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ABSTRACT

Power transformers are exposed to electrical, thermal, and mechanical stresses during operation, leading to the

degradation of insulation and the generation of dissolved gases. Utilities use IEEE and IEC standards use dissolved gas

analysis (DGA) to detect incipient faults in oil-filled in-service transformers. Traditional gas ratio-based DGAmethods, at

times inconclusive diagnoses, limiting their effectiveness in scheduling preventive maintenance. This study presents the

application of a shallow learning Backpropagation Neural Network (BP-NN) for assessing the condition of normal ageing

and classification of incipient faults in oil-immersed power transformers. The model is trained using the concentrations

(ppm) of five key gases—H₂, CH₄, C₂H₂, C₂H₄, and C₂H₆—as input features. The classified condition of a transformer is

normal ageing and five fault type, namely partial discharge, low-energy and high-energy discharges, and thermal faults

across two varying temperature ranges. The data set used for the classification of incipient faults within transformers is that

where the fault type is confirmed by physical inspection. The 256 samples used in this work are from published sources,

including the IEC TC10 database. The results achieved by the BP-NN demonstrate its capability to accurately classify

normal ageing and diagnose five types of faults. For evaluating the performance of the trained NN, the IEEE/IEC method of

classification, the benchmark used is the actual fault type. The shallow network of pattern recognition successfully identified

the presence of normal ageing and the five fault types. The performance of the test set is 94.73%. The results highlight

the potential of BP-NNs for enhanced transformer condition monitoring and early fault detection. As more high-quality
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labelled data become available, the diagnostic accuracy and robustness of the model are expected to improve further.

Keywords: Artificial Neural Networks; Backpropagation; Dissolved Gas Analysis; Power Transformer Diagnostics;

Incipient Fault Detection

1. Introduction

In power transformers, incipient faults typically de-

velop as a result of the gradual degradation of both solid

and liquid dielectric materials. These faults arise due to the

process of pyrolysis, hydrolysis, and oxidation of the insula-

tion system. Incipient faults are generally categorized into

thermal and electrical types. The degradation of dielectric

materials leads to the generation of both combustible and

non-combustible gases. These gases dissolve in the trans-

former’s mineral oil and/or accumulate in the space above the

oil level. If such conditions are not addressed promptly, they

may lead to catastrophic transformer failure and interruption

of the power supply. Common causes of gas generation in-

clude overheating due to overloading, failure of the cooling

system, and electrical discharges such as arcing, corona, or

low-energy sparking. The application of Dissolved GasAnal-

ysis (DGA) for detecting incipient faults in oil-filled power

transformers is a widely adopted diagnostic practice among

power utilities; for which the IEC and IEEE standards are

used irrespective of the transformer rating.

However, DGA techniques often yield conflicting or

inconclusive diagnostic results, which may confuse opera-

tors or lead to an inability to determine the fault type. In

such scenarios, maintenance decisions are typically based

on expert judgment. To address these limitations, the appli-

cation of Artificial Neural Networks (ANNs) for assisting

fault diagnosis has been investigated.

While the IEEE/IEC method provide the highest diag-

nostic accuracy under standard conditions [1] the use of Fuzzy

logic [2–5], Neural networks [6–9], Support vector machines

(SVM) [10–12], Particle swarm optimisation [13], Deep learning

(DL) [14,15] and (Machine learning) [16,17] has demonstrated

potential in overcoming the limitations posed by incomplete

or overlapping gas ratio combinations.

Hybrid models using variousArtificial Intelligence (AI)

techniques have been extensively explored for the interpre-

tation of DGA data; these include Genetic Algorithms [18,19],

SVM [20], and Machine Learning [21]. Studies have addressed

not only offline fault diagnosis but also online condition

monitoring [22,23]. In many cases, AI-based methods have

successfully diagnosed faults where conventional methods

failed to provide accurate classification. ML is being applied

to transformer fault detection, exploring hybrid methods that

combine conventional DGAmethods with advanced models,

and improved fault identification accuracy is achieved. Re-

cently, DL algorithms have been used for fault classification.

However, review of deep learning algorithms does not have

capable capacity for DGA analysis as compared to shallow

learning (SL) algorithms. The performance of deep learning

(DL) algorithms was not significantly improved when com-

pared to the results of shallow learning (SL) algorithms on

the same DGA datasets [24].

Table 1 analyzes some publications to decide upon the

scope of work. There are fewer publications that consider

normal ageing/no fault data. Most publications consider five

gases. The classification is in a maximum of six conditions.

In none of these did the data set used have all samples where

the actual condition/fault type was known through physical

inspection.

In this work, an SL Back propagation neural network

(BP-NN) is employed due to its proven ability to recognize

complex patterns for a small dataset where the classification

pattern problems. The NN model is trained using the con-

centration (in ppm) of five gases: Hydrogen (H₂), Methane

(CH₄), Acetylene (C₂H₂), Ethylene (C₂H₄), Ethane (C₂H₆).

