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ABSTRACT

In this work, we introduce m-FDPC, a mass-based variant of the Fast Density Peak Clustering (FDPC) algorithm, aimed

at improving both performance and ease of use in unsupervised learning tasks. Traditional FDPC relies on Euclidean distance

and requires careful parameter tuning and data normalization, which can significantly affect clustering outcomes—especially

for heterogeneous or high-dimensional datasets. To address these challenges, m-FDPC replaces the conventional Euclidean

metric with a mass-based distance measure derived from isolation forests, a method originally designed for anomaly

detection. This substitution allows the algorithm to capture local data density and structure more naturally, while eliminating

the need for normalization and simplifying the choice of key parameters such as cutoff distance and density thresholds.

Comprehensive experiments on synthetic and real-world datasets demonstrate that m-FDPC not only matches or surpasses

the performance of well-established clustering techniques such as DBSCAN, K-means, and Euclidean FDPC, but also

offers greater robustness, scalability, and interpretability, particularly in high-dimensional or unevenly distributed data

scenarios. Results evaluated through metrics like Matching Score and Silhouette Score confirm the algorithm’s superior

ability to detect meaningful cluster structures with minimal user intervention. Overall, m-FDPC provides a more efficient,

adaptive, and user-friendly framework for density-based clustering, making it a promising tool for diverse applications in

data mining, anomaly detection, and exploratory data analysis.
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1. Introduction

The introduction should briefly place the study in a

broad context and highlight why it is important, in partic-

ular, in relation to the current state of research in the field.

Finally, it can conclude with a brief statement of the aim

of the work and a comment about whether that aim was

achieved [1]. Clustering is an important Machine Learning

task that consists of finding interesting structures or groups

of similar elements within a dataset in an unsupervised way.

With clusters coming in all shapes and forms and no univer-

sal evaluation metrics due to the universal nature of this task,

a large number of clustering algorithms exist in the literature

(including the K-means algorithm [1] which is the most fa-

mous clustering method) with varying efficiency depending

on the dataset nature, the number of features, and the clusters’

nature (shape, size, density, variability and number).

Among the more successful families of clustering al-

gorithms, we can mention density-based clustering meth-

ods that have proven effective at detecting clusters without

assuming any specific shape or properties. In this family

of methods, we can find very famous algorithms like DB-

SCAN [2], Density Peak Clustering (DPC) [3], or its evolu-

tions, the Fast Search and Find of Density Peaks algorithm

(FDPC) [4,5]. However, despite their efficiency and repeated

success, these algorithms suffer from the following major

weaknesses: First, they have a high complexity ranging in the

O(N2) toO(N2 log N), where N is the size of the dataset. Sec-

ond, they usually rely on the computation of a distance matrix

between all data elements whose complexity in O(DN2) (for

D variables) not only makes the bulk of the algorithm com-

putational complexity, but also tends to make these methods

ineffective in high dimension since it often rely on the Eu-

clidean distance, which is known not to scale well. Last but

not least, these methods rely on several parameters that are

not easy to set up properly and are key to their success or

failure to detect good clusters.

Within this context, in this paper, we propose a mass-

based version of the Fast Search and Find of Density Peaks

algorithm (FDPC). By doing so, we reduce several of the

previously mentioned problems as follows:

• The mass-based distance doesn't suffer from the same

scaling issues as Euclidean-based distances. Further-

more, because it is based on isolation forests [6], this

distance is also known to be very effective at separating

clusters [7]. As we will show, these key factors greatly

improve the efficiency of the m-FDPC method com-

pared to the original DPC algorithm in high dimension.

• Because it is a normalized distance, it also significantly

simplifies the parameter optimization of DPC-based

methods, regardless of the dataset.

• Finally, thanks to recent works on efficiently computing

mass-based distance matrices [8], it is possible to opti-

mize the computation of mass-based distance matrices

and make it 10 times faster.

While other methods have already considerably sped

up the original DPC algorithm [9,10], most of them remain

constrained by the computation of the distance matrix and

stick with the Euclidean distance. This is where the original-

ity of our paper lies, as it changes the nature and computation

of this matrix, which is necessary before doing any approxi-

mation on the neighboring graph and is the heart of the DPC

algorithm.

The remainder of this paper is organized as follows:

First, we will present the state of the art on the DPC algorithm

and mass-based distances for density-based clustering. Sec-

ondly, we will introduce our modified version of the FDPC

algorithm using mass-based distance. Then, we will present

our experimental results and comparisons with other cluster-

ing methods over several datasets and scenarios. Finally, this

paper will end with a conclusion and some insights about

our future works.

2. State of the Art

2.1. Density-Based Clustering and the Density

Peaks Algorithm

TThe main principle of clustering is to split datasets

into clusters by grouping together points belonging to the

same high-density areas and that are separated from other

clusters by lower-density areas. Based on this definition,

which does not assume any shape for the clusters (unlike the

K-means algorithm, which detects mostly spherical clusters),

density-based clustering algorithms have become popular

clustering methods as they seek clusters

directly based on the aforementioned definition. Famous

legacy clustering methods belonging to this family include
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famous algorithms such as Meanshift [11], DBSCAN [2], and

OPTICS [12].

The Density peak clustering algorithm (DPC) [3] and its

evolutions are parts of recent density-based methods which

have shown strong capabilities to extract clusters even in

complex scenarios with a lot of noise, or clusters in con-

tacts, clusters with different densities, clusters with complex

shapes, etc.

