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ABSTRACT

Power transformers are exposed to electrical, thermal, and mechanical stresses during operation, leading to the
degradation of insulation and the generation of dissolved gases. Utilities use IEEE and IEC standards use dissolved gas
analysis (DGA) to detect incipient faults in oil-filled in-service transformers. Traditional gas ratio-based DGA methods, at
times inconclusive diagnoses, limiting their effectiveness in scheduling preventive maintenance. This study presents the
application of a shallow learning Backpropagation Neural Network (BP-NN) for assessing the condition of normal ageing
and classification of incipient faults in oil-immersed power transformers. The model is trained using the concentrations
(ppm) of five key gases—Hz, CHa, C2Hz, C2H4, and C.Hes—as input features. The classified condition of a transformer is
normal ageing and five fault type, namely partial discharge, low-energy and high-energy discharges, and thermal faults
across two varying temperature ranges. The data set used for the classification of incipient faults within transformers is that
where the fault type is confirmed by physical inspection. The 256 samples used in this work are from published sources,
including the IEC TC10 database. The results achieved by the BP-NN demonstrate its capability to accurately classify
normal ageing and diagnose five types of faults. For evaluating the performance of the trained NN, the IEEE/IEC method of
classification, the benchmark used is the actual fault type. The shallow network of pattern recognition successfully identified
the presence of normal ageing and the five fault types. The performance of the test set is 94.73%. The results highlight
the potential of BP-NNs for enhanced transformer condition monitoring and early fault detection. As more high-quality
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labelled data become available, the diagnostic accuracy and robustness of the model are expected to improve further.

Keywords: Artificial Neural Networks; Backpropagation; Dissolved Gas Analysis; Power Transformer Diagnostics;

Incipient Fault Detection

1. Introduction

In power transformers, incipient faults typically de-
velop as a result of the gradual degradation of both solid
and liquid dielectric materials. These faults arise due to the
process of pyrolysis, hydrolysis, and oxidation of the insula-
tion system. Incipient faults are generally categorized into
thermal and electrical types. The degradation of dielectric
materials leads to the generation of both combustible and
non-combustible gases. These gases dissolve in the trans-
former’s mineral oil and/or accumulate in the space above the
oil level. If such conditions are not addressed promptly, they
may lead to catastrophic transformer failure and interruption
of the power supply. Common causes of gas generation in-
clude overheating due to overloading, failure of the cooling
system, and electrical discharges such as arcing, corona, or
low-energy sparking. The application of Dissolved Gas Anal-
ysis (DGA) for detecting incipient faults in oil-filled power
transformers is a widely adopted diagnostic practice among
power utilities; for which the IEC and IEEE standards are
used irrespective of the transformer rating.

However, DGA techniques often yield conflicting or
inconclusive diagnostic results, which may confuse opera-
tors or lead to an inability to determine the fault type. In
such scenarios, maintenance decisions are typically based
on expert judgment. To address these limitations, the appli-
cation of Artificial Neural Networks (ANNs) for assisting
fault diagnosis has been investigated.

While the IEEE/IEC method provide the highest diag-
nostic accuracy under standard conditions!!! the use of Fuzzy
logic?7], Neural networks[®1, Support vector machines
(SVM) 10121 Particle swarm optimisation!'3], Deep learning
(DL)!'*151 and (Machine learning)['®!”! has demonstrated
potential in overcoming the limitations posed by incomplete
or overlapping gas ratio combinations.

Hybrid models using various Artificial Intelligence (AI)
techniques have been extensively explored for the interpre-
tation of DGA data; these include Genetic Algorithms['8:19],
SVM 201 and Machine Learning[?!1. Studies have addressed

not only offline fault diagnosis but also online condition

monitoring [?>23,

In many cases, Al-based methods have
successfully diagnosed faults where conventional methods
failed to provide accurate classification. ML is being applied
to transformer fault detection, exploring hybrid methods that
combine conventional DGA methods with advanced models,
and improved fault identification accuracy is achieved. Re-
cently, DL algorithms have been used for fault classification.
However, review of deep learning algorithms does not have
capable capacity for DGA analysis as compared to shallow
learning (SL) algorithms. The performance of deep learning
(DL) algorithms was not significantly improved when com-
pared to the results of shallow learning (SL) algorithms on
the same DGA datasets 24,

Table 1 analyzes some publications to decide upon the
scope of work. There are fewer publications that consider
normal ageing/no fault data. Most publications consider five
gases. The classification is in a maximum of six conditions.
In none of these did the data set used have all samples where
the actual condition/fault type was known through physical
inspection.

In this work, an SL Back propagation neural network
(BP-NN) is employed due to its proven ability to recognize
complex patterns for a small dataset where the classification
pattern problems. The NN model is trained using the con-
centration (in ppm) of five gases: Hydrogen (H:), Methane
(CHa), Acetylene (C:H2), Ethylene (C-Ha4), Ethane (C2Hs).
Based on these inputs, the model classifies the condition of
a power transformer into six classes/categories, namely nor-
mal ageing/no fault, partial discharge, low energy discharge,
high energy discharge, thermal fault of temperature < 700
°C, and thermal fault of temperature > 700 °C.

