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This paper investigates the finite-time H∞ control problem for a class of 
nonlinear discrete-time one-sided Lipschitz systems with uncertainties. 
Using the one-sided Lipschitz and quadratically inner-bounded conditions, 
the authors derive less conservative criterion for the controller design 
and observer design. A new criterion is proposed to ensure the closed-
loop system is finite-time bounded (FTB). The sufficient conditions are 
established to ensure the closed-loop system is H∞ finite-time bounded (H∞ 
FTB) in terms of matrix inequalities. The controller gains and observer 
gains are given. A numerical example is provided to demonstrate the 
effectiveness of the proposed results.
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1. Introduction

It is widely accepted that a large percentage of systems 
are nonlinear in nature. As a result, many studies on non-
linear systems have been conducted in the previous sev-
eral decades. However, most of the times, nonlinearities 
discussed in these papers focus on traditional Lipschitz 
condition [1-4]. It is worth noting that the Lipschitz nonline-
ar system in the above literature is usually only applicable 
to some nonlinear systems with sufficiently small Lip-

schitz constant. The so-called one-sided Lipschitz nonlin-
ear system was developed to overcome this difficulty. Lat-
er, quadratically inner-bounded condition was proposed 
by Abbaszadeh and Marquez [5]. It is worth noting that the 
traditional Lipschitz system is a special case of one-sided 
Lipschitz system and quadratic inner bounded system. 
Therefore, nonlinear systems satisfying quadratic inner 
boundedness condition and one-sided Lipschitz condition 
describe a wider class of nonlinear systems.

In practical engineering, many control problems can 
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be summed up as H∞ standard control problems: interfer-
ence suppression problem, tracking problem, and robust 
stability problem. Because of its practical importance, 
the H∞ control problem has always been an important 
research topic. The main purpose of H∞ control is based 
on reducing the influence of external disturbance input 
on the adjustable output of the system. In order to ensure 
the required robust stability, some results have been ob-
tained on the design of H∞ control [6-11]. This control is 
usually available on the assumption that the entire state is 
accessible. However, in numerous cases, this assumption 
is invalid, so it is very important to construct an observer 
that can provide the estimated value of the system state [12]. 
In recent years, the observer-based control has attracted 
the attention of researchers, and some results have been 
obtained [13,14]. 

Moreover, in some practical cases, the system state 
cannot exceed a defined boundary within a finite time in-
terval. Hence, the finite-time transient performance should 
be considered. Recently, finite-time stability and H∞ con-
trol problems have gradually become a well-researched 
topic and have been applied to many systems [15-18]. In 
2020, Wang J X et al. [15] considered the problem of robust 
finite-time stabilization for uncertain discrete-time linear 
singular systems. Feng T et al. [16] studied the problem of 
finite time stability and stabilization for fractional-order 
switched singular continuous-time system. Zhang T L  

et al. [17] looked at the finite-time stability and stabilization 
for linear discrete stochastic systems.

However, so far, the problem of observer-based fi-
nite-time H∞ control for discrete-time one-sided Lipschitz 
systems have not been fully addressed, which leads to the 
main purpose of our research.

In this paper, the observer-based finite-time H∞ con-
troller for nonlinear discrete-time system with uncertain-
ties is studied. We design the observer and observer-based 
controller. Using Lyapunov function approach and some 
lemmas, we obtain the criterion of H∞ FTB for the closed-
loop system. Finally, the validity of the proposed method 
is demonstrated by a numerical example.

This paper is organized as follows. Section 2 covers 
some preliminary information as well as the problem 
statement. In Section 3, the sufficient conditions of FTB 
an H∞ FTB for nonlinear discrete-time systems are estab-
lished. In Section 4, a numerical example is presented. 
Conclusions are given in Section 5.

Notations nR  denotes the n-dimensional Euclidean 
space. ∗  denotes a block of symmetry. ( )B B< >0 0  denotes 
the matrix B  is a negative definite (positive definite) sym-
metric matrix. We define ( ) THe S =S S+ .  and  
denotes the maximum eigenvalue and minimum eigen-

value of a matrix respectively. ,  is inner product in the 
space nR , i.e. given , nx y R∈ , then , Tx y x y= .  denotes the 
non-negative integer set. 

2. Problem Formulation

Consider the following uncertain one-sided Lipschitz 
discrete-time system:
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matrices, which are assumed to be of the form:
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where α and β are known constants.
Remark 1 Different from the traditional Lipschitz condition, constant ρ , α and β in the

nonlinearity considered here can be negative, positive or zero.
In this paper, we construct the following state observer-based controller:
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where ˆkx is the estimate of ,kx K and L are the controller and observer gains, respectively, to
be designed.

Let ˆ .k k ke x x  Then we have:
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where  is the so-called one sided Lipschitz constant.

Assumption 2 [19] ( )g x  verifies the quadratic in-
ner-bounded condition:

nonlinear discrete-time systems are established. In Section 4, a numerical example is presented.
Conclusions are given in Section 5.

