Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

D BILINGUAL Journal of Electronic & Information Systems
PUBLISHING

—, GROUP https://journals.bilpubgroup.com/index.php/jeis

ARTICLE

Improving Fast Density Peak Clustering Using Mass Distance: m-FDPC
Mouloud Merbouche ' , Célia Tso ', Jérémie Sublime *

ISEP — Paris Institue of Digital Technologies, 75006 Paris, France

ABSTRACT

In this work, we introduce m-FDPC, a mass-based variant of the Fast Density Peak Clustering (FDPC) algorithm, aimed
at improving both performance and ease of use in unsupervised learning tasks. Traditional FDPC relies on Euclidean distance
and requires careful parameter tuning and data normalization, which can significantly affect clustering outcomes—especially
for heterogeneous or high-dimensional datasets. To address these challenges, m-FDPC replaces the conventional Euclidean
metric with a mass-based distance measure derived from isolation forests, a method originally designed for anomaly
detection. This substitution allows the algorithm to capture local data density and structure more naturally, while eliminating
the need for normalization and simplifying the choice of key parameters such as cutoff distance and density thresholds.
Comprehensive experiments on synthetic and real-world datasets demonstrate that m-FDPC not only matches or surpasses
the performance of well-established clustering techniques such as DBSCAN, K-means, and Euclidean FDPC, but also
offers greater robustness, scalability, and interpretability, particularly in high-dimensional or unevenly distributed data
scenarios. Results evaluated through metrics like Matching Score and Silhouette Score confirm the algorithm’s superior
ability to detect meaningful cluster structures with minimal user intervention. Overall, m-FDPC provides a more efficient,
adaptive, and user-friendly framework for density-based clustering, making it a promising tool for diverse applications in
data mining, anomaly detection, and exploratory data analysis.

Keywords: Clustering; Isolation Forests; Density-Based Methods

*CORRESPONDING AUTHOR:
Jérémie Sublime, ISEP — Paris Institue of Digital Technologies, 75006 Paris, France; Email: jsublime@jisep.fr

ARTICLE INFO

Received: 20 June 2025 | Revised: 13 August 2025 | Accepted: 23 August 2025 | Published Online: 30 August 2025
DOI: https://doi.org/10.30564/jeis.v7i2.11528

CITATION

Merbouche, M., Tso, C., Sublime, J., 2025. Improving Fast Density Peak Clustering Using Mass Distance: m-FDPC. Journal of Electronic &
Information Systems. 7(2): 51-65. DOI: https://doi.org/10.30564/jeis.v7i2.11528

COPYRIGHT

Copyright © 2025 by the author(s). Published by Bilingual Publishing Group. This is an open access article under the Creative Commons Attribu
tion-NonCommercial 4.0 International (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/).

51

https://orcid.org/0009-0006-8095-6716
https://orcid.org/0009-0004-9233-5912
https://orcid.org/0000-0003-0508-8550

Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

1. Introduction

The introduction should briefly place the study in a
broad context and highlight why it is important, in partic-
ular, in relation to the current state of research in the field.
Finally, it can conclude with a brief statement of the aim
of the work and a comment about whether that aim was
achieved!!l. Clustering is an important Machine Learning
task that consists of finding interesting structures or groups
of similar elements within a dataset in an unsupervised way.
With clusters coming in all shapes and forms and no univer-
sal evaluation metrics due to the universal nature of this task,
a large number of clustering algorithms exist in the literature
(including the K-means algorithm [which is the most fa-
mous clustering method) with varying efficiency depending
on the dataset nature, the number of features, and the clusters’
nature (shape, size, density, variability and number).

Among the more successful families of clustering al-
gorithms, we can mention density-based clustering meth-
ods that have proven effective at detecting clusters without
assuming any specific shape or properties. In this family
of methods, we can find very famous algorithms like DB-
SCAN[!| Density Peak Clustering (DPC)P!, or its evolu-
tions, the Fast Search and Find of Density Peaks algorithm
(FDPC)*31. However, despite their efficiency and repeated
success, these algorithms suffer from the following major
weaknesses: First, they have a high complexity ranging in the
O(N?) to O(N? log N), where N is the size of the dataset. Sec-
ond, they usually rely on the computation of a distance matrix
between all data elements whose complexity in O(DN?) (for
D variables) not only makes the bulk of the algorithm com-
putational complexity, but also tends to make these methods
ineffective in high dimension since it often rely on the Eu-
clidean distance, which is known not to scale well. Last but
not least, these methods rely on several parameters that are
not easy to set up properly and are key to their success or
failure to detect good clusters.

Within this context, in this paper, we propose a mass-
based version of the Fast Search and Find of Density Peaks
algorithm (FDPC). By doing so, we reduce several of the
previously mentioned problems as follows:

¢ The mass-based distance doesn't suffer from the same
scaling issues as Euclidean-based distances. Further-
more, because it is based on isolation forests[®l, this

distance is also known to be very effective at separating
clusters!”). As we will show, these key factors greatly
improve the efficiency of the m-FDPC method com-
pared to the original DPC algorithm in high dimension.

* Because it is a normalized distance, it also significantly
simplifies the parameter optimization of DPC-based
methods, regardless of the dataset.

« Finally, thanks to recent works on efficiently computing
mass-based distance matrices!®, it is possible to opti-
mize the computation of mass-based distance matrices
and make it 10 times faster.

While other methods have already considerably sped

%101 ' most of them remain

up the original DPC algorithm!
constrained by the computation of the distance matrix and
stick with the Euclidean distance. This is where the original-
ity of our paper lies, as it changes the nature and computation
of this matrix, which is necessary before doing any approxi-
mation on the neighboring graph and is the heart of the DPC
algorithm.

The remainder of this paper is organized as follows:
First, we will present the state of the art on the DPC algorithm
and mass-based distances for density-based clustering. Sec-
ondly, we will introduce our modified version of the FDPC
algorithm using mass-based distance. Then, we will present
our experimental results and comparisons with other cluster-
ing methods over several datasets and scenarios. Finally, this
paper will end with a conclusion and some insights about

our future works.

2. State of the Art

2.1. Density-Based Clustering and the Density
Peaks Algorithm

TThe main principle of clustering is to split datasets
into clusters by grouping together points belonging to the
same high-density areas and that are separated from other
clusters by lower-density areas. Based on this definition,
which does not assume any shape for the clusters (unlike the
K-means algorithm, which detects mostly spherical clusters),
density-based clustering algorithms have become popular
clustering methods as they seek clusters
directly based on the aforementioned definition. Famous

legacy clustering methods belonging to this family include

52

Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

famous algorithms such as Meanshift!''], DBSCAN?!, and
OPTICS!"2L.

The Density peak clustering algorithm (DPC) [and its
evolutions are parts of recent density-based methods which
have shown strong capabilities to extract clusters even in
complex scenarios with a lot of noise, or clusters in con-
tacts, clusters with different densities, clusters with complex
shapes, etc.