The dataset used consists of 256 fault samples sourced
from the International Electro-technical Commission (IEC)
TC10 database[?], and published literature 26281 with ac-
tual fault known by physical inspection. The diagnostic
performance of the IEEE/IEC method and the developed BP-
NN is benchmarked against the actual fault. The IEEE/IEC
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method is the combination of the respective standards consid-
ering three gas ratios: CHa/H2, C2Ha/C2Hs, C2H2/C2Ha 29,301

It is observed that the conventional IEEE/IEC method, being

a ratio method, has its own limitations.

Table 1. Analysis of gases considered and condition accessed.

Publication Gases Considered Condition Assessed

Performance Al Technique

Partial discharge

Convolution Neural Network

. [1s] . . . . o
Jin et al. (2024) Five gases Discharge of 2 type accuracy of fault diagnostics 87%. (type of DL)

Thermal fault of 3 type

No fault . . s .
Saroja et al. (2023)116]  Five gases Discharge of 2 type accuracy of fault diagnostics Quantitative descriptive

Thermal fault of 2 type

81.12% analysis (QDA) (type of ML)

Partial discharge
Discharge of 2 type
Thermal fault of 3 type

Wang et al. (2024)[11]  Seven gases

mean absolute percentage error of
1.81% and the root mean square
error of 0.707 pL/L

decomposition-cuckoo
search-support vector
regression (type of SVM)

Partial discharge
Discharge of 2 type
Thermal fault of 2 type

Vidal et al. (2023)[19] Five gases

accuracy of fault diagnostics
95.18%

Genetic programming (GP)
technique

The implementation of the neural network model has
been carried out using MATLAB R2025b.

This paper is organized as follows:

*  Section 2 outlines the prevalent DGA methodology ap-
plied in this study.

*  Section 3 presents the method adopted in this work

*  Section 4 presents the architecture of the three-layer BP-
NN, including the training process and the activation
functions used in the hidden layers.

*  Section 5 describes the fault classification process using
the trained BP-NN.

e Sections 6 and 7 include the results and discussions, and

conclusions, respectively.

2. Dissolved Gas Analysis

Utilities employ various Dissolved Gas Analysis
(DGA) techniques to assess the operational condition of
power transformers. DGA is a critical diagnostic tool used to
detect incipient faults based on the identification and quan-
tification of gases dissolved in transformer oil, which are
produced due to electrical and thermal stress.

The two most widely accepted DGA standards are:

IEEE Standard C57.104:2019(2%)
+  IEC Standard 60599:2022 3]

The IEEE standard incorporates three main methods:

*  The Key Gas Method
* Gas Ratio Methods (including Dornenburg’s and
Roger’s methods)

*  Graphical Methods, such as Duval’s Triangle and Du-
val’s Pentagon

The IEC standard also applies gas ratio methods, using
the following ratios: CHa/H2, C2Ha/C2Hs, and C2H2/C2Ha.

The graphical methods, particularly Duval’s Triangle
and Pentagon, are visual tools used to classify fault types
based on gas concentrations. However, each of these diag-
nostic techniques has certain limitations. These methods
were primarily developed based on expert experience and
empirical rules, which can lead to diagnostic inconsistencies.

The limitations of the gas ratio methods include:

*  Incomplete coverage of all possible ratio combinations
*  Overlapping ratio ranges leading to diagnostic ambigu-
ity
The other issues are variability in gas data due to sam-
pling, measurement errors, and storage conditions. As a
result, reliance solely on conventional DGA standards may
result in misdiagnosis or inconclusive results, particularly in

cases involving multiple or evolving fault types.

2.1. IEEE/IEC Method

In the IEEE/IEC method, incipient fault diagnosis is
performed using predefined codes based on the ratios of spe-
cific hydrocarbon gases produced during developing thermal
or electrical conditions within the transformer.

The three primary gas ratios defined in the IEEE/IEC

methodology are:

. R1 = C:H»/C:H4
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° R2 = CH4/H:
* R3 = C;H4/C2Hse
These ratios are interpreted using diagnostic codes,

which are matched against standard reference tables to deter-
mine the fault type.

The range of values for these ratios, along with the
corresponding diagnostic codes, are provided in Table 2 and
the diagnostic interpretation based on these codes is outlined
in Table 3. In this work, BP-NN is applied to overcome the

incompleteness of the ratio combination and invalid ratios.

Table 2. Range of ratio and ratio codes for IEEE/IEC method!®’.

