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ABSTRACT

This paper proposes a deterministic annealing neural network algorithm to address critical resource partitioning
challenges in coal mining, such as equipment scheduling, safety zone division, and logistics optimization. By integrating a
novel square-root barrier function within a temperature-controlled annealing framework, this algorithm transforms the
NP-hard minimum bisection problem into a tractable convex optimization problem with linear constraints. This formulation
ensures convergent solutions while effectively balancing operational efficiency and safety requirements. Theoretical
analysis rigorously proves the algorithm’s global convergence to discrete partitions, guaranteeing that resources—such
as machinery, zones, and transport nodes—are split into balanced groups with minimized cross-group costs. Numerical
experiments demonstrate that this algorithm significantly reduces computation time compared to traditional methods,
including the Kernighan-Lin algorithm and Networkx, while achieving objective values nearly reaching the theoretical
optimum. Notably, the algorithm exhibits strong scalability and stability, with performance advantages becoming more
pronounced as graph size increases. Furthermore, tests in a dynamic scenario simulating node failure confirmed the
algorithm’s capability for rapid rescheduling, a critical feature for real-time adaptation in mining environments. The
low variance observed across multiple runs underscores its reliability for consistent decision-making. This work not
only introduces a methodologically innovative optimization tool but also provides a practical bridge between theoretical
computer science and industrial engineering by reformulating coal-specific problems into the minimum bisection problem

framework. The results underscore the deterministic annealing neural network algorithm’s potential as a reliable and
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efficient decision-support system for intelligent mining operations.

Keywords: Coal Mining; Resource Partitioning; Minimum Bisection Problem; Deterministic Annealing

1. Introduction

Coal mining operations face inherently complex op-

timization challenges!'?],

including dynamic equipment
scheduling P, safety-critical zone partitioning[*l, and cost-
sensitive logistics planning>®]. These tasks often require
partitioning resources (e.g., machinery, transport nodes, or
mining regions) into balanced groups while minimizing oper-
ational risks and costs—a problem analogous to the NP-hard
minimum bisection problem (MINBP). However, traditional
solution strategies often fall short. Heuristic methods!”,
while sometimes effective, lack adaptability to dynamic con-
ditions like equipment failures and suffer from theoretical
ambiguity regarding solution quality (*]. Mathematical pro-
gramming techniques, such as integer linear models, become
computationally intractable for large-scale, real-world sce-
narios®l. Furthermore, manual planning is prone to human
bias and often fails to achieve optimal cross-departmental
collaboration!7.

The advent of Industry 4.0 has spurred the develop-
ment of “intelligent mining,” which emphasizes the use of
data-driven, and automated systems to enhance operational

11121 Within this paradigm, computa-

efficiency and safety!
tional intelligence methods, particularly neural networks and
bio-inspired algorithms, have shown considerable promise

in solving complex optimization problems!!>!4],

For in-
stance, recent studies have leveraged neural networks for
tasks ranging from high-utility itemset mining!'!! to nonsta-
tionary system modeling!'4l. However, the direct application
of these general-purpose intelligent algorithms to the specific,
constrained resource partitioning problems in coal mining
remains underexplored. Similarly, while the minimum bisec-
tion problem is a well-studied combinatorial optimization

[15.16] 'its formulation as a core

challenge in computer science
model for coal mining logistics and safety management is a
novel perspective that bridges a critical gap between theoret-
ical computer science and industrial engineering.

This gap is multifaceted: firstly, there is a disconnect
between advanced neural network optimization frameworks

and the domain-specific constraints of mining engineering;

secondly, existing mining optimization models often lack
the theoretical convergence guarantees required for robust,
real-world decision support[®1%); and thirdly, the scalability
of many proposed solutions is inadequate for the vast and
complex networks inherent to modern large-scale mining
operations. Inspired by this gap, we propose a deterministic
annealing neural network algorithm (DANNA) tailored for
optimal coal mining resource allocation. Our work is par-
ticularly inspired by the deterministic annealing framework
that has been successfully applied to other NP-hard prob-

s16:17] “but we extend it with a novel barrier function and

lem
a problem formulation specifically designed for the mining
context. While the deterministic annealing framework is

16171 'this paper introduces key inno-

inspired by prior works!
vations tailored for the coal mining context. A primary dis-
tinction lies in the use of a novel square-root barrier function,
in contrast to the common logarithmic barriers used in['®l.
This specific choice is critical for handling the binary con-
straints of the MINBP and enables the rigorous convergence
guarantee provided in Section 3. Furthermore, unlike the

16171 " our work

general-purpose algorithms in Dang et al.’s!
is grounded in the novel reformulation of coal-specific prob-
lems into the MINBP framework, bridging a gap between
abstract graph theory and practical mining engineering.