Based on these inputs, the model classifies the condition of

a power transformer into six classes/categories, namely nor-

mal ageing/no fault, partial discharge, low energy discharge,

high energy discharge, thermal fault of temperature < 700

°C, and thermal fault of temperature > 700 °C.

The dataset used consists of 256 fault samples sourced

from the International Electro-technical Commission (IEC)

TC10 database [25], and published literature [9,26–28] with ac-

tual fault known by physical inspection. The diagnostic

performance of the IEEE/IEC method and the developed BP-

NN is benchmarked against the actual fault. The IEEE/IEC
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method is the combination of the respective standards consid-

ering three gas ratios: CH₄/H₂, C₂H₄/C₂H₆, C₂H₂/C₂H₄ [29,30].

It is observed that the conventional IEEE/IEC method, being

a ratio method, has its own limitations.

Table 1. Analysis of gases considered and condition accessed.

Publication Gases Considered Condition Assessed Performance AI Technique

Jin et al. (2024) [15] Five gases

Partial discharge

Discharge of 2 type

Thermal fault of 3 type

accuracy of fault diagnostics 87%.
Convolution Neural Network

(type of DL)

Saroja et al. (2023) [16] Five gases

No fault

Discharge of 2 type

Thermal fault of 2 type

accuracy of fault diagnostics

81.12%

Quantitative descriptive

analysis (QDA) (type of ML)

Wang et al. (2024) [11] Seven gases

Partial discharge

Discharge of 2 type

Thermal fault of 3 type

mean absolute percentage error of

1.81% and the root mean square

error of 0.707 µL/L

decomposition-cuckoo

search-support vector

regression (type of SVM)

Vidal et al. (2023) [19] Five gases

Partial discharge

Discharge of 2 type

Thermal fault of 2 type

accuracy of fault diagnostics

95.18%

Genetic programming (GP)

technique

The implementation of the neural network model has

been carried out using MATLAB R2025b.

This paper is organized as follows:

• Section 2 outlines the prevalent DGAmethodology ap-

plied in this study.

• Section 3 presents the method adopted in this work

• Section 4 presents the architecture of the three-layer BP-

NN, including the training process and the activation

functions used in the hidden layers.

• Section 5 describes the fault classification process using

the trained BP-NN.

• Sections 6 and 7 include the results and discussions, and

conclusions, respectively.

2. Dissolved Gas Analysis

Utilities employ various Dissolved Gas Analysis

(DGA) techniques to assess the operational condition of

power transformers. DGA is a critical diagnostic tool used to

detect incipient faults based on the identification and quan-

tification of gases dissolved in transformer oil, which are

produced due to electrical and thermal stress.

The two most widely accepted DGA standards are:

• IEEE Standard C57.104:2019 [29]

• IEC Standard 60599:2022 [30]

The IEEE standard incorporates three main methods:

• The Key Gas Method

• Gas Ratio Methods (including Dornenburg’s and

Roger’s methods)

• Graphical Methods, such as Duval’s Triangle and Du-

val’s Pentagon

The IEC standard also applies gas ratio methods, using

the following ratios: CH₄/H₂, C₂H₄/C₂H₆, and C₂H₂/C₂H₄.

The graphical methods, particularly Duval’s Triangle

and Pentagon, are visual tools used to classify fault types

based on gas concentrations. However, each of these diag-

nostic techniques has certain limitations. These methods

were primarily developed based on expert experience and

empirical rules, which can lead to diagnostic inconsistencies.

The limitations of the gas ratio methods include:

• Incomplete coverage of all possible ratio combinations

• Overlapping ratio ranges leading to diagnostic ambigu-

ity

The other issues are variability in gas data due to sam-

pling, measurement errors, and storage conditions. As a

result, reliance solely on conventional DGA standards may

result in misdiagnosis or inconclusive results, particularly in

cases involving multiple or evolving fault types.

2.1. IEEE/IEC Method

In the IEEE/IEC method, incipient fault diagnosis is

performed using predefined codes based on the ratios of spe-

cific hydrocarbon gases produced during developing thermal

or electrical conditions within the transformer.

The three primary gas ratios defined in the IEEE/IEC

methodology are:

• R1 = C₂H₂/C₂H₄
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• R2 = CH₄/H₂

• R3 = C₂H₄/C₂H₆

These ratios are interpreted using diagnostic codes,

which are matched against standard reference tables to deter-

mine the fault type.

The range of values for these ratios, along with the

corresponding diagnostic codes, are provided in Table 2 and

the diagnostic interpretation based on these codes is outlined

in Table 3. In this work, BP-NN is applied to overcome the

incompleteness of the ratio combination and invalid ratios.

Table 2. Range of ratio and ratio codes for IEEE/IEC method [6].

Range of Ratio
Ratio Code

R1 R2 R3

<0.1 0 1 0

0.1–1.0 1 0 0

1.0–3.0 1 2 1

>3.0 2 2 2

Table 3. Diagnosis of fault type by IEEE/IEC method [6].