. Ratio Code
Range of Ratio R1 R2 R3
<0.1 0 1 0
0.1-1.0 1 0 0
1.0-3.0 1 2 1
>3.0 2 2 2
Table 3. Diagnosis of fault type by IEEE/IEC method'®’.
Ratio Code
RI R2 R3 Fault Type Fault Code
0 0 0 No Fault Fo
0* 1 0 Low energy partial discharge F
1 1 0 High energy partial discharge !
1-2 0 1-2 Low energy discharge F
1 0 2 High energy discharge F3
0 0 1 Low thermal fault <150 °C F
0 2 0-1 Medium thermal fault 150-700 °C ¢
0 2 2 High thermal fault > 700 °C Fs

*: The range is negligibly small.

3. Methodology

To assess the condition of a transformer based on DGA,
data used is from published in literature. These samples are
in the form of ppm level of the gas dissolved in the oil. The
IEC TC10 database, which has 126 samples has been used
for the past two decades as the standard data base for DGA
based diagnosis. In this work the shallow BP-NN is trained
using these 256 samples. The three layered neural network
has five and six neurons in the input and output layer respec-
tively. To decision of the number of neurons in the hidden
layer is based on the general performance. The results of
the for the NN are observed for the maximum output value
across the three neurons and the average of which is taken
as threshold (onset) value. The performance of the BP-NN
results is compared with that of IEEE/IEC ratio method using
the same data base of five input gases. The benchmark of the
evaluation of the diagnosis is the actual fault type. Figure 1
gives the flowchart on which the architecture of this work is

based upon.

DGA Data
with actual condition known

Split data set into training validation andtest set (0.7:0.15:0.15)

Classification of
condition/faults

NN Architecture

Input layer

Output layer
Decide the middle layer neurons
(1to8)

Performance evaluation

neurons: 3

Figure 1. Flowchart for the NN architecture.

4. Network Architecture: Multilayer
Backpropagation Neural Network

The multilayer backpropagation neural network (BP-
NN) used in this study consists of three layers: an input layer,
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a hidden layer, and an output layer. For the input layer, a
linear transfer function is used, and for the hidden and output
layers employ a sigmoidal transfer function is used. The
sigmoidal activation function is mathematically defined as:

1

0=——_
1+e M

)

where [ is the input to the neuron, X is the sigmoidal gain,
and O is the output of the neuron. The nonlinear mapping
implemented by the three-layer structure is representing the
input, hidden, and output layers respectively. The neurons in
each layer are denoted by subscripts: /: input layer neurons,
H: hidden layer neurons, and O: output layer neurons.

The input layer’s output; considering linear activation

function is:
{O} 1= {I }I 2
2
Ix1 Ix1
There is a synapse that connects hidden and input nod-
ule. The weight of the synapse of the i*" input nodule with
4" hidden nodule is v;;. The input of hidden nodule is the
weighed addition of the output of the input neurons, the input

to the p'" hidden nodule g, is:

Tap = 11001 +v2,012 +
(p=1,23,......5)

The weight matrix between input and hidden neurons

is:

v
Ixs
The input to the hidden nodule is:
sx1 sxl Ix1

The value of Opp, output of the pt* hidden nodule,
O, is found using sigmoidal activation function, it is:

1

Orp = (1 + e—/\(IH,,—er)) ©)
where 6, is the onset of the pt" hidden nodule.
The hidden nodule output is:
1
{0} H— (7

(1 + e—/\(IHp—9Hp))

If each component of the input of the hidden nodule is
treated separately, then the output of the hidden nodule as
given by Equation (7).

Ipq is the input to the ¢ output nodule, and it is:

Hog = w1401 + w2qOpa +

+ . +wquHs ®)

If the weighed matrix between the hidden and the out-

put neurons is [WW], then output nodule’s input is:

{I}o =MW"

nx1

{O}y
sx1

)

nxs

Then, Op, is the output of the ¢*" output nodule, and
itis:
1
(1 -+ e*)‘(IOq*OOq))

(10)

Ooq =

where, 0o, is the onset of the ¢"" nodule. This onset is han-
dled by taking an extra O™ nodule of hidden layer with —1
as output.

The output neurons are:

1
(1 + e~ Uoa—toa)

{0}o = (11)

The learning algorithms for a neural network is super-

vised.

Network Training

The samples need to distribute the available data into
subsets, namely: training set, cross-validation set, and testing
set. When the data set (I,,,v,), p =1, 2, 3,
has p patterns; the input 7, € RY, and targety, € R. The
training set has s hidden neurons. The weight of the synapse
v;; 1s from j (input nodule) to 7 (hidden nodule). The weight
of the synapse to the output node from the hidden node ¢ is
w;. The hidden node activation function f(z) is sigmoidal
function.

For input I,, activation value A;, The hidden neurons

and their projected value are calculated by function ¥, as
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follows:

f (gip) (12)

N
Aip = F | D visLip
Jj=1

l
Up= > _ widip (13)
i=1

Where I}, is the value for the pattern p with input j.