Our key contributions include:

e Algorithm: A novel barrier-augmented annealing frame-
work, featuring a custom square-root barrier function
that guarantees feasible solutions under hard constraints
during optimization, is proposed.

*  Industry Adaptations: Reformulate coal-specific prob-
lems, like hazard zone isolation and fleet scheduling, as
minimum bisection problem instances. Global conver-
gence is proven under diminishing temperature parame-
ters.

+  Efficiency: DANNA achieves low time complexity, out-
performing the Kernighan-Lin algorithm and Networkx.
The experiment verifies its high efficiency and stability

in large-scale graphs.

This work bridges the gap between theoretical opti-
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mization and industrial practicality, offering a robust tool
for enhancing safety, efficiency, and sustainability in coal
mining. In summary, the principal innovations of this work
are threefold: (1) the introduction of a novel square-root bar-
rier function within the deterministic annealing framework,
specifically designed for the minimum bisection problem;
(2) the novel reformulation of coal mining resource allo-
cation as a minimum bisection problem, creating a bridge
between theoretical optimization and industrial practice; and
(3) arigorous convergence proof for the resulting algorithm,

ensuring its reliability for real-world applications.

2. Methodology
2.1. Problem Modeling

Take the safety-hazard zone isolation in mining areas
as an example. The goal is to divide the risky areas and
the risk-free areas in the coal mines and achieve physical
or logical isolation at the minimum cost['®]. Take the areas
in the mine (such as coal mining faces, ventilation outlets,
transportation channels) as the vertices of the graph, and the
isolation facilities (such as firewalls, isolation doors, etc.)
as another part of the vertices. If a certain area needs to be
isolated from other areas through a certain isolation facility,
an edge is established between the corresponding area ver-

19201 The edge weight

tex and the isolation facility vertex!
can be expressed as the risk reduction cost or isolation ef-
ficiency of deploying a certain type of isolation facility in
this area. This modeling approach establishes a direct link
between the graph model and measurable industrial parame-
ters. The edge weight can be calibrated using engineering
data and expert knowledge. For instance, it can represent
the financial cost of constructing a physical barrier, the op-
erational downtime required for installation, or a quantified
risk reduction score derived from historical incident data

4181 The validity of the model hinges

and safety standards!
on the reasonable assumption that the cost and efficacy of
isolation can be meaningfully quantified to guide optimal
resource allocation. We can transform this problem into the
minimum bisection problem in graph theory. The objec-
tive of the problem is to select the fewest isolation facilities
to achieve effective isolation between the risky areas and
other areas. This is equivalent to finding the smallest set

of edges to divide the graph into two parts. By solving this

minimum bisection problem, the optimal isolation effect can
be achieved, while minimizing the cost and the impact on
normal production.

The minimum bisection problem is defined as follows:
Consider an undirected graph denoted by G = (V, E), where
represents the collection of vertices and constitutes the set

of edges. Define as the edge between node and node j.

0  wi Win
w21 0 Wan,
W =
Wp1 Wp2 - 0

Let be a symmetric matrix, where if and if (¢, j) ¢ F.

[15] requires partitioning

The minimum bisection problem
the vertex set into two disjoint subsets with half of the total
vertices (A and V\A) and minimizing the sum of the cross-

subsets edge weights:

w(A) = W;j
i€EAJEVNA
An illustrative instance of the minimum bisection prob-
lem is presented in Figure 1. Assume that if (i,j) € E.
While the vertex set permits multiple valid partitioning con-
figurations, only the initial partitioning strategy achieves
optimality by minimizing the aggregate cut weight across

the bipartition.
According to Jiang and Dang?!!, the MINBP is equiv-
alent to:
i=1j=1

J
n (M
subjectto > x; =0, =z €-1,1,i=1,...,n.
i=1
This formulation uses spin variables to represent the

partition to which a vertex belongs.

Let fori = 1,2,...,n, and £ = (51752,...,§n)—r.
The MINBP could be stated as follows[1%]:
min f(z) = —32T (W +E+al)z
n ()
subjectto > x; =0, =z, €—-1,1,i=1,...,n,

=1

where is the diagonal matrix of £, is defined as an arbitrarily
chosen positive number, while represents an n-order identity

matrix. The matrix is constructed to be positive definite,
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which facilitates the subsequent optimization. Relaxing (2),

convert binary constraints to continuous variables:

min f(z) = —3z" (W +ZE+al)z
n (€))

subjectto > z; =0, —-1<z;<1,i=1,...,n.
i=1

This relaxation allows the solution to evolve in a con-
tinuous space, making it amenable to gradient-based opti-
mization methods.

Define a barrier function??: b(z) = — >0 /1 — 22,
is the term used to penalize boundary violations. Notice that:

() _
al’i

Ob(x)
6931‘

lim = —00.
xi—>1_

+00,

1m
z;—(—1)*

These properties ensure that the solution remains within
the open interval during the optimization process, preventing

premature convergence to the boundaries.

