs in scalability, convergence, and
long-term energy sustainability, especially under non-IID data distributions and heterogeneous device conditions. Practical
insights are drawn from case studies in the Internet of Things (IoT), 5G/6G wireless ecosystems, and ultra-low-power
device deployments, highlighting both limitations and optimization opportunities for real-world implementations. In
addition, the survey explores emerging enablers, including blockchain-based trust frameworks, neuromorphic processors,
and reinforcement learning-driven orchestration, which hold potential for achieving robust, sustainable FL in dynamic edge
environments. By integrating perspectives from communication theory, distributed systems, and sustainable computing,
this work delivers an interdisciplinary roadmap for the realistic deployment of energy-efficient FL in next-generation
wireless systems, aiming to guide future research toward scalable, fair, and sustainable federated intelligence at the
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1. Introduction

The exponential growth of intelligent connected de-
vices, combined with ubiquitous wireless connectivity, has
intensified the demand for sustainable wireless systems. In
such systems, energy efficiency, carbon-conscious computa-
tion, and device longevity are no longer optional but essential
requirements. Traditional machine learning pipelines, which
rely on centralized data collection and model training, impose
heavy energy and bandwidth costs, making them unsuitable
for resource-constrained edge environments!-1.

Federated Learning (FL) has emerged as a compelling
alternative by enabling decentralized model training across
edge devices while preserving privacy and reducing raw data
transmission[®!. Its sustainability promise lies in support-
ing collaborative intelligence in energy-limited ecosystems.
However, real-world deployment of FL in wireless edge
networks remains challenging. Issues such as communi-
cation overhead, device heterogeneity, unstable channels,
and limited energy reserves directly affect scalability, model
accuracy, and system reliability ],

Sustainable wireless edge networks refer to advanced
communication infrastructures that are engineered to deliver
high performance while simultaneously minimizing environ-
mental impact and operational energy consumption. These
systems leverage the capabilities of edge computing, wherein
computation is performed closer to data sources, such as IoT
devices, embedded sensors, and mobile terminals, to reduce
reliance on centralized cloud platforms and to optimize re-
source utilization!]. Key characteristics of these networks
include distributed processing, dynamic scalability, and low-
latency communication. Sustainability, in this context, is typ-
ically evaluated using metrics such as energy consumption
per operation, carbon footprint, and the operational lifespan
of devices and networks!”]. Recent studies, such as Li, L.[8],
also highlight the role of green wireless networking in reduc-
ing carbon emissions across 6G ecosystems. By relocating
computation to the edge, these systems reduce the energy

overhead of data transmission and improve responsiveness

Federated Learning; Wireless Edge Networks; Energy Efficiency; Communication Bottlenecks; Client

and fault tolerance®]. While strategies like energy harvest-
ing, sleep scheduling, and adaptive transmission have been
explored to further improve efficiency, their integration into
FL remains underdeveloped!'%.

This survey critically investigates the current landscape
of energy-efficient FL in wireless edge environments. Un-
like prior works that primarily catalog methods in isolation,
our approach emphasizes the interplay between algorithmic
choices and system-level constraints. In contrast to the 2023
JEIS survey on FL, which focused broadly on communi-
cation efficiency'!], this work provides a systematic and
sustainability-oriented perspective, integrating carbon foot-
print, hardware heterogeneity, and deployment realities. Fur-
thermore, while several surveys exist in this domain, they
often overlook system-level coordination across communica-
tion, computation, and orchestration. This paper bridges that
gap by examining energy efficiency holistically across layers.

Key contributions of this survey include:

i A critical assessment of energy and communication bot-
tlenecks that limit the scalability of FL at the wireless
edge.

ii. A survey of energy-saving techniques such as model
compression, communication sparsification, and asyn-
chronous client scheduling, analyzed under practical
constraints such as non-IID data and device dropout.

iii.  An exploration of FL deployment challenges in low-
power, intermittently connected devices, and energy-
harvesting systems.

iv. A comparative synthesis of state-of-the-art approaches,
evaluating their trade-offs in energy use, communica-
tion cost, and model accuracy across different deploy-
ment contexts.

v. A forward-looking analysis of unresolved challenges,
including the integration of blockchain-based trust
frameworks, green Al models, and neuromorphic hard-
ware into the FL paradigm.

vi. A structured roadmap guiding the reader from back-
ground concepts through technical techniques, de-

ployments, trade-offs, applications, benchmarking, re-
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search gaps, and future directions.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces background concepts and related literature.
Section 3 outlines communication and energy bottlenecks.
Section 4 surveys energy-aware FL strategies. Section 5
examines deployment constraints in edge networks. Section
6 explores system-level optimizations. Section 7 discusses
trade-offs among privacy, energy, and model performance.
Section 8 presents key applications. Section 9 compares
existing methods. Section 10 outlines open challenges, and

Section 11 discusses future research avenues. Finally, Sec-
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Figure 1. Federated Learning Architecture

FL architectures are categorized into three primary
types:
i. Horizontal Federated Learning: Clients share the
same feature space but hold different data samples.
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tion 12 concludes the survey.

2. Federated Learning Overview

Federated Learning (FL) is a decentralized machine
learning paradigm in which multiple edge devices partici-
pate in training a shared global model using their local data,
without exchanging the raw data itself, as shown in Figure
1. In a typical FL setup, model parameters are exchanged be-
tween clients and a central server for aggregation, preserving

data privacy and reducing communication costs.
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ii.  Vertical Federated Learning: Clients share the same

data samples but with different feature sets.

iii. Federated Transfer Learning: Applied when both

data samples and feature spaces differ across clients!!3].
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FL’s advantages over traditional centralized learning
include improved privacy compliance, lower transmission
overhead, and support for personalized model development
across distributed nodes!"*. However, these benefits are of-
ten offset by several critical limitations when FL is deployed

in wireless edge environments.

min N

w i=1

piLi(w) )

w is the learned model parameters in this global optimization
objective, Li is the local loss that is experienced on client i,
and pi is the fraction of the training data possession by client
i. The goal is to optimize the weighted average of local losses
of all clients, and it is the foundation of federated learning.