5. Training of BP-NN for Incipient
Fault Diagnosis

A highly non-linear activation function is employed
in this work to enhance the classification capability of the
neural network. Specifically, the sigmoidal function is used
in combination with the gradient descent learning algorithm,
which has proven effective for training backpropagation neu-
ral networks. The learning approach adopted is supervised
learning. To avoid issues such as shallow convergence and
overfitting, the architecture is deliberately kept shallow, con-
sisting of three layers.

5.1. Fault Classification Scheme

The fault types are derived from the IEEE/IEC methods.
However, due to a limited number of samples, certain cate-
gories are merged for condition of transformer classification
by BP-NN:

*  The low and high energy partial discharge faults are
combined into a single class.

*  The thermal faults at temperatures below 700 °C are
grouped together.

This results in six final output attributes used for train-
ing the BP-NN for assessing the condition of transformer.

The mapping of the no fault and five classes of faults by

the IEEE/IEC method and the target/output attributes for the
BP-NN are given in Table 4.

Table 4. Mapping fault codes to BP-NN classification.

Actual Fault (Code) Fault Type for BP-NN

Fo No Fault normal ageing (NF)

Fy Partial discharge (PD)

F3 Low energy discharge (LED)

F4 High energy discharge (HED)

Fs Medium temperature fault < 150 °C (MTH)
Fs High temperature > 700 °C (HTH)

5.2. Dataset and Pre-Processing

The dataset consists of 256 samples with known fault
classifications, sourced from published literature[623-2%],
The classification of condition of transformer is initially
done using the IEEE/IEC method and merging similar types
of faults were sufficient samples were not available, and
then mapped to the BP-NN fault categories. The dataset is
divided into training set, validation set and test set manu-
ally; while ensuring the splitting of the data in the proportion
of (0.7:0.15:0.15 and also that there are sufficient samples
of each type of fault in each set, which cannot be achieved
by random splitting of data. 70% data in training set large
enough to capture complexity but still leaves enough data
for evaluation. 15% data in validation set is sufficient to
provide feedback without taking too much away from train-
ing an also ensures that the model adjustment are based on
representative sample. And 15% data in test set statistically
is a meaningful sample size and prevents misleading results
that could occur if the set was smaller2>-281,

This ensured network is trained and validated effec-
tively while maintaining generalization capability. Table 5
provides the detailed mapping of IEEE/IEC fault codes to
BP-NN fault classifications, as well as the distribution of

samples across the training, validation, and test sets.

Table 5. Mapping of fault codes and dataset distribution.

Fault Code (BP-NN) Actual Fault (Code) Total Number of Samples Training Set Validation Set Test Set

NF Fo 22 12 5 5

PD Fy 18 12 3 3

LED F;3 51 37 7 7

HED F4 71 53 9 9

LTH Fs 48 36 6 6

MTH F¢ 46 30 8 8

Total 256 200 38 38

One hidden layer multilayer feedforward network is

trained using five gases are the distinct input attributes. Due

to the number of inputs being limited pruning is not required.

Training is done with the concentration of five gases CHy,
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C,Hg, CoH4, CoH; and H», as the input attributes and six
conditions as the output attributes.

5.3. Network Architecture Inputs and Output
Attributes

The input layer receives five attributes, representing
the normalised value of the gas concentrations (in ppm) in oil.
The following dissolved gases are used as input attributes:
Hydrogen (H:), Methane (CHa4), Ethylene (C:Ha), Ethane
(C:2He), Acetylene (C:Hz). The hidden layer is decided us-
ing sigmoidal activation functions to introduce non-linearity.
The output layer contains six neurons, corresponding to the

normal condition and five types of distinct faults. Table 6

maps output attributes are mapped to the condition of the

transformer.

5.4. BP-NN Applied to DGA Database and Its
Analysis

Code for DGA with a neural network suitable for a pat-
tern recognition problem is used is available in Appendix A.
Since the problem is of pattern recognition with low data su-
pervised learning so the training function used is Levenberg-
Marquardt backpropagation. The neural network used was
tested for one to eight neurons in the middle layer. Table
7 gives the percentage error, number of epochs, and perfor-

mance.

Table 6. Mapping condition/fault codes and target/output attributes.

Actual Condition/Fault (Code) Condition/Fault Type for BP-NN Output Attributes
Fo NF 1 0 0 0 0 0 0
Fy PD 0 1 0 0 0 0 0
F3 LED 0 0 1 0 0 0 0
Fy HED 0 0 0 1 0 0 0
Fs MTF 0 0 0 0 1 0 0
Fe HTF 0 0 0 0 0 1 0
Table 7. Error percentage and performance of the middle layer for a three-layer.