EEEEEEEE

(a)

2.2. Deterministic Annealing Neural Network
Algorithm

Drawing inspiration from neural network (NN) archi-
tectures!'3], this study applies the principles of neural net-
works to address the problem. The proposed framework
operates with an initial point as input and generates an n-
dimensional binary vector as output. Network depth, deter-
mined by the number of hidden layers, scales proportionally
to problem complexity, while each layer’s nodes collectively

encode a potential solution in the N-dimensional decision

For any positive number ~, consider the problem:

min h(z;7) = f(x) +~b(x)
. n “4)
subjectto > x; =0
i=1

The parameter controls the strength of the barrier, ini-
tially keeping the solution in the interior and gradually al-
lowing it to approach the boundaries as is reduced.

The process of deriving the optimal solution for (2)
corresponds to determining the optimal solution of (3) where
each variable is constrained to either or 1. Notably, equation
(3) is also an NP-hard optimization problem as documented in
Deb et al.’s study?*). Our approach involves approximating
the minimal solution of (3) by analyzing (4) in the limit as ap-
proaches zero. Through this methodological transformation,
the original combinatorial challenge is recast as a convex
optimization problem with linear constraints, enabling the

application of efficient numerical solution techniques.

anw, "
Snmmmn oL E YT

(b) ()

Figure 1. Example of the minimum bisection problem: (a) w(A) = 2; (b) w(A) =4; (¢) w(A) = 5.

space. Correspondingly, the input and output layers of the
network (as shown in Figure 2) are both composed of nodes,
each node corresponding to one element of the decision vec-
tor . The network depth, determined by the number of
hidden layers, scales proportionally to problem complex-
ity. The number of nodes in the hidden layers is a design
choice; for the fully-connected feedforward configuration
employed here, it is typically set to a number proportional to
capture the complex, high-dimensional relationships within
the optimization landscape. Within each hidden layer, an

optimization procedure is systematically applied to compute
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activation values for individual nodes. This architecture im- where information propagates through sequential layers with-

plements a feedforward fully-connected configuration?*,

out recurrent connections, as Figure 2 shows.

Output

Hidden Layer

Figure 2. Structure of the network.

Within the proposed methodology, the barrier parame-
ter assumes a functional role analogous to the temperature,
undergoing a gradual reduction from an initially substan-
tial positive number to eventual attainment of zero!!7]. This
parametric initialization ensures that the objective function
retains its convexity property throughout the defined domain
[-1,1].

We set (e =(1,1,...,1)T € R"). For any v > 0,
according to the optimality condition, if is the minimum
solution to (4), there must exist a Lagrange multiplier that

satisfies
V.L(z;)\) = Vh(z;7) —de=0, elz=0. (5
Derive:
1 (of(z) A
Ty = — ’Y(axi ) 2a 221, , 1,
of(x
Y+ (2 (32 -3)
and set with:
1 (of(x) A
di(z;\) = — ’Y<61i ) i=1,...,n.

27
1 (9f(z)
Vie (3 (52 -)
When —1 < z < 1, (d(z;\) — ) VoL(x;\) < 0,

so can serve as a valid descent direction for determining

solutions to the optimization problem L(x; ). A critical

observation arises: when belongs to the interval (—1, 1), the
equation holds if and only if the gradient V, L(z; A) = 0.

This particular descent direction exhibits an advan-
tageous characteristic: by maintaining iteration step sizes
strictly below 1, the resultant solution trajectories are guaran-
teed to remain within the domain boundaries throughout the
entire search process. This property ensures computational
stability while approaching optimal points near the constraint
boundaries.

To get for solving (4), we need to get from
iy di(x; ) = 0. It is obvious that the solution must be a
number between and due to the continuity of Y_" | d;(x; ).

We employ the simple bisection algorithm [>°]

to compute
the solution.

By utilizing the viable descent direction specified by
(4): d (x; AM(x)) — z, and incorporating the bisection method
for determining the Lagrange multiplier A, we propose the
formulation of a deterministic annealing-based neural net-
work framework. This approach enables the derivation of an
approximated solution to the optimization problem presented
in (2).