Unreliable communication links, especially in mobile
and IoT networks, result in increased latency and synchroniza-
tion difficulties. Additionally, data across clients is typically
non-independent and identically distributed (non-1ID), which
affects model convergence and generalization. The hetero-
geneity of edge devices, in terms of computation capacity,
energy availability, and memory, further complicates client
participation and degrades system-wide performance '3,

Despite a growing body of literature on FL, most meth-
ods are designed under idealized assumptions, including sta-
ble connectivity, consistent energy availability, and uniform
client capabilities. These assumptions rarely hold in practical
scenarios, limiting the scalability and energy efficiency of ex-
isting FL implementations. A deeper understanding of these
constraints is essential to guide the development of sustainable
FL techniques, which is the central focus of this survey.

The following part establishes some of the severe en-
ergy and communication bottlenecks that constrain scale-up
power at the edge of FL.

Sustainability in wireless edge networks is typically
evaluated using metrics such as energy consumption per op-
eration, carbon footprint, and device lifespan!’. To ensure
comparability, carbon footprint can be quantified by con-
verting energy usage into COz-equivalent emissions using
standardized emission-factor models. A simple formulation

is given by:
CO2¢eq (9)=Energy (kWh)xEF (9CO2/kWh)

where EF is the emission factor provided by datasets such
as the IPCC Guidelines!'® or the ecoinvent databasel®].

For example, using the U.S. EPA default emission factor

(EF =233 gCO:/kWh), an FL training session consum-
ing 0.5 kWh would correspond to approximately 116 gCO-
emissions. Such quantitative measures allow sustainable
FL research to align with climate accountability standards,
ensuring that algorithmic efficiency gains are meaningfully

tied to environmental impact.

3. Energy and Communication Bot-
tlenecks in Federated Learning

While Federated Learning (FL) presents a decentral-
ized alternative to conventional machine learning with strong
privacy guarantees, its deployment in wireless edge networks
introduces critical bottlenecks that undermine energy effi-
ciency, scalability, and sustainability. These bottlenecks stem
from both communication overhead and device-level lim-
itations, particularly in environments with heterogeneous

clients and unstable wireless channels.

3.1. Background and Foundational Concepts

A central challenge in FL is the iterative exchange of
model updates between clients and the server, which stresses
constrained wireless links and drains device energy. The
communication cost per round can be expressed as:

C=RxUxS 2)

Here, C represents the total communication cost (in
bits). R is the number of communication rounds (dimen-
sionless), U is the number of participating clients (dimen-
sionless), and S is the size of the transmitted model update
(bits per round per client). In energy-aware analyses, this
communication volume is typically converted into Joules by
multiplying by the transmission energy per bit, as specified
by the underlying wireless protocol.

Key issues include:

1. Uplink/Downlink Imbalance: FL requires bidirectional
communication, yet wireless uplinks are slower and
more energy-hungry than downlinks. This leads to la-
tency and uneven energy expenditure, especially on
mobile and battery-powered devices!'7].

ii.  Bandwidth Saturation: As the number of participating
devices grows, simultaneous transmissions congest

limited spectrum resources. Without congestion-aware
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scheduling, retransmissions and collisions multiply en-
ergy costs[1&1°],

iii.  Data Heterogeneity: Non-IID client data slows conver-
gence, increasing the required rounds R, which inflates

communication and energy demand 2],

Although compression and communication reduction
methods exist, most do not account for fluctuating wireless
conditions such as packet loss, variable topology, or compet-

ing traffic.

3.2. Device and Model-Level Constraints

Beyond communication, device-level limitations intro-
duce additional challenges for FL scalability and sustainabil-
ity:

i.  Battery Depletion and Energy Scarcity: FL parti-
cipants—smartphones, loT sensors, and wearables—
operate under strict energy budgets. Extended training
rapidly depletes batteries, especially when repeated
participation is required. Without energy-aware client
selection, resource-constrained devices are often over-
burdened, leading to dropouts and reduced system
availability 211,

ii.  Local Resource Constraints: Training deep models
demands significant memory and compute capacity.
On lightweight hardware such as microcontrollers or
embedded ARM processors, this competes with critical
system tasks, causing instability or a degraded user ex-
perience. While model compression and quantization
offer relief, many methods ignore hardware profiling
and thermal limits, restricting practical deployment %),

iii. Operational Trade-offs: Devices must balance partici-
pation in FL with their primary functions (e.g., sensing,
monitoring, actuation). The lack of adaptive resource
allocation policies in most implementations results in
inefficient energy usage and missed application-level

deadlines.

Together, these communication and device-level con-
straints reveal fundamental design gaps in current FL systems.
Addressing these requires not just algorithmic refinement
but also the development of cross-layer, context-aware FL
protocols that integrate network dynamics, hardware hetero-
geneity, and energy availability into their core scheduling

and optimization logic. To combat these limitations, Section

4 examines methods that can be used to enhance the energy

consumption of FL.

4. Techniques for Energy-Efficient
Federated Learning

Addressing the energy and communication inefficien-
cies of Federated Learning (FL) in wireless edge environ-
ments requires more than isolated algorithmic adjustments—
it demands techniques that adapt to heterogeneous devices,
unreliable networks, and constrained energy budgets. This
section critically examines three broad classes of methods:
model compression, communication optimization, and adap-
tive training paradigms. Each is evaluated in terms of feasi-

bility, trade-offs, and limitations in real-world deployments.

4.1. Device and Model-Level Constraints

Model compression techniques reduce the computa-
tional and transmission burden of FL by minimizing the size
of models exchanged between clients and the server. Although
widely studied in centralized settings, FL introduces unique
challenges due to device variability and convergence stability.

Wl

CR=
W1y

(€)

Here, CR denotes the compression rate of a model,
[|W]|o is the number of non-zero weights after pruning, and
[|W]|; is the total weight of the original model. A greater
CR indicates greater compression, which directly improves
communication efficiency in edge devices.

Key approaches include:

i.  Weight Pruning: Eliminates redundant parameters,
producing sparse models that lower transmission over-
head. However, pruning often leads to non-uniform
architectures across clients, complicating aggregation
and slowing convergence, especially under non-1ID
conditions 23],

ii.  Knowledge Distillation: Transfers knowledge from
a large teacher model to a smaller student model, en-
abling lightweight training and inference on edge de-

s[4, Recent FL-specific variants (e.g., federated

vice
knowledge distillation and TinyFedKD) address non-
IID data and heterogeneous hardware, but they still

rely on partial access to representative local data—a
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constraint in privacy-sensitive environments >3],

iii. Low-Rank Approximation: Decomposes weight ma-
trices into lower-dimensional factors, significantly re-
ducing storage and computation %1, While effective,
this method can degrade accuracy and requires compu-
tationally heavy preprocessing, making it less suitable

for ultra-low-power devices.