Like most other density-based methods, DPC relies on

the use of a distance matrix between all data points, which

by default is computed using the Euclidean distance over all

D variables of the dataset:

d(x, y) =

√√√√ D∑
i=1

(xi − yi)
2

(1)

This distance matrix is essential for identifying the den-

sity of data points and determining the relationships between

them, which will then be used to detect cluster centers. To

do so, the following steps are followed:

1. For each data point xi, the local density ρi is computed

based on other points in its neighborhood.

2. From the previous step, the distance δi is computed

which represents the distance of any point xi to the

closest higher density point. A graph is then built by

linking each point to its nearest higher density neigh-

bor [13].

δi =
min

j:ρj>ρi

(d (−→x i,
−→x j)) if ∃j such that ρj > ρi

max
j

(d (−→x i,
−→x j)) for the densest point

(2)

3. Finally, The clusters are extracted by turning into a

cluster center each point whose closest higher den-

sity neighbor distance δi is too big based on a chosen

threshold. The clusters are then propagated to all points

linked to them in the graph.

Several methods exist to compute ρi. The first one

from the original DPC algorithm consists in simply counting

the numbers of points within a fixed distance parameter (or

radius) dc (See Equation (3)).

ρi =
∑

j 6=i χ(d(xi,xj)− dc)

χ(d) =

{
1, if d < 0

0, if d ≥ 0

(3)

Another possibility [14] that removes the radius parame-

ter dc is to computed ρi using a Gaussian or RBF-like kernel

as shown in Equation (4).

ρi =
∑
j 6=i

exp−d(xi,xj)
2

(4)

While the second method removes the radius param-

eter and is, in theory, more “correct”, it is also more com-

putationally intensive as it forces the computation of N-1

exponentials, most of which will have a value very close

to 0.

After calculating the parameters ρ and δ for all points,

it is possible to plot a decision graph (also called a Gamma

Graph) with ρ on the x-axis and ρ on the y-axis. By placing

each point on the graph, we can visualize the cluster centers

(also called density peaks). The DPC algorithm selects clus-

ter centers based on high local density and distance to denser

points. The remaining points are assigned to the cluster of

their nearest denser neighbor, and outliers are points whose

local density falls below an absolute threshold min_density.

When the noise option is enabled, such points are labeled

-1 (noise). Below isAlgorithm 1, which presents the main

steps of the Density Peak Clustering (DPC) method.

Algorithm 1. DPCAlgorithm.

Require: The datasetX = {xi}i∈N, the threshold distance

parameter dc
Ensure: The label vector of cluster index

1: Compute distance matrix.

2: Compute ρi and δi for each point.

3: Plot decision graph and select cluster centers according

to ρi and δi.

4: Assign the remaining non-central points to clusters.

5: If ρi < min_density then, if noise is enable, label xi

as -1 (outlier).

6: Return label.

2.2. Isolation Forests and Mass-Based Distance

for Clustering

Since our proposedmethod relies on the use of themass-

based distance (MBD), we will do a state-of-the-art review

of where this distance comes from and how it is computed.

The Isolation Forest (iForest) is an anomaly detection

algorithm designed to identify outliers in a dataset [6]. It is

particularly well-suited for high-dimensional data and large

datasets. The algorithm works as follows: The algorithm
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builds an ensemble of S binary trees Ti,i∈ 1,S . In each tree,

for each node, the dataset (or a sample) is split randomly by

selecting a feature and a random split value within the range

of that feature. The process is iterated until each data point

is isolated in a leaf.

Unlike traditional distance-based or density-based

anomaly detection methods, the Isolation Forest relies on

a unique concept: anomalies are easier to isolate than nor-

mal points due to their rarity and distinctiveness. By doing

so, a distance based on an isolation forest is more effective

than an Euclidean-based one as it is built based on the data

themselves and uses outliers and anomalies to build the tree,

which results in exploiting a lower-dimension manifold em-

bedded around the data rather than all the data space, which

in high dimension can be mostly empty.

In the rest of this work, we will refer to:

• A leaf node as a terminal node; it is a node of maximum

depth.

• The root node as the first node created; it contains the

entire sample.

• Themass of a node as the number of data points (obser-

vations) present in the node.

Using the following diagram (Figure 1), it is possible

to see the structure of a complete binary tree:

Figure 1. Complete Binary Tree.

We can observe in this diagram that there are three pos-

sible types of nodes. Moreover, the purpose of this algorithm

is to distribute the data into different nodes, thus dividing

the data. Each time a node is split, its mass becomes zero;

the total mass (size of the initial sample) is therefore divided

among all the leaf nodes.

From there, the main idea of the mass-based distance

MBD is to use the iTree instead of the Euclidean distance:

The distance between two points will be based on the aver-

age distance between their leafs in the different trees of the

iForest, as shown in Equation (5), which we will detail in

the next section presenting our algorithm.

This use of the mass-based distance to replace the Eu-

clidean distance has already been successfully tested for DB-

SCAN [15] as well as the original DPC algorithm, but without

optimized computation of the MBD matrix [16].

What we propose is an improvement over both works

by using both the fast version of the DPC algorithm, and the

fast version of the mass-based distance matrix computation

in order to obtain an algorithm that is both a lot better than

DBSCAN and OPTICS, but also much faster than earlier

versions of DPC and mass-based methods.

