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ABSTRACT

This paper proposes a deterministic annealing neural network algorithm to address critical resource partitioning

challenges in coal mining, such as equipment scheduling, safety zone division, and logistics optimization. By integrating a

novel square-root barrier function within a temperature-controlled annealing framework, this algorithm transforms the

NP-hard minimum bisection problem into a tractable convex optimization problem with linear constraints. This formulation

ensures convergent solutions while effectively balancing operational efficiency and safety requirements. Theoretical

analysis rigorously proves the algorithm’s global convergence to discrete partitions, guaranteeing that resources—such

as machinery, zones, and transport nodes—are split into balanced groups with minimized cross-group costs. Numerical

experiments demonstrate that this algorithm significantly reduces computation time compared to traditional methods,

including the Kernighan-Lin algorithm and Networkx, while achieving objective values nearly reaching the theoretical

optimum. Notably, the algorithm exhibits strong scalability and stability, with performance advantages becoming more

pronounced as graph size increases. Furthermore, tests in a dynamic scenario simulating node failure confirmed the

algorithm’s capability for rapid rescheduling, a critical feature for real-time adaptation in mining environments. The

low variance observed across multiple runs underscores its reliability for consistent decision-making. This work not

only introduces a methodologically innovative optimization tool but also provides a practical bridge between theoretical

computer science and industrial engineering by reformulating coal-specific problems into the minimum bisection problem

framework. The results underscore the deterministic annealing neural network algorithm’s potential as a reliable and
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efficient decision-support system for intelligent mining operations.

Keywords: Coal Mining; Resource Partitioning; Minimum Bisection Problem; Deterministic Annealing

1. Introduction

Coal mining operations face inherently complex op-

timization challenges [1,2], including dynamic equipment

scheduling [3], safety-critical zone partitioning [4], and cost-

sensitive logistics planning [5,6]. These tasks often require

partitioning resources (e.g., machinery, transport nodes, or

mining regions) into balanced groups while minimizing oper-

ational risks and costs—a problem analogous to the NP-hard

minimum bisection problem (MINBP). However, traditional

solution strategies often fall short. Heuristic methods [7],

while sometimes effective, lack adaptability to dynamic con-

ditions like equipment failures and suffer from theoretical

ambiguity regarding solution quality [8]. Mathematical pro-

gramming techniques, such as integer linear models, become

computationally intractable for large-scale, real-world sce-

narios [9]. Furthermore, manual planning is prone to human

bias and often fails to achieve optimal cross-departmental

collaboration [10].

The advent of Industry 4.0 has spurred the develop-

ment of “intelligent mining,” which emphasizes the use of

data-driven, and automated systems to enhance operational

efficiency and safety [11,12]. Within this paradigm, computa-

tional intelligence methods, particularly neural networks and

bio-inspired algorithms, have shown considerable promise

in solving complex optimization problems [13,14]. For in-

stance, recent studies have leveraged neural networks for

tasks ranging from high-utility itemset mining [11] to nonsta-

tionary system modeling [14]. However, the direct application

of these general-purpose intelligent algorithms to the specific,

constrained resource partitioning problems in coal mining

remains underexplored. Similarly, while the minimum bisec-

tion problem is a well-studied combinatorial optimization

challenge in computer science [15,16], its formulation as a core

model for coal mining logistics and safety management is a

novel perspective that bridges a critical gap between theoret-

ical computer science and industrial engineering.

This gap is multifaceted: firstly, there is a disconnect

between advanced neural network optimization frameworks

and the domain-specific constraints of mining engineering;

secondly, existing mining optimization models often lack

the theoretical convergence guarantees required for robust,

real-world decision support [9,10]; and thirdly, the scalability

of many proposed solutions is inadequate for the vast and

complex networks inherent to modern large-scale mining

operations. Inspired by this gap, we propose a deterministic

annealing neural network algorithm (DANNA) tailored for

optimal coal mining resource allocation. Our work is par-

ticularly inspired by the deterministic annealing framework

that has been successfully applied to other NP-hard prob-

lems [16,17], but we extend it with a novel barrier function and

a problem formulation specifically designed for the mining

context. While the deterministic annealing framework is

inspired by prior works [16,17], this paper introduces key inno-

vations tailored for the coal mining context. A primary dis-

tinction lies in the use of a novel square-root barrier function,

in contrast to the common logarithmic barriers used in [16].