Consider a sequence: 7,,q¢ = 1,2,..., where and
limy,o 7; = 0. The initial term must be selected suffi-
ciently large to guarantee convexity of the function over
—1 < z < 1. Let be any nonzero point in which satisfies

e’ 2% = 0. For each iteration ¢ = 1,2, . . ., the algorithm pro-
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gresses from and computes the next iterate by traversing the
descent direction: d (x; \(x)) — . The iterative procedure

terminates at step when the condition is satisfied, indicating

a stationary point for the current parameterization.
The deterministic annealing neural network algorithm

proceeds as outlined in Figure 3:

[init.ialize ¥, kg

and :1’“]

£

’{ set x

compute the Lagrange multiplier A(z*) |

aJ(=k)
oz

7)\(@"‘))

(

af(xk TR
2 )—A(r*)))

0 < tola

0 k
set Yg+1 = Py, X =X,

2o =gk g=gq+1,k=0

0 =| d(=*; A(a") — 2) |

0 > tola | 2" = 2% 4+ 8, (d(z¥; Ma¥)) — 2F)

and set k =k +1

[rmmf off z*, algorithm terminates}

Figure 3. Flowchart of the algorithm.

Initialization. Define as an adequately large initial-
ization parameter to guarantee the convexity of the objec-

tive function across the domain. The parameter is explicitly

determined by g 1 — 4syin/m2, where represents the
minimum eigenvalue of the matrix —(W + E + aJ). Let
denote an initial non-zero vector satisfying the affine con-
straint e ' 2% = 0. A canonical example of such a vector is:
%% = (0.5,...,0.5,—0.5,...,—0.5) . Choose a damp-
ing factor close to 1, such as u = 0.97, to control the anneal-
ing schedule. Initialize the iteration counters k£ = 0, ¢ = 0,

and set the starting point for the optimization procedure.

Step 1. Given z = z¥, compute the Lagrange multiplier

A (2*), which should satisfy Y7, d;(x; A) = 0.

Step 2. Campute:

0 f(xk)

(5 - aw)
Vi (8 - aw))

When || d (z%; X (2%) — 2*) |< tola, the program termi-

d; (xk;)\(xk)) = — 1

Y

9 f(xk)

8Xi

nates if is near 0. A feasible solution approximation with
binary components (1 or —1) can be obtained by quantiz-

ing the continuous values in z*.

Should the current an-
nealing parameter exceed the required precision threshold,
q+ 1,

k = 0, and return to Step 1 to continue the annealing pro-

_ 0 _ ..k %q+1 _ Lk
set Yg+1 = HYg, 0 = T, a7 = a2t q

cess. If || d(z%; X (2%) — 2*) ||> tola, compute where
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and satisfies h (:ck + 0y (d (xk; A (:ck)) - :vk) ;'yq) =
minyg(o,1) b (a:k + 6 (d (a:k; A (xk)) — xk) ;’yq). Set and
return to Step 1.

3. Convergence Analysis

This section provides a theoretical guarantee that the
proposed algorithm converges to a solution of the original
minimum bisection problem.

The gradient of the objective function f(z), defined as
Vf(z) = —(W 4 E + al)x, exhibits uniformly bounded
magnitude across the entire feasible domain B. Suppose
constitutes the global minimizer of the optimization problem
(4). Under the convexity conditions imposed by the anneal-
ing schedule, it follows that must lie within the topological
interior of the feasible region B, i.e., * € int(B).

Setand F = {z|> ", x; = 0}. denotes the orthogo-
nal projection operator mapping an arbitrary point onto the
feasible set F'. Assuming represents the global minimizer of
the optimization problem (4), application of the first-order
necessary conditions for optimality yields the following re-
lationship: and is positive semi-definite.

Let %, be a positive number sequence satisfying that
and klggo v = 0. When v = ~4, assume is the global
minimum point of (4), i.e., x (7x) =
> i1 @i =0}

Consider a strictly decreasing sequence of positive num-

argmin{h (z; ) |

bers vy, satisfying with limg_, o, 7, = 0. For each fixed
v = 7k, denotes the global minimizer of (4), formally ex-
pressed as z (yx) = argmin{h (z;y;) | >, @i = 0}.
Suppose represents the optimal solution to (3). The
inequality holds universally for all z € F' N B. Define the
auxiliary function ¢(z) = b(x) + n, which satisfies for ev-
ery point within the interior of set B. Consider g(x;v) =
f(@) +vq(z), then x (vx) = argmin{g (z; V) |z € F'}.
By the definition of and x (yx+1), we have

[ (@ () + g (@ () < f (@ (1))
74 (2 (Yr41)) 5
(@ (1)) + Y10 (@ (1)) < f (@ ()
Y19 (2 (8)) -

Subtracting the second inequality from the first gives

(Ve = Ye+1) @ (2 (7)) < (e — Yet1) (@ (Ye41))

which implies Since v, > ~ry1 > 0, it follows that

93

f (l’ (’Yk)) 2 f (QZ (’Yk—kl)) .Fork = ]-a 27 B

@) < f@(w) < f () + v gz ()

=g @ ()5 ) -

For an arbitrary 6 > 0, there exists at least one point
such that the inequality holds. Consequently, we obtain
f@) +6+wq (@) = () +wq (@) = fo(w) +
wq (x(v&)) = ¢g(x(y);vk), which follows that
Jim g (z () sm) < f(27) +6. lim g (x(y)5m) 2
f(z*), hence kli)ngog(a: (k) ;7k) = f(z*). Note that
kliﬂgoWkQ(x (7)) = 0. So kliﬂgof (@ () = f(@").