Neurons in the Middle Layer 1 2 3 4 5 6 7 8

% Error 0.4375 0.3242 0.2188 0.3359 0.2148 0.3086 0.2266 0.2578

Performance 0.0943 0.0748 0.0585 0.0814 0.0539 0.0906 0.0544 0.0620

Number of epochs 30 43 37 21 51 29 73 139

Best epoch 24 37 31 15 48 23 67 133

Best training performance value 0.0942 0.0748 0.0542 0.0785 0.0443 0.0917 0.0468 0.0593

Best validation performance 0.0904 0.0582 0.0617 0.0865 0.0650 0.0886 0.0545 0.0331

Test performance value 0.0982 0.09111 0.0758 0.0905 0.0884 0.0874 0.0903 0.0835

Evaluation of Table 7: 1-2 neurons: Too few — high
error, weak generalization, 3 neurons: Excellent balance—
low error, strong training, and best test performance, 5
neurons: Very good training fit, but validation/test slightly
weaker than 3 neurons, 6 neurons: Underperforming across
metrics, 7 neurons: Good training, but test performance
drops (possible overfitting), 8 neurons: Outstanding valida-
tion performance, but test performance not as strong as 3
neurons.

Analysing the above for decision on middle layer: The
best overall generalization (lowest test error, strong train-
ing/validation) is achieved by 3 neurons. The best validation
performance, but risk of overfitting (test weaker) is with 8
neurons. The strong training fit, but slightly weaker general-

ization than 3 neurons is with 5 neurons. However, 3 hidden

neurons balances accuracy, performance, and generalization

most effectively.

5.5. Hyper-Parameters for Supervised Learn-
ing (Pattern Recognition)

1.  Architecture:

Number of layers — 3
Number of neurons — Input: 5, middle: 6, output: 6
Activation function — sigmoidal

Training function — Levenberg—Marquardt algorithm
2. Training Parameters:

epochs — 1000
goal — performance goal (default 0).

training time — Inf
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min_grade — 1.0000 x 1077
max_fail — 6

mu — 1.0000 x 1073
mu-dec — 0.1000

mu_inc — 10

mu_max — 1.0000 x 107

Gradient = 0.010038, at epoch 45

10° T

Performance:
perform_Fnc — mse

derivFnc — default (Jacobian matrices)

The graph’s computational efficiency for the three-layer

BP-NN with three neurons in the middle layer is shown in

Figure 2.

Best Validation Performance is 0.042032 at epoch 39
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Figure 2. The performance of the three-layer BP-NN.
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6. Results
6.1. IEEE/IEC Method

The result of the IEEE/IEC ratio method for all the 256
samples used in this work is appended in Table 8. In the
absence (ppm being 0) of any one or more of three gases
(H,, C;H4 and C,Hg) the value of the ration is invalid, in this
dataset there are 28 such samples. Further for 58 samples the

ratio code does not exist and 43 samples were wrongly diag-
nosed. The accuracy of the IEEE > IEC method is 51.56%

for the complete dataset.

6.2. BP-NN Method

The normalised confusion matrix of all date is given in

Figure 3.

Table 8. Results of IEEE/IEC method.

Total Number of (.Iorrect. Ratio Undefined Ratio Ra'nge not Incorrect Diagnosis % Result
Samples Diagnosis Classified
256 132 23 58 43 51.56%

Training Confusion Matrix
15/ 0] 2[00 5] 1]652%
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0.0%]0.0%] 7.2%2.8%]0.0%0.0%| 13.9%

0|0 |1 47| 0| 0 97.9%
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2|0 01 5 | 26 | 75.8%
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0|1 (0| 0| 0| 0 |00.0%
0.0%|2.6%|0.0%0.0%/0.0%0.0%| 100%
0|07 ]2|0]0]|778%
0.0%]0.0%18.49%5.3%]0.0%0.0%} 22.2%
0| 03 |6 |0 |0|667%
0.0%]0.0%|7.9%]1 5.8%40.0%/0.0%] 33.3%
0| 00| 1| 5|0 }833%
0.0%]0.0%|0.0%|2.6%13.2%0.0% 16.7%
6 0| 10| 0| 1| 8 (80.0%
0.0%/2.6%|0.0%|0.0%/2.6%21.1 20.0%

NaN% 50.0% 70.0% 66.7% 556.6% 100%| 71.1%
NaN% 50.0% 30.3% 33.3% 44.4% 00.0 | 28 9%,

N v 9 LI ) ©
Target Class

-

N

w

~

5

Output Class

Validation Confusion Matrix
3 0 1} 0 1 1 | 60.0%
7.9%|0.0%]|0.0%0.0%|2.6%(2.6%} 40.0%

0|1 (00| 0| 07]I00%
0.0%]2.6%/0.0%|0.0%]|0.0%|0.0%{ 00.0%
0|0 (4|0 )| 0| 0f100%
0.0%0.0%]0.5%0.0%]0.0%(0.0%] 00.0%

0 0 1 8 0 0 f 88.9%
0.0%]0.0%)2.6%21.1%0.0%|0.0%| 11.1%

0|0 (0| 0|8 |3 )727%
0.0%]0.0%(0.0%]0.0%21.19%7.9%} 27.3%

0 1 0 0 0 7 | 87.5%
0.0%]2.6%0.0%](0.0%]|0.0%18.4% 12.5%
100% 60.0% 80.05 100% 88.9% 63.6% | 81.6%
00.0% 50.0% 20.0% 0.0% 11.1% 36.4%) 18.4%
N v Lo B © ©