Like most other density-based methods, DPC relies on
the use of a distance matrix between all data points, which
by default is computed using the Euclidean distance over all
D variables of the dataset:

d(z,y) = M

This distance matrix is essential for identifying the den-
sity of data points and determining the relationships between
them, which will then be used to detect cluster centers. To

do so, the following steps are followed:

1. For each data point z;, the local density p; is computed
based on other points in its neighborhood.

2. From the previous step, the distance d; is computed
which represents the distance of any point z; to the
closest higher density point. A graph is then built by
linking each point to its nearest higher density neigh-

bor(131,

8; =
‘min (d(7;,7;)) if3j such that p; > p;
Jipi>pi (2)

max (d(Z:, 7)) for the densest point

3. Finally, The clusters are extracted by turning into a
cluster center each point whose closest higher den-
sity neighbor distance ¢; is too big based on a chosen
threshold. The clusters are then propagated to all points
linked to them in the graph.

Several methods exist to compute p;. The first one
from the original DPC algorithm consists in simply counting
the numbers of points within a fixed distance parameter (or
radius) d. (See Equation (3)).

pPi = Zj;&i X(d(gji@j) - dC)

1, ifd<0

N)
x(d) = 0, ifd>0

Another possibility (4] that removes the radius parame-
ter d.. is to computed p; using a Gaussian or RBF-like kernel

as shown in Equation (4).

pi =y eap o)’
i

“)

While the second method removes the radius param-
eter and is, in theory, more “correct”, it is also more com-
putationally intensive as it forces the computation of N-/
exponentials, most of which will have a value very close
to 0.

After calculating the parameters p and J for all points,
it is possible to plot a decision graph (also called a Gamma
Graph) with p on the x-axis and p on the y-axis. By placing
each point on the graph, we can visualize the cluster centers
(also called density peaks). The DPC algorithm selects clus-
ter centers based on high local density and distance to denser
points. The remaining points are assigned to the cluster of
their nearest denser neighbor, and outliers are points whose
local density falls below an absolute threshold min_density.
When the noise option is enabled, such points are labeled
-1 (noise). Below is Algorithm 1, which presents the main
steps of the Density Peak Clustering (DPC) method.

Algorithm 1. DPC Algorithm.

Require: The dataset X = {x;},_y., the threshold distance
parameter d.

Ensure: The label vector of cluster index

ieN>

1: Compute distance matrix.

2: Compute p; and ¢, for each point.

3: Plot decision graph and select cluster centers according
to p; and §;.

4: Assign the remaining non-central points to clusters.

5: If pi < min_density then, if noise is enable, label x;
as -1 (outlier).

6: Return label.

2.2. Isolation Forests and Mass-Based Distance
for Clustering

Since our proposed method relies on the use of the mass-
based distance (MBD), we will do a state-of-the-art review
of where this distance comes from and how it is computed.

The Isolation Forest (iForest) is an anomaly detection
algorithm designed to identify outliers in a dataset!®). It is
particularly well-suited for high-dimensional data and large

datasets. The algorithm works as follows: The algorithm

53

Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

builds an ensemble of S binary trees T; jc 1 s. In each tree,
for each node, the dataset (or a sample) is split randomly by
selecting a feature and a random split value within the range
of that feature. The process is iterated until each data point
is isolated in a leaf.

Unlike traditional distance-based or density-based
anomaly detection methods, the Isolation Forest relies on
a unique concept: anomalies are easier to isolate than nor-
mal points due to their rarity and distinctiveness. By doing
so, a distance based on an isolation forest is more effective
than an Euclidean-based one as it is built based on the data
themselves and uses outliers and anomalies to build the tree,
which results in exploiting a lower-dimension manifold em-
bedded around the data rather than all the data space, which
in high dimension can be mostly empty.

In the rest of this work, we will refer to:

¢ Aleaf node as a terminal node; it is a node of maximum
depth.

¢ The root node as the first node created; it contains the
entire sample.

* The mass of a node as the number of data points (obser-
vations) present in the node.
Using the following diagram (Figure 1), it is possible

to see the structure of a complete binary tree:

h = [log,(|X1)]

Ty (k=1)
Legend:
O: Rootnode Tj: Tree k
O : Node h: Height of the tree
O : Leafnode |X|: Size of the dataset

Figure 1. Complete Binary Tree.

We can observe in this diagram that there are three pos-
sible types of nodes. Moreover, the purpose of this algorithm
is to distribute the data into different nodes, thus dividing

the data. Each time a node is split, its mass becomes zero;

the total mass (size of the initial sample) is therefore divided
among all the leaf nodes.

From there, the main idea of the mass-based distance
MBD is to use the iTree instead of the Euclidean distance:
The distance between two points will be based on the aver-
age distance between their leafs in the different trees of the
iForest, as shown in Equation (5), which we will detail in
the next section presenting our algorithm.

This use of the mass-based distance to replace the Eu-
clidean distance has already been successfully tested for DB-
SCANS] as well as the original DPC algorithm, but without
optimized computation of the MBD matrix 6],

What we propose is an improvement over both works
by using both the fast version of the DPC algorithm, and the
fast version of the mass-based distance matrix computation
in order to obtain an algorithm that is both a lot better than
DBSCAN and OPTICS, but also much faster than earlier
versions of DPC and mass-based methods.

3. Improving Fast Density Peaks
Clustering

As stated in the introduction, the main limitation of all
density-based algorithms (including DPC) is the computa-
tion and use of the distance matrix. Using Euclidean-based
distances for this type of clustering presents two main chal-
lenges:

1. Euclidean-based distance matrices are slow to com-
pute: O(N°D) for a dataset with N elements over D
dimensions.

2. Dueto the curse of dimensionality '], Euclidean-based
distances tend to become ineffective in high dimension
due to strong differences over specific features being

lost when averaged over too many features.

Within this context, mass-based distance applied to the
DPC algorithm solves both issues by allowing to compute
the distance matrix faster and providing a distance that, in
high dimension, is more discriminating than the Euclidean
distance. Indeed, the mass-based distance is built in a cus-
tomized way that matches the data, and the distance is then
computed based on the lowest common ancestor in the tree.
It has recently been demonstrated that this type of distance
relying on isolation kernels is better than Euclidean-based

distances when it comes to high dimensional datal'® — the

54

Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

proof relies on isolation kernels being based on Voronoi
diagrams 1%, It follows that with a better and more discrimi-
nating distance, better clusters should be found.

3.1. Improving the Core Algorithm

In order to improve the Euclidean FDPC clustering,
it is possible to change the metric to use a fast-computed
mass-based distance matrix instead of an Euclidean distance
matrix. This is the m-FDPC algorithm.