Ratio Code
Fault Type Fault Code

R1 R2 R3

0 0 0 No Fault F0
0* 1 0 Low energy partial discharge

F1
1 1 0 High energy partial discharge

1–2 0 1–2 Low energy discharge F2
1 0 2 High energy discharge F3
0 0 1 Low thermal fault < 150 °C

F4
0 2 0–1 Medium thermal fault 150–700 °C

0 2 2 High thermal fault > 700 °C F5

*: The range is negligibly small.

3. Methodology

To assess the condition of a transformer based on DGA,

data used is from published in literature. These samples are

in the form of ppm level of the gas dissolved in the oil. The

IEC TC10 database, which has 126 samples has been used

for the past two decades as the standard data base for DGA

based diagnosis. In this work the shallow BP-NN is trained

using these 256 samples. The three layered neural network

has five and six neurons in the input and output layer respec-

tively. To decision of the number of neurons in the hidden

layer is based on the general performance. The results of

the for the NN are observed for the maximum output value

across the three neurons and the average of which is taken

as threshold (onset) value. The performance of the BP-NN

results is compared with that of IEEE/IEC ratio method using

the same data base of five input gases. The benchmark of the

evaluation of the diagnosis is the actual fault type. Figure 1

gives the flowchart on which the architecture of this work is

based upon.

Figure 1. Flowchart for the NN architecture.

4. Network Architecture: Multilayer

Backpropagation Neural Network

The multilayer backpropagation neural network (BP-

NN) used in this study consists of three layers: an input layer,
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a hidden layer, and an output layer. For the input layer, a

linear transfer function is used, and for the hidden and output

layers employ a sigmoidal transfer function is used. The

sigmoidal activation function is mathematically defined as:

O =
1

1 + e−λI
(1)

where I is the input to the neuron, λ is the sigmoidal gain,

and O is the output of the neuron. The nonlinear mapping

implemented by the three-layer structure is representing the

input, hidden, and output layers respectively. The neurons in

each layer are denoted by subscripts: I : input layer neurons,

H : hidden layer neurons, and O: output layer neurons.

The input layer’s output; considering linear activation

function is:

{O}I = {I}I
l × 1 l × 1

(2)

There is a synapse that connects hidden and input nod-

ule. The weight of the synapse of the ith input nodule with

jth hidden nodule is vij . The input of hidden nodule is the

weighed addition of the output of the input neurons, the input

to the pth hidden nodule IHp is:

IHp = v1pOI1 + v2pOI2 + . . . . . . . . .+ vIpOIl

(p = 1, 2, 3, . . . ..., s)
(3)

The weight matrix between input and hidden neurons

is:

[ V ]

l × s
(4)

The input to the hidden nodule is:

{I}H = [V ]T {O}I
s× 1 s× l l × 1

(5)

The value of OHp, output of the pth hidden nodule,

OHp is found using sigmoidal activation function, it is:

OHp =
1(

1 + e−λ(IHp−θHp)
) (6)

where θHp is the onset of the p
th hidden nodule.

The hidden nodule output is:

{O}H =



−
−
1(

1 + e−λ(IHp−θHp)
)

−
−


(7)

If each component of the input of the hidden nodule is

treated separately, then the output of the hidden nodule as

given by Equation (7).

IOq is the input to the q
th output nodule, and it is:

[IOq = w1qOH1 + w2qOH2 +
+ . . . . . . . . .+ wsqOHs

(q = 1, 2, 3, . . . . . . , n)
(8)

If the weighed matrix between the hidden and the out-

put neurons is [W ], then output nodule’s input is:

{I}O = [W ]T {O}H
n× 1 n× s s× 1

(9)

Then, OOq is the output of the q
th output nodule, and

it is:

OOq =
1(

1 + e−λ(IOq−θOq)
) (10)

where, θOq is the onset of the q
th nodule. This onset is han-

dled by taking an extra Oth nodule of hidden layer with −1

as output.

The output neurons are:

{O}O =



−
−
1(

1 + e−λ(IOq−θOq)
)

−
−


(11)

The learning algorithms for a neural network is super-

vised.

Network Training

The samples need to distribute the available data into

subsets, namely: training set, cross-validation set, and testing

set. When the data set (Ip, yp) , p = 1, 2, 3, . . . . . . . . . , K

has p patterns; the input Ip ∈ RN , and target yp ∈ R. The

training set has s hidden neurons. The weight of the synapse

vij is from j (input nodule) to i (hidden nodule). The weight

of the synapse to the output node from the hidden node i is

wi. The hidden node activation function f(x) is sigmoidal

function.

For input Ip activation value Aip The hidden neurons

and their projected value are calculated by function ỹp as
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follows:

Aip = f

 N∑
j=i

vijIjp

 = f (gip) (12)

ỹp =

l∑
i=1

wiAip (13)

Where Ijp is the value for the pattern p with input j.