3. Improving Fast Density Peaks

Clustering

As stated in the introduction, the main limitation of all

density-based algorithms (including DPC) is the computa-

tion and use of the distance matrix. Using Euclidean-based

distances for this type of clustering presents two main chal-

lenges:

1. Euclidean-based distance matrices are slow to com-

pute: O(N2D) for a dataset with N elements over D

dimensions.

2. Due to the curse of dimensionality [17], Euclidean-based

distances tend to become ineffective in high dimension

due to strong differences over specific features being

lost when averaged over too many features.

Within this context, mass-based distance applied to the

DPC algorithm solves both issues by allowing to compute

the distance matrix faster and providing a distance that, in

high dimension, is more discriminating than the Euclidean

distance. Indeed, the mass-based distance is built in a cus-

tomized way that matches the data, and the distance is then

computed based on the lowest common ancestor in the tree.

It has recently been demonstrated that this type of distance

relying on isolation kernels is better than Euclidean-based

distances when it comes to high dimensional data [18] — the
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proof relies on isolation kernels being based on Voronoi

diagrams [19]. It follows that with a better and more discrimi-

nating distance, better clusters should be found.

3.1. Improving the Core Algorithm

In order to improve the Euclidean FDPC clustering,

it is possible to change the metric to use a fast-computed

mass-based distance matrix instead of an Euclidean distance

matrix. This is the m-FDPC algorithm.

To perform this clustering, we first need the mass-based

distance matrix. Here are the different steps of the algorithm

to compute the mass-based distance matrix [8,20]:

1. The first step is to input a dataset X into the root node.

2. Then, the data included in the first node (root node)

will be divided into two child nodes (left and right):

The criterion for node divisibility is as follows: we

randomly choose an attribute q, then among all the

points present in the root node, we note:

• qmax the maximum value observed among all ob-

servations (rows) for attribute q.

• qmin the minimum value observed among all ob-

servations (rows) for attribute q.

3. A split point p (a value randomly chosen among

all those of attribute q) is selected such that

qmin < p < qmax. If the q
th attribute value for any

x∈X(for the root node) is less than p, then x becomes

part of the left child Xl, otherwise, it goes to the right

child Xr. This step is performed recursively to divide

the new nodes. The construction of the tree continues

until the maximum height h = b log2(|X|) c is reached
or each point is isolated.

Now, after generating the forest using the Isolation

Forest algorithm, it is possible, thanks to the different trees

obtained, to calculate the MBD for each pair of points; we

must therefore calculate C |X |
2 distances in total. The idea is

to calculate the MBD for each tree by computing the distance

between two points as follows:

MBDi(x, y) =

Massi (LCA (Leaf i(x), Leaf i(y)))
(5)

where:

• MBDi(x, y) is the function that returns the distance

calculated for a single tree.

• LCA (Node1, Node2) is the function that returns the

node of the lowest common ancestor of the two nodes.

• Leaf i(x) is the function that returns the number of the

leaf node.

• Massi(Node) is the function that returns the mass of

the node in tree Ti.

From this relation, it is possible to determine the MBD

for the forest (it is simply the average of the MBD for all the

trees):

MBD(x, y) =
1

S

S∑
i=1

MBDi(x, y) (6)

Here is what an MBD matrix looks like (Table 1):

Table 1. MBD matrix.

−→x 1
−→x 2

−→x 3

−→x 1 MBD(−→x 1,
−→x 1) MBD(−→x 1,

−→x 2) MBD(−→x 1,
−→x 3)

−→x 2 MBD(−→x 2,
−→x 1) MBD(−→x 2,

−→x 2) MBD(−→x 2,
−→x 3)

−→x 3 MBD(−→x 3,
−→x 1) MBD(−→x 3,

−→x 2) MBD(x, −→x 3)

Below is the corresponding improved DPC algorithm

that integrates the use of MBD distance (Algorithm 2):

Algorithm 2. m-FDPCAlgorithm.

Require: The datasetX = {xi}i∈N, the threshold distance parameter dc
Ensure: The label vector of cluster indices

1: Fast compute the mass-based distance matrix.

2: Use the regular DPC algorithm with the computed matrix.

3: Identify outliers: if ρi < min_density then, if noise is enable,

label xi as -1 (outlier).

4: Return label.

It is pertinent to elaborate on Step 3 of Algorithm 2

(and similarly, Step 5 ofAlgorithm 1 for DPC) concerning

outlier identification. These steps refine the general outlier

handling step by using a direct, parameter-driven mechanism

for greater control and reproducibility. In our implementa-

tion, after computing the local density ρi for each point, a

point is explicitly marked as noise (labeled -1) if its den-

sity falls below a user-defined threshold, min_density, and a

55



Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

noise flag is active. This approach offers more direct control

over the sensitivity of outlier detection compared to rules

based on relative density. The effectiveness of this explicit,

min_density-based approach is demonstrated in our Results

Analysis section with the custom dataset designed for this

purpose.

3.2. Algorithmic Complexity

In this section, we discuss the asymptotic time complex-

ity of our m-FDPC algorithm and compare it with Euclidean

FDPC. In particular, we focus on the complexity associated

with computing the mass-based distance (MBD) matrix.