To perform this clustering, we first need the mass-based
distance matrix. Here are the different steps of the algorithm

to compute the mass-based distance matrix (8201

The first step is to input a dataset X into the root node.
2. Then, the data included in the first node (root node)
will be divided into two child nodes (left and right):
The criterion for node divisibility is as follows: we
randomly choose an attribute g, then among all the

points present in the root node, we note:

* Qmao the maximum value observed among all ob-
servations (rows) for attribute g.
* Qmin the minimum value observed among all ob-

servations (rows) for attribute q.

3. A split point p (a value randomly chosen among
all those of attribute ¢) is selected such that
Gmin < P < Qmae. If the ¢*" attribute value for any
x€ X (for the root node) is less than p, then x becomes
part of the left child X;, otherwise, it goes to the right
child X,.. This step is performed recursively to divide

the new nodes. The construction of the tree continues
until the maximum height b = | log, (| X|) | is reached

or each point is isolated.

Now, after generating the forest using the Isolation
Forest algorithm, it is possible, thanks to the different trees
obtained, to calculate the MBD for each pair of points; we
must therefore calculate C’|2X‘ distances in total. The idea is
to calculate the MBD for each tree by computing the distance
between two points as follows:

MBD;(z, y) =)
Mass; (LCA(Leaf,;(z), Leaf,(y)))
where:
* MBD;(z, y) is the function that returns the distance

calculated for a single tree.

* LCA(Nodei, Nodes) is the function that returns the
node of the lowest common ancestor of the two nodes.

* Leaf,(x) is the function that returns the number of the
leaf node.

* Mass;(Node) is the function that returns the mass of
the node in tree Tj;.

From this relation, it is possible to determine the MBD

for the forest (it is simply the average of the MBD for all the

trees):

MBD(z, y) (6)

-5y

Here is what an MBD matrix looks like (Table 1):

Table 1. MBD matrix.

?1 ?2 ?3
) MBD(?l, 1) MBD(Z1,72) MBD(Z., Z3)
T D(%, 71) MBD(Z>, T2) MBD(Z2, Z3)
Zs3 MBD(Ts, 1) MBD(Zs, Z2) MBD(z, T's)

Below is the corresponding improved DPC algorithm
that integrates the use of MBD distance (Algorithm 2):

Algorithm 2. m-FDPC Algorithm.

Require: The dataset X = {z; },y. the threshold distance parameter d.
Ensure: The label vector of cluster indices
1: Fast compute the mass-based distance matrix.
2: Use the regular DPC algorithm with the computed matrix.
3: Identify outliers: if p; < min_density then, if noise is enable,
label x; as -1 (outlier).
4: Return label.

It is pertinent to elaborate on Step 3 of Algorithm 2
(and similarly, Step 5 of Algorithm 1 for DPC) concerning
outlier identification. These steps refine the general outlier
handling step by using a direct, parameter-driven mechanism
for greater control and reproducibility. In our implementa-
tion, after computing the local density p; for each point, a
point is explicitly marked as noise (labeled -7) if its den-

sity falls below a user-defined threshold, min_density, and a

55

Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

noise flag is active. This approach offers more direct control
over the sensitivity of outlier detection compared to rules
based on relative density. The effectiveness of this explicit,
min_density-based approach is demonstrated in our Results

Analysis section with the custom dataset designed for this
purpose.

3.2. Algorithmic Complexity

In this section, we discuss the asymptotic time complex-
ity of our m-FDPC algorithm and compare it with Euclidean
FDPC. In particular, we focus on the complexity associated
with computing the mass-based distance (MBD) matrix.

As previously mentioned, Euclidean FDPC relies on an
all-pairs Euclidean distance matrix, which entails a complex-
ity of O(N’D) for N data points and D dimensions. Although
the clustering steps within Euclidean FDPC can be acceler-
ated to O(N log N), the overall complexity remains dominated
by the O(N?D) distance matrix computation. Similarly, stan-
dard density-based algorithms like DBSCAN or OPTICS
also require O(N?) complexity due to their pairwise distance
computations, each involving O(D) operations per pair.

In contrast, our m-FDPC algorithm employs the mass-
based distance (MBD) metric, which can be computed more
efficiently using the fastMBD algorithm['3]. Without opti-

mization, a naive MBD (nMBD) approach would require
multiple insertions and Lowest Common Ancestor (LCA)
queries, resulting in O(N? log S) complexity, where S is the
sample size used to construct the iForest. The fastMBD

technique significantly reduces this complexity by:

Constructing the iForest once.
2. Processing all data points in each iTree via a single

top-down traversal.

W

Determining MBD values for all pairs of points during
this traversal, without the need for separate leaf node
detection or repeated LCA computations.

By performing the necessary computations during a sin-
gle, systematic pass through each iTree, fastMBD calculates
the complete N x N MBD matrix in O(N?) time. This ap-
proach removes the explicit dependence on D for the distance
calculation stage and provides a substantial improvement
over the naive MBD method.

In summary, the total complexity for m-FDPC is O(N?),
achieved through the integration of the fastMBD approach.
This complexity represents a significant practical advantage
compared to the O(N°D) complexity of Euclidean-based
methods, making m-FDPC more efficient and scalable, par-
ticularly in medium to high-dimensional datasets.

All results are summed up in Table 2.

Table 2. Complexity Comparison of FDPC with Euclidean and Mass-Based Distance Matrices.

Algorithm DPC Euclidean FDPC m-FDPC
Distance Matrix Computation O(N 2D) O(N?D) O(N?)[13]
Clustering Alg. O(N?) O(N log N) O(N log N)
- p calculation O(N?) O(N log N) O(N log N)
- 0 calculation O(N) O(N) O(N)
- Cluster assignment O(N log N) O(N log N) O(N log N)
- SearchCluster function O(N) O(N) O(N)
Total Complexity O(N?D) O(N?D) O(N?)

3.3. Further Considerations on Speeding the
Algorithm

While mass-based distance primarily affects the com-
putation and complexity of the distance matrix, it can also be
used to further accelerate the clustering algorithm itself. Ow-
ing to their similarity with KD-trees?!! (both rely on binary
trees, recursive partitioning, and feature-based splits), which
have historically been used for nearest-neighbor search, the
binary trees from Isolation Forests could likewise be lever-

aged to approximate the search for the nearest highest-density

point in the DPC algorithm.

This strategy is appealing in principle, as it could
yield a clustering algorithm faster than O(N?), down to
O(N log N)13221. However, it should be noted that in
Isolation Forests, splits are random, designed to measure
anomaly scores from path length. KD-trees, by contrast, use
deterministic splits to enable efficient nearest-neighbor or
range queries. Thus, using Isolation Forests to approximate
the search for the nearest highest-density point would ef-

fectively layer one approximation (nearest highest-density

56

Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

point) on top of another (distance estimation based on a non-
deterministic method). In other words, this approach would
trade precision for speed.

Another possibility to speed up the DPC algorithm
would be to combine our mass-based distance approach with
other approximation methods for the DPC algorithm that
already exist in the literature and can reach a complexity as
low as O(N log N) in best-case situations[*!0],

While both are possible depending on the context, in
the remainder of this paper, we opted for the exact search

of the nearest highest-density point using the original algo-

rithm.