5. Training of BP-NN for Incipient

Fault Diagnosis

A highly non-linear activation function is employed

in this work to enhance the classification capability of the

neural network. Specifically, the sigmoidal function is used

in combination with the gradient descent learning algorithm,

which has proven effective for training backpropagation neu-

ral networks. The learning approach adopted is supervised

learning. To avoid issues such as shallow convergence and

overfitting, the architecture is deliberately kept shallow, con-

sisting of three layers.

5.1. Fault Classification Scheme

The fault types are derived from the IEEE/IECmethods.

However, due to a limited number of samples, certain cate-

gories are merged for condition of transformer classification

by BP-NN:

• The low and high energy partial discharge faults are

combined into a single class.

• The thermal faults at temperatures below 700 °C are

grouped together.

This results in six final output attributes used for train-

ing the BP-NN for assessing the condition of transformer.

The mapping of the no fault and five classes of faults by

the IEEE/IEC method and the target/output attributes for the

BP-NN are given in Table 4.

Table 4. Mapping fault codes to BP-NN classification.

Actual Fault (Code) Fault Type for BP-NN

F0 No Fault normal ageing (NF)

F1 Partial discharge (PD)

F3 Low energy discharge (LED)

F4 High energy discharge (HED)

F5 Medium temperature fault < 150 °C (MTH)

F6 High temperature > 700 °C (HTH)

5.2. Dataset and Pre-Processing

The dataset consists of 256 samples with known fault

classifications, sourced from published literature [6,23–25].

The classification of condition of transformer is initially

done using the IEEE/IEC method and merging similar types

of faults were sufficient samples were not available, and

then mapped to the BP-NN fault categories. The dataset is

divided into training set, validation set and test set manu-

ally; while ensuring the splitting of the data in the proportion

of (0.7:0.15:0.15 and also that there are sufficient samples

of each type of fault in each set, which cannot be achieved

by random splitting of data. 70% data in training set large

enough to capture complexity but still leaves enough data

for evaluation. 15% data in validation set is sufficient to

provide feedback without taking too much away from train-

ing an also ensures that the model adjustment are based on

representative sample. And 15% data in test set statistically

is a meaningful sample size and prevents misleading results

that could occur if the set was smaller [25–28].

This ensured network is trained and validated effec-

tively while maintaining generalization capability. Table 5

provides the detailed mapping of IEEE/IEC fault codes to

BP-NN fault classifications, as well as the distribution of

samples across the training, validation, and test sets.

Table 5. Mapping of fault codes and dataset distribution.

Fault Code (BP-NN) Actual Fault (Code) Total Number of Samples Training Set Validation Set Test Set

NF F0 22 12 5 5

PD F1 18 12 3 3

LED F3 51 37 7 7

HED F4 71 53 9 9

LTH F5 48 36 6 6

MTH F6 46 30 8 8

Total 256 200 38 38

One hidden layer multilayer feedforward network is

trained using five gases are the distinct input attributes. Due

to the number of inputs being limited pruning is not required.

Training is done with the concentration of five gases CH4,
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C2H6, C2H4, C2H2 and H2, as the input attributes and six

conditions as the output attributes.

5.3. Network Architecture Inputs and Output

Attributes

The input layer receives five attributes, representing

the normalised value of the gas concentrations (in ppm) in oil.

The following dissolved gases are used as input attributes:

Hydrogen (H₂), Methane (CH₄), Ethylene (C₂H₄), Ethane

(C₂H₆), Acetylene (C₂H₂). The hidden layer is decided us-

ing sigmoidal activation functions to introduce non-linearity.

The output layer contains six neurons, corresponding to the

normal condition and five types of distinct faults. Table 6

maps output attributes are mapped to the condition of the

transformer.

5.4. BP-NNApplied to DGADatabase and Its

Analysis

Code for DGAwith a neural network suitable for a pat-

tern recognition problem is used is available inAppendix A.

Since the problem is of pattern recognition with low data su-

pervised learning so the training function used is Levenberg-

Marquardt backpropagation. The neural network used was

tested for one to eight neurons in the middle layer. Table

7 gives the percentage error, number of epochs, and perfor-

mance.

Table 6. Mapping condition/fault codes and target/output attributes.

Actual Condition/Fault (Code) Condition/Fault Type for BP-NN Output Attributes

F0 NF 1 0 0 0 0 0 0

F1 PD 0 1 0 0 0 0 0

F3 LED 0 0 1 0 0 0 0

F4 HED 0 0 0 1 0 0 0

F5 MTF 0 0 0 0 1 0 0

F6 HTF 0 0 0 0 0 1 0

Table 7. Error percentage and performance of the middle layer for a three-layer.