As previously mentioned, Euclidean FDPC relies on an

all-pairs Euclidean distance matrix, which entails a complex-

ity of O(N2D) for N data points and D dimensions. Although

the clustering steps within Euclidean FDPC can be acceler-

ated toO(N log N), the overall complexity remains dominated

by the O(N2D) distance matrix computation. Similarly, stan-

dard density-based algorithms like DBSCAN or OPTICS

also require O(N2) complexity due to their pairwise distance

computations, each involving O(D) operations per pair.

In contrast, our m-FDPC algorithm employs the mass-

based distance (MBD) metric, which can be computed more

efficiently using the fastMBD algorithm [15]. Without opti-

mization, a naive MBD (nMBD) approach would require

multiple insertions and Lowest Common Ancestor (LCA)

queries, resulting in O(N2 log S) complexity, where S is the

sample size used to construct the iForest. The fastMBD

technique significantly reduces this complexity by:

1. Constructing the iForest once.

2. Processing all data points in each iTree via a single

top-down traversal.

3. Determining MBD values for all pairs of points during

this traversal, without the need for separate leaf node

detection or repeated LCA computations.

By performing the necessary computations during a sin-

gle, systematic pass through each iTree, fastMBD calculates

the complete N × N MBD matrix in O(N2) time. This ap-

proach removes the explicit dependence onD for the distance

calculation stage and provides a substantial improvement

over the naive MBD method.

In summary, the total complexity for m-FDPC isO(N2),

achieved through the integration of the fastMBD approach.

This complexity represents a significant practical advantage

compared to the O(N2D) complexity of Euclidean-based

methods, making m-FDPC more efficient and scalable, par-

ticularly in medium to high-dimensional datasets.

All results are summed up in Table 2.

Table 2. Complexity Comparison of FDPC with Euclidean and Mass-Based Distance Matrices.

Algorithm DPC Euclidean FDPC m-FDPC

Distance Matrix Computation O(N 2D) O(N2D) O(N2) [15]

Clustering Alg. O(N2) O(N log N ) O(N log N )

- ρ calculation O(N2) O(N log N ) O(N log N )

- δ calculation O(N ) O(N ) O(N )

- Cluster assignment O(N log N ) O(N log N ) O(N log N )

- SearchCluster function O(N ) O(N ) O(N )

Total Complexity O(N2D) O(N2D) O(N2)

3.3. Further Considerations on Speeding the

Algorithm

While mass-based distance primarily affects the com-

putation and complexity of the distance matrix, it can also be

used to further accelerate the clustering algorithm itself. Ow-

ing to their similarity with KD-trees [21] (both rely on binary

trees, recursive partitioning, and feature-based splits), which

have historically been used for nearest-neighbor search, the

binary trees from Isolation Forests could likewise be lever-

aged to approximate the search for the nearest highest-density

point in the DPC algorithm.

This strategy is appealing in principle, as it could

yield a clustering algorithm faster than O(N2), down to

O(N log N) [15,22]. However, it should be noted that in

Isolation Forests, splits are random, designed to measure

anomaly scores from path length. KD-trees, by contrast, use

deterministic splits to enable efficient nearest-neighbor or

range queries. Thus, using Isolation Forests to approximate

the search for the nearest highest-density point would ef-

fectively layer one approximation (nearest highest-density
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point) on top of another (distance estimation based on a non-

deterministic method). In other words, this approach would

trade precision for speed.

Another possibility to speed up the DPC algorithm

would be to combine our mass-based distance approach with

other approximation methods for the DPC algorithm that

already exist in the literature and can reach a complexity as

low as O(N log N) in best-case situations [9,10].

While both are possible depending on the context, in

the remainder of this paper, we opted for the exact search

of the nearest highest-density point using the original algo-

rithm.

4. Experimental Results

4.1. Datasets

To assess the quality of our proposed method and com-

pare it to other clustering strategies, we used the following

datasets (Table 3):

Table 3. Datasets.

Dataset Rows Variables Clusters Noise

Iris 150 4 3 No

WDBC 569 30 2 No

Seeds 210 7 3 No

Digits 1797 64 10 No

Custom 1075 2 3–5 Yes

Flame 240 2 2 No

Aggregation 788 2 7 No

With regards to our Custom dataset, it contains 5 true

labels from which we generated the data. However, due

to one clustering being voluntarily small and another being

sparse and with a high standard deviation, these could be

considered noise depending on the algorithm’s settings.

4.2. Experimental Setting and Data Prepara-

tion

We implemented and compared several clustering ap-

proaches: Euclidean FDPC utilizing an Euclidean distance

matrix, m-FDPC (Mass-Based Fast Density-Peaks Cluster-

ing) leveraging a mass-based distance matrix, as well as

DBSCAN and K-means algorithms to provide a comprehen-

sive comparison between mass-based clustering and other

methods relying on Euclidean distance.

Our methodology encompasses the following key steps:

we used several standard datasets, including Breast Can-

cer Wisconsin, Seeds, Digits, Iris, and the shape (non-

spherical) datasets Flame and Aggregation, as well as a

custom-generated dataset. Each dataset was preprocessed

appropriately to suit the requirements of the clustering algo-

rithms. Specifically, for all Euclidean clustering methods,

we normalized the data using the MinMaxScaler (a func-

tion from the scikit-learn library) to ensure that all feature

values were scaled between 0 and 1. This normalization is

crucial because the Euclidean distance matrix can exhibit

large variance in values, potentially skewing the clustering

results. However, this normalization process can lead to

a loss of information by compressing the natural variation

within the data, which is a notable drawback for Euclidean

distance-based clustering and highlights a key advantage of

the mass-based distance.