4. Experimental Results
4.1. Datasets

To assess the quality of our proposed method and com-
pare it to other clustering strategies, we used the following
datasets (Table 3):

Table 3. Datasets.

Dataset Rows Variables Clusters Noise
Iris 150 4 3 No
WDBC 569 30 2 No
Seeds 210 7 3 No
Digits 1797 64 10 No
Custom 1075 2 3-5 Yes
Flame 240 2 2 No
Aggregation 788 2 7 No

With regards to our Custom dataset, it contains 5 true
labels from which we generated the data. However, due
to one clustering being voluntarily small and another being
sparse and with a high standard deviation, these could be

considered noise depending on the algorithm’s settings.

4.2. Experimental Setting and Data Prepara-
tion

We implemented and compared several clustering ap-
proaches: Euclidean FDPC utilizing an Euclidean distance
matrix, m-FDPC (Mass-Based Fast Density-Peaks Cluster-
ing) leveraging a mass-based distance matrix, as well as
DBSCAN and K-means algorithms to provide a comprehen-
sive comparison between mass-based clustering and other
methods relying on Euclidean distance.

Our methodology encompasses the following key steps:
we used several standard datasets, including Breast Can-
cer Wisconsin, Seeds, Digits, Iris, and the shape (non-
spherical) datasets Flame and Aggregation, as well as a
custom-generated dataset. Each dataset was preprocessed
appropriately to suit the requirements of the clustering algo-
rithms. Specifically, for all Euclidean clustering methods,
we normalized the data using the MinMaxScaler (a func-

tion from the scikit-learn library) to ensure that all feature

values were scaled between 0 and 1. This normalization is
crucial because the Euclidean distance matrix can exhibit
large variance in values, potentially skewing the clustering
results. However, this normalization process can lead to
a loss of information by compressing the natural variation
within the data, which is a notable drawback for Euclidean
distance-based clustering and highlights a key advantage of
the mass-based distance.

A distinctive aspect of our methodology is the differen-
tial treatment of data normalization based on the clustering
approach employed:

* Euclidean FDPC (Euclidean Distance): For Euclidean
FDPC, we applied normalization to the dataset using
the MinMaxScaler. This step ensures that all feature
values are within the!!! range, stabilizing the Euclidean
distance calculations by preventing features with larger
scales from disproportionately influencing the distance
metrics.

* m-FDPC (Mass-Based Distance): Conversely, for m-
FDPC, we did not perform any additional normalization
on the dataset. The mass-based distance matrix inher-
ently produces values within the!l range, removing the
need for prior normalization. This inherent normaliza-
tion simplifies the preprocessing pipeline for m-FDPC

and maintains the natural distribution of the data’s mass-

57

Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

based relationships.

One of the significant advantages of using m-FDPC
lies in the ease of parameter selection. Given that the mass-
based distance matrix is already normalized, determining
optimal parameters such as r-values, min-density values, and
max-distance values becomes more straightforward. These
parameters are crucial for defining the density peaks and de-
termining cluster centers. In contrast, for Euclidean FDPC,
the variability in the Euclidean distance matrix necessitates
a more careful and often dataset-specific parameter tuning
process to achieve meaningful clustering results.

By leveraging the normalized nature of the mass-based
distance matrix in m-FDPC, we observed that parameter
ranges could be standardized across different datasets, en-
hancing the robustness and reproducibility of the clustering
outcomes. This uniformity reduces the complexity involved
in the parameter optimization phase, making m-FDPC a
more efficient and user-friendly approach for density-based
clustering.

After preparing the datasets, we applied both Euclidean
FDPC and m-FDPC algorithms, as well as the DBSCAN and
K-means algorithms, to identify clusters within each dataset.
For evaluation, we employed metrics such as the Silhouette

[23] and the Davies-Bouldin Index 24

Score to assess the qual-
ity of the clusters formed. Additionally, we utilized Principal
Component Analysis (PCA) for dimensionality reduction to

visualize the clustering results effectively.

4.3. Experimental Results

Our methodology highlights the streamlined prepro-
cessing and parameter optimization processes afforded by
m-FDPC, positioning it as a more accessible and efficient
alternative to traditional Euclidean FDPC in density-based
clustering tasks.

There are several important considerations to analyze

the results shown in Appendix A, Table A1:

* We deliberately selected datasets where cluster forma-
tions naturally align with class distributions. This choice
was essential for our evaluation strategy, as our clus-
tering score (matching score) relies on the confusion
matrix to assess performance.

* The matching score is a supervised metric and requires

available labels. This was the case in our experimental

setting for evaluation purposes, but it is not common
for real clustering applications.

* Clustering indexes tend to be biased towards specific
algorithms. For instance, the Davies-Bouldin index is
the metric for the K-means algorithm and tends to be
very heavily biased towards spherical clusters found by
this method, regardless of their real quality2>-26],

* m-FDPC is a stochastic method that does not rely on
multiple initializations (in contrast to scikit-learn’s K-
means+t, typically run with several restarts). To assess
reliability and robustness, we computed an additional

metric.

The methodology adopted to quantify this stability for
the m-FDPC stochastic algorithm is detailed as follows. For
a fixed set of its hyperparameters, the entire clustering pro-
cess was executed independently NV times. Based on our
experimental scripts, this value N was typically 50. Each of
these N executions yielded a set of cluster labels, denoted as
P, Ps, ..., Py.

To assess the agreement between any two of these N
partitions, for example, P; and P;, we employed the Ad-
justed Rand Index (ARI). The ARI is a measure of similar-
ity between two data clusterings that considers all pairs of
samples and counts pairs that are assigned to the same or
different clusters in the predicted and true clusterings; it then
adjusts this score to account for chance groupings. The ARI
produces a value between —1 and +1, where +1 indicates
perfect agreement between the partitions, values near 0 in-
dicate a similarity no better than random assignment, and
negative values suggest disagreement. We denote this as
ARI(P;, F;).

The overall stability score, S, for the tested configura-
tion of hyperparameters, was then determined by calculating
the arithmetic mean of the ARI scores obtained from all
unique pairs of partitions generated across the N runs. The
total number of such unique pairs is given by the combina-
tion (1;[) The general formula for this stability score S is

therefore:

1

(%)

This is the specific case where N = 50 (as indicated for

S = > ARI(P,P))

1<i<j<N

)

stochastic algorithms in our comparative analysis script), the

number of unique pairs (7)) is 1225. The formula applied

58

Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

then becomes:
49 50

1
S = %Z > ARI(P, P))

i=1 j=i+1

®)

A stability score S approaching 1 implies a high stabil-
ity, indicating that the algorithm consistently generates very
similar, if not identical, clustering results across repeated
executions with the same parameters. Conversely, a lower
score suggests greater variability in the partitions produced
by the algorithm.