Neurons in the Middle Layer 1 2 3 4 5 6 7 8

% Error 0.4375 0.3242 0.2188 0.3359 0.2148 0.3086 0.2266 0.2578

Performance 0.0943 0.0748 0.0585 0.0814 0.0539 0.0906 0.0544 0.0620

Number of epochs 30 43 37 21 51 29 73 139

Best epoch 24 37 31 15 48 23 67 133

Best training performance value 0.0942 0.0748 0.0542 0.0785 0.0443 0.0917 0.0468 0.0593

Best validation performance 0.0904 0.0582 0.0617 0.0865 0.0650 0.0886 0.0545 0.0331

Test performance value 0.0982 0.09111 0.0758 0.0905 0.0884 0.0874 0.0903 0.0835

Evaluation of Table 7: 1–2 neurons: Too few → high

error, weak generalization, 3 neurons: Excellent balance—

low error, strong training, and best test performance, 5

neurons: Very good training fit, but validation/test slightly

weaker than 3 neurons, 6 neurons: Underperforming across

metrics, 7 neurons: Good training, but test performance

drops (possible overfitting), 8 neurons: Outstanding valida-

tion performance, but test performance not as strong as 3

neurons.

Analysing the above for decision on middle layer: The

best overall generalization (lowest test error, strong train-

ing/validation) is achieved by 3 neurons. The best validation

performance, but risk of overfitting (test weaker) is with 8

neurons. The strong training fit, but slightly weaker general-

ization than 3 neurons is with 5 neurons. However, 3 hidden

neurons balances accuracy, performance, and generalization

most effectively.

5.5. Hyper-Parameters for Supervised Learn-

ing (Pattern Recognition)

1. Architecture:

Number of layers → 3

Number of neurons → Input: 5, middle: 6, output: 6

Activation function → sigmoidal

Training function → Levenberg–Marquardt algorithm

2. Training Parameters:

epochs → 1000

goal → performance goal (default 0).

training time → Inf

7
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min_grade → 1.0000 × 10−7

max_fail → 6

mu → 1.0000 × 10−3

mu-dec → 0.1000

mu_inc → 10

mu_max → 1.0000 × 107

3. Performance:

perform_Fnc → mse

derivFnc → default (Jacobian matrices)

The graph’s computational efficiency for the three-layer

BP-NN with three neurons in the middle layer is shown in

Figure 2.

(a) Gradient and the validation checks. (b) Performance Graph.

(c) Receiving Operating Characteristics.

(d) Error Histogram.

Figure 2. The performance of the three-layer BP-NN.
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6. Results

6.1. IEEE/IEC Method

The result of the IEEE/IEC ratio method for all the 256

samples used in this work is appended in Table 8. In the

absence (ppm being 0) of any one or more of three gases

(H2, C2H4 and C2H6) the value of the ration is invalid, in this

dataset there are 28 such samples. Further for 58 samples the

ratio code does not exist and 43 samples were wrongly diag-

nosed. The accuracy of the IEEE > IEC method is 51.56%

for the complete dataset.

6.2. BP-NN Method

The normalised confusion matrix of all date is given in

Figure 3.

Table 8. Results of IEEE/IEC method.

Total Number of

Samples

Correct

Diagnosis
Ratio Undefined

Ratio Range not

Classified
Incorrect Diagnosis % Result

256 132 23 58 43 51.56%

Figure 3. The confusion matrix of the dataset.

It is observed that:

• Of the 22 samples of no fault condition there is incorrect

prediction of 2 samples each to be medium and high

thermal fault.

• Of the 18 samples of partial discharge, there is incorrect

prediction of 2 samples each to be medium and high

thermal fault.

• Of the 51 samples of low energy discharge, there is

incorrect prediction of 5 samples to be high energy dis-

charge, and 2 samples each of partial discharge and high

thermal fault.

• Of the 71 samples of high energy discharge, there is

incorrect prediction of 7 samples to be low energy dis-

charge, and 2 samples to be medium thermal fault and

9
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1 sample to be high thermal fault.

• Of the 48 samples of medium thermal fault there is in-

correct prediction of 9 samples to be normal ageing, and

6 samples to be high thermal fault and 1 sample to be

partial discharge.

• Of the 46 samples of high thermal fault there is incor-

rect prediction of 2 samples to be normal ageing, and 4

samples to be medium thermal fault.

The overall prediction of the dataset is 80.9%.

6.3. Analysis of Test Set

The ppm concentrations of dissolved gases in all sam-

ples of the test set used in Backpropagation Neural Network

(BP-NN) for assessing normal condition and five type of in-

cipient fault classification are available inAppendix B. The

value from the BP-NN corresponding to the output neurons

are given in Table 9. A threshold (onset) value of 0.8137 has

been defined as the minimum output required to indicate the

presence of a fault type.

Table 9. Output of BP-NN for test set.

Sample

No.