A distinctive aspect of our methodology is the differen-

tial treatment of data normalization based on the clustering

approach employed:

• Euclidean FDPC (Euclidean Distance): For Euclidean

FDPC, we applied normalization to the dataset using

the MinMaxScaler. This step ensures that all feature

values are within the [1] range, stabilizing the Euclidean

distance calculations by preventing features with larger

scales from disproportionately influencing the distance

metrics.

• m-FDPC (Mass-Based Distance): Conversely, for m-

FDPC, we did not perform any additional normalization

on the dataset. The mass-based distance matrix inher-

ently produces values within the [1] range, removing the

need for prior normalization. This inherent normaliza-

tion simplifies the preprocessing pipeline for m-FDPC

and maintains the natural distribution of the data’s mass-
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based relationships.

One of the significant advantages of using m-FDPC

lies in the ease of parameter selection. Given that the mass-

based distance matrix is already normalized, determining

optimal parameters such as r-values, min-density values, and

max-distance values becomes more straightforward. These

parameters are crucial for defining the density peaks and de-

termining cluster centers. In contrast, for Euclidean FDPC,

the variability in the Euclidean distance matrix necessitates

a more careful and often dataset-specific parameter tuning

process to achieve meaningful clustering results.

By leveraging the normalized nature of the mass-based

distance matrix in m-FDPC, we observed that parameter

ranges could be standardized across different datasets, en-

hancing the robustness and reproducibility of the clustering

outcomes. This uniformity reduces the complexity involved

in the parameter optimization phase, making m-FDPC a

more efficient and user-friendly approach for density-based

clustering.

After preparing the datasets, we applied both Euclidean

FDPC and m-FDPC algorithms, as well as the DBSCAN and

K-means algorithms, to identify clusters within each dataset.

For evaluation, we employed metrics such as the Silhouette

Score [23] and the Davies-Bouldin Index [24] to assess the qual-

ity of the clusters formed. Additionally, we utilized Principal

Component Analysis (PCA) for dimensionality reduction to

visualize the clustering results effectively.

4.3. Experimental Results

Our methodology highlights the streamlined prepro-

cessing and parameter optimization processes afforded by

m-FDPC, positioning it as a more accessible and efficient

alternative to traditional Euclidean FDPC in density-based

clustering tasks.

There are several important considerations to analyze

the results shown inAppendix A, Table A1:

• We deliberately selected datasets where cluster forma-

tions naturally align with class distributions. This choice

was essential for our evaluation strategy, as our clus-

tering score (matching score) relies on the confusion

matrix to assess performance.

• The matching score is a supervised metric and requires

available labels. This was the case in our experimental

setting for evaluation purposes, but it is not common

for real clustering applications.

• Clustering indexes tend to be biased towards specific

algorithms. For instance, the Davies-Bouldin index is

the metric for the K-means algorithm and tends to be

very heavily biased towards spherical clusters found by

this method, regardless of their real quality [25,26].

• m-FDPC is a stochastic method that does not rely on

multiple initializations (in contrast to scikit-learn’s K-

means++, typically run with several restarts). To assess

reliability and robustness, we computed an additional

metric.

The methodology adopted to quantify this stability for

the m-FDPC stochastic algorithm is detailed as follows. For

a fixed set of its hyperparameters, the entire clustering pro-

cess was executed independently N times. Based on our

experimental scripts, this value N was typically 50. Each of

these N executions yielded a set of cluster labels, denoted as

P1, P2,…, PN .

To assess the agreement between any two of these N

partitions, for example, Pi and Pj , we employed the Ad-

justed Rand Index (ARI). The ARI is a measure of similar-

ity between two data clusterings that considers all pairs of

samples and counts pairs that are assigned to the same or

different clusters in the predicted and true clusterings; it then

adjusts this score to account for chance groupings. The ARI

produces a value between −1 and +1, where +1 indicates
perfect agreement between the partitions, values near 0 in-

dicate a similarity no better than random assignment, and

negative values suggest disagreement. We denote this as

ARI(Pi, Pj).

The overall stability score, S, for the tested configura-

tion of hyperparameters, was then determined by calculating

the arithmetic mean of the ARI scores obtained from all

unique pairs of partitions generated across the N runs. The

total number of such unique pairs is given by the combina-

tion
(
N
2

)
. The general formula for this stability score S is

therefore:

S =
1(
N
2

) ∑
1≤i<j≤N

ARI(Pi,Pj) (7)

This is the specific case where N = 50 (as indicated for

stochastic algorithms in our comparative analysis script), the

number of unique pairs
(
50
2

)
is 1225. The formula applied
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then becomes:

S =
1

1225

49∑
i=1

50∑
j=i+1

ARI(Pi, Pj) (8)

A stability score S approaching 1 implies a high stabil-

ity, indicating that the algorithm consistently generates very

similar, if not identical, clustering results across repeated

executions with the same parameters. Conversely, a lower

score suggests greater variability in the partitions produced

by the algorithm.

