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ABSTRACT
The human body has symmetric bones. This paper uses control engineering concepts to design a suitable controller 

to synchronize two symmetric bones of the human body to control and treat bone cancer. A Nonsingular Terminal 
Sliding Mode Control (NTSMC) method will be employed to design the proposed control inputs. The control inputs 
can be the chemical drugs that can be used to treat bone cancer. The dynamical equations of bone cancer will be used 
to apply the designed control method and test it. For testing the designed controller, Simulink/MATLAB software will 
be used. The proposed controller is chattering-free, robust against uncertainties and external disturbances, and finite-
time stable in the control engineering view. Bone cancer will be treated for almost one year using the proposed control 
method.
Keywords: Bone cancer; Synchronization; Finite-time stability; Biomedical engineering

1. Introduction
The human bones are composed of two types 

of cells: Osteoblast (OB) and Osteoclast (OC). 
This collection is called a Basic Multicellular Unit  
(BMU) [1,2]. Bone diseases are diverse, one of them is 
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bone cancer. Bone cancer happens when the growth 
rate order of the bone cells (OB or OC) is disrupted, 
which grows into cancer cells (CCs) [1-3]. Osteosar-
coma (OS) is a type of bone disease. When the OS 
happens in the bone, the discipline of the growth of 
the bone cells disorganizes. OS is more likely to hap-
pen at 13-16 years old and after 55 years old. This 
sickness more occurs in boy children [3,4]. OB cells 
are responsible for the remodeling of bone, and OC 
cells are for bone growth. If the order of growth and 
reproduction of these cells is lost, OB cells will grow 
more and cause CCs [5,6]. In the healthy bone (bone 
without cancer), OB and OC cells multiply clearly 
and periodically. However, in sick bone (cancerous 
bone), there is no systematic growth and reproduc-
tion [1].

Bones are the skeleton of the human body, and 
almost all of them are symmetrical. If one of the 
human bones becomes cancerous, the closest value 
of the parameters is its symmetric bone. Therefore, 
symmetric bone parameters can be used for the re-
construction and treatment of cancerous bone. This 
fact can be used to model, design, and control can-
cerous bones. This concept in control engineering 
is called “synchronization”. In the synchronization 
problem, the variables and parameters of the “slave” 
system will be the same as the variables and parame-
ters of the “master” system [7]. In the synchronization 
of two human bones, the cancerous bone (slave) 
will be the same as the healthy bone (master). For 
synchronization, the systems need to apply control 
inputs to the system. These control inputs in the syn-
chronization of the human bones can be considered 
as the effect of the dose of the chemical drugs. Re-
cently, many control efforts have been made using 
the synchronization concept in different fields, such 
as synchronizing communication systems [8,9], chaot-
ic systems [10,11], and chemical systems [12,13].

The Nonsingular Terminal Sliding Mode Control 
(NTSMC) method is a robust finite-time control 
strategy that guarantees that the system states reach 
zero at a finite time. The NTSMC is an extended ver-
sion of Finite-time Sliding Mode Control methods 
that have been used in controlling different applica-

tions. This method has been used to solve the stability 
and tracking problems of rigid manipulators, high-order 
nonlinear systems, and robotic surgery [14-16]. It is used 
for controlling some practical systems such as ma-
nipulator robots [17], perturbed nonlinear systems [18], 
DC-DC buck converters [19], Quadrotor unmanned 
aerial vehicles [20], underactuated underwater robots [21], 
acute Leukemia therapy [22]. Recently control engi-
neering methods have been used to increase biomed-
ical applications such as drug delivery in cancerous 
tumors [23], tumor treatment immunity [24], cancer 
chemotherapy [25], control the tumor growth [26], and 
angiogenic inhibition therapy [27]. An extended adap-
tive NTSMC using fractional disturbance observer 
has been presented to accelerate system response 
without resulting in chattering [28]. Also, the NTSMC 
has been used to deal with the time delay for con-
trolling the integrating processes [29].

One of the challenges in the designed controller 
by NTSMC is the chattering phenomenon. The chat-
tering phenomenon is because of the high frequency 
switching gain in the controller. Chattering is a very 
harmful phenomenon in control applications. It can 
reduce the actuators’ age and add unwanted noise to 
the system. In biomedical applications, especially 
cancer treatment, the chattering causes to control in-
puts will be uncreatable. It means that the chattered 
control inputs cannot be created in the practical tests. 
Some types of control methods are developed to 
remove, eliminate or reduce the chattering from the 
control input signals [30-33]. 

This paper proposes three control signals to syn-
chronize two symmetrical human bones to control 
bone cancer. It is assumed that one of the human 
bones (arm or leg bones) is cancerous with can-
cer, and it will be treated by applying the proposed 
control inputs, which are the effect of the chemical 
drugs. The proposed control inputs will be designed 
by the NTSMC control method. The control inputs 
are designed using the chattering-free concepts. Be-
low are the most important features of the proposed 
control method:

● Robustness against model uncertainties and ex-
ternal disturbances,
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37

Journal of Electronic & Information Systems | Volume 05 | Issue 02 | October 2023

● Chattering-free control of the bone cancer,
● Accurate tracking of the healthy cells,
● Smooth control of the system,
● Fast tracking of the master states,
● Implementable results in control signals.