Notations nR denotes the n -dimensional Euclidean space.  denotes a block of
symmetry. ( )B B 0 0 denotes the matrix B is a negative definite (positive definite) symmetric
matrix. We define ( ) THe S =S S . max ( )λ  and min ( )λ  denotes the maximum eigenvalue and
minimum eigenvalue of a matrix respectively. , is inner product in the space nR , i.e. given

, nx y R , then , Tx y x y .  denotes the non-negative integer set.

2. Problem Formulation
Consider the following uncertain one-sided Lipschitz discrete-time system:

1 ( Δ ( )) ( ) ,
( Δ ( )) ,

,

k k k k k

k k

k k k

x A A k x g x Bu w
y C C k x
z Ex Fw

     
  
  

(1)

where n
kx R is the n -dimensional state vector, l

ky R is the output measurement, and
m

ku R is the control input. q
kz R is the control output. The disturbance p

kw R satisfies:

, .
N

T
k k

k
w w d d



  2

0

0 (2)

, , ,A B C E and F are known real constant matrices. Δ ( )A k and Δ ( )C k are time-varying
matrices, which are assumed to be of the form:

1 1 1 2 2 2Δ ( ) Δ ( ) , Δ ( ) Δ ( ) ,A k M k N C k M k N  (3)
where , ,M M N1 2 1 and 2N are known real constant matrices, and Δ ( )( , )i k i  1 2 are the unknown
time-varying matrix-valued function subject to the following conditions:
Δ ( )Δ ( ) , , , .T
i ik k I k i   1 2 (4)

( )kg x is a nonlinear function satisfying the following assumptions.
Assumption 1 [19] ( )g x verifies the one-sided Lipschitz condition:

ˆ ˆ ˆ ˆ( ) ( ), , , ,2 ng x g x x x ρ x x x x R      (5)
where ρ is the so-called one sided Lipschitz constant.

Assumption 2 [19] ( )g x verifies the quadratic inner-bounded condition:
2 2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ), ,

ˆ, ,n
g x g x β x x α g x g x x x

x x R

     

 
(6)

where α and β are known constants.
Remark 1 Different from the traditional Lipschitz condition, constant ρ , α and β in the

nonlinearity considered here can be negative, positive or zero.
In this paper, we construct the following state observer-based controller:

1ˆ ˆ ˆ ˆ( ) ( ),
ˆ ,

k k k k k k

k k

x Ax g x Bu L y Cx
u Kx

     
  

(7)

where ˆkx is the estimate of ,kx K and L are the controller and observer gains, respectively, to
be designed.

Let ˆ .k k ke x x  Then we have:

 (6)

where  and  are known constants.
Remark 1 Different from the traditional Lipschitz con-

dition, constant ,  and  in the nonlinearity considered 
here can be negative, positive or zero.

In this paper, we construct the following state observ-
er-based controller: 
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where ˆkx  is the estimate of ,kx  K  and L  are the control-
ler and observer gains, respectively, to be designed.

Let ˆ .k k ke x x= −  Then we have:

1 1 1ˆ
ˆ( ) (Δ Δ ) ( , ) ,

k k k

k k k k k

e x x
A LC e A L C x g x x w

   

     

where ˆ ˆ( , ) ( ) ( ).k k k kg x x g x g x 

Let
TT T

k k kx x e .    The closed-loop system can be written as:

1 ( ) ,k+ k k kx Ax g x +Iw  (8)
where,

Δ
,

Δ Δ

( )
( ) , .

ˆ( , )
k

k
k k

A A BK BK
A

A L C A LC

g x I
g x I

g x x I

  
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   
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  

(9)

The following definitions and some useful lemmas are introduced to establish our main
results.

Definition 1 (FTB) The closed-loop system (8) is said to be FTB with respect to
( , , , ),c c N R1 2

where c c 1 20 , ,R  0 if
 0 0 1 2 , 1,2, , .T T

k kx Rx c x Rx c k N      (10)
Definition 2 ( H  FTB) The closed-loop system (8) is said to be H  FTB with respect to

( , , , , )c c N R γ1 2
, where c c 1 20 , R 0 , if the system (8) is FTB with respect to ( , , , )c c N R1 2

and under the zero-initial condition the following condition is satisfied

,
N N

T T
k k k k

k k
z z γ w w

 

 2
0 0

(11)

where γ is a prescribed positive scalar.
Lemma 1 [18] Given constant matrices ,X X1 2 and X 3 , where TX =X1 1

, TX =X 2 2 0 , then

we obtain that TX +X X X 1
1 3 2 3 0 if and only if .