To optimize hyperparameters, we used the Optuna
framework (a Bayesian parameter optimization method 27}
for most algorithms and datasets. Our optimization strategy
with Optuna focused on maximizing the Silhouette coeffi-
cient rather than stability. This decision was made because
calculating stability for mass-based distance algorithms al-
ready requires computing the mass-based distance matrix
50 times, which would have resulted in excessive computa-
tional iterations if incorporated directly into the optimization
objective. Specifically, we ran Optuna for 200 trials to find
parameters that maximize the Silhouette coefficient. Subse-
quently, for the best parameters identified, we calculated the
stability metric. This two-step approach allowed us to iden-
tify parameter sets that provide both high clustering quality
(as measured by the Silhouette coefficient) and good stability.

However, several exceptions required manual parame-

ter tuning:

* For the Euclidean FDPC algorithm with the WDBC
dataset, we manually fine-tuned optimal parameters af-
ter finding that Optuna failed to produce satisfactory
results.

* Similarly, for the Euclidean FDPC algorithm with the
Custom dataset, manual parameter tuning proved more
effective than Optuna’s suggestions.

* For the Euclidean FDPC algorithm with the Flame and
Aggregation datasets, we also fine-tuned the parameters
manually based on the silhouette index, matching index
and visual quality of the results.

e For the Euclidean FDPC algorithm with the Digits
dataset, as well as for DBSCAN across datasets, we
encountered significant challenges in parameter identi-
fication, even through manual testing.

* For the m-FDPC algorithm, we relied on manually fine-
tuned parameters that consistently yielded strong per-

formance.

4.4. Result Analysis

The results show that m-FDPC achieves the best Match-
ing Score on five datasets (Iris, WDBC, Digits, Custom, Ag-
gregation) and is within 0.05 of the best on the remaining
two (Seeds and Flame). It also attains the highest Silhouette
on WDBC (and on Digits among the evaluated methods).
Table A1 summarizes the best results achieved using the op-
timal parameters for each dataset and each algorithm. This
presentation allows for a synthetic comparison of the per-
formance of different methods in terms of quality indices,
thereby highlighting the best clustering achieved for each
case. We note that for stochastic algorithms, the Silhouette
and Davies—Bouldin values shown in the figures correspond
to a single run and may therefore differ from those listed in
Table A1, whereas for deterministic algorithms, the values
coincide.

We observe that the Matching Score, computed directly
from the confusion matrix (excluding noise, i.e., unassigned

points), is given by:

K
_ 1
MS - Nassigned Z maxnz] ’
i=1 J
- ©)
Nassigned = Z anj)
=1 3

where n;; is the number of points in cluster i with true la-
belj. This score is almost always highest for the m-FDPC
algorithm. This indicates a more precise correspondence
between the detected clusters and the actual data classes.
Regarding quality indexes, the results are shown in Ta-
ble A1, where the best scores are underlined. We can see that
unsurprisingly, the K-means algorithm achieves the best DBI
scores. Our method, however, has the best matching score on
average and achieves good performances on the Silhouette
index. This proves that m-FDPC is competitive in match-
ing cluster assignments to true class labels and gives good
clustering results: while it does not always have the best
clustering scores, it is never far behind the other methods.
Furthermore, while the DBI is generally higher (worse)
than K-means, it is best on Flame and lower than K-means
on Aggregation. For DBSCAN comparison, m-FDPC shows
superior performance in Matching Score and Silhouette on
WDBC and Seeds, while DBSCAN maintains a lower DBI
on Iris and Custom; conversely, m-FDPC attains a lower

DBI on Flame and Aggregation. Moreover, compared to

59

Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

Euclidean FDPC, our m-FDPC often shows improved perfor-
mances (especially on Matching Score), highlighting the ef-
fectiveness of using mass-based distance. The Flame dataset
presents a case where performances are highly competitive;
our m-FDPC method achieves the best DBI score (1.096)
while remaining a strong competitor on the Matching Score
(0.983 vs. 0.996) and Silhouette index.

Another advantage of m-FDPC lies in the simplicity of
parameter selection. The use of a mass-based distance ma-
trix eliminates the need for prior data normalization, which
simplifies the parameterization process. In contrast, algo-
rithms based on Euclidean distance, such as Euclidean FDPC
and K-means, require prior data normalization, which can
complicate the selection of optimal parameters. Because of
this, it was easier to obtain satisfactory results with m-FDPC
in terms of parameterization compared to Euclidean FDPC,
K-means, or DBSCAN. For instance, for the Digits dataset,
it was particularly difficult to find appropriate parameters for
Euclidean FDPC and DBSCAN using a Euclidean distance
matrix.

We can see in Table A1 that for these two cases, we
were unable to find any relevant results. On the other hand,
m-FDPC was able to generate useful clusters without requir-
ing complex adjustments, thanks to the use of the mass-based
matrix.

As mentioned earlier, to facilitate the interpretation of
results, we employed Principal Component Analysis (PCA)
to reduce the dimensionality of the datasets to two dimen-
sions: PC1 and PC2. Figure 2 presents the clusters obtained
for the Wisconsin Breast Cancer Diagnostic (WDBC) dataset
using the Euclidean FDPC algorithm with an explained vari-
ance of 70.38%.

r=0.45, min_dens=3, max_dist=0.20
Sil=0.127, DBI=nan, Stab=1.000

1.5 4 L] e Cluster -1
L4 e Cluster1
o Cluster 2
1.0 4 o Cluster 3
© Cluster4
e Cluster5
0.5 1 °
~
O e %o
L]

0.0

=0.5

-1.04,
-1.0

05 00 05 10 15 20
PCl
Figure 2. Euclidean FDPC clustering visualization for the WDBC

dataset.

As illustrated in Figure 3, the clusters obtained with
m-FDPC are significantly better defined than those obtained
with Euclidean FDPC, using the best parameters.

r=0.5802, min_dens=19, max_dist=0.19
Sil=0.517, DBI=3.399, Stab=0.724

1.5 L e Cluster-1
¢ e Clusterl
e Cluster 2
1.0 4
0.5 1
L]
g ’ [.. L]
L]
0.0 4
o
~0.5 4 -
L]
L]
710 1 T T T T T T T
-1.0 -0.5 0.0 0.5 1.0 15 2.0

PC1
Figure 3. m-FDPC clustering visualization for the WDBC dataset.

While Euclidean FDPC manages to identify the two
main clusters, the presence of substantial noise complicates
the interpretation of the results. In contrast, m-FDPC success-
fully forms more compact and less noisy clusters, thereby
enhancing the overall quality of the clustering.