2. Mathematics
Definition 1. Function siɡa(x) with the relation 

between absolute function |x| and symbol-function 
for siɡa(x) = |x|asiɡn(x) is defined. Function siɡn(x) is 
defined as follows [34,35]:

siɡn(x) = � (1)

Definition 2. The relation between absolute and 
signum function is as |x| = xsiɡn(x) [34].

Lemma 1. For a nonlinear system  = f(x), f(0) = 
0, x  D , x(0) = x0 by assuming the constants ρ1 

to ρ4 as ρ1 > 0, ρ2 > 0, ρ3 > 1, ρ4 = 1 – , ρ5 = 1 +  

and Lyapunov function , as a sca-
lar continuous radially unbounded function therefore 
if  – ρ1V

ρ4(x) – ρ2V
ρ5(x) so the equilibrium x = 0 

of this system will be globally finite-time stable, and 
state variables of this system converge from each 
initial condition to zero, and the upper bound of its 
settling time is for T  [36].

Lemma 2. Considering scalars a1, a2,..., an  and 
choosing 0 < q < 2 then will have |a1|

q + |a2|
q + ... + 

|an|
q ≥  [37].

3. Explanation of the purpose 
This paper aims to synchronize the OBs and OCs 

cells of the cancerous bone to OBs and OCs cells of 
the symmetrical healthy bone and destroy the CCs. 
The model of bone OBs, OCs cells, and CCs for can-
cerous and healthy bones are the same, and only the 
parameter values are different [1]. The provided bone 
model and the values of its parameters for healthy 
and cancerous bone are published [1,2,38] for Mixed 
Lesion and Osteolytic Lesion diseases. These are the 
most common cancerous bone diseases. This model 
is called the Komarova model, which is presented in 
Equation (2).
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1
 + 2
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2 + 2

2 + … + �2

2 [37].
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� = 11 − 1 + 1�
� = 22 − 2 + 2�
�� = 3 1 − �


� + 32 + 41 � − 3�

(2)

where ,  and � are the density of OC, OB and CC cells, respectively. �, �, � = (1, 2, 3) multiplication rate of OC,
OB and CCs and are fixed parameters and positive. ,  = (1, 2, 3, 4) coefficients constant for the relationship
between OC, OB and CCs that 1, 3 are positive and 2, 4 are negative or positive. 1, 2 are the rate of signaling
between OBs and OCs that are coefficient and 1 < 0, 2 > 0 and  is the ability to carry CCs. As well as the
model of bone mass is as follows [2]:>

� =− 1 max  − �, 0 + 2 max { − �, 0} (3)

where  is the bone mass and 1, 2 are normalized activities of bone formation that are constant and positive. � , �
are steady-state of the OB and OC cells that are presented as follows:

� = 2
2

1
2

� = 1
1

1
1

(4)

For healthy bone, the values of parameters are presented as follows:

1 = 0.3, 2 = 0.1, 1 = 0.2, 2 = 0.02, 1 =− 0.3, 2 = 0.5, 1 = 0.07, 2 = 0.0022, 3 =
0.045, 3 = 0.05, 1 = 0.001, 2 =− 0.00005, 3 = 0.005, 4 = 0,  = 300 (5)

In addition, for the Fixed Lesion disease, these parameters have values as follows:

� (2)

where u, v and ω are the density of OC, OB and CC 
cells, respectively. αi, βi, i = (1, 2, 3) multiplication 
rate of OC, OB and CCs and are fixed parameters 
and positive. σj, j = (1, 2, 3, 4) coefficients constant 
for the relationship between OC, OB and CCs that 
σ1, σ3 are positive and σ2, σ4 are negative or positive. 
γ1, γ2 are the rate of signaling between OBs and OCs 
that are coefficient and γ1 < 0, γ2 > 0 and K is the 
ability to carry CCs. As well as the model of bone 
mass is as follows [2]:
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where z is the bone mass and k1, k2 are normalized 
activities of bone formation that are constant and 
positive. 
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between OBs and OCs that are coefficient and 1 < 0, 2 > 0 and  is the ability to carry CCs. As well as the
model of bone mass is as follows [2]:

� =− 1 max  − �, 0 + 2 max { − �, 0} (3)
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For healthy bone, the values of parameters are presented as follows:
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In addition, for the Fixed Lesion disease, these parameters have values as follows:
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For healthy bone, the values of parameters are 
presented as follows:
α1m = 0.3, α1m = 0.1, β1m = 0.2, β2m = 0.02,  
γ1m = -0.3, γ2m = 0.5, k1m = 0.07,k2m = 0.0022,  
α3m = 0.045, β3m = 0.05, σ1m = 0.001, σ2m = -0.00005, �

(5)
 