Overall, most compression approaches remain vali-
dated only in simulations, with limited empirical studies
on real low-power edge hardware. This gap raises concerns
about deployment feasibility under thermal, latency, and

device heterogeneity constraints.

4.2. Communication-Efficient FL

Since communication rounds dominate energy expen-
diture, several techniques reduce either the frequency or pay-
load of updates exchanged between clients and the server.

1. Update Sparsification: Clients transmit only selected
gradients (e.g., top-k values), reducing bandwidth us-
age!?7]. While effective, sparsification may hinder con-
vergence under non-IID data or asynchronous updates
unless parameters are carefully tuned.

ii.  Event-Triggered Communication: Updates are trans-
mitted only when changes exceed a threshold ], This
significantly cuts communication but introduces sen-
sitivity parameters that require runtime tuning, often
overlooked in current systems.

iii. Local SGD (Federated Averaging): Clients perform
multiple local updates before synchronization!??1. This
reduces communication but increases divergence when
data is non-overlapping, highlighting the need for reg-
ularization mechanisms.

iv.  Over-the-Air (OTA) Computation: Both analog and
digital Over-The-Air (OTA) schemes enable simultane-
ous transmission and aggregation of model updates over
shared channels, drastically reducing communication
latency. Over-The-Air (OTA) is particularly promising
for large-scale FL at the wireless edge but introduces
challenges in error accumulation, synchronization, and

noise amplification that remain active areas of research.

Most communication-efficient techniques are tested in
controlled settings, with limited evaluation under real-world
conditions such as variable bandwidth, packet loss, and client

dropouts.

4.3. Adaptive and Asynchronous Federated
Learning

To improve resilience and energy efficiency, adaptive
and asynchronous FL strategies tailor participation and up-
date mechanisms to each client’s local context. While promis-
ing in principle, these techniques introduce additional com-

plexity and coordination challenges.

1. Client Selection Strategies: Energy-aware and
capability-driven client selection algorithms prioritize
participants based on device energy levels, compute re-
sources, or data relevance %], However, such schemes
can introduce systemic biases by over-utilizing high-
resource clients, thereby limiting data representative-
ness and reducing fairness in model training.

ii.  Time and Energy-Aware Scheduling: These methods
dynamically adjust participation windows based on en-
ergy forecasts or network quality metrics*!1. Although
beneficial in reducing unnecessary client strain, they
often assume the availability of real-time telemetry
data and prediction models, components that are rarely
present in decentralized or privacy-sensitive edge de-
ployments.

iii.  Asynchronous FL: By removing synchronization bar-
riers, asynchronous FL allows clients to upload up-
dates independently, improving resource utilization

(321, However, the resulting

and reducing idle time
model staleness and gradient inconsistency remain un-
resolved challenges that affect convergence speed and
final model quality, particularly in large-scale networks

with variable client latencies.

Adaptive techniques offer a path toward realistic de-
ployment but demand cross-layer integration and runtime
intelligence that is still nascent in current FL frameworks.
Their success hinges on the development of lightweight,
decentralized schedulers that can balance global learning
objectives with per-device constraints.

Taken together, these energy-aware techniques repre-
sent an evolving toolkit for sustainable federated learning.
Yet, the lack of rigorous testing in real-world conditions,
such as on mobile, intermittently connected, and energy-

harvesting devices, underscores the need for system-level

71



Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

co-design and deployment-focused evaluation. The next
sections examine how these strategies translate to practical

implementation in wireless edge systems.

5. FL Deployment in Sustainable
Wireless Edge Networks

The deployment of Federated Learning (FL) in real-
world wireless edge environments extends far beyond algo-
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vide new opportunities for scalable distributed intelligence
(Figure 2), they also expose practical limitations that are

often overlooked in academic literature.
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Figure 2. FL at the Wireless Edge with Energy Optimization.

5.1. 5G/6G Integration for Green FL

Next-generation mobile communication systems are
frequently cited as enablers of scalable, low-latency FL de-
ployments. However, the effectiveness of these networks in
supporting energy-aware FL remains contingent on several
underexplored factors.

1. Network Slicing and Edge Intelligence: 5G and 6G
promise network slicing and Multi-access Edge Com-
puting (MEC), which, in theory, allow FL tasks to be
isolated and prioritized at the edge3**4. Yet, runtime
adaptability is limited, and cross-layer orchestration of
FL workloads within network slices remains an open
challenge, particularly when competing Quality of Ser-
vice (QoS) demands exist.

ii.  Energy Harvesting and Protocol Compatibility: Cel-
lular standards now support low-power communication
and even energy harvesting features. However, these
are rarely integrated with FL scheduling*). For exam-

ple, while solar-assisted scheduling can reduce energy
costs by up to 28% in mobile sensor networks, such co-
optimization has not been systematically studied in FL.
Emerging 6G concepts such as ambient backscatter and
Al-optimized protocols remain largely experimental,
with minimal evaluation in federated contexts 3¢,
iii. Deployment Gap: Despite theoretical compatibility,
real-world FL deployments over 5G/6G remain scarce.
Most proposed frameworks assume ideal connectivity
and predictable device behavior. In practice, mobile
networks exhibit temporal variability, service fragmen-
tation, and competing traffic loads. Without adaptive
orchestration at the protocol level, the energy-saving
potential of 5G/6G features such as slicing or ambient

intelligence is severely constrained.

In summary, while next-generation wireless networks
provide necessary building blocks for FL, leveraging them
for sustainable and robust deployment will require signifi-
cant innovation in orchestration, adaptive slicing, and energy-
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feedback integration—none of which are fully addressed by

current research.