Actual

Fault

Output

Neuron 1

Output

Neuron 2

Output

Neuron 3

Output

Neuron 4

Output

Neuron 5

Output

Neuron 6

Fault Type

by BP-NN
Remarks

1. F0 4.01 × 10⁻¹ 3.22 × 10⁻² 1.98 × 10⁻¹ 4.53 × 10⁻² 2.74 × 10⁻¹ 4.99 × 10⁻² NF Correct

2. F0 6.44 × 10⁻¹ 5.27 × 10⁻² 5.1 × 10⁻² 4.36 × 10⁻⁴ 2.49 × 10⁻¹ 2.55 × 10⁻³ NF Correct

3. F0 9.4 × 10⁻¹ 1.44 × 10⁻² 9.02 × 10⁻³ 5.26 × 10⁻⁶ 3.63 × 10⁻² 9.6 × 10⁻⁵ NF Correct

4. F0 4.20 × 10⁻¹ 4.08 × 10⁻² 1.91 × 10⁻¹ 2.36 × 10⁻² 2.93 × 10⁻¹ 3.18 × 10⁻² NF Correct

5. F0 9.24 × 10⁻¹ 1.66 × 10⁻² 9.15 × 10⁻³ 7.91 × 10⁻⁶ 5.01 × 10⁻² 1.43 × 10⁻⁴ NF Correct

6. F1 2.11 × 10⁻⁸ 7.78 × 10⁻¹ 6.40 × 10⁻⁶ 1.43 × 10⁻¹² 2.22 × 10⁻¹ 2.11 × 10⁻¹⁰ PD Correct

7. F1 0.00 × 10⁰ 9.88 × 10⁻¹ 1.17 × 10⁻² 0.00 × 10⁰ 0.00 × 10⁰ 0.00 × 10⁰ PD Correct

8. F1 0.00 × 10⁰ 1.00 × 10⁰ 2 × 10⁻¹⁵ 0.00 × 10⁰ 6.5 × 10⁻⁵ 0.00 × 10⁰ PD Correct

9. F2 1.08 × 10⁻² 6.84 × 10⁻³ 8.40 × 10⁻¹ 1.22 × 10⁻¹ 1.05 × 10⁻² 9.15 × 10⁻³ LED Correct

10. F2 0.00 × 10⁰ 0.00 × 10⁰ 1.00 × 10⁰ 1.34 × 10⁻⁵ 0.00 × 10⁰ 0.00 × 10⁰ LED Correct

11. F2 4.80 × 10⁻¹⁴ 4.77 × 10⁻¹¹ 9.13 × 10⁻¹ 8.65 × 10⁻² 1.00 × 10⁻¹⁴ 1.26 × 10⁻⁹ LED Correct

12. F2 0.00 × 10⁰ 0.00 × 10⁰ 1.00 × 10⁰ 1.98 × 10⁻⁷ 0.00 × 10⁰ 0.00 × 10⁰ LED Correct

13. F2 2.62 × 10⁻² 6.52 × 10⁻³ 8.52 × 10⁻¹ 9.54 × 10⁻² 1.02 × 10⁻² 9.41 × 10⁻³ LED Correct

14. F2 0.00 × 10⁰ 0.00 × 10⁰ 1.00 × 10⁰ 3.28 × 10⁻⁵ 0.00 × 10⁰ 0.00 × 10⁰ LED Correct

15. F2 7.02 × 10⁻⁵ 2.34 × 10⁻⁴ 9.71 × 10⁻¹ 2.81 × 10⁻² 3.51 × 10⁻⁵ 1.28 × 10⁻⁴ LED Correct

16. F3 9.83 × 10⁻⁸ 1.90 × 10⁻⁶ 7.57 × 10⁻¹ 2.43 × 10⁻¹ 9.08 × 10⁻⁸ 1.99 × 10⁻⁵ LED, HED Correct

17. F3 0.00 × 10⁰0 0.00 × 10⁰ 3.01 × 10⁻⁹ 1.00 × 10⁰ 0.00 × 10⁰ 0.00 × 10⁰ HED Correct

18. F3 6.00 × 10⁻¹⁴ 1.20 × 10⁻¹¹ 1.87 × 10⁻² 9.81 × 10⁻¹ 1.12 × 10⁻¹³ 6.55 × 10⁻⁸ HED Correct

19. F3 0.00 × 10⁰ 0.00 × 10⁰ 4.54 × 10⁻⁹ 1.00 × 10⁰ 3 × 10⁻¹⁵ 4.36 × 10⁻⁸ HED Correct

20. F3 0.00 × 10⁰ 0.00 × 10⁰ 9.65 × 10⁻¹¹ 1.00 × 10⁰ 0.00 × 10⁰ 0.00 × 10⁰ HED Correct

21. F3 0.00 × 10⁰ 0.00 × 10⁰ 0.00 × 10⁰ 1.00 × 10⁰ 0.00 × 10⁰ 2.32 × 10⁻¹³ HED Correct

22. F3 6.47 × 10⁻⁶ 2.91 × 10⁻⁶ 1.02 × 10⁻¹ 8.97 × 10⁻¹ 2.56 × 10⁻⁶ 8.83 × 10⁻⁴ HED Correct

23. F3 0.00 × 10⁰ 0.00 × 10⁰ 9.61 × 10⁻⁴ 9.99 × 10⁻¹ 0.00 × 10⁰ 0.00 × 10⁰ HED Correct

24. F3 0.00 × 10⁰ 0.00 × 10⁰ 1.99 × 10⁻⁶ 1.00 × 10⁰ 0.00 × 10⁰ 0.00 × 10⁰ HED Correct

25. F4 0.00 × 10⁰ 2.10 × 10⁻² 0.00 × 10⁰ 0.00 × 10⁰ 9.79 × 10⁻¹ 0.00 × 10⁰ MTH Correct

26. F4 2.65 × 10⁻¹ 5.45 × 10⁻² 2.14 × 10⁻¹ 3.14 × 10⁻² 3.98 × 10⁻¹ 3.72 × 10⁻² MTH,NF Correct