To optimize hyperparameters, we used the Optuna

framework (a Bayesian parameter optimization method [27])

for most algorithms and datasets. Our optimization strategy

with Optuna focused on maximizing the Silhouette coeffi-

cient rather than stability. This decision was made because

calculating stability for mass-based distance algorithms al-

ready requires computing the mass-based distance matrix

50 times, which would have resulted in excessive computa-

tional iterations if incorporated directly into the optimization

objective. Specifically, we ran Optuna for 200 trials to find

parameters that maximize the Silhouette coefficient. Subse-

quently, for the best parameters identified, we calculated the

stability metric. This two-step approach allowed us to iden-

tify parameter sets that provide both high clustering quality

(as measured by the Silhouette coefficient) and good stability.

However, several exceptions required manual parame-

ter tuning:

• For the Euclidean FDPC algorithm with the WDBC

dataset, we manually fine-tuned optimal parameters af-

ter finding that Optuna failed to produce satisfactory

results.

• Similarly, for the Euclidean FDPC algorithm with the

Custom dataset, manual parameter tuning proved more

effective than Optuna’s suggestions.

• For the Euclidean FDPC algorithm with the Flame and

Aggregation datasets, we also fine-tuned the parameters

manually based on the silhouette index, matching index

and visual quality of the results.

• For the Euclidean FDPC algorithm with the Digits

dataset, as well as for DBSCAN across datasets, we

encountered significant challenges in parameter identi-

fication, even through manual testing.

• For the m-FDPC algorithm, we relied on manually fine-

tuned parameters that consistently yielded strong per-

formance.

4.4. Result Analysis

The results show that m-FDPC achieves the best Match-

ing Score on five datasets (Iris, WDBC, Digits, Custom, Ag-

gregation) and is within 0.05 of the best on the remaining

two (Seeds and Flame). It also attains the highest Silhouette

on WDBC (and on Digits among the evaluated methods).

Table A1 summarizes the best results achieved using the op-

timal parameters for each dataset and each algorithm. This

presentation allows for a synthetic comparison of the per-

formance of different methods in terms of quality indices,

thereby highlighting the best clustering achieved for each

case. We note that for stochastic algorithms, the Silhouette

and Davies–Bouldin values shown in the figures correspond

to a single run and may therefore differ from those listed in

Table A1, whereas for deterministic algorithms, the values

coincide.

We observe that theMatching Score, computed directly

from the confusion matrix (excluding noise, i.e., unassigned

points), is given by:

MS = 1
Nassigned

K∑
i=1

max
j

nij ,

Nassigned =
K∑
i=1

∑
j

nij ,

(9)

where nij is the number of points in cluster i with true la-

bel j. This score is almost always highest for the m-FDPC

algorithm. This indicates a more precise correspondence

between the detected clusters and the actual data classes.

Regarding quality indexes, the results are shown in Ta-

bleA1, where the best scores are underlined. We can see that

unsurprisingly, the K-means algorithm achieves the best DBI

scores. Our method, however, has the best matching score on

average and achieves good performances on the Silhouette

index. This proves that m-FDPC is competitive in match-

ing cluster assignments to true class labels and gives good

clustering results: while it does not always have the best

clustering scores, it is never far behind the other methods.

Furthermore, while the DBI is generally higher (worse)

than K-means, it is best on Flame and lower than K-means

onAggregation. For DBSCAN comparison, m-FDPC shows

superior performance in Matching Score and Silhouette on

WDBC and Seeds, while DBSCAN maintains a lower DBI

on Iris and Custom; conversely, m-FDPC attains a lower

DBI on Flame and Aggregation. Moreover, compared to
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Euclidean FDPC, our m-FDPC often shows improved perfor-

mances (especially on Matching Score), highlighting the ef-

fectiveness of using mass-based distance. The Flame dataset

presents a case where performances are highly competitive;

our m-FDPC method achieves the best DBI score (1.096)

while remaining a strong competitor on the Matching Score

(0.983 vs. 0.996) and Silhouette index.

Another advantage of m-FDPC lies in the simplicity of

parameter selection. The use of a mass-based distance ma-

trix eliminates the need for prior data normalization, which

simplifies the parameterization process. In contrast, algo-

rithms based on Euclidean distance, such as Euclidean FDPC

and K-means, require prior data normalization, which can

complicate the selection of optimal parameters. Because of

this, it was easier to obtain satisfactory results with m-FDPC

in terms of parameterization compared to Euclidean FDPC,

K-means, or DBSCAN. For instance, for the Digits dataset,

it was particularly difficult to find appropriate parameters for

Euclidean FDPC and DBSCAN using a Euclidean distance

matrix.

We can see in Table A1 that for these two cases, we

were unable to find any relevant results. On the other hand,

m-FDPC was able to generate useful clusters without requir-

ing complex adjustments, thanks to the use of the mass-based

matrix.

As mentioned earlier, to facilitate the interpretation of

results, we employed Principal Component Analysis (PCA)

to reduce the dimensionality of the datasets to two dimen-

sions: PC1 and PC2. Figure 2 presents the clusters obtained

for theWisconsin Breast Cancer Diagnostic (WDBC) dataset

using the Euclidean FDPC algorithm with an explained vari-

ance of 70.38%.

Figure 2. Euclidean FDPC clustering visualization for the WDBC

dataset.

As illustrated in Figure 3, the clusters obtained with

m-FDPC are significantly better defined than those obtained

with Euclidean FDPC, using the best parameters.