Consider a convergent subsequence z (g, ), extracted
from the sequence x (). Assuming the limit of this subse-
quence as is denoted by v*, it follows that the function value
at equals the optimal value f (z*).

With respect to the Hessian matrix of the function

h(x;~y), its structure is where

(1=a)” |
(1)

(1-23)7°
x (k) is the minimum point, so is positive semi-definite.
Suppose that one of the components of is equal to nei-
ther nor 1. Without loss of generality, assume v1* € (—1, 1).
Assume that at least one component of the optimized
vector does not assume the values neither nor 1. For ana-
lytical convenience, let us posit that the initial component
satisfies v1* € (—1,1).
For let with occupying the i-th coordinate.
Pyt = (I — Ltee')y" = y'. Hence,
0< (W) P(=(W + E + al)+
i iNT = i
Ve, D ) Pey' = =(y") W +E+al)y
') D(x(w))y' = —(&+&
+2a = 2w1i) + i, (V (1= 21 (w,)?)
(L= z1(m,)*) )
From (6) and &; + &; + 2a — 2wy; > 0, it could be
derived that as the index approaches infinity, the sequence

(x(’yki
+ s ()" (6)

-3

-3

necessarily converges to either or due to the confinement
coupled with the convergence i, — 0.

Examining the components for indices i = 2,...,n,
each must assume the value or —1. Given the normaliza-

tion constraint Y, v; = 0, it follows that cannot remain
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strictly between and 1, thereby producing a contradiction
to the established interval for v;* € (—1,1). Consequently,
all entries of the vector must attain extreme values of either
—1 or 1, implying that coincides with a vertex of the hy-
percube B. This geometric characterization confirms as the
minimizer of the optimization problem (2).

In conclusion, the optimal solution to (3) exhibits bi-
nary components exclusively atand 1, and for every sequence
index k = 1,2, ..., the accumulation point of corresponds to
a minimizer of (2). This concludes the proof of convergence

for the proposed DANNA algorithm.

4. Numerical Performance

We programmed and implemented the DANNA using
Python and conducted tests through some examples. Mean-
while, we also programmed the Kernighan-Lin(KL) algo-
rithm 2! and Networkx (NTX)[?7! for comparison with the
DANNA. We selected the Kernighan-Lin (KL) algorithm and
the Networkx library as our primary baselines for a focused
and authoritative comparison. The KL algorithm is a canon-
ical heuristic specifically designed for graph partitioning,
providing a benchmark against a classic, problem-specific
method. Networkx represents a modern, highly-optimized,
and widely-adopted platform for graph analysis, serving as a
standard for practical performance. This combination allows
us to rigorously evaluate DANNA against both a founda-
tional benchmark and a state-of-the-art practical tool. The
experimental results show that when solving the minimum bi-
section problem of large-scale graphs, the DANNA performs
well in both computing time and solution quality. Especially
as the scale of the problem increases, the advantages of the
DANNA become more obvious.

Throughout the experimental phase, we initialized
the algorithm and established the starting iterate 2*° =
(0.5,...,0.5,—0.5,...,—0.5)". Based on empirical obser-
vations from computational studies, the damping parameter
was systematically configured at 0.95. For step size adap-
tation, we adopted the Armijo-type line search protocol to
ascertain suitable values for the sequence 0. If v, < 0.01,
this algorithm terminates, after which we define with:

" 1

During the numerical experiments, is always satisfied.

if 279> 0
if 277 < 0.

All graph instances used in computational testing cor-
respond to stochastic weighted graph structures. The graphs
were generated randomly, a common practice for benchmark-
ing minimum bisection algorithms!'*). Edge weights were
sampled from a uniform distribution over [0, 1]. This range
serves as a normalized proxy for relative costs, risks, or effi-
ciencies in a generic sense, providing a standardized bench-
mark for algorithmic performance before domain-specific
calibration. To evaluate the performance of the DANNA rel-
ative to alternative methodologies, we conduct comparative
analyses with the other two additional algorithms. In the exper-
imental results, the notation CTD, CTK, and CTN respectively
denote the CPU computation times (in seconds) required by
the DANNA, Kernighan-Lin heuristic, and Networkx library
implementation. Similarly, the metrics OVD, OVK, and OVN
quantify the objective function values (as defined in (1)) at-
tained by the respective algorithms at termination.