Figure 4 presents the clusters obtained for the Iris
dataset using the Euclidean FDPC algorithm after a PCA
retaining 95.89% of the variance. Compared to Figure 5,
which represents the clusters with m-FDPC, the clusters ob-
tained with FDPC are less defined using the best parameters.
For Euclidean FDPC, there is a considerable amount of noise,
and we can only identify 2 clusters, whereas we need to have

3 different clusters. In contrast, for m-FDPC, the noise is

negligible.
r=0.2568, min_dens=5, max_dist=0.10
Sil=0.532, DBI=5.895, Stab=1.000
L]
] Ge
0.4 -
°® °
oo
0.2 - * °
[
° ‘e "{! °
~ .. L]
% o {. .
] @
[] ...
02] *% P »,
024 *% 3 .
o [
; ‘. ‘ @ Cluster-1
-0.4 1 . @ Cluster1
® @ Cluster 2

T T T T T
-0.8 -06 -04 -0.2 0.0 0.2 0.4 0.6 0.8
PC1

Figure 4. Euclidean FDPC clustering visualization for the Iris
dataset.

60

Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

r=0.348, min_dens=5, max_dist=0.47
Sil=0.376, DBI=1.550, Stab=0.724

° oy
0.4 4 e
L] . "}
L]
0.2 " o
@
° o0 'qt ©
~ ®s o o,
g 00 ° .
@
o °
) &, %
024 ®% Oé? L]
o wg 0.. e e Cluster-1
% ® e Clusterl
-0.4 ° o Cluster2
o o Cluster3
08 -06 -04 -02 00 02 04 06 08

PC1
Figure 5. m-FDPC clustering visualization for the Iris dataset.

For the best clusters obtained after optimizing the pa-
rameters, we observe that the quality indices show improve-
ment. The Davies-Bouldin Index is 5.895 for Euclidean
FDPC and 2.621 for m-FDPC, demonstrating a clear im-
provement.

The custom dataset (1075 points, 5 true labels, 2 dimen-
sions) was specifically included not only to test performance
on varying cluster shapes and densities but also to serve as
a “toy dataset” for evaluating the outlier handling capabil-
ities discussed in Section 3. This dataset includes a sparse
group of points designed to emulate outliers or low-density
formations.

Figures 6 and 7 show the clustering results for Eu-
clidean FDPC and m-FDPC, respectively, on this custom
dataset. For Euclidean FDPC (Figure 6), with parameters
= 0.2, min_density = 1, max_dist = 0.2 (as per Table A1),
the low min_density threshold resulted in all points being as-
signed to one of the three identified clusters, without explicit

noise detection.

r=0.2, min_dens=1, max_dist=0.20
Sil=0.699, DBI=0.457, Stab=1.000

J e Clusterl
0% o Cluster2
e Cluster3
0.2
L]
0.0 1 *
~
8]
a
-0.2 1
—0.4 4
70-6 4
T T T T T T
-0.6 -0.4 -0.2 0.0 0.2 0.4
PC1

Figure 6. Euclidean FDPC clustering visualization for the custom
dataset.

61

r=0.2728, min_dens=5, max_dist=0.27
Sil=0.646, DBI=1.580, Stab=0.917

0.4
0.2 4
3 g
=04 e Cluster-1
@ Clusterl
-0.4 4 o Cluster2
o Cluster 3
-0.6 1 o Clustera
e Cluster 5
-0.4 -0.2 0.0 0.2 0.4

Figure 7. m-FDPC clustering visualization for the custom dataset.

In contrast, m-FDPC (Figure 7), using parameters » =
0.2563, min_density = 3 and max_dist = (0.2743, success-
fully identified five clusters and, significantly, a number of
points classified as noise (visible as isolated points or explic-
itly labeled as ‘Cluster -1 if using visualization parameters
similar to those that produced. This ability to isolate outliers
is a direct result of the min_density threshold in our FDPC
implementation, effectively demonstrating the practical ap-
plication of the refined outlier handling mechanism.

While Euclidean FDPC showed better DBI for this
specific run (0.457 vs. 2.538), m-FDPC’s higher Matching
Score (0.823 vs. 0.791) and its capacity to delineate noise
underscore its utility in scenarios with complex data struc-
tures and potential outliers. This provides empirical support
for the benefits of the detailed outlier treatment approach.

Furthermore, the numerical and visual results on the Ag-
gregation dataset show the limits of clustering indexes. For
instance, as shown in Figure 8, it is the original Euclidean
FDPC that has the best results in terms of Davies-Bouldin
and Silhouette indexes. However, when looking at the visual-
ization and the matching indexes, it is clear that our m-FDPC
method (Figure 9) is better: not only does it have higher
matching scores, but we can see that it manages to capture 2
small clusters that the original FDPC did not find. In contrast,
the figures clearly show that the K-means algorithm (Figure
10) provides a completely arbitrary clustering.

We also evaluated the consistency of our m-FDPC by
computing stability S over 50 independent runs (i.e., recom-
puting the mass-based distance matrix and reclustering each
time).

This analysis was specifically focused on m-FDPC, as

the other algorithms are either deterministic or artificially

Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

stable. For instance, DBSCAN and Euclidean FDPC are
fully deterministic, thus trivially yielding S = 7.00. While
K-means is non-deterministic, the standard Scikit-learn im-
plementation is actually a K-means++ algorithm run multiple
times, which makes its output highly consistent.

r=0.23, min_dens=5, max_dist=0.13
Sil=0.518, DBI=0.547, Stab=1.000

Cluster 1
Cluster 2
Cluster 3
Cluster 4

® oo e

02 00 02 04 06
PC1
Figure 8. Euclidean FDPC clustering visualization for the aggrega-

tion dataset.

m-FDPC (Run 0)
r=0.23, min_density=1, max_dist=0.4
Sil=0.494, DBI=0.504, Stab=0.709

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7

o
o

o
Y

@00 0C0OON

PC2
=]
=

-0.2

-0.2 0.0 0.2 04 0.6
PC1

Figure 9. m-FDPC clustering visualization for the aggregation
dataset.

k=7
Sil=0.475, DBI=0.698, Stab=0.777

@ Clusterl
@ Cluster 2
o Cluster 3
o Clusterd
o Cluster5
o Cluster &
e Cluster7

0.6 4

0.4

0.2 4

Figure 10. K-means clustering visualization for the aggregation
dataset.

As reported in Table A1, m-FDPC achieves stability
scores in the range 0.552 <5< 0.917. For example, on the
Iris and WDBC datasets, it attains S = 0.724, indicating
that even though the mass-based distance is rebuilt on each
run, the resulting partitions remain largely consistent. On
the higher-dimensional Digits dataset, stability dips to S =
0.652, reflecting greater variability in the isolation forest
splits under random sampling. These results show that the
randomness from recomputing mass-based distances does
not significantly affect m-FDPC’s consistency, and that its
stability remains competitive given the notable gains in clus-
ter quality and the simplified parameter initialization.

The experiments demonstrate that m-FDPC offers not
only better clustering quality but also greater ease of use in
terms of parameter selection. By utilizing a mass-based dis-
tance, m-FDPC simplifies the parameterization process and
eliminates the need for prior data normalization, making the
algorithm more accessible and efficient. Furthermore, the
results show that m-FDPC outperforms traditional Euclidean
distance-based methods, particularly in high-dimensional
and complex datasets where conventional methods face sig-
nificant limitations. It also performs strongly on shape (non-
spherical) datasets such as Flame and Aggregation. These
advantages make m-FDPC an effective solution for cluster-

ing.