Target Class

-

N

w

Output Class
(%}

=]

All Confusion Matrix
18| 0 (2 | 0 | 9 | 2 ]581%
7.0%0.0%|0.8%]0.0%|3.5%(0.8%| 41.9%
0 14, 0 | 0 | 1 | 0 ]93.3%
0.0%5.5%|0.0%0.0%0.4%(0.0%| 06.7%
3 0| 0 42| 7 | 0| 0 {857%
0.0%0.0%(6.4%2.7%0.0%(0.0%| 14.3%
0| 0| 5 (|61 0| 0 ]924%
0.0%0.0%|2.0%23.8%0.0%(0.0%| 07.6%
2021212 321 41727%
0.8%)0.8%|0.8%]0.8%12.5%1.6%| 27.3%
22 0|1 6 |40]784%
0.8%0.8%|0.0%](0.4%2.3%15.6% 21.6%

81.8% 77.8%82.4% 85.9% 66.7% 87.0°%4 80.9%
18.2% 22.2%17.6% 14.1% 33.3% 13.0% 19.1%

-

N

Output Class

5

6

I 9£ o5 B -] ©
Target Class

Figure 3. The confusion matrix of the dataset.

It is observed that:

*  Ofthe 22 samples of no fault condition there is incorrect
prediction of 2 samples each to be medium and high
thermal fault.

*  Ofthe 18 samples of partial discharge, there is incorrect
prediction of 2 samples each to be medium and high

thermal fault.

Of the 51 samples of low energy discharge, there is
incorrect prediction of 5 samples to be high energy dis-
charge, and 2 samples each of partial discharge and high
thermal fault.

Of the 71 samples of high energy discharge, there is
incorrect prediction of 7 samples to be low energy dis-
charge, and 2 samples to be medium thermal fault and
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1 sample to be high thermal fault. 6.3. Analysis of Test Set

*  Of the 48 samples of medium thermal fault there is in-
- . The ppm concentrations of dissolved gases in all sam-
correct prediction of 9 samples to be normal ageing, and ) ]
. ples of the test set used in Backpropagation Neural Network
6 samples to be high thermal fault and 1 sample to be ) o ]
L (BP-NN) for assessing normal condition and five type of in-
partial discharge. o ) . ] ] :
. o cipient fault classification are available in Appendix B. The
*  Of the 46 samples of high thermal fault there is incor- )
value from the BP-NN corresponding to the output neurons

are given in Table 9. A threshold (onset) value of 0.8137 has

been defined as the minimum output required to indicate the

rect prediction of 2 samples to be normal ageing, and 4

samples to be medium thermal fault.

The overall prediction of the dataset is 8§0.9%. presence of a fault type.

Table 9. Output of BP-NN for test set.