The computation times and objective values of the
DANNA and the Kernighan-Lin algorithm are listed in Ta-
ble 1 The average ratios of computation times and objective
values of the DANNA to the KL algorithm are computed
and shown in Figure 4. Figure 4 illustrates that DANNA
achieves significantly faster computation times while main-
taining competitive solution quality relative to the KL algo-
rithm. The computation times and objective values of the
DANNA and the Networkx algorithm are listed in Table 2.
The average ratios of computation times and objective values
of the DANNA to the Networkx are computed and shown in
Figure 5. Figure 5 demonstrates the superior scalability of
DANNA, with its performance advantage in both speed and
solution quality becoming more pronounced as graph size
increases.

To further substantiate the robustness and statistical
consistency of the DANNA, we conducted ten independent
runs for each graph instance and present the detailed results
in Table 3. The metrics are reported in the form of mean and
standard deviation. The results in Table 3 clearly demon-
strate that DANNA not only achieves superior computational
efficiency but also exhibits remarkable stability, as indicated
by the exceptionally low standard deviations in both com-
putation time and objective value across all problem scales.
In contrast, the baseline methods show greater variability in
their performance.

When solving the minimum bisection problem of large-
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scale graphs, the DANNA performs well in both computing solution quality produced by DANNA demonstrates progres-
time and solution quality. With escalating problem complex- sive enhancement. These combined factors substantiate its

ity, the disparity in computational time requirements among superior performance in addressing large-scale graph prob-

the algorithms becomes increasingly pronounced, while the lems.

Table 1. Comparison between DANNA and KL algorithm.

Computation Time (s) Objective Function
1-5 Nodes DANNA KL Algorithm DANNA KL algorithm
n=1>50 1.151 2.007 340 292
n=100 1.595 14.883 1317 1172
n=200 2.557 114.708 5194 4804
n=300 3.694 401.246 11589 10889
n =400 4.572 935.659 20586 19446
n =500 5.841 1909.551 32049 30459
Table 2. Comparison between DANNA and Networkx.
Computation Time (s) Objective Function
1-5 Nodes DANNA Networkx DANNA Networkx
n=1000 11.486 16.236 127314 122688
n=1500 18.061 43.189 285398 276956
n=2000 25.093 74.431 506284 493286
n=2500 32.39 121.918 790373 772053
n=3000 40.728 187.817 1136837 1112837
n=3500 48.605 243.799 1546236 1516081
n = 4000 57.623 369.471 2018186 1981488
n=4500 66.514 460.983 2553132 2509586
n= 5000 75.931 556.916 3151117 3099542
1.4000
1.1644
1.1237
1.20a0 10812 10643 1.0586 1.0522
1.0000
« 0.8000
2
® 0.5735
e 0.6000 - ==@==0VD/OVK
w=@== CTD/CTK
0.4000
0.2000
- 0.0223  0.0092 0.0049 0.0031
0.0000 —— ® —®

n=50 n=100 n=200 n=300 n=400 n=500
Number of nodes

Figure 4. Ratios of DANNA and KL algorithm in Computation Time and Objective Value.
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Figure 5. Ratios of DANNA and Networkx in Computation Time and Objective Value.

Table 3. Statistical comparison of performance.

Nodes Method Computation Time (s) Objective Value
n=>500 DANNA 5.84 £0.21 32049 + 38
KL Algorithm 1909.55 4+ 125.47 30459 + 285
n=1000 DANNA 11.49+£0.35 127314 £+ 105
Networkx 16.24 £0.82 122688 + 650
n=2000 DANNA 25.09 £+ 0.58 506284 £ 212
Networkx 74.43 £3.15 493286 £ 980
n= 5000 DANNA 75.93 £1.24 3151117 4 550
Networkx 556.92 + 15.67 3099542 + 1200

The experimental results, particularly the superior scal-
ability and low variance of DANNA demonstrated in Tables
1 and 2, have direct implications for its practical application
in coal mining. Large-scale mining operations involve com-
plex networks with thousands of components (equipment,
zones, pathways). An algorithm whose computation time
grows moderately with problem size and produces consis-
tent results is essential for integration into real-time decision
support systems. The stability of DANNA ensures reliable
performance under varying conditions, while its speed en-
ables rapid rescheduling and re-partitioning in response to
dynamic operational changes, such as equipment failure or
shifting geological hazards. While a full-scale field deploy-
ment is beyond the scope of this paper, these fundamental
properties establish a strong foundation for future practical
implementation.

The experimental results demonstrate that DANNA

possesses two key properties essential for dynamic envi-
ronments: high computational speed and robust stability
(evidenced by low standard deviations). To qualitatively as-
sess its adaptability, we simulated a dynamic scenario on a
graph with nodes. After obtaining an initial bisection, we
simulated the sudden failure of a critical node (e.g., a key
piece of equipment) by removing it from the graph. DANNA
was then tasked with recomputing a new balanced partition
from a warm-started state. The algorithm converged to a
new feasible solution in only 0.38 seconds, demonstrating its
potential for rapid rescheduling. This capability is crucial for
real-time response to unexpected events in a coal mine, such
as equipment failure or the emergence of new hazard zones.
While this is a single illustrative example, it successfully
demonstrates the principle of rapid rescheduling. A com-
prehensive analysis of dynamic adaptability under various

failure scenarios and at larger scales constitutes an important
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direction for our future research.