This specific choice is critical for handling the binary con-

straints of the MINBP and enables the rigorous convergence

guarantee provided in Section 3. Furthermore, unlike the

general-purpose algorithms in Dang et al.’s [16,17], our work

is grounded in the novel reformulation of coal-specific prob-

lems into the MINBP framework, bridging a gap between

abstract graph theory and practical mining engineering.

Our key contributions include:

• Algorithm: A novel barrier-augmented annealing frame-

work, featuring a custom square-root barrier function

that guarantees feasible solutions under hard constraints

during optimization, is proposed.

• Industry Adaptations: Reformulate coal-specific prob-

lems, like hazard zone isolation and fleet scheduling, as

minimum bisection problem instances. Global conver-

gence is proven under diminishing temperature parame-

ters.

• Efficiency: DANNAachieves low time complexity, out-

performing the Kernighan-Lin algorithm and Networkx.

The experiment verifies its high efficiency and stability

in large-scale graphs.

This work bridges the gap between theoretical opti-
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mization and industrial practicality, offering a robust tool

for enhancing safety, efficiency, and sustainability in coal

mining. In summary, the principal innovations of this work

are threefold: (1) the introduction of a novel square-root bar-

rier function within the deterministic annealing framework,

specifically designed for the minimum bisection problem;

(2) the novel reformulation of coal mining resource allo-

cation as a minimum bisection problem, creating a bridge

between theoretical optimization and industrial practice; and

(3) a rigorous convergence proof for the resulting algorithm,

ensuring its reliability for real-world applications.

2. Methodology

2.1. Problem Modeling

Take the safety-hazard zone isolation in mining areas

as an example. The goal is to divide the risky areas and

the risk-free areas in the coal mines and achieve physical

or logical isolation at the minimum cost [18]. Take the areas

in the mine (such as coal mining faces, ventilation outlets,

transportation channels) as the vertices of the graph, and the

isolation facilities (such as firewalls, isolation doors, etc.)

as another part of the vertices. If a certain area needs to be

isolated from other areas through a certain isolation facility,

an edge is established between the corresponding area ver-

tex and the isolation facility vertex [19,20]. The edge weight

can be expressed as the risk reduction cost or isolation ef-

ficiency of deploying a certain type of isolation facility in

this area. This modeling approach establishes a direct link

between the graph model and measurable industrial parame-

ters. The edge weight can be calibrated using engineering

data and expert knowledge. For instance, it can represent

the financial cost of constructing a physical barrier, the op-

erational downtime required for installation, or a quantified

risk reduction score derived from historical incident data

and safety standards [4,18]. The validity of the model hinges

on the reasonable assumption that the cost and efficacy of

isolation can be meaningfully quantified to guide optimal

resource allocation. We can transform this problem into the

minimum bisection problem in graph theory. The objec-

tive of the problem is to select the fewest isolation facilities

to achieve effective isolation between the risky areas and

other areas. This is equivalent to finding the smallest set

of edges to divide the graph into two parts. By solving this

minimum bisection problem, the optimal isolation effect can

be achieved, while minimizing the cost and the impact on

normal production.

The minimum bisection problem is defined as follows:

Consider an undirected graph denoted byG = (V,E), where

represents the collection of vertices and constitutes the set

of edges. Define as the edge between node and node j.

W =


0 w12 · · · w1n

w21 0 · · · w2n

...
...

. . .
...

wn1 wn2 · · · 0


Let be a symmetric matrix, where if and if (i, j) /∈ E.