Sample  Actual Output Output Output Output Output Output Fault Type Remarks
No. Fault Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 by BP-NN
1. FO 4.01 x 107! 3.22x 1072 1.98 x 107! 4.53 x 1072 2.74 x 10! 4.99 x 1072 NF Correct
2. FO 6.44 x 10" 527 %1072 5.1x107? 436 x10* 2.49 x 10 2.55 %107 NF Correct
3. FoO 9.4 x 10" 1.44 x 10 9.02x 1073 526 x 107 3.63 x107? 9.6 X107 NF Correct
4. FO 4.20 x 10! 4.08 x 102 1.91 x 10! 236 %1072 2.93 x 10 3.18x 10 NF Correct
5. Fo 9.24 x 10! 1.66 x 102 9.15x 1073 7.91 x 107 5.01 x 1072 1.43 x 10 NF Correct
6. F1 2.11 x 108 7.78 x 10! 6.40 x 10°¢ 1.43 x 1012 222 %10 2.11 x 107 PD Correct
7. F1 0.00 x 10° 9.88 x 10" 1.17 x 102 0.00 x 10° 0.00 x 10° 0.00 x 10° PD Correct
8. Fl1 0.00 x 10° 1.00 x 10° 2x 1071 0.00 x 10° 6.5x10° 0.00 x 10° PD Correct
9. F2 1.08 x 102 6.84 x 1073 8.40 x 10 1.22 x 10! 1.05x 10 9.15%x 107 LED Correct
10. F2 0.00 x 10° 0.00 x 10° 1.00 x 10° 1.34 x 10 0.00 x 10° 0.00 x 10° LED Correct
11. F2 48010  477x10" 9.13 x 10 8.65x 1072 1.00 x 107* 1.26 x 10° LED Correct
12. F2 0.00 x 10° 0.00 x 10° 1.00 x 10° 1.98 x 1077 0.00 x 10° 0.00 x 10° LED Correct
13. F2 2.62 %102 6.52 x 1073 8.52 x 10 9.54 x 102 1.02x 10 9.41 %107 LED Correct
14. F2 0.00 x 10° 0.00 x 10° 1.00 x 10° 328 x10° 0.00 x 10° 0.00 x 10° LED Correct
15. F2 7.02 x 10 2.34x10* 9.71 x 10 2.81x1072 3.51%x10° 1.28 x 10 LED Correct
16. F3 9.83 x10°® 1.90 x 10°¢ 7.57 x 10 243 x 107! 9.08 x 10°* 1.99 x 10° LED, HED Correct
17. F3 0.00 x 10°0 0.00 x 10° 3.01 x 107 1.00 x 10° 0.00 x 10° 0.00 x 10° HED Correct
18. F3 6.00 x 104 1.20 x 107" 1.87 x 1072 9.81 x 10! 1.12x 107 6.55x10°® HED Correct
19. F3 0.00 x 10° 0.00 x 10° 4.54 x 107 1.00 x 10° 3x 10" 4.36 x 10°® HED Correct
20. F3 0.00 x 10° 0.00 x 10° 9.65 x 10" 1.00 x 10° 0.00 x 10° 0.00 x 10° HED Correct
21. F3 0.00 x 10° 0.00 x 10° 0.00 x 10° 1.00 x 10° 0.00 x 10° 232107 HED Correct
22. F3 6.47 x 10°¢ 291 x10°¢ 1.02 x 10! 8.97 x 10 2.56 x10°¢ 8.83 x 10 HED Correct
23. F3 0.00 x 10° 0.00 x 10° 9.61 x 10 9.99 x 10" 0.00 x 10° 0.00 x 10° HED Correct
24. F3 0.00 x 10° 0.00 x 10° 1.99 x 10°¢ 1.00 x 10° 0.00 x 10° 0.00 x 10° HED Correct
25. F4 0.00 x 10° 2.10x 102 0.00 x 10° 0.00 x 10° 9.79 x 10! 0.00 x 10° MTH Correct
26. F4 2.65x 10! 5.45 %1072 2.14 x 10! 3.14x 1072 3.98 x 10! 3.72 x 1072 MTH,NF Correct
27. F4 3.00 x 10" 5.34 %1072 2.13x 10! 2.68 x 102 3.73 x 10 3.35%x107? MTH,NF Correct
28. F4 2.51 %103 1.83 x 10 4.77 x 10°¢ 1.76 x 102 6.82 x 107 2.98 x 10" MTH,HTH Correct
29. F4 1.55 x 1071 0.00 x 10° 0.00 x 10° 2.87x10°¢ 7.36 %107 1.00 x 10° HTH Correct
30. F4 8.62 x 10 2.88 x 1072 6.95 x 1073 5.1 x10° 1.02 x 10! 1.39 x 10 NF Incorrect
31. F5 3.15%x 1073 6.28 x 10°° 8.26 x 107 7.35x1072 7.9 x 102 8.44 x 107! HTH Correct
32. F5 5.69 x 1073 2.78 x 10°* 3.08 x 107¢ 6.45 x 107 1.81 x 10! 7.49 x 10 HTH Correct
33. FS 7.26 x 102 444 x 103 9.93 x 1073 223 x 10" 3.72x 10! 3.18 x 10! MTH,HTH Incorrect
34. F5 1.00 x 10°* 0.00 x 10° 0.00 x 10° 1.68 x 1077 7.78 x 102 9.22 x 10 HTH Correct
35. F5 0.00 x 10° 0.00 x 10° 0.00 x 10° 9.75 x 107 0.00 x 10° 9.02 x 10! HTH Correct
36. F5 1.00 x 107** 0.00 x 10° 0.00 x 10° 1.68 x 1077 7.78 x 102 9.22 x 10 HTH Correct
37. F5 0.00 x 10° 0.00 x 10° 0.00 x 10° 74 %1073 0.00 x 10° 9.93 x 10! HTH Correct
38. F5 0.00 x 10° 0.00 x 10° 0.00 x 10° 9.75 x 10 0.00 x 10° 9.02 x 10 HTH Correct
Note:
The results in bold indicate that the output coincides with the actual condition/fault.
The results in italics indicate that there are two outputs where the onset value is high; however, the higher value coincides with the actual condition/fault.
The results in underlined do not coincide with the actual fault.
In the test set: *  For 8 samples of the remaining 10 samples the higher
+ 28 samples showed onset values exceeding the thresh- value coincided with the actual fault.
old. e Samples no. 30 the actual fault is medium thermal fault,

10
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while the BP-NN outputs exceeded the threshold for no
fault/normal ageing.

e Samples no. 33 the actual fault is high thermal fault,
while the BP-NN outputs exceeded the threshold for
none, however the order of fault indicated is medium

thermal and high thermal in that order.