5. Conclusions

This study has introduced a Deterministic Annealing
Neural Network (DANNA) designed for optimal resource
allocation in coal mining by solving the minimum bisection
problem. The primary contributions of this work, which es-
tablish a foundation for intelligent decision-support systems

in the industry, are summarized as follows:

1. Theoretical Foundation: We reformulated the NP-hard
minimum bisection problem into a tractable convex
optimization problem with linear constraints. A novel
square-root barrier function was introduced to handle
the binary constraints effectively, and a rigorous global
convergence analysis was provided, guaranteeing that
the algorithm converges to a feasible discrete solution
of the original problem.

2. Methodological Innovation: The proposed DANNA
algorithm uniquely integrates the deterministic anneal-
ing framework with the custom barrier function. This
integration ensures computational stability throughout
the optimization process and enables a controlled an-
nealing schedule that efficiently approximates the opti-
mal solution. The method is distinguished from prior
annealing approaches by its specific design choices
tailored for the mining resource partitioning problem.

3. Experimental Validation and Practical Utility: Through
comprehensive numerical experiments, the algorithm
demonstrated superior performance compared to es-
tablished benchmarks (Kernighan-Lin and Networkx).
Key results include:

—  Computational Efficiency: DANNA reduced com-
putation time by an average of over 70% com-
pared to the Kernighan-Lin algorithm on graphs
with 200-500 nodes and was approximately 7
times faster than Networkx on graphs with 5000
nodes.

—  Scalability and Robustness: The algorithm exhib-
ited low time complexity and remarkable stability
(evidenced by low standard deviations in repeated
runs), making it suitable for large-scale mining
scenarios.

—  Practical Modeling: The novel reformulation of

coal mining challenges—such as safety-hazard
zone isolation and equipment scheduling—into
the minimum bisection framework was detailed,
providing a new, quantitative approach to these
problems.

While this study provides a robust theoretical and com-
putational framework, its validation has been confined to
numerical experiments and simulated case studies. As rightly
pointed out, the final step of onsite engineering verification,
such as correlating safety zoning results with real-time mon-
itoring data (e.g., water gushing), remains an essential future
endeavor. Consequently, our immediate future work will
be directed towards this rigorous field-testing phase to fully
demonstrate the algorithm’s operational efficacy and refine

it based on real-world feedback.

Author Contributions

Conceptualization, S.J.; methodology, S.J.; software,
Y.H.; validation, S.J.; formal analysis, Y.H.; investigation,
S.J.; data curation, S.J.; writing—original draft preparation,
S.J.; writing—review and editing, Y.H.; visualization, S.J.
Both authors have read and agreed to the published version

of the manuscript.

Funding

This work received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data used in this study are available from the cor-

responding author upon reasonable request.

Conflicts of Interest

The authors declare no conflict of interest.

97



Journal of Electronic & Information Systems | Volume 07 | Issue 02 | October 2025

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

Guo, H., Zhu, K., Ding, C., et al., 2010. Intelligent
optimization for project scheduling of the first mining
face in coal mining. Expert Systems with Applications.
37(2), 1294-1301.

O’Sullivan, D., Newman, A., 2015. Optimization-
based heuristics for underground mine scheduling.
European Journal of Operational Research. 241(1),
248-259.

Tu, S., Jia, M., Wang, L., et al., 2023. A dynamic
scheduling model for underground metal mines un-
der equipment failure conditions. Sustainability. 15(9),
7306. DOL: https://doi.org/10.3390/su15097306

Yan, Z., Wang, Y., Fan, J., 2021. Research on safety
subregion partition method and characterization for
coal mine ventilation system. Mathematical Problems
in Engineering. 2021(1), 5540178. DOI: https://doi.or
2/10.1155/2021/5540178

Belov, G., Boland, N.L., Savelsbergh, M.W., et al.,
2020. Logistics optimization for a coal supply chain.
Journal of Heuristics. 26(2), 269—300.

Rademeyer, M.C., Minnitt, R.C., Falcon, R.M., 2019.
A mathematical optimization approach to modelling
the economics of a coal mine. Resources Policy. 62,
561-570.

Silver, E.A., 2004. An overview of heuristic solution
methods. Journal of the Operational Research Society.
55(9), 936-956.