5.2. 10T and Low-Power Devices

The IoT ecosystem represents a natural setting for FL
due to its scale, privacy sensitivity, and latency-critical ap-
plications. However, IoT devices introduce constraints that

complicate scalability and fairness:

1. Computational and Power Constraints: Many loT
nodes, such as sensors, wearables, and controllers, op-
erate with minimal processing capacity, volatile power
supply, and limited memory[®”). FL’s resource de-
mands often exceed these safe operating limits. While
compression and event-driven updates help, they are
rarely adapted to the heterogeneous capabilities of di-
verse device classes.

ii.  Deployment Asymmetry and Participation Instabil-
ity: Practical deployments show significant disparities
in participation due to inconsistent energy availability,
intermittent connectivity, and fluctuating workloads.
As a result, FL. models face unstable convergence, bi-
ased updates, and stale aggregations. Dropout-resilient
aggregation methods are rarely integrated into current
FL frameworks %%,

iii. Case Studies and Limitations: Pilot deployments in
smart grids, digital agriculture, and health monitoring
highlight both promise and limitations. For instance,
in digital agriculture, intermittent device connectivity
caused up to 15% slower convergence compared to
controlled testbeds. Long-tail participation, where a
few devices dominate training, remains a recurring is-
suel3%!. Real-time inference needs in applications such
as patient monitoring are difficult to reconcile with

FL’s iterative updates.

The integration of FL into the IoT domain cannot rely
on existing learning architectures alone—it demands co-
design across hardware, firmware, networking, and learning
protocols. Without such holistic optimization, the use of
FL in resource-constrained environments risks becoming
impractical or unsustainable at scale.

While 5G/6G infrastructure and IoT proliferation are
often presented as natural allies of FL, their current form

exposes critical gaps in coordination, resilience, and con-
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textual adaptability. Without robust aggregation methods,
energy-aware dropout handling, and adaptive orchestration,
FL deployments risk instability and bias during convergence.
Section 6 explores system-level optimizations designed to

address these constraints.

6. Optimization Strategies for Energy-
Aware Federated Learning

In wireless edge environments characterized by de-
vice heterogeneity, unstable connectivity, and strict energy
constraints, optimizing Federated Learning (FL) requires
more than localized algorithmic tweaks; it calls for holis-
tic, system-level coordination. Effective FL deployment
depends on intelligent orchestration across both clients and
the aggregation server, aiming to minimize energy expen-
diture without sacrificing model convergence, fairness, or
scalability. This section critically examines two primary op-
timization domains: energy-aware client participation and
adaptive model aggregation, while interrogating the assump-

tions and limitations of current solutions.

6.1. Resource-Aware Client Participation

The assumption that all clients are equally capable of
contributing has been invalidated by real-world deployments.
FL frameworks must adapt to device-specific variability in

energy, compute, and connectivity.

Here, U, is the participation utility, 4; is the expected
accuracy contribution of client 7, E; is its estimated energy
cost, and o, f§ are tunable weights representing the trade-off
between accuracy and energy.

i.  Dynamic Client Scheduling: Context-aware schedul-
ing prioritizes clients based on battery life, compute
load, and link quality°l. While this improves energy
efficiency, it risks biasing model updates toward power-
ful clients, limiting fairness in domains like healthcare
and disaster response.

ii. Incentive-Based Participation: Credit- or token-
based systems encourage participation*!l. However,
blockchain-backed incentive schemes add crypto-
graphic overhead; for instance, lightweight blockchain

consensus can consume 10-15% additional energy per



Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

round if not optimized, highlighting the trade-off be-
tween trust and sustainability 0],

Despite their promise, current strategies lack runtime
telemetry feedback and fairness-aware control loops. Fre-
quent prioritization of high-resource clients risks systemic

bias and limits generalization.

6.2. Energy-Constrained Model Aggregation

While much of the optimization focus remains client-
centric, server-side aggregation also plays a pivotal role in
shaping the energy profile and convergence efficiency of
FL systems. The challenge lies in balancing aggregation
frequency and responsiveness with communication overhead

and energy expenditure.

i.  Aggregation Frequency Control: Federated Aver-
aging reduces communication by allowing multiple
local updates before synchronization[*?!. Yet, static
intervals often cause divergence under non-IID data.
Few approaches adapt frequency dynamically based
on gradient variance or learning curves.

ii.  Adaptive Aggregation Mechanisms: Real-time ad-
justment of aggregation intervals based on client en-

431, How-

ergy levels or loss dynamics shows promise
ever, such methods require telemetry reporting and
lightweight controllers—capabilities not widely avail-

able in current deployments.

Moreover, server-side operations—secure aggregation,
differential privacy, and validation—incur energy costs rarely
quantified in the literature. Without accounting for this foot-
print, system-level sustainability evaluations remain incom-
plete.

6.3. Emerging System-Level Enablers

Beyond client and server optimizations, emerging tech-

nologies offer additional levers for sustainable FL:

i. Blockchain-Integrated FL: Blockchain provides
tamper-proof logging and trust in decentralized FL,
but consensus mechanisms (e.g., Proof-of-Work) are
energy-intensive. Recent work on lightweight or hier-

archical blockchains reduces this cost by up to 40%,

making blockchain-based FL more practical for edge
deployments!.

ii.  Neuromorphic Hardware: Event-driven spiking neu-
ral networks (SNNs) and neuromorphic chips such as
Intel Loihi perform sparse, asynchronous updates in-
stead of dense matrix multiplications. This reduces
inference energy by 60-80% compared to GPUs in
certain workloads, offering a promising substrate for
energy-constrained FL training 1%,

iii.  6G Slicing and Orchestration: Dynamic 6G slicing
can reserve dedicated spectrum and compute resources
for FL tasks. Simulation studies suggest that adaptive
slicing policies can cut FL training latency by 20-25%
under mixed-traffic conditions, making large-scale de-

ployments more sustainable!'®].

While client scheduling and adaptive aggregation re-
main central to energy-aware FL, sustainable system-level
optimization demands cross-layer design. Blockchain can
enhance trust, neuromorphic hardware can reduce energy
costs, and 6G slicing can allocate resources intelligently.
Yet, current implementations remain at the conceptual or
simulation stage, with limited validation in real-world de-
ployments. Bridging this gap requires predictive telemetry,
fairness-aware scheduling, and runtime coordination across

devices, protocols, and hardware platforms.

7. Security, Privacy, and Sustainabil-
ity Trade-Offs

In Federated Learning (FL), security and privacy
preservation are not ancillary features but foundational
requirements—particularly in wireless edge environments
that routinely handle sensitive, personally identifiable, or reg-
ulated data. However, the implementation of these protective
mechanisms imposes significant computational, memory,
and communication overheads, which can directly undermine
the energy efficiency and scalability goals of sustainable FL.
Despite an expanding body of work on privacy-preserving
FL, relatively few studies address the inherent trade-offs
between strong security guarantees and constrained device
capabilities. This section critically examines these tensions

and outlines the design limitations of current solutions.
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7.1. Privacy-Preserving FL. Mechanisms

FL systems typically rely on one or more privacy-
preserving techniques to limit information leakage during
local training and model exchange. Among the most com-
monly employed are differential privacy (DP) and secure
aggregation protocols, both of which introduce additional
energy and performance costs that are rarely quantified in

system-level evaluations.