σ3m = 0.005, σ4m = 0.005, σ4m = 0, Km = 300�

In addition, for the Fixed Lesion disease, these 
parameters have values as follows:
α1s = 0.3, α2s = 0.1, β1s = 0.2, β2s = 0.02, γ1s = -0.3,  
γ2s = 0.5, k1s = 0.023, k2s = 0.0023, α3s = 0.055, �  (6) 
β3s = 0.05, σ1s = σ2s = -0.005, σ3s = 0.001, σ4s = 0, Ks = 3

For the synchronization of two healthy and can-
cerous bones, the synchronization errors are defined 
as e1 = us – um, e2 = vs – vm, e3 = ωs – ωm where m is 
the abbreviation of the master system (healthy bone), 
also s is the abbreviation of the slave system (cancer-
ous bone). This paper aims to reach these errors to 
zero at a finite time.

The error dynamic will be as follows:
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1 = 0.3, 2 = 0.1, 1 = 0.2, 2 = 0.02, 1 =− 0.3, 2 = 0.5, 1 = 0.023, 2 = 0.0023, 3 = 0.055, 3 =
0.05, 1 = 0.001, 2 =− 0.005, 3 = 0.001, 4 = 0,  = 3 (6)

For the synchronization of two healthy and cancerous bones, the synchronization errors are defined as 1 =
 − , 2 =  − , 3 =  −  where  is the abbreviation of the master system (healthy bone), also  is the
abbreviation of the slave system (cancerous bone). This paper aims to reach these errors to zero at a finite time.

The error dynamic will be as follows:

1� = 1 − 1 + 1 + 1
2� = 2 − 2 + 2 + 2
3� = 3 − 3 + 3 + 3

(7)

where

1 = 1
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(8)

And<>
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(9)

,  = (1, 2, 3) are the models of the control inputs that will be designed in the next section and  are the
models of unknowns and uncertainties. Assuming that the upper bounds for  are available as follows:

|| ≤ 1
|� | ≤ 2

(10)

4. Designing the control inputs
Designing the controller using the NTSMC method consists of two parts. The first part is designing the

sliding surfaces and proof of their stability, and the second part is proof of reaching the sliding surface. Since this
paper aims for finite-time stability, must both these parts prove at a finite time to ensure the finite-time stability.

Theorem 1: Consider system Equation (7), defined sliding surfaces Equation (11), and control inputs
Equation (12). So the states of this system reach zero in a finite time.

1 = �1 + 1111(1) + 1212(1)
2 = �2 + 2121(2) + 2222(2)
3 = �3 + 3131(3) + 3232(3)

(11)

where 1, 2 are positive control parameters and 1, 2 are positive constants as
1 = 
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and  ∈ (0,1).
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In these control inputs 1, 2 are positive constants and 1, 2 are positive and smaller than one constant.

Proof: It has been shown that sliding surfaces Equation (11) have finite-time stability, provided that 1, 2
are chosen so polynomial of 2 + 2 + 1 = 0 is Hurwitz [39]. For prooving the reaching phase (second part),
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Ui, i = (1, 2, 3) are the models of the control in-
puts that will be designed in the next section and Di  
are the models of unknowns and uncertainties. As-
suming that the upper bounds for Di are available as 
follows:
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where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).
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Figure 1. The curves of the OC cells of cancerous and healthy bone.
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Figure 2. The curves of the OB cells of cancerous and healthy bone.
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6. Discussion
As the figures are precise, after about 300 days 

(almost one year), the OC cells of cancerous bone 
have tracked the OC cells of healthy bone until the 
CCs have disappeared. In the OB cells, because the 
initial conditions of cancerous bone and healthy 
bone are close and the amplitude of the figure is big, 
the result is not clear correctly. Figure 5 shows the 
curve of the OB cells in 30 days (zoomed in). The 
period of OS treatment is almost five years in the 

real world. This is the reason for selecting the final 
time of the simulation as 2000 days. The control in-
puts are smooth. They are possible to implement in 
real tests. The smoothness happened because of the 
chattering-free design.

In brief, all the required features of a controller 
for controlling bone cancer have been considered 
in designing the proposed controller. The controller 
is robust, chatter-free, accurate, smooth, fast, and 
implementable. The results presented in Figures 1-5 
show the power of the proposed controller. 
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Figure 5. The curve of the OB cells of cancerous and healthy bone in 30 days.

7. Conclusions
In this paper, the NTSMC control method is em-

ployed to synchronize two human body bones. One 
of these bones was cancerous bone, and the other 
bone was healthy. This paper was a theoretical study 
that controlled and treated bone cancer with a theo-
retical method. Three designed control inputs have 
the features of chattering-free, finite-time stability 

and robustness against unknowns and uncertainties, 
which can be used in practical tests. These control 
inputs can be the effects of doses of medicines or the 
power of X-rays. After about a year, it was shown 
that the CCs had disappeared, and the cancerous 
bone looked like symmetrical healthy bone. For the 
subsequent studies, it is suggested to work on im-
plementing these types of studies in real tests for the 
treatment of some animals’ bone cancer.
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