Figure 3. m-FDPC clustering visualization for the WDBC dataset.

While Euclidean FDPC manages to identify the two

main clusters, the presence of substantial noise complicates

the interpretation of the results. In contrast, m-FDPC success-

fully forms more compact and less noisy clusters, thereby

enhancing the overall quality of the clustering.

Figure 4 presents the clusters obtained for the Iris

dataset using the Euclidean FDPC algorithm after a PCA

retaining 95.89% of the variance. Compared to Figure 5,

which represents the clusters with m-FDPC, the clusters ob-

tained with FDPC are less defined using the best parameters.

For Euclidean FDPC, there is a considerable amount of noise,

and we can only identify 2 clusters, whereas we need to have

3 different clusters. In contrast, for m-FDPC, the noise is

negligible.

Figure 4. Euclidean FDPC clustering visualization for the Iris

dataset.

60



Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

Figure 5. m-FDPC clustering visualization for the Iris dataset.

For the best clusters obtained after optimizing the pa-

rameters, we observe that the quality indices show improve-

ment. The Davies-Bouldin Index is 5.895 for Euclidean

FDPC and 2.621 for m-FDPC, demonstrating a clear im-

provement.

The custom dataset (1075 points, 5 true labels, 2 dimen-

sions) was specifically included not only to test performance

on varying cluster shapes and densities but also to serve as

a “toy dataset” for evaluating the outlier handling capabil-

ities discussed in Section 3. This dataset includes a sparse

group of points designed to emulate outliers or low-density

formations.

Figures 6 and 7 show the clustering results for Eu-

clidean FDPC and m-FDPC, respectively, on this custom

dataset. For Euclidean FDPC (Figure 6), with parameters r

= 0.2, min_density = 1, max_dist = 0.2 (as per Table A1),

the low min_density threshold resulted in all points being as-

signed to one of the three identified clusters, without explicit

noise detection.

Figure 6. Euclidean FDPC clustering visualization for the custom

dataset.

Figure 7. m-FDPC clustering visualization for the custom dataset.

In contrast, m-FDPC (Figure 7), using parameters r =

0.2563, min_density = 3 and max_dist = 0.2743, success-

fully identified five clusters and, significantly, a number of

points classified as noise (visible as isolated points or explic-

itly labeled as ‘Cluster -1’ if using visualization parameters

similar to those that produced. This ability to isolate outliers

is a direct result of the min_density threshold in our FDPC

implementation, effectively demonstrating the practical ap-

plication of the refined outlier handling mechanism.

While Euclidean FDPC showed better DBI for this

specific run (0.457 vs. 2.538), m-FDPC’s higher Matching

Score (0.823 vs. 0.791) and its capacity to delineate noise

underscore its utility in scenarios with complex data struc-

tures and potential outliers. This provides empirical support

for the benefits of the detailed outlier treatment approach.

Furthermore, the numerical and visual results on theAg-

gregation dataset show the limits of clustering indexes. For

instance, as shown in Figure 8, it is the original Euclidean

FDPC that has the best results in terms of Davies-Bouldin

and Silhouette indexes. However, when looking at the visual-

ization and the matching indexes, it is clear that our m-FDPC

method (Figure 9) is better: not only does it have higher

matching scores, but we can see that it manages to capture 2

small clusters that the original FDPC did not find. In contrast,

the figures clearly show that the K-means algorithm (Figure

10) provides a completely arbitrary clustering.

We also evaluated the consistency of our m-FDPC by

computing stability S over 50 independent runs (i.e., recom-

puting the mass-based distance matrix and reclustering each

time).

This analysis was specifically focused on m-FDPC, as

the other algorithms are either deterministic or artificially
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stable. For instance, DBSCAN and Euclidean FDPC are

fully deterministic, thus trivially yielding S = 1.00. While

K-means is non-deterministic, the standard Scikit-learn im-

plementation is actually a K-means++ algorithm run multiple

times, which makes its output highly consistent.

Figure 8. Euclidean FDPC clustering visualization for the aggrega-

tion dataset.

Figure 9. m-FDPC clustering visualization for the aggregation

dataset.

Figure 10. K-means clustering visualization for the aggregation

dataset.

As reported in Table A1, m-FDPC achieves stability

scores in the range 0.552 ≤ S ≤ 0.917. For example, on the

Iris and WDBC datasets, it attains S = 0.724, indicating

that even though the mass-based distance is rebuilt on each

run, the resulting partitions remain largely consistent. On

the higher-dimensional Digits dataset, stability dips to S =

0.652, reflecting greater variability in the isolation forest

splits under random sampling. These results show that the

randomness from recomputing mass-based distances does

not significantly affect m-FDPC’s consistency, and that its

stability remains competitive given the notable gains in clus-

ter quality and the simplified parameter initialization.

The experiments demonstrate that m-FDPC offers not

only better clustering quality but also greater ease of use in

terms of parameter selection. By utilizing a mass-based dis-

tance, m-FDPC simplifies the parameterization process and

eliminates the need for prior data normalization, making the

algorithm more accessible and efficient. Furthermore, the

results show that m-FDPC outperforms traditional Euclidean

distance-based methods, particularly in high-dimensional

and complex datasets where conventional methods face sig-

nificant limitations. It also performs strongly on shape (non-

spherical) datasets such as Flame and Aggregation. These

advantages make m-FDPC an effective solution for cluster-

ing.