The diagnostic accuracy of the BP-NN on the test set
is calculated to be 94.73%. These discrepancies suggest that
the performance of the BP-NN could be further improved
with the inclusion of more samples for normal ageing, and

partial discharge and thermal fault in the dataset.

6.4. Discussion

The interpretation of the classification errors: it is found
that for NF condition had the weakest performance (58.1%).
There is heavy misclassification into HTF (9 cases) and some
leakage into HED & MTF. Suggests NF features overlap with
MTF and HTF. This feature that overlaps is absence or traces
of C,H; during normal ageing and thermal faults. The accu-
racy of PD very good (>90%), the model distinguishes these
fault types clearly. The accuracy of LED very good (>90%),
this can be attributed that there are more number of samples
of HED in the dataset. The accuracy of HED is good (85.7%)
there is misclassification with LED, this is on account of the
gasses being released during electrical discharge being same.
The thermal faults MTF and HTF have moderate accuracy
(~73-78%). These are thermal faults the gases associated
with MTF are CHy, C,Hg and C,Hy4 so classification will be
an issue as there is fuzziness in the boundary. The HTF is
associated with C,H,.

The limitation of this method is that the normal aging
and five type of faults are attempted simultaneously. Even
the international standards (IEEE and IEC) DGA methods
other than Rogers ratio method consider normal ageing along
with fault diagnostics of power transformer. Table 9 illus-
trates the Output of BP-NN for test results.

7. Conclusion

The developed Backpropagation Neural Network (BP-
NN) demonstrates promising performance in the classifica-
tion of incipient faults in power transformers using DGA data.
Unlike conventional IEEE/IEC ratio methods, the BP-NN-
based diagnostic model exhibits the capability to overcome

11

the limitations of the ratio being undefined due to no trace of
C:Ha and/or H2 and/or C2Hs. Also, the issue of the range of ra-
tios is eliminated. Offer improved fault identification where
conventional methods may be ambiguous or inconclusive.
Furthermore, the BP-NN is trained with data representing
normal operating conditions, hence it can be extended for
use in online condition monitoring of transformers. As more
high-quality labelled data—especially for partial discharge
and thermal faults—becomes available, the diagnostic ac-
curacy and robustness of the ANN model are expected to
improve further. Also, if data of multiple faults is available,
then it could be used in scenarios involving overlapping fault

signatures or complex fault conditions.
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Appendix A. Code for BP-NN

% Solve a Dissolved gas analysis problem with Neural % Train the Network
Pattern Recognition [net,tr] = train(net,x,t);

X = inp; % Test the Network

t = out; y = net(x);

% Training Function e = gsubtract(t,y);

trainFen = ‘trainlm’; performance = perform(net,t,y);

% Create Network with one hidden layer tind = vec2ind(t);

hiddenLayerSize = 6; yind = vec2ind(y);

net = patternnet(hiddenLayerSize, trainFcn); percentErrors = sum(tind ~= yind)/numel(tind);
Appendix B

Table Al. DGA data of samples used in test set.

Sample Dissolved Gas Data (ppm) Actual Fault Sample Dissolved Gas Data (ppm) Actual Fault
No. Hz CH4 C2H2 C2H4 Cz Hﬁ (Code) No. H2 CH4 C2H2 C2H4 C2H6 (Code)
1 0 6 0 4 3 FO 20 2770 660 763 712 54 F3
2 30 32 0 3 63 FO 21 3090 5020 2540 3800 323 F3
3 11.82 3.12 1.98 0.67 120.8  FO 22 120 31 94 66 0 F3
4 14.7 11.275 0.2 2.7 10.5 FO 23 5900 1500 2300 1200 68 F3
5 21.54 3.8 0 0.98 113 FO 24 13,500 6110 4040 4510 212 F3
6 2240 168 0 0 25 F1 25 0 18900 330 540 410 F4
7 92,600 10,200 O 0 0 F1 26 55 22 0 2.6 0.5 F4
8 36,036 619 0 233 58 Fl1 27 86 8 0 25 2.5 F4
9 131 32 38.7 18.8 7.3 F2 28 130 140 0 120 24 F4
10 4230 690 1180 196 5 F2 29 111 559 0 707 243 F4
11 595 80 244 89 9 F2 30 14 44 1 7 124 F4
12 41 112 4536 254 0 F2 31 15.9 55.98 0.21 137.25 2233 F5
13 60 5 29 6 1 F2 32 21 75 0 126 24 F5
14 890 110 700 84 3 F2 33 150 22 11 60 9 F5
15 253 21.5 72.4 16.1 59 F2 34 290 1260 8 820 231 F5
16 390 62.6 1336 653 12.8 F3 35 740 2227 42 4258 567 F5
17 1570 1110 1830 1780 175 F3 36 290 1260 8 820 231 F5
18 545 130 239 153 16 F3 37 860 1670 40 2050 30 F5
19 1500 395 323 395 28 F3 38 740 2227 42 4258 567 F5
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