The minimum bisection problem [15] requires partitioning

the vertex set into two disjoint subsets with half of the total

vertices (A and V\A) and minimizing the sum of the cross-

subsets edge weights:

w(A) =
∑

i∈A, j ∈V rA

wij

An illustrative instance of the minimum bisection prob-

lem is presented in Figure 1. Assume that if (i, j) ∈ E.

While the vertex set permits multiple valid partitioning con-

figurations, only the initial partitioning strategy achieves

optimality by minimizing the aggregate cut weight across

the bipartition.

According to Jiang and Dang [21], the MINBP is equiv-

alent to:

min 1
4

n∑
i=1

n∑
j=1

(1− xixj)wij

subject to
n∑

i=1

xi = 0, xi ∈ −1, 1, i = 1, . . . , n.

(1)

This formulation uses spin variables to represent the

partition to which a vertex belongs.

Let for i = 1, 2, . . . , n, and ξ = (ξ1, ξ2, . . . , ξn)
>
.

The MINBP could be stated as follows [16]:

min f(x) = − 1
2x

>(W + Ξ+ αI)x

subject to
n∑

i=1

xi = 0, xi ∈ −1, 1, i = 1, . . . , n,
(2)

where is the diagonal matrix of ξ, is defined as an arbitrarily

chosen positive number, while represents an n-order identity

matrix. The matrix is constructed to be positive definite,
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which facilitates the subsequent optimization. Relaxing (2),

convert binary constraints to continuous variables:

min f(x) = − 1
2
x>(W + Ξ+ αI)x

subject to
n∑

i=1

xi = 0, −1 ≤ xi ≤ 1, i = 1, . . . , n.
(3)

This relaxation allows the solution to evolve in a con-

tinuous space, making it amenable to gradient-based opti-

mization methods.

Define a barrier function [22]: b(x) = −
∑n

i=1

√
1− x2

i .

is the term used to penalize boundary violations. Notice that:

lim
xi→1−

∂b(x)

∂xi
= +∞, lim

xi→(−1)+

∂b(x)

∂xi
= −∞.

These properties ensure that the solution remains within

the open interval during the optimization process, preventing

premature convergence to the boundaries.

For any positive number γ, consider the problem:

min h(x; γ) = f(x) + γb(x)

subject to
n∑

i=1

xi = 0
(4)

The parameter controls the strength of the barrier, ini-

tially keeping the solution in the interior and gradually al-

lowing it to approach the boundaries as is reduced.

The process of deriving the optimal solution for (2)

corresponds to determining the optimal solution of (3) where

each variable is constrained to either or 1. Notably, equation

(3) is also anNP-hard optimization problem as documented in

Deb et al.’s study [23]. Our approach involves approximating

the minimal solution of (3) by analyzing (4) in the limit as ap-

proaches zero. Through this methodological transformation,

the original combinatorial challenge is recast as a convex

optimization problem with linear constraints, enabling the

application of efficient numerical solution techniques.

(a) (b) (c)

Figure 1. Example of the minimum bisection problem: (a) w(A) = 2; (b) w(A) = 4; (c) w(A) = 5.

2.2. Deterministic Annealing Neural Network

Algorithm

Drawing inspiration from neural network (NN) archi-

tectures [13], this study applies the principles of neural net-

works to address the problem. The proposed framework

operates with an initial point as input and generates an n-

dimensional binary vector as output. Network depth, deter-

mined by the number of hidden layers, scales proportionally

to problem complexity, while each layer’s nodes collectively

encode a potential solution in the N-dimensional decision

space. Correspondingly, the input and output layers of the

network (as shown in Figure 2) are both composed of nodes,

each node corresponding to one element of the decision vec-

tor x. The network depth, determined by the number of

hidden layers, scales proportionally to problem complex-

ity. The number of nodes in the hidden layers is a design

choice; for the fully-connected feedforward configuration

employed here, it is typically set to a number proportional to

capture the complex, high-dimensional relationships within

the optimization landscape. Within each hidden layer, an

optimization procedure is systematically applied to compute
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activation values for individual nodes. This architecture im-

plements a feedforward fully-connected configuration [24],

where information propagates through sequential layers with-

out recurrent connections, as Figure 2 shows.