TX X
X X
 

  
1 3

3 2

0

Lemma 1 [18]

Lemma 2 [10] Let ,D S and Δ be real matrices with appropriate dimensions and
Δ Δ ,T I the following inequality holds:

1ΔS Δ .T T T T TD S D DD ηS S
η

   (12)

Lemma 3 [11] For matrices , ,Λ Λ Λ1 2 3 and Φ with appropriate dimensions and scalar φ ,
the following inequality holds,

,T TΛ +Λ Λ Λ Λ 1 3 2 2 3 0

if the following conditions satisfied:

.
T T

T

Λ φΛ +Λ Φ
φΦ φΦ

 
    

1 2 3 0 (13)

The goal of this paper is to construct an observer-based controller such that the system (8)
isH  FTB.

3. Main Results
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Proof We first prove that the system (8) is FTB. So, we 
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12. In the left column on page 3, in the row right below equation (11), please change ‘ a’ to
‘ γ ’.

13. In the left column on page 3, the second line in Lemma 2, please change ‘ Δ ΔT I ’ to
‘Δ ΔT I ,’(add a comma).

13. In the left column on page 3, the line above equation (13) ‘if the following conditions
satisfied:’ should not be indented.

14. On the left bottom of page 4, formula (20a-20d) should be changed as follows:
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14. On the very beginning of page 6, formula (29) needs changes as follows:

change
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15. The last line of page 8, reference [2] should be rid of one“a class” (change ‘for a class a
class’ to ‘for a class’).
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From (32), we get that
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From (17), we have

0 0 0 0 0
1 1 1 1
2 2 2 2

0 0
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So, from (33)-(35), one get
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( ) ( ),

T N
k k

N

λ x Rx μ V λ d
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2
2 0 3

2
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Using (14), we get that
.T

k kx Rx c 2

According to Definition 1, the system (8) is FTB. This completes the proof.
Remark 2 For a given μ , the inequality (15) is linear matrices inequality which can be

solved by MATLAB LMIs Toolbox to obtain matrices , ,P Q 0 0 and matrices , , .Y V Φ
3.2 H  Finite-time Boundedness

Theorem 2 Given a scalar .γ  0 Under Assumptions 1 and 2, the closed-loop system (8)
is H  FTB with respect to ( , , , , ),c c R N γ1 2

if there exist a known scalar ,φ scalars ,μ  1
, , , ,ε ε ε ε   1 2 3 40 0 0 0 , ,η η1 2 symmetric matrices , ,P Q 0 0 and matrices ,Y ,V Φ such

that the following inequalities hold:
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Using (14), we get that
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According to Definition 1, the system (8) is FTB. This completes the proof.
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Using (14), we get that
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Using (14), we get that
.T

k kx Rx c 2

According to Definition 1, the system (8) is FTB. This completes the proof.
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Using (14), we get that
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Using (14), we get that
.T
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According to Definition 1, the system (8) is FTB. This completes the proof.
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Using (14), we get that
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According to Definition 1, the system (8) is FTB. This completes the proof.
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Using (14), we get that
.T

k kx Rx c 2

According to Definition 1, the system (8) is FTB. This completes the proof.
Remark 2 For a given μ , the inequality (15) is linear matrices inequality which can be
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Using (14), we get that
.T

k kx Rx c 2

According to Definition 1, the system (8) is FTB. This completes the proof.
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Using (14), we get that
.T
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According to Definition 1, the system (8) is FTB. This completes the proof.
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Using (14), we get that
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According to Definition 1, the system (8) is FTB. This completes the proof.
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Using (14), we get that
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According to Definition 1, the system (8) is FTB. This completes the proof.
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Using (14), we get that
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According to Definition 1, the system (8) is FTB. This completes the proof.
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and other parameters are given in (16). Furthermore, the controller gain is given by K Φ V 1

and the observer gain is .L P Y 1
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From (40), it is obvious that (31) holds. From Theorem 1, we get that the system (8) is FTB.
According to Definition 2, the system (8) is H  finite-time boundedness. The proof is

completed.
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Remark 3 For a given Remark 3 For a given μ , the inequality (38) is a linear matrix inequality which can be
solved by MATLAB LMIs Toolbox to obtain matrices , ,P Q 0 0 and matrices , , .Y V Φ

Remark 4 The system (8) considered in Theorem 2 has parameter uncertainty. However,
systems that are often encountered in practical have no parameter uncertainty, so it is also
necessary to study H  finite time boundedness for the system (8) with no parameter uncertainty.
The following corollary gives a sufficient condition of H  finite time boundedness for (8) with
Δ ( ) , Δ ( ) .A k C k 0 0
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.

5. Conclusions

The paper discusses the observer-based finite-time H∞  
control problem for a class of one-sided Lipschitz non-
linear discrete-time system with parameter uncertainties 
and external disturbances. By using one-sided Lipschitz 
condition and inner-bounded condition, a new criterion 
is obtained to ensure the closed-loop system is H∞  FTB. 
The observer and controller gains are designed. Finally, a 
numerical example is provided to demonstrate the appli-
cability and reduced conservativeness of the presented re-
sults. Furthermore, this paper does not consider time-var-
ying delay. Therefore, the problem of observer-based 
finite-time H∞  control for nonlinear discrete-time systems 
with time-varying delay can be investigated in the future 
work.
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