27. F4 3.00 × 10⁻¹ 5.34 × 10⁻² 2.13 × 10⁻¹ 2.68 × 10⁻² 3.73 × 10⁻¹ 3.35 × 10⁻² MTH,NF Correct

28. F4 2.51 × 10⁻³ 1.83 × 10⁻⁴ 4.77 × 10⁻⁶ 1.76 × 10⁻² 6.82 × 10⁻¹ 2.98 × 10⁻¹ MTH,HTH Correct

29. F4 1.55 × 10⁻¹³ 0.00 × 10⁰ 0.00 × 10⁰ 2.87 × 10⁻⁶ 7.36 × 10⁻⁵ 1.00 × 10⁰ HTH Correct

30. F4 8.62 × 10⁻¹ 2.88 × 10⁻² 6.95 × 10⁻³ 5.1 × 10⁻⁶ 1.02 × 10⁻¹ 1.39 × 10⁻⁴ NF Incorrect

31. F5 3.15 × 10⁻³ 6.28 × 10⁻⁶ 8.26 × 10⁻⁷ 7.35 × 10⁻² 7.9 × 10⁻² 8.44 × 10⁻¹ HTH Correct

32. F5 5.69 × 10⁻³ 2.78 × 10⁻⁵ 3.08 × 10⁻⁶ 6.45 × 10⁻² 1.81 × 10⁻¹ 7.49 × 10⁻¹ HTH Correct

33. F5 7.26 × 10⁻² 4.44 × 10⁻³ 9.93 × 10⁻³ 2.23 × 10⁻¹ 3.72 × 10⁻¹ 3.18 × 10⁻¹ MTH,HTH Incorrect

34. F5 1.00 × 10⁻¹⁵ 0.00 × 10⁰ 0.00 × 10⁰ 1.68 × 10⁻⁷ 7.78 × 10⁻² 9.22 × 10⁻¹ HTH Correct

35. F5 0.00 × 10⁰ 0.00 × 10⁰ 0.00 × 10⁰ 9.75 × 10⁻² 0.00 × 10⁰ 9.02 × 10⁻¹ HTH Correct

36. F5 1.00 × 10⁻¹⁵ 0.00 × 10⁰ 0.00 × 10⁰ 1.68 × 10⁻⁷ 7.78 × 10⁻² 9.22 × 10⁻¹ HTH Correct

37. F5 0.00 × 10⁰ 0.00 × 10⁰ 0.00 × 10⁰ 7.4 × 10⁻³ 0.00 × 10⁰ 9.93 × 10⁻¹ HTH Correct

38. F5 0.00 × 10⁰ 0.00 × 10⁰ 0.00 × 10⁰ 9.75 × 10⁻² 0.00 × 10⁰ 9.02 × 10⁻¹ HTH Correct

Note:

The results in bold indicate that the output coincides with the actual condition/fault.

The results in italics indicate that there are two outputs where the onset value is high; however, the higher value coincides with the actual condition/fault.

The results in underlined do not coincide with the actual fault.

In the test set:

• 28 samples showed onset values exceeding the thresh-

old.

• For 8 samples of the remaining 10 samples the higher

value coincided with the actual fault.

• Samples no. 30 the actual fault is medium thermal fault,
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while the BP-NN outputs exceeded the threshold for no

fault/normal ageing.

• Samples no. 33 the actual fault is high thermal fault,

while the BP-NN outputs exceeded the threshold for

none, however the order of fault indicated is medium

thermal and high thermal in that order.

The diagnostic accuracy of the BP-NN on the test set

is calculated to be 94.73%. These discrepancies suggest that

the performance of the BP-NN could be further improved

with the inclusion of more samples for normal ageing, and

partial discharge and thermal fault in the dataset.

6.4. Discussion

The interpretation of the classification errors: it is found

that for NF condition had the weakest performance (58.1%).