1. Differential Privacy (DP). By injecting calibrated statis-
tical noise into model updates, DP prevents the reverse
engineering of client data**l. However, its implemen-
tation introduces non-negligible computational over-
head, particularly when noise is sampled per-parameter
or per-layer in deep models. More importantly, DP can
impair model accuracy, especially in data-scarce or
highly non-IID environments, leading to prolonged
training and increased communication rounds.

ii.  Secure Aggregation. This cryptographic technique en-
ables the central server to aggregate encrypted model
updates without accessing individual client contribu-
tions, thereby enhancing confidentiality and robustness
against inference attacks®!. While secure aggrega-
tion strengthens system-level trust, its execution incurs
additional encryption, decryption, and key manage-
ment costs, which can strain low-power devices such

as wearables, sensors, or microcontrollers.

Although these mechanisms are essential for user trust
and regulatory compliance, most implementations assume
devices have sufficient compute and energy resources to
support them—an assumption often unrealistic in edge de-

ployments.

7.2. Energy Implications of Security Protocols

The sustainability of FL deployments is fundamentally
shaped by the overheads introduced by privacy-preserving
protocols. These costs often go unaccounted for in theoreti-
cal models and are inadequately addressed in system-level

design.

1. Encryption and Authentication Overheads. Advanced

encryption schemes—such as homomorphic encryp-

tion and secure multi-party computation—are compu-

tationally intensive and increase transmission latency,

particularly with high-dimensional model updates [4¢].
Even lightweight authentication requires additional
CPU cycles and memory bandwidth, which can trans-
late into higher battery drain and thermal stress.

ii.  Sustainability—Trust Trade-Offs. The trade-off between
rigorous security and energy efficiency is increasingly
recognized as a core challenge in FL. Emerging ap-
proaches advocate the use of lightweight cryptographic
primitives (e.g., elliptic curve cryptography, hardware-
accelerated AES)[*"], selective privacy enforcement
(where devices adjust privacy levels based on data sen-
sitivity), and context-aware privacy protocols that adapt

to device energy state or network conditions.

Dynamic Trade-Off Strategies. Beyond static mech-
anisms, there is growing interest in sensitivity-based pri-
vacy adjustment, where privacy budgets and noise levels are
tuned dynamically based on the sensitivity of local data, task
criticality, or residual device energy. For instance, health-
monitoring devices may apply stronger privacy when han-
dling patient-identifiable ECG data, but relax privacy (and
thus save energy) when transmitting aggregated activity sum-
maries. Similarly, adaptive privacy frameworks can lower
cryptographic intensity for non-critical updates while pre-
serving high protection for sensitive or high-risk transactions.
Despite their promise, such dynamic adjustment strategies
remain underexplored and lack standardized benchmarks for

evaluating both energy and privacy guarantees.

7.3. Summary and Outlook

Achieving privacy-preserving yet energy-efficient FL
requires integrated approaches that align cryptographic safe-
guards with device-level realities and application-specific risk
tolerances. The path forward lies in developing lightweight,
context-aware, and dynamically adaptive privacy mecha-
nisms, validated on resource-constrained hardware and bench-
marked not only by privacy strength but also by energy and
latency efficiency (Table 1).
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Table 1. Comparison between security and privacy-preserving mechanisms in FL based on the aspect of energy impact and edge

deployment feasibility.

Suitability for Edge

Protocol/Model Energy Cost Privacy Strength . Trade-Offs
Devices
Differential Privacy (DP) High Strong Medium May degrad.e aceuracy and
increase training time
. . . . Adds cryptographic overhead,
Secure Aggregation Medium-High Strong Low—Medium burdens low-end devices
Lightweight ECC/AES Low Moderate High ggl-sulted for IoT; efficient and
Selective Privacy Low-—Medium Adaptive High Ad_].uStS protection !e.vell based on
Enforcement device or data sensitivity
Context-Aware Privacy Low—Medium Adaptive High Dynamic adjustment using ..
energy state or network condition
Sensitivity-Based Low—Medium Adaptive—Strong High Dynamically tunes privacy

Adjustment

budget vs. energy

8. Applications and Case Studies

The adoption of energy-efficient Federated Learn-
ing (FL) is expanding across several application domains
where privacy, sustainability, and localized intelligence are
paramount. While theoretical frameworks for FL are widely
developed, their real-world implementation reveals a com-
plex interplay between deployment constraints, system het-
erogeneity, and domain-specific performance requirements.
This section critically examines how FL is being adapted
across sectors such as smart cities, agriculture, healthcare,
and disaster management, highlighting both operational ben-

efits and persistent limitations.

8.1. Smart Cities and Infrastructure Monitor-
ing

The vision of smart cities relies on massive deploy-
ments of interconnected sensors and edge devices for contin-
uous monitoring of traffic, energy, pollution, and infrastruc-
ture health. In this context, FL enables decentralized training,
reducing reliance on centralized cloud servers and preserv-
ing privacy. Energy-efficient FL is particularly valuable in
extending the lifespan of distributed sensor nodes, many of
which are deployed in hard-to-reach or power-limited envi-
ronments 48],

However, scalability is limited by device diversity, un-
stable urban wireless networks, and non-stationary data. For
example, traffic light control systems trained with FL must

adapt to variable congestion patterns influenced by events

or weather, while structural health monitoring systems face
challenges in aggregating asynchronous updates from het-
erogeneous sensors!'¥l. Addressing these challenges will
require robust scheduling, hierarchical aggregation, and fault-

tolerant communication protocols.

8.2. Smart Agriculture and Precision Farming

Agriculture is well-suited for FL due to localized data
generation and the reliance on solar-powered or battery-
limited devices. Edge devices such as drones and soil sensors
can collaboratively train yield predictors or irrigation models
without transmitting raw data %,

Energy-aware FL reduces data transfer costs and ex-
tends device lifetimes, with case studies in irrigation schedul-
ing showing efficiency gains'>*l. However, current deploy-
ments often assume uniform data availability, ignoring micro-
climate variability and soil diversity. To achieve sustainable
agricultural FL, future systems must integrate personalized
federated models and energy-adaptive participation strate-

gies.