5. Conclusions and Future Works

In this paper, we presented a new variant of the Fast
Density Peak Clustering (FDPC) algorithm by replacing the
Euclidean distance with a mass-based distance (m-FDPC).
More specifically, we integrated a fast computation of the
mass-based distance matrix to enhance the efficiency of den-
sity peak detection. This approach allowed us to leverage
the properties of the mass-based distance—already recog-
nized for its robustness in high-dimensional settings and its
intrinsic normalization—without the need for prior data nor-
malization. Furthermore, we used the latest version of an
optimized algorithm to compute the mass-based distance,
which considerably reduced its computation time.

Our experiments demonstrated that m-FDPC provides
improved clustering quality, exhibiting a stronger ability to
separate data groups under various conditions. In our experi-
ments (Table A1), m-FDPC achieves Matching Score and

62

Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

Silhouette Score on a par with—and often exceeding—those
obtained with classic Euclidean-metric FDPC, DBSCAN,
and K-means++. Across the datasets where both methods
were evaluated, m-FDPC attains a higher Matching Score
than Euclidean-FDPC, DBSCAN, and K-means (on aver-
age +14%, +19%, +4%). Moreover, the parameter selection
process, simplified by the mass-based distance, proved par-
ticularly advantageous: critical parameter values are more
easily determined and more robust to data variations, which
gives our method a decisive edge over other density-based
clustering algorithms, where an extensive grid search can be
needed to find the optimal parameters.

The initial objective, which was to assess the contribu-
tion of mass-based distance for accelerating and simplifying
the implementation of FDPC, has thus been fully achieved.
Not only does the new m-FDPC approach validate the per-
formance and robustness gains, but it also confirms the rele-
vance of reconsidering the distance metric used for density
peak detection.

However, it is important to remember that while our
method has been shown to be more efficient and faster than
other clustering methods from different families, it still has
limitations. Like many density-based clustering algorithms,
it will struggle with clusters that cumulate the following dif-
ficulties: varying density clusters being in contact with one
another.

In future works, it would be interesting to further assess
the impact of isolation forest construction (the foundation
of the mass-based distance) on the algorithm’s performance
and scalability. Additionally, incorporating mass-based ap-
proaches into other clustering algorithms, as well as explor-
ing parallel optimizations is also something worth exploring
in the future. Furthermore, combining mass-based distance
computation with an already sped-up version of the DPC
algorithm, such as the sparse dual approximation version],
would also be a potentially interesting future lead.

Finally, extending this approach to Big Data environ-
ments or real-time data would open up new opportunities

to test the robustness and flexibility of m-FDPC in various

applied contexts.

Author Contributions

This work was conducted as part of an “introduction to
scientific research” class, followed by M.M. and C.T. The re-
search was done under the supervision of J.S., who came up
with the subject. Most of the implementation, experiments,
visualization as well as the paper writing were done by M.M.
and C.T. J.S. was in charge of the supervision, formal analy-
sis, validation, proofreading, and project administration. All
authors have read and agreed to the published version of the

manuscript.

Funding

This work received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The source code can be found on Github:
//github.com/Mouglil/IX.2408.

https:

Acknowledgments

We would like to thank Professor Lionel Trojman, who
through his introduction to scientific research class made this

project possible.

Conflicts of Interest

The authors declare no conflict of interest.

63

https://github.com/Mougli1/IX.2408
https://github.com/Mougli1/IX.2408

Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

Appendix A
Table Al. Summary of clustering performances with optimal parameters.
Dataset Iris WDBC Seeds Digits Custom Flame Aggregation
Euclidean FDPC
r 0.2568 0.45 0.3441 - 0.2 0.15 0.23
min_density 5 3 9 - 1 5 5
max_dist 0.1013 0.2 0.3921 - 0.2 0.25 0.13
DBI 5.895 1.875 1.788 - 0.457 1.128 0.547
Silhouette 0.532 0.127 0.367 - 0.699 0.335 0.518
Matching Score 0.660 0.705 0.833 - 0.791 0.996 0.841
Our m-FDPC
r 0.348 0.5802 0.4238 0.45 0.2728 0.5335 0.23
min_density 5 19 13 3 5 5 1
max_dist 0.47 0.1906 0.151 0.3 0.27 0.55 0.4
DBI 2.621 3.921 1.635 2.106 2.538 1.096 0.697
Silhouette 0.449 0.453 0.344 0.181 0.640 0.34 0.418
Matching Score 0.933 0.928 0.843 0.795 0.823 0.983 0.996
Stability 0.724 0.724 0.751 0.652 0.917 0.552 0.709
DBSCAN
& 0.179 0.6201 0.1999 - 0.06 0.1 0.0892
min_samples 2 2 3 - 22 10 28
DBI 2.150 1.629 1.657 - 1.222 1.554 0.996
Silhouette 0.446 0.325 0.262 - 0.638 0.258 0.447
Matching Score 0.673 0.612 0.590 - 0.785 0.975 0.983
K-means
k 3 2 3 10 5 2 7
DBI 0.787 1.136 0.877 1.927 0.587 1.103 0.749
Silhouette 0.483 0.385 0.422 0.131 0.680 0.380 0.462
Matching Score 0.887 0914 0.890 0.782 0.813 0.846 0.903

Note: The best performances results have been underlined.

References

(1]

(2]

MacQueen, J.B., 1967. Some Methods for Classifi-
cation and Analysis of Multivariate Observations. In
Proceedings of the 5th Berkeley Symposium on Mathe-
matical Statistics and Probability, Berkeley, CA, USA,
21 June-18 July 1967; pp. 281-297.

Ester, M., Kriegel, H.-P., Sander, J., et al., 1996. A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases With Noise. In Proceedings
of the Second International Conference on Knowledge
Discovery and Data Mining, Portland, OR, USA, 2—4
August 1996; pp. 226-231.

Rodriguez, A., Laio, A., 2014. Clustering by Fast
Search and Find of Density Peaks. Science. 344(6191),
1492—-1496. DOI: https://doi.org/10.1126/science.
1242072

Wang, S., Wang, D., Li, C., et al., 2016. Clustering by
Fast Search and Find of Density Peaks With Data Field.
Chinese Journal of Electronics. 25(3), 397-402.

Liu, R., Wang, H., Yu, X., 2018. Shared-Nearest-
Neighbor-Based Clustering by Fast Search and Find
of Density Peaks. Information Sciences. 450, 200-226.
DOI: https://doi.org/10.1016/j.ins.2018.03.031

Liu, F.T., Ting, K.M., Zhou, Z.-H., 2008. Isolation
Forest. In Proceedings of the 2008 Eighth IEEE Inter-
national Conference on Data Mining, Pisa, Italy, 15-19

64

(7]

[10]

[11]

December 2008; pp. 413—-422.