Figure 2. Structure of the network.

Within the proposed methodology, the barrier parame-

ter assumes a functional role analogous to the temperature,

undergoing a gradual reduction from an initially substan-

tial positive number to eventual attainment of zero [17]. This

parametric initialization ensures that the objective function

retains its convexity property throughout the defined domain

[−1, 1].

We set
(
e = (1, 1, . . . , 1)> ∈ Rn

)
. For any γ > 0,

according to the optimality condition, if is the minimum

solution to (4), there must exist a Lagrange multiplier that

satisfies

∇xL(x;λ) = ∇h(x; γ)− λe = 0, e>x = 0. (5)

Derive:

xi = −
1
γ

(
∂f(x)
∂xi

− λ
)

√
1 +

(
1
γ

(
∂f(x)
∂xi

− λ
))2

, i = 1, . . . , n,

and set with:

di(x;λ) = −
1
γ

(
∂f(x)
∂xi

− λ
)

√
1 +

(
1
γ

(
∂f(x)
∂xi

− λ
))2

, i = 1, . . . , n.

When −1 < x < 1, (d(x;λ)− x)
> ∇xL(x;λ) < 0,

so can serve as a valid descent direction for determining

solutions to the optimization problem L(x;λ). A critical

observation arises: when belongs to the interval (−1, 1), the

equation holds if and only if the gradient ∇xL(x;λ) = 0.

This particular descent direction exhibits an advan-

tageous characteristic: by maintaining iteration step sizes

strictly below 1, the resultant solution trajectories are guaran-

teed to remain within the domain boundaries throughout the

entire search process. This property ensures computational

stability while approaching optimal points near the constraint

boundaries.

To get for solving (4), we need to get from∑n
i=1 di(x;λ) = 0. It is obvious that the solution must be a

number between and due to the continuity of
∑n

i=1 di(x;λ).

We employ the simple bisection algorithm [25] to compute

the solution.

By utilizing the viable descent direction specified by

(4): d (x;λ(x))− x, and incorporating the bisection method

for determining the Lagrange multiplier λ, we propose the

formulation of a deterministic annealing-based neural net-

work framework. This approach enables the derivation of an

approximated solution to the optimization problem presented

in (2).

Consider a sequence: γq, q = 1, 2, . . ., where and

limq→∞ γq = 0. The initial term must be selected suffi-

ciently large to guarantee convexity of the function over

−1 ≤ x ≤ 1. Let be any nonzero point in which satisfies

e>x0 = 0. For each iteration q = 1, 2, . . ., the algorithm pro-
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gresses from and computes the next iterate by traversing the

descent direction: d (x;λ(x))− x. The iterative procedure

terminates at step when the condition is satisfied, indicating

a stationary point for the current parameterization.

The deterministic annealing neural network algorithm

proceeds as outlined in Figure 3:

Figure 3. Flowchart of the algorithm.

Initialization. Define as an adequately large initial-

ization parameter to guarantee the convexity of the objec-

tive function across the domain. The parameter is explicitly

determined by γ0 = 1 − 4smin/π
2, where represents the

minimum eigenvalue of the matrix −(W + Ξ + αI). Let

denote an initial non-zero vector satisfying the affine con-

straint e>x0 = 0. A canonical example of such a vector is:

x∗,0 = (0.5, . . . , 0.5,−0.5, . . . ,−0.5)>. Choose a damp-

ing factor close to 1, such as µ = 0.97, to control the anneal-

ing schedule. Initialize the iteration counters k = 0, q = 0,

and set the starting point for the optimization procedure.

Step 1. Given x = xk, compute the Lagrange multiplier

λ
(
xk

)
, which should satisfy

∑n
i=1 di(x;λ) = 0.