8.3. Healthcare IoT and Remote Monitoring

Healthcare is a high-stakes domain where FL ensures
data privacy while enabling predictive health models acrOoss
wearables, home sensors, and diagnostic tools. Applications
include early arrhythmia detection, elderly fall prediction,
and COVID-19 symptom modeling 31321,

Yet, FL in healthcare faces acute trade-offs between
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privacy, accuracy, and energy consumption. Devices such
as wearables must balance sensing, inference, and training
within strict thermal and energy budgets. Pilot deployments
show potential but lack longitudinal evaluation under patient
variability, irregular sensor usage, and cross-hospital data
heterogeneity. Future efforts must integrate energy-aware
pruning, selective updates, and context-driven privacy mech-

anisms.

8.4. Disaster Management and Environmental
Sensing

In disaster-prone areas, FL enables decentralized learn-
ing on edge devices such as seismic monitors, drones, and
flood sensors, which can continue operating even when cen-
tral infrastructure is unavailable %3,

Energy efficiency is crucial due to harsh environments
and unpredictable power. For instance, wildfire-monitoring
drones equipped with FL can adaptively update models based
on energy levels and detection confidence, while federated
flood prediction models can improve local alerts with re-
duced communication>#!. The main barriers are coordinated
aggregation under unreliable connectivity and the scarcity

of labeled training data, which highlights the importance of

transfer learning and unsupervised FL approaches.

9. Comparative Analysis

To advance the design of energy-efficient Federated
Learning (FL) systems, it is essential to systematically eval-
uate and compare existing approaches along key opera-
tional dimensions: energy consumption, communication
cost, model accuracy, and deployment feasibility. As demon-
strated in Figure 3, the performance of FL strategies varies
significantly across energy and accuracy dimensions, with
optimization methods like FedOpt and hybrid models of-
fering improved energy-efficiency without compromising
accuracy. This section provides a comparative analysis of
prevalent techniques and critically examines the benchmarks
and evaluation practices that currently shape this research
space. While progress has been made across multiple fronts,
a closer inspection reveals significant gaps in evaluation
consistency, deployment realism, and methodological rigor.

While the following categorization (Table 2) offers an
entry point into method comparison, it abstracts away nu-
anced differences in hardware performance, environmental
variability, and multi-objective trade-offs—all of which are

critical in real-world settings.

0.92
—e— Accuracy
-m- Energy Consumption

0.90

0.88

0.86

Accuracy

0.84 4

0.82 4

Energy Consumption (normalized)

Fedlﬁvg Fed;’rox

T
FedNova

1.0

Fedbpt Hyb‘rid

Figure 3. Accuracy and energy consumption comparison of federated learning strategies (FedAvg, FedProx, FedNova, FedOpt, Hybrid)

on LEAF benchmark dataset with 100 clients.
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Table 2. Summary of Energy-Efficient FL Techniques.

Technique Energy Use Communication Cost Model Accuracy Remarks
Model. PrL.mmg and Low Low Moderate_High Effe.ctlvgs(])n constrained
Quantization devices ™.
Update Sparsification Medium Very Low Moderate May degrade convergence on

P P Y non-IID data %,

. . . Standard FL baseline; may diverge

LocalSGD (FedAvg) Medium Medium High under data heterogeneity ™).
Adaptfve Client Low—Medium Low High Balanc'es ziscgc]uracy and resource
Selection allocation ",
Event-Trl.gge.red Low Very Low Moderate Best Sulffg(]l for non-critical
Communication updates .
Asynchronous FL Medium Low Moderate—High Reduces straggler effec[gﬁj

vulnerable to staleness'™™.

9.1. Benchmarks and Evaluation Metrics

Empirical evaluation in energy-efficient FL remains
largely fragmented. While many studies employ standard-
ized datasets such as CIFAR-10, MNIST, and FEMNIST for
image classification tasks, these benchmarks offer limited
insight into deployment-scale variability or device hetero-
geneity. The LEAF benchmark 7! has emerged as a more
representative alternative, simulating FL-specific challenges
such as statistical and system heterogeneity. Likewise, time-
series and healthcare datasets like HAR and MIMIC-III are
increasingly adopted for realistic use cases.

Despite these efforts, inconsistencies persist in the
choice and reporting of evaluation metrics. Commonly used

performance indicators include:

1. Energy per training round (in Joules or mWh), often
estimated via simulation or limited hardware profiling.

ii. ~ Communication volume, measured in megabytes or
message count, without accounting for retransmissions
or network failures.

iii.  Convergence time, typically tracked as epochs or com-
munication rounds, yet often omitting variance across
devices.

iv.  Test accuracy or task-specific performance, usually
benchmarked on IID validation data.

v.  System-wide latency, device dropout rates, and avail-
ability metrics, which are crucial but rarely standard-

ized.

Critically, these metrics are rarely integrated into a uni-

fied evaluation framework, which makes cross-study com-

parison unreliable and undermines reproducibility.

9.2. Limitations of Existing Works

Despite growing interest in energy-aware FL, several

foundational limitations persist across the current literature:

i Absence of Deployment-Scale Validation: A signifi-
cant proportion of studies rely exclusively on simula-
tions or emulators. As noted by Mohammadi et al. (],
very few methods are tested on real edge hardware with
constrained power profiles, and even fewer account for
environmental variability such as wireless interference
or thermal throttling.

ii.  Inconsistent Baselines and Evaluation Setups: Dif-
ferences in hyperparameter tuning, model architec-
tures, and dataset preprocessing across studies intro-
duce inconsistencies that hinder fair performance com-
parisons (2. The lack of open-source reproducibility
compounds this issue.

iii. Neglect of Cross-Layer Optimization: Many ap-
proaches target improvements at the algorithmic level
without addressing the communication-computation-
learning interdependencies inherent in wireless edge
systems. This siloed optimization neglects critical bot-
tlenecks such as MAC-layer contention or energy drain
from wireless transmission %3],

iv.  Oversimplification of Data Distributions: Most
works assume IID or near-1ID data across clients—an
assumption that rarely holds in practical applications.
Techniques that appear energy-efficient under synthetic
or controlled conditions often falter when faced with
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real-world, skewed, or sparse client data (641,

v.  Limited Integration of Privacy and Energy Effi-
ciency: Security and privacy concerns, while acknowl-
edged in isolation, are seldom addressed in tandem
with energy efficiency. As Ma et al.[%] highlights,
only a small fraction of FL frameworks co-optimizes
for both privacy protection (e.g., secure aggregation,
differential privacy) and energy constraints, leading to
either compromised performance or excessive energy

overheads.