Ting, K.M., Zhu, Y., Carman, M., et al., 2016. Over-
coming Key Weaknesses of Distance-Based Neighbour-
hood Methods Using a Data Dependent Dissimilarity
Measure. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA, 13—17 August
2016; pp. 1205-1214.

Ahlawat, N., Awekar, A., 2022. Scaling Up Mass-Based
Clustering. In Proceedings of the 31st ACM Interna-
tional Conference on Information & Knowledge Man-
agement, Atlanta, GA, USA, 17-21 October 2022; pp.
3781-3785.

Floros, D., Liu, T., Pitsianis, N., et al., 2018. Sparse
Dual of the Density Peaks Algorithm for Cluster Anal-
ysis of High-Dimensional Data. In Proceedings of the
2018 IEEE High Performance Extreme Computing
Conference, Waltham, MA, USA, 25-27 September
2018; pp. 1-14.

Sieranoja, S., Frénti, P., 2019. Fast and General Den-
sity Peaks Clustering. Pattern Recognition Letters. 128,
551-558. DOI: https://doi.org/10.1016/j.patrec.2019.
10.019

Fukunaga, K., Hostetler, L., 1975. The Estimation of
the Gradient of a Density Function, With Applications
in Pattern Recognition. IEEE Transactions on Infor-
mation Theory. 21(1), 32—40. DOI: https://doi.org/10.

https://doi.org/10.1126/science.1242072
https://doi.org/10.1126/science.1242072
https://doi.org/10.1016/j.ins.2018.03.031
https://doi.org/10.1016/j.patrec.2019.10.019
https://doi.org/10.1016/j.patrec.2019.10.019
https://doi.org/10.1109/TIT.1975.1055330

Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

[13]

[14]

[15]

[17]

[18]

[19]

1109/TIT.1975.1055330

Ankerst, M., Breunig, M.M., Kriegel, H., et al., 1999.
OPTICS: Ordering Points to Identify the Clustering
Structure. In Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data,
Philadelphia, PA, USA, 1-3 June 1999; pp. 49—60.
Wang, Y., Qian, J., Hassan, M., et al., 2023. Den-
sity Peak Clustering Algorithms: A Review on the
Decade 2014-2023. Expert Systems with Applications.
238(7), 121860. DOI: https://doi.org/10.1016/j.eswa
.2023.121860

Du, M., Ding, S., Jia, H., 2016. Study on Density Peaks
Clustering Based on k-Nearest Neighbors and Principal
Component Analysis. Knowledge-Based Systems. 99,
135-145.

Ahlawat, N., 2024. Isolation Forest Based Efficient Un-
supervised Machine Learning Algorithms [PhD thesis].
Indian Institute of Technology Guwahati: Guwahati,
India. pp. 1-150.

Ling, D., Xiao, X., 2018. Mass-Based Density Peaks
Clustering Algorithm. In Proceedings of the Interna-
tional Conference on Intelligent Information Process-
ing, Nanning, China, 19-22 October 2018; pp. 40—48.
Chen, L., 2009. Curse of Dimensionality. In: Liu, L.,
Ozsu, M.T. (Eds.). Encyclopedia of Database Systems.
Springer: Boston, MA, USA. pp. 545-546.

Wang, J., Ji, C., Liu, F., et al., 2025. A Band Selec-
tion Approach Based on a Mass-Based Metric and
Shared Nearest-Neighbours for Hyperspectral Images.
IET Image Processing. 19(1), €70165. DOI: https:
//doi.org/10.1049/ipr2.70165

Ting, K.M., Washio, T., Zhu, Y., et al., 2021. Break-
ing the Curse of Dimensionality With Isolation Ker-
nel. arXiv preprint. arXiv:2109.14198. DOI: https:
//doi.org/10.48550/arXiv.2109.14198

65

[20]

(21]

(22]

(23]

[24]

[25]

[26]

Bhattacharjee, P., 2024. Density-Based Mining Algo-
rithms for Dynamic Data: An Incremental Approach
[PhD thesis]. Indian Institute of Technology Guwahati:
Guwahati, India. pp. 1-200.

Bentley, J.L., 1975. Multidimensional Binary Search
Trees Used for Associative Searching. Communica-
tions of the ACM. 18(9), 509-517. DOI: https://doi.or
2/10.1145/361002.361007

Brown, R.A., 2015. Building a Balanced k-d Tree in
O(kn log n) Time. Journal of Computer Graphics Tech-
niques. 4(1), 50-68.

Rousseeuw, P.J., 1987. Silhouettes: A Graphical Aid to
the Interpretation and Validation of Cluster Analysis.
Journal of Computational and Applied Mathematics. 20,
53-65. DOI: https://doi.org/10.1016/0377-0427(87)
90125-7

Davies, D.L., Bouldin, D.W., 1979. A Cluster Separa-
tion Measure. IEEE Transactions on Pattern Analysis
and Machine Intelligence. PAMI-1(2), 224-227. DOI:
https://doi.org/10.1109/TPAMI.1979.4766909
Vendramin, L., Campello, R.J.G.B., Hruschka, E.R.,
2010. Relative Clustering Validity Criteria: A Compar-
ative Overview. Statistical Analysis and Data Mining:
The ASA Data Science Journal. 3(4), 209-235. DOI:
https://doi.org/10.1002/sam.10080

Ikotun, A.M., Habyarimana, F., Ezugwu, A.E., 2025.
Cluster Validity Indices for Automatic Clustering: A
Comprehensive Review. Heliyon. 11(2), e41953. DOLI:
https://doi.org/10.1016/j.heliyon.2025.e41953

Akiba, T., Sano, S., Yanase, T., et al., 2019. Optuna: A
Next-Generation Hyperparameter Optimization Frame-
work. In Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data
Mining, Anchorage, AK, USA, 4-8 August 2019; pp.
2623-2631.

https://doi.org/10.1109/TIT.1975.1055330
https://doi.org/10.1109/TIT.1975.1055330
https://doi.org/10.1016/j.eswa.2023.121860
https://doi.org/10.1016/j.eswa.2023.121860
https://doi.org/10.1049/ipr2.70165
https://doi.org/10.1049/ipr2.70165
https://doi.org/10.48550/arXiv.2109.14198
https://doi.org/10.48550/arXiv.2109.14198
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1002/sam.10080
https://doi.org/10.1002/sam.10080
https://doi.org/10.1016/j.heliyon.2025.e41953

	Introduction
	State of the Art
	Density-Based Clustering and the Density Peaks Algorithm
	Isolation Forests and Mass-Based Distance for Clustering

	Improving Fast Density Peaks Clustering
	Improving the Core Algorithm
	Algorithmic Complexity
	Further Considerations on Speeding the Algorithm

	Experimental Results
	Datasets
	Experimental Setting and Data Preparation
	Experimental Results
	Result Analysis

	Conclusions and Future Works