There is heavy misclassification into HTF (9 cases) and some

leakage into HED&MTF. Suggests NF features overlap with

MTF and HTF. This feature that overlaps is absence or traces

of C2H2 during normal ageing and thermal faults. The accu-

racy of PD very good (>90%), the model distinguishes these

fault types clearly. The accuracy of LED very good (>90%),

this can be attributed that there are more number of samples

of HED in the dataset. The accuracy of HED is good (85.7%)

there is misclassification with LED, this is on account of the

gasses being released during electrical discharge being same.

The thermal faults MTF and HTF have moderate accuracy

(~73–78%). These are thermal faults the gases associated

with MTF are CH4, C2H6 and C2H4 so classification will be

an issue as there is fuzziness in the boundary. The HTF is

associated with C2H2.

The limitation of this method is that the normal aging

and five type of faults are attempted simultaneously. Even

the international standards (IEEE and IEC) DGAmethods

other than Rogers ratio method consider normal ageing along

with fault diagnostics of power transformer. Table 9 illus-

trates the Output of BP-NN for test results.

7. Conclusion

The developed Backpropagation Neural Network (BP-

NN) demonstrates promising performance in the classifica-

tion of incipient faults in power transformers using DGAdata.

Unlike conventional IEEE/IEC ratio methods, the BP-NN-

based diagnostic model exhibits the capability to overcome

the limitations of the ratio being undefined due to no trace of

C₂H₄ and/or H₂ and/or C₂H₆. Also, the issue of the range of ra-

tios is eliminated. Offer improved fault identification where

conventional methods may be ambiguous or inconclusive.

Furthermore, the BP-NN is trained with data representing

normal operating conditions, hence it can be extended for

use in online condition monitoring of transformers. As more

high-quality labelled data—especially for partial discharge

and thermal faults—becomes available, the diagnostic ac-

curacy and robustness of the ANN model are expected to

improve further. Also, if data of multiple faults is available,

then it could be used in scenarios involving overlapping fault

signatures or complex fault conditions.
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Appendix A. Code for BP-NN

% Solve a Dissolved gas analysis problem with Neural

Pattern Recognition

x = inp;

t = out;

% Training Function

trainFcn = ‘trainlm’;

% Create Network with one hidden layer

hiddenLayerSize = 6;

net = patternnet(hiddenLayerSize, trainFcn);

% Setup Division of Data for Training, Validation,Test-

ing

N = 256;

trainInd = 1: round(0.7 * N);

valInd = round(0.7 * N) + 1: round(0.85 * N);

testInd = round(0.85 * N) + 1: N;

%Apply to your data

X_train = x(:, trainInd);

T_train = t(:, trainInd);

X_val = x(:, valInd);

T_val = t(:, valInd);

X_test = x(:, testInd);

T_test = t(:, testInd);

% Train the Network

[net,tr] = train(net,x,t);

% Test the Network

y = net(x);

e = gsubtract(t,y);

performance = perform(net,t,y);

tind = vec2ind(t);

yind = vec2ind(y);

percentErrors = sum(tind ~= yind)/numel(tind);

Appendix B

Table A1. DGA data of samples used in test set.

Sample

No.

Dissolved Gas Data (ppm) Actual Fault

(Code)

Sample

No.

Dissolved Gas Data (ppm) Actual Fault

(Code)H2 CH4 C2H2 C2H4 C2H6 H2 CH4 C2H2 C2H4 C2H6

1 0 6 0 4 3 F0 20 2770 660 763 712 54 F3

2 30 32 0 3 63 F0 21 3090 5020 2540 3800 323 F3

3 11.82 3.12 1.98 0.67 120.8 F0 22 120 31 94 66 0 F3

4 14.7 11.275 0.2 2.7 10.5 F0 23 5900 1500 2300 1200 68 F3

5 21.54 3.8 0 0.98 113 F0 24 13,500 6110 4040 4510 212 F3

6 2240 168 0 0 25 F1 25 0 18900 330 540 410 F4

7 92,600 10,200 0 0 0 F1 26 55 22 0 2.6 0.5 F4

8 36,036 619 0 233 58 F1 27 86 8 0 2.5 2.5 F4

9 131 32 38.7 18.8 7.3 F2 28 130 140 0 120 24 F4

10 4230 690 1180 196 5 F2 29 111 559 0 707 243 F4

11 595 80 244 89 9 F2 30 14 44 1 7 124 F4

12 41 112 4536 254 0 F2 31 15.9 55.98 0.21 137.25 22.33 F5

13 60 5 29 6 1 F2 32 21 75 0 126 24 F5

14 890 110 700 84 3 F2 33 150 22 11 60 9 F5

15 253 21.5 72.4 16.1 5.9 F2 34 290 1260 8 820 231 F5

16 390 62.6 133.6 65.3 12.8 F3 35 740 2227 42 4258 567 F5

17 1570 1110 1830 1780 175 F3 36 290 1260 8 820 231 F5

18 545 130 239 153 16 F3 37 860 1670 40 2050 30 F5

19 1500 395 323 395 28 F3 38 740 2227 42 4258 567 F5
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