Collectively, these limitations underscore the ur-
gent need for multi-dimensional evaluation frameworks,
grounded in realistic testbeds and backed by standardized
benchmarks. Future work must move beyond isolated opti-
mizations and pursue co-design approaches that account for
algorithmic robustness, device heterogeneity, communica-
tion topology, and energy availability, all within an integrated
FL lifecycle. Moreover, the energy used by the server-side
process of secure aggregation or model validation is not
measured in the majority of evaluations, or, at best, only par-
tially. Without this, the field risks stagnating in theoretical
progress without meaningful practical translation. Nonethe-
less, a number of open research questions continue to exist,

which are discussed below.

10. Open Research Challenges

Despite notable progress in energy-efficient Federated
Learning (FL), the pathway to realizing scalable, robust, and
ecologically sustainable FL deployments remains obstructed
by several unresolved challenges. These gaps span infras-
tructure limitations, algorithmic complexity, systemic disin-
tegration across computing layers, and emerging integration
hurdles with complementary technologies. This section criti-
cally outlines these open research challenges and identifies

promising directions for future work.

10.1. Lack of Standardized Testbeds and Rep-
resentative Datasets

One of the most critical bottlenecks in advancing the
field is the absence of standardized, reproducible test environ-
ments for evaluating energy-efficient FL under realistic con-
ditions. Most existing studies rely on simulation frameworks

or synthetic datasets that fail to replicate key constraints

found in actual wireless edge deployments, such as device
heterogeneity, intermittent connectivity, and unpredictable
energy availability[©6],

The current dependence on idealized hardware settings
leads to overestimation of performance and underreporting
of energy overheads. Moreover, there is no consensus on
how to benchmark trade-offs between accuracy, energy con-
sumption, latency, and client fairness. This limits cross-paper
comparability and impedes methodological rigor.

There is an urgent need for open-source, modular FL
testbeds equipped with energy metering, wireless emulation
(e.g., Wi-Fi, LoORaWAN, LTE), and diverse hardware profiles.
Such testbeds must support heterogeneous data distributions
and incorporate realistic dropout and failure patterns to en-
able system-level validation and fair benchmarking (7).

10.2. FL Under Extreme Resource Constraints

Many promising FL use cases—such as environmental
sensing, rural healthcare, and disaster response—necessitate
operation on ultra-constrained hardware platforms with lim-
ited memory, compute power, and power supply. Existing FL
algorithms, even those optimized for edge Al, often carry over-
heads in communication, cryptography, and model synchro-
nization that render them infeasible for such deployments.

Several technical challenges remain unresolved:

1. Designing ultra-lightweight model architectures ca-
pable of training and inference within kilobyte-level
memory budgets.

ii.  Implementing incremental or partial model updates to
reduce communication and computation loads.

iii.  Developing resilient aggregation strategies that handle
frequent client dropout, delayed updates, and intermit-
tent energy supply (68,

Furthermore, these scenarios are characterized by
volatile environmental factors and a lack of network redun-
dancy, further complicating the deployment of synchronous
or high-frequency update schemes. Current FL frameworks
rarely incorporate energy-aware fallback strategies or run-
time adaptability to address these edge cases ().

10.3. Cross-Layer Optimization Deficiencies

Energy-efficient FL remains largely segmented by re-

search discipline, with separate communities addressing algo-
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rithmic design, network protocol engineering, and embedded
systems. This siloed approach results in disjointed optimiza-
tions that fail to deliver system-wide efficiency.
Cross-layer co-design remains underexplored and
presents a high-impact research frontier. Specifically, fu-

ture work must address:

1. Joint optimization across communication, computa-
tion, and learning layers, considering real-time device
state and network conditions.

ii.  Runtime adaptation of FL. workflows, where model
complexity, training frequency, and transmission pro-
tocols adjust dynamically based on energy and latency
feedback.

iii.  Integration of FL logic with networking advancements,
such as 5G/6G network slicing, cooperative scheduling,

and mesh-based edge routing!7%.

Without such coordination, FL deployments will con-
tinue to suffer from inefficiencies that nullify energy savings

achieved at any individual layer.

10.4. Integration with Blockchain and Green
Al: Trade-Offs and Barriers

The convergence of FL with blockchain technologies
and green Al design principles is widely regarded as a promis-
ing route toward trustworthy and eco-conscious distributed
learning. However, the integration of these technologies

introduces significant systemic and energy trade-offs.

. Blockchain for FL coordination and auditability of-
fer transparency and trust, particularly in untrusted or
multi-stakeholder environments. Yet, traditional con-
sensus mechanisms such as Proof-of-Work (PoW) are
computationally intensive and energy-prohibitive for
edge deployment.

ii.  There is a need for lightweight, low-latency consen-
sus mechanisms (e.g., Proof-of-Authority, Directed
Acyclic Graph (DAGS), or federated Byzantine agree-
ment) that align with FL’s energy and bandwidth con-
straints.

iii. Additionally, leveraging blockchain for incentive sys-
tems or secure logging introduces communication and
storage overhead, which must be offset by architectural
efficiency!’!l.

iv.  Parallel efforts in green Al focus on designing inher-

ently efficient models using pruning, quantization, and
neuromorphic computing. However, their application
in FL settings remains under-evaluated, particularly in

scenarios with non-IID data and device variance[72].

Without rigorous co-evaluation of these integration ef-
forts on constrained hardware, the benefits of blockchain
and green Al in FL remain largely speculative. These open
challenges highlight the pressing need for interdisciplinary
collaboration that bridges systems engineering, hardware
design, wireless networking, cryptography, and applied ma-
chine learning. Only through such integrated efforts can FL
transition from controlled research environments to sustain-
able, large-scale deployments in real-world wireless edge
networks. These challenges should be addressed creatively
by highly adaptive, cross-disciplinary innovations in the fu-

ture.

11. Future Research Directions

Ensuring the long-term viability of energy-efficient
Federated Learning (FL) in sustainable wireless edge net-
works requires a shift from isolated optimizations toward
intelligent, adaptive, and hardware-conscious system designs.
This section outlines emerging research directions that hold
the potential to transform FL into a truly self-optimizing and
energy-aware framework—provided that rigorous validation,
cross-disciplinary integration, and deployment realism are

pursued.