Step 2. Campute:

di
(
xk;λ

(
xk
))

= −

1
γ

(
∂ f

(
xk
)

∂ xi
− λ

(
xk
))

√
1 +

(
1
γ

(
∂ f(xk)
∂ xi

− λ (xk)
))2

When ‖ d
(
xk;λ

(
xk

)
− xk

)
‖< tola, the program termi-

nates if is near 0. A feasible solution approximation with

binary components (1 or −1) can be obtained by quantiz-

ing the continuous values in xk. Should the current an-

nealing parameter exceed the required precision threshold,

set γq+1 = µγq, x
0 = xk, x∗,q+1 = xk, q = q + 1,

k = 0, and return to Step 1 to continue the annealing pro-

cess. If ‖ d
(
xk;λ

(
xk

)
− xk

)
‖≥ tola, compute where
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and satisfies h
(
xk + θk

(
d
(
xk;λ

(
xk

))
− xk

)
; γq

)
=

minλ∈[0,1] h
(
xk + θ

(
d
(
xk;λ

(
xk

))
− xk

)
; γq

)
. Set and

return to Step 1.

3. Convergence Analysis

This section provides a theoretical guarantee that the

proposed algorithm converges to a solution of the original

minimum bisection problem.

The gradient of the objective function f(x), defined as

∇f(x) = −(W + Ξ + αI)x, exhibits uniformly bounded

magnitude across the entire feasible domain B. Suppose

constitutes the global minimizer of the optimization problem

(4). Under the convexity conditions imposed by the anneal-

ing schedule, it follows that must lie within the topological

interior of the feasible region B, i.e., x∗ ∈ int(B).

Set and F = {x|
∑n

i=1 xi = 0}. denotes the orthogo-
nal projection operator mapping an arbitrary point onto the

feasible set F . Assuming represents the global minimizer of

the optimization problem (4), application of the first-order

necessary conditions for optimality yields the following re-

lationship: and is positive semi-definite.

Let γk, be a positive number sequence satisfying that

and lim
k→∞

γk = 0. When γ = γk, assume is the global

minimum point of (4), i.e., x (γk) = argmin{h (x; γk) |∑n
i=1 xi = 0}.

Consider a strictly decreasing sequence of positive num-

bers γk, satisfying with limk→∞ γk = 0. For each fixed

γ = γk, denotes the global minimizer of (4), formally ex-

pressed as x (γk) = argmin{h (x; γk) |
∑n

i=1 xi = 0}.
Suppose represents the optimal solution to (3). The

inequality holds universally for all x ∈ F ∩B. Define the

auxiliary function q(x) = b(x) + n, which satisfies for ev-

ery point within the interior of set B. Consider g(x; γ) =

f(x) + γq(x), then x (γk) = argmin{g (x; γk) |x ∈ F}.
By the definition of and x (γk+1), we have

f (x (γk)) + γkq (x (γk)) ≤ f (x (γk+1))

+γkq (x (γk+1)) ,

f (x (γk+1)) + γk+1q (x (γk+1)) ≤ f (x (γk))

+γk+1q (x (γk)) .

Subtracting the second inequality from the first gives

(γk − γk+1) q (x (γk)) ≤ (γk − γk+1) q (x (γk+1)) ,

which implies Since γk > γk+1 > 0, it follows that

f (x (γk)) ≥ f (x (γk+1)) . For k = 1, 2, . . .,

f (x∗) ≤ f (x (γk)) ≤ f (x (γk)) + γk · q (x (γk))
= g (x (γk) ; γk) .

For an arbitrary δ > 0, there exists at least one point

such that the inequality holds. Consequently, we obtain

f (x∗) + δ + γkq (x) ≥ f (x) + γkq (x) ≥ f (x (γk)) +

γkq (x (γk)) = g (x (γk) ; γk), which follows that

lim
k→∞

g (x (γk) ; γk) ≤ f (x∗) + δ. lim
k→∞

g (x (γk) ; γk) ≥
f (x∗), hence lim

k→∞
g (x (γk) ; γk) = f (x∗). Note that

lim
k→∞

γkq (x (γk)) = 0. So lim
k→∞

f (x (γk)) = f (x∗).