5. Conclusions and Future Works

In this paper, we presented a new variant of the Fast

Density Peak Clustering (FDPC) algorithm by replacing the

Euclidean distance with a mass-based distance (m-FDPC).

More specifically, we integrated a fast computation of the

mass-based distance matrix to enhance the efficiency of den-

sity peak detection. This approach allowed us to leverage

the properties of the mass-based distance—already recog-

nized for its robustness in high-dimensional settings and its

intrinsic normalization—without the need for prior data nor-

malization. Furthermore, we used the latest version of an

optimized algorithm to compute the mass-based distance,

which considerably reduced its computation time.

Our experiments demonstrated that m-FDPC provides

improved clustering quality, exhibiting a stronger ability to

separate data groups under various conditions. In our experi-

ments (Table A1), m-FDPC achieves Matching Score and
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Silhouette Score on a par with—and often exceeding—those

obtained with classic Euclidean-metric FDPC, DBSCAN,

and K-means++. Across the datasets where both methods

were evaluated, m-FDPC attains a higher Matching Score

than Euclidean-FDPC, DBSCAN, and K-means (on aver-

age +14%, +19%, +4%). Moreover, the parameter selection

process, simplified by the mass-based distance, proved par-

ticularly advantageous: critical parameter values are more

easily determined and more robust to data variations, which

gives our method a decisive edge over other density-based

clustering algorithms, where an extensive grid search can be

needed to find the optimal parameters.

The initial objective, which was to assess the contribu-

tion of mass-based distance for accelerating and simplifying

the implementation of FDPC, has thus been fully achieved.

Not only does the new m-FDPC approach validate the per-

formance and robustness gains, but it also confirms the rele-

vance of reconsidering the distance metric used for density

peak detection.

However, it is important to remember that while our

method has been shown to be more efficient and faster than

other clustering methods from different families, it still has

limitations. Like many density-based clustering algorithms,

it will struggle with clusters that cumulate the following dif-

ficulties: varying density clusters being in contact with one

another.

In future works, it would be interesting to further assess

the impact of isolation forest construction (the foundation

of the mass-based distance) on the algorithm’s performance

and scalability. Additionally, incorporating mass-based ap-

proaches into other clustering algorithms, as well as explor-

ing parallel optimizations is also something worth exploring

in the future. Furthermore, combining mass-based distance

computation with an already sped-up version of the DPC

algorithm, such as the sparse dual approximation version [9],

would also be a potentially interesting future lead.

Finally, extending this approach to Big Data environ-

ments or real-time data would open up new opportunities

to test the robustness and flexibility of m-FDPC in various

applied contexts.

Author Contributions

This work was conducted as part of an “introduction to

scientific research” class, followed by M.M. and C.T. The re-

search was done under the supervision of J.S., who came up

with the subject. Most of the implementation, experiments,

visualization as well as the paper writing were done by M.M.

and C.T. J.S. was in charge of the supervision, formal analy-

sis, validation, proofreading, and project administration. All

authors have read and agreed to the published version of the

manuscript.

Funding

This work received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The source code can be found on Github: https:

//github.com/Mougli1/IX.2408.

Acknowledgments

We would like to thank Professor Lionel Trojman, who

through his introduction to scientific research class made this

project possible.

Conflicts of Interest

The authors declare no conflict of interest.

63

https://github.com/Mougli1/IX.2408
https://github.com/Mougli1/IX.2408


Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

Appendix A

Table A1. Summary of clustering performances with optimal parameters.

Dataset Iris WDBC Seeds Digits Custom Flame Aggregation

Euclidean FDPC

r 0.2568 0.45 0.3441 – 0.2 0.15 0.23

min_density 5 3 9 – 1 5 5

max_dist 0.1013 0.2 0.3921 – 0.2 0.25 0.13

DBI 5.895 1.875 1.788 – 0.457 1.128 0.547

Silhouette 0.532 0.127 0.367 – 0.699 0.335 0.518

Matching Score 0.660 0.705 0.833 – 0.791 0.996 0.841

Our m-FDPC

r 0.348 0.5802 0.4238 0.45 0.2728 0.5335 0.23

min_density 5 19 13 3 5 5 1

max_dist 0.47 0.1906 0.151 0.3 0.27 0.55 0.4

DBI 2.621 3.921 1.635 2.106 2.538 1.096 0.697

Silhouette 0.449 0.453 0.344 0.181 0.640 0.34 0.418

Matching Score 0.933 0.928 0.843 0.795 0.823 0.983 0.996

Stability 0.724 0.724 0.751 0.652 0.917 0.552 0.709

DBSCAN

ε 0.179 0.6201 0.1999 – 0.06 0.1 0.0892

min_samples 2 2 3 – 22 10 28

DBI 2.150 1.629 1.657 – 1.222 1.554 0.996

Silhouette 0.446 0.325 0.262 – 0.638 0.258 0.447

Matching Score 0.673 0.612 0.590 – 0.785 0.975 0.983

K-means

k 3 2 3 10 5 2 7

DBI 0.787 1.136 0.877 1.927 0.587 1.103 0.749

Silhouette 0.483 0.385 0.422 0.131 0.680 0.380 0.462

Matching Score 0.887 0.914 0.890 0.782 0.813 0.846 0.903

Note: The best performances results have been underlined.
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