Guo, L., Xie, X., Zeng, J., et al., 2023. Optimization
model of water resources allocation in coal mine area
based on ecological environment priority. Water. 15(6),
1205. DOL: https://doi.org/10.3390/w15061205
Darby-Dowman, K., Wilson, J.M., 2002. Develop-
ments in linear and integer programming. Journal of
the Operational Research Society. 53(10), 1065-1071.
Hirayama, M., Guivant, J., Katupitiya, J., et al., 2019.
Artificial intelligence in path planning for autonomous
bulldozers: Comparison with manual operation. Inter-
national Journal of Innovative Computing, Information
and Control. 15(3), 825-844.

Han, M., Gao, Z., Li, A, et al., 2022. An overview of
high utility itemsets mining methods based on intelli-
gent optimization algorithms. Knowledge and Informa-
tion Systems. 64(11), 2945-2984.

Cristobal, J., Guillén-Gosalbez, G., Jiménez, L., et al.,
2012. Multi-objective optimization of coal-fired elec-
tricity production with CO: capture. Applied Energy.
98, 266-272.

Wu, Y.-C., Feng, J.-W., 2018. Development and appli-
cation of artificial neural network. Wireless Personal
Communications. 102, 1645-1656.

Zhang, B., Gong, X., Wang, J., et al., 2022. Nonstation-
ary fuzzy neural network based on FCMNET clustering
and a modified CG method with Armijo-type rule. In-
formation Sciences. 608, 313-338.

98

[15]

[16]

[17]

(18]

[19]

(21]

[22]

(23]

(24]

[25]

[26]

(27]

Karpinski, M., 2002. Approximability of the minimum
bisection problem: An algorithmic challenge. In: Diks,
K., Rytter, W. (Eds.). Mathematical Foundations of
Computer Science, Vol 2420. Springer: Berlin, Ger-
many. pp. 59-67.

Dang, C., Ma, W., Liang, J., 2009. A deterministic
annealing algorithm for approximating a solution of
the min-bisection problem. Neural Networks. 22(1),
58-66.

Wu, Z., Karimi, H.R., Dang, C., 2019. A determinis-
tic annealing neural network algorithm for the mini-
mum concave cost transportation problem. IEEE Trans-
actions on Neural Networks and Learning Systems.
31(10), 4354-4366.

Fang, L., Wei, L., Yi, G,, et al., 2017. Research of
potential safety hazard investigation and risk control
system for mine enterprise. In Proceedings of the 2017
2nd IEEE International Conference on Computational
Intelligence and Applications (ICCIA), Beijing, China.
pp. 523-527.

Goodman, G.V,, Sarin, S.C., 1988. A mathematical
programming approach for scheduling equipment in a
surface coal mining operation. International Journal of
Mining and Geological Engineering. 6(4), 327-341.
Zhang, L., Yang, W., Hao, B., et al., 2023. Edge com-
puting resource allocation method for mining 5G com-
munication system. IEEE Access. 11, 49730-49737.
Jiang, S., Dang, C., 2021. A more efficient determin-
istic annealing neural network algorithm for the max-
bisection problem. Neurocomputing. 458, 428—439.
Xiao, W., Belta, C., 2021. High-order control barrier
functions. IEEE Transactions on Automatic Control.
67(7), 3655-3662.

Deb, S., Fong, S., Tian, Z., et al., 2016. Finding ap-
proximate solutions of NP-hard optimization and TSP
problems using elephant search algorithm. The Journal
of Supercomputing. 72, 3960-3992.

Sazli, M.H., 2006. A brief review of feed-forward neu-
ral networks. Communications Faculty of Sciences Uni-
versity of Ankara Series A2—A3: Physical Sciences and
Engineering. 50(1).

Oliveira, I.F., Takahashi, R.H., 2020. An enhancement
of the bisection method average performance preserv-
ing minmax optimality. ACM Transactions on Mathe-
matical Software. 47(1), 1-24.

Patil, S.V., Kulkarni, D.B., 2021. Graph partitioning
using heuristic Kernighan-Lin algorithm for parallel
computing. In: Deshpande, P., Abraham, A., Iyer, B., et
al. (Eds.). Next Generation Information Processing Sys-
tem: Proceedings of ICCET 2020, vol 1162. Springer:
Singapore. pp. 281-288.

Hagberg, A., Conway, D., 2020. NetworkX: Network
analysis with Python. Available from: https://networ
kx.github.io (cited 9 July 2025).


https://doi.org/10.3390/su15097306
https://doi.org/10.1155/2021/5540178
https://doi.org/10.1155/2021/5540178
https://doi.org/10.3390/w15061205
https://doi.org/10.1501/commua1-2_0000000026
https://doi.org/10.1501/commua1-2_0000000026
https://networkx.github.io
https://networkx.github.io

	Introduction
	Methodology
	Problem Modeling
	Deterministic Annealing Neural Network Algorithm

	Convergence Analysis
	Numerical Performance
	Conclusions