Consider a convergent subsequence x (γki), extracted

from the sequence x (γk). Assuming the limit of this subse-

quence as is denoted by v∗, it follows that the function value

at equals the optimal value f (x∗).

With respect to the Hessian matrix of the function

h(x; γ), its structure is where

D(x) =



√(
1− x2

1

)−3 √(
1− x2

2

)−3

. . . √(
1− x2

3

)−3


x (γki) is the minimum point, so is positive semi-definite.

Suppose that one of the components of is equal to nei-

ther nor 1. Without loss of generality, assume v1
∗ ∈ (−1, 1).

Assume that at least one component of the optimized

vector does not assume the values neither nor 1. For ana-

lytical convenience, let us posit that the initial component

satisfies v1
∗ ∈ (−1, 1).

For let with occupying the i-th coordinate.

Pey
i =

(
I − 1

nee
>) yi = yi. Hence,

0 ≤ (yi)
T
Pe(−(W + Ξ + α I)+

γkiD(x(γki))) Pe y
i = −(yi)

T
(W + Ξ + α I) yi

+ γki(y
i)

T
D(x(γki)) y

i = −( ξ1 + ξi

+2α− 2w1i) + γki (

√
(1− x1(γki)

2)
−3

+

√
(1− x1(γki)

2)
−3

)

(6)

From (6) and ξ1 + ξi + 2α − 2w1i > 0, it could be

derived that as the index approaches infinity, the sequence

necessarily converges to either or due to the confinement

coupled with the convergence γki
→ 0.

Examining the components for indices i = 2, . . . , n,

each must assume the value or −1. Given the normaliza-

tion constraint
∑n

i=1 v
∗
i = 0, it follows that cannot remain
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strictly between and 1, thereby producing a contradiction

to the established interval for v1
∗ ∈ (−1, 1). Consequently,

all entries of the vector must attain extreme values of either

−1 or 1, implying that coincides with a vertex of the hy-
percube B. This geometric characterization confirms as the

minimizer of the optimization problem (2).

In conclusion, the optimal solution to (3) exhibits bi-

nary components exclusively at and 1, and for every sequence

index k = 1, 2, . . ., the accumulation point of corresponds to

a minimizer of (2). This concludes the proof of convergence

for the proposed DANNA algorithm.

4. Numerical Performance

We programmed and implemented the DANNA using

Python and conducted tests through some examples. Mean-

while, we also programmed the Kernighan-Lin(KL) algo-

rithm [26] and Networkx (NTX) [27] for comparison with the

DANNA.We selected the Kernighan-Lin (KL) algorithm and

the Networkx library as our primary baselines for a focused

and authoritative comparison. The KL algorithm is a canon-

ical heuristic specifically designed for graph partitioning,

providing a benchmark against a classic, problem-specific

method. Networkx represents a modern, highly-optimized,

and widely-adopted platform for graph analysis, serving as a

standard for practical performance. This combination allows

us to rigorously evaluate DANNA against both a founda-

tional benchmark and a state-of-the-art practical tool. The

experimental results show that when solving the minimum bi-

section problem of large-scale graphs, the DANNAperforms

well in both computing time and solution quality. Especially

as the scale of the problem increases, the advantages of the

DANNA become more obvious.

Throughout the experimental phase, we initialized

the algorithm and established the starting iterate x∗,0 =

(0.5, . . . , 0.5,−0.5, . . . ,−0.5)>. Based on empirical obser-

vations from computational studies, the damping parameter

was systematically configured at 0.95. For step size adap-

tation, we adopted the Armijo-type line search protocol to

ascertain suitable values for the sequence θk. If γq < 0.01,

this algorithm terminates, after which we define with:

x∗
i =

{
1 if x∗,q

i ≥ 0

−1 if x∗,q
i < 0.

During the numerical experiments, is always satisfied.