11.1. Integration with Emerging 6G Communi-
cation Technologies

The future of FL at the edge is closely tied to advances
in 6G communication infrastructure. Capabilities such as
network slicing, intelligent reflecting surfaces, and ambient
backscatter communication provide opportunities to reduce
energy consumption and enhance adaptability.

In particular, network slicing allows dynamic alloca-
tion of FL tasks through slice-specific resource reservation
mechanisms, where resources are assigned according to de-
vice energy budgets, latency requirements, or application
priorities (e.g., healthcare vs. entertainment). Such mech-
anisms enable context-aware scheduling, latency-sensitive
aggregation, and channel-aware model transmission, making

FL adjustable in real time to network dynamics and device
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constraints. Future research should explore how slicing reser-
vation policies can be co-optimized with federated schedulers
to jointly minimize energy consumption and training delays

constraints.

11.2. Hybridization with Adaptive Learning
Paradigms

Hybridizing FL with adaptive learning paradigms such
as Reinforcement Learning (RL) and Lifelong Learning of-
fers the potential for self-organizing systems that respond to
resource variability, client churn, and evolving data distribu-

tions.

1. Federated Reinforcement Learning (FRL) models FL
coordination as a sequential decision-making process
for client selection, communication frequency, and lo-

cal training configuration "3

. However, existing ap-
proaches often assume stable reward signals and simple
state spaces—assumptions that break down in dynamic
wireless networks. Moreover, RL agent overhead must
be carefully optimized to avoid offsetting FL’s energy
gains.

ii.  Lifelong FL supports continuous learning across evolv-
ing data streams, mitigating catastrophic forgetting and
client churn[7#), Yet, current implementations often de-
pend on costly regularization or rehearsal strategies

unsuited to energy-limited devices.

Future work should develop lightweight, communi-
cation-aware adaptive algorithms that incorporate real-time
edge feedback (e.g., device battery level, connectivity sta-
tus). At the same time, lightweight blockchain frameworks
(e.g., Proof-of-Authority, Directed Acyclic Graph (DAG)
consensus) can support incentive and trust mechanisms with
reduced energy costs, enabling secure, auditable interactions
in multi-stakeholder domains such as healthcare and finance

services.

11.3. Hardware-Centric Innovations and Alter-
native Energy Sources

Achieving sustainable FL also requires innovations at

the hardware and power management levels.

i Energy-Harvesting Devices. Leveraging renewable

energy sources (e.g., solar, RF, kinetic) enables de-

vices to schedule participation opportunistically !>,
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However, naive energy-aware scheduling risks model
staleness. Future research should integrate predictive
energy harvesting models (e.g., solar forecasting) with
model compression so that compressed updates are
prioritized when energy availability is low, achieving
joint optimization of accuracy and sustainability 7%,
ii.  Neuromorphic Computing. Brain-inspired processors,
such as spiking neural networks (SNNs), provide ultra-
low-power, event-driven computation(!?). Empirical
studies suggest up to 10x energy savings compared to
GPU-based training, but their integration into FL is
still immature. Future work must quantify these gains
in FL- specific settings, and develop co-design frame-
works that enable SNN-based clients to interoperate
with conventional aggregators. Toolchains and spike-
compatible aggregation processes will be crucial to

unlock neuromorphic FL at scale!”7].

Overall, hardware-conscious FL requires multi-
objective co-design of algorithms, devices, and communica-
tion layers. Building real-world testbeds is critical, incorpo-
rating heterogeneous IoT devices, variable network condi-
tions, and power-profiling tools to benchmark performance
realistically. Frameworks such as LEAF[®] and OARF[¢¢]
provide standardized federated settings that can be extended
into multi-layer, energy-sensitive benchmarking environ-
ments. By leveraging these open-source benchmarks, our
survey ensures transparent and comparable evaluation across
studies without requiring the release of a standalone code-
base.

12. Conclusions

This survey has critically examined the emerging field
of energy-efficient Federated Learning (FL) within sustain-
able wireless edge networks. While FL presents a promising
framework for decentralized intelligence and data privacy,
its deployment in energy- and resource-constrained envi-
ronments introduces significant challenges that demand sys-
temic, cross-layer solutions.

We began by analyzing the structural limitations of cur-
rent wireless systems in supporting FL, identifying communi-
cation overheads, device heterogeneity, and energy scarcity
as primary barriers to scalability. The survey then evaluated

core strategies—such as model compression, sparsification,
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adaptive scheduling, and asynchronous updates—not only
for their theoretical efficiency but also for their practical
viability on edge hardware. Our review emphasized the
trade-offs between accuracy, communication cost, and en-
ergy use, noting that benchmark studies on the LEAF dataset
reveal energy reductions of up to 75% under event-triggered
updates, though often at the cost of reduced accuracy and
fairness.

The analysis extended to deployment contexts involv-
ing IoT, 5G/6G infrastructures, and low-power devices,
where sustainability goals intersect with practical constraints.
Case studies in smart cities, agriculture, healthcare, and disas-
ter management demonstrated the applicability of FL, while
exposing persistent gaps in synchronization, robustness, and
fairness. Comparative synthesis of existing methods un-
derscored the absence of unified evaluation metrics, repro-
ducible testbeds, and cross-domain benchmarks in the litera-
ture.

Looking forward, sustainable FL requires a shift from
algorithm-centric optimization toward co-designed, multi-
objective systems that jointly consider hardware capabili-
ties, renewable energy sources, network dynamics, and trust
mechanisms. Promising directions include:

i 6G-enabled network slicing to dynamically allocate
resources for FL training,

ii.  Neuromorphic processors spiking neural networks
(SNNs) that can deliver up to 10x energy efficiency
compared to GPUs,

iii.  Blockchain-based trust frameworks with lightweight
consensus to ensure integrity, and

iv.  Green Al models that integrate model compression with

energy harvesting predictions for joint optimization.

Ultimately, achieving this vision will demand inter-
disciplinary collaboration across embedded systems, wire-
less networking, machine learning, and privacy engineer-
ing. Without such integration, FL risks remaining a theoreti-
cally compelling but practically constrained solution. The
future of energy-efficient FL lies in its ability to evolve into
a fully adaptive, privacy-preserving, and energy-conscious
ecosystem—one that is not only scalable and robust, but also
aligned with the global imperative of sustainable intelligent

infrastructure.
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