All graph instances used in computational testing cor-

respond to stochastic weighted graph structures. The graphs

were generated randomly, a common practice for benchmark-

ing minimum bisection algorithms [15]. Edge weights were

sampled from a uniform distribution over [0, 1]. This range

serves as a normalized proxy for relative costs, risks, or effi-

ciencies in a generic sense, providing a standardized bench-

mark for algorithmic performance before domain-specific

calibration. To evaluate the performance of the DANNA rel-

ative to alternative methodologies, we conduct comparative

analyses with the other two additional algorithms. In the exper-

imental results, the notation CTD, CTK, and CTN respectively

denote the CPU computation times (in seconds) required by

the DANNA, Kernighan-Lin heuristic, and Networkx library

implementation. Similarly, the metrics OVD, OVK, and OVN

quantify the objective function values (as defined in (1)) at-

tained by the respective algorithms at termination.

The computation times and objective values of the

DANNA and the Kernighan-Lin algorithm are listed in Ta-

ble 1 The average ratios of computation times and objective

values of the DANNA to the KL algorithm are computed

and shown in Figure 4. Figure 4 illustrates that DANNA

achieves significantly faster computation times while main-

taining competitive solution quality relative to the KL algo-

rithm. The computation times and objective values of the

DANNA and the Networkx algorithm are listed in Table 2.

The average ratios of computation times and objective values

of the DANNA to the Networkx are computed and shown in

Figure 5. Figure 5 demonstrates the superior scalability of

DANNA, with its performance advantage in both speed and

solution quality becoming more pronounced as graph size

increases.

To further substantiate the robustness and statistical

consistency of the DANNA, we conducted ten independent

runs for each graph instance and present the detailed results

in Table 3. The metrics are reported in the form of mean and

standard deviation. The results in Table 3 clearly demon-

strate that DANNAnot only achieves superior computational

efficiency but also exhibits remarkable stability, as indicated

by the exceptionally low standard deviations in both com-

putation time and objective value across all problem scales.

In contrast, the baseline methods show greater variability in

their performance.

When solving the minimum bisection problem of large-
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scale graphs, the DANNA performs well in both computing

time and solution quality. With escalating problem complex-

ity, the disparity in computational time requirements among

the algorithms becomes increasingly pronounced, while the

solution quality produced by DANNA demonstrates progres-

sive enhancement. These combined factors substantiate its

superior performance in addressing large-scale graph prob-

lems.

Table 1. Comparison between DANNA and KL algorithm.

Computation Time (s) Objective Function

1–5 Nodes DANNA KLAlgorithm DANNA KL algorithm

n = 50 1.151 2.007 340 292

n = 100 1.595 14.883 1317 1172

n = 200 2.557 114.708 5194 4804

n = 300 3.694 401.246 11589 10889

n = 400 4.572 935.659 20586 19446

n = 500 5.841 1909.551 32049 30459

Table 2. Comparison between DANNA and Networkx.

Computation Time (s) Objective Function

1–5 Nodes DANNA Networkx DANNA Networkx

n = 1000 11.486 16.236 127314 122688

n = 1500 18.061 43.189 285398 276956

n = 2000 25.093 74.431 506284 493286

n = 2500 32.39 121.918 790373 772053

n = 3000 40.728 187.817 1136837 1112837

n = 3500 48.605 243.799 1546236 1516081

n = 4000 57.623 369.471 2018186 1981488

n = 4500 66.514 460.983 2553132 2509586

n = 5000 75.931 556.916 3151117 3099542

Figure 4. Ratios of DANNA and KL algorithm in Computation Time and Objective Value.
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Figure 5. Ratios of DANNA and Networkx in Computation Time and Objective Value.

Table 3. Statistical comparison of performance.

Nodes Method Computation Time (s) Objective Value

n = 500 DANNA 5.84± 0.21 32049± 38
KLAlgorithm 1909.55± 125.47 30459± 285

n = 1000 DANNA 11.49± 0.35 127314± 105
Networkx 16.24± 0.82 122688± 650

n = 2000 DANNA 25.09± 0.58 506284± 212
Networkx 74.43± 3.15 493286± 980

n = 5000 DANNA 75.93± 1.24 3151117± 550
Networkx 556.92± 15.67 3099542± 1200

The experimental results, particularly the superior scal-

ability and low variance of DANNA demonstrated in Tables

1 and 2, have direct implications for its practical application

in coal mining. Large-scale mining operations involve com-

plex networks with thousands of components (equipment,

zones, pathways). An algorithm whose computation time

grows moderately with problem size and produces consis-

tent results is essential for integration into real-time decision

support systems. The stability of DANNA ensures reliable

performance under varying conditions, while its speed en-

ables rapid rescheduling and re-partitioning in response to

dynamic operational changes, such as equipment failure or

shifting geological hazards. While a full-scale field deploy-

ment is beyond the scope of this paper, these fundamental

properties establish a strong foundation for future practical

implementation.

The experimental results demonstrate that DANNA

possesses two key properties essential for dynamic envi-

ronments: high computational speed and robust stability

(evidenced by low standard deviations). To qualitatively as-

sess its adaptability, we simulated a dynamic scenario on a

graph with nodes. After obtaining an initial bisection, we

simulated the sudden failure of a critical node (e.g., a key

piece of equipment) by removing it from the graph. DANNA

was then tasked with recomputing a new balanced partition

from a warm-started state. The algorithm converged to a

new feasible solution in only 0.38 seconds, demonstrating its

potential for rapid rescheduling. This capability is crucial for

real-time response to unexpected events in a coal mine, such

as equipment failure or the emergence of new hazard zones.

While this is a single illustrative example, it successfully

demonstrates the principle of rapid rescheduling. A com-

prehensive analysis of dynamic adaptability under various

failure scenarios and at larger scales constitutes an important
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direction for our future research.

5. Conclusions

This study has introduced a Deterministic Annealing

Neural Network (DANNA) designed for optimal resource

allocation in coal mining by solving the minimum bisection

problem. The primary contributions of this work, which es-

tablish a foundation for intelligent decision-support systems

in the industry, are summarized as follows:

1. Theoretical Foundation: We reformulated the NP-hard

minimum bisection problem into a tractable convex

optimization problem with linear constraints. A novel

square-root barrier function was introduced to handle

the binary constraints effectively, and a rigorous global

convergence analysis was provided, guaranteeing that

the algorithm converges to a feasible discrete solution

of the original problem.

2. Methodological Innovation: The proposed DANNA

algorithm uniquely integrates the deterministic anneal-

ing framework with the custom barrier function. This

integration ensures computational stability throughout

the optimization process and enables a controlled an-

nealing schedule that efficiently approximates the opti-

mal solution. The method is distinguished from prior

annealing approaches by its specific design choices

tailored for the mining resource partitioning problem.

3. Experimental Validation and Practical Utility: Through

comprehensive numerical experiments, the algorithm

demonstrated superior performance compared to es-

tablished benchmarks (Kernighan-Lin and Networkx).

Key results include:

– Computational Efficiency: DANNAreduced com-

putation time by an average of over 70% com-

pared to the Kernighan-Lin algorithm on graphs

with 200–500 nodes and was approximately 7

times faster than Networkx on graphs with 5000

nodes.

– Scalability and Robustness: The algorithm exhib-

ited low time complexity and remarkable stability

(evidenced by low standard deviations in repeated

runs), making it suitable for large-scale mining

scenarios.

– Practical Modeling: The novel reformulation of

coal mining challenges—such as safety-hazard

zone isolation and equipment scheduling—into

the minimum bisection framework was detailed,

providing a new, quantitative approach to these

problems.

While this study provides a robust theoretical and com-

putational framework, its validation has been confined to

numerical experiments and simulated case studies. As rightly

pointed out, the final step of onsite engineering verification,

such as correlating safety zoning results with real-time mon-

itoring data (e.g., water gushing), remains an essential future

endeavor. Consequently, our immediate future work will

be directed towards this rigorous field-testing phase to fully

demonstrate the algorithm’s operational efficacy and refine

it based on real-world feedback.
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