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ARTICLE

Enhancing Semantic Segmentation through Reinforced Active 
Learning: Combating Dataset Imbalances and Bolstering Annotation 
Efficiency

Dong Han, Huong Pham, Samuel Cheng*
 

School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, 74135, USA

ABSTRACT
This research addresses the challenges of training large semantic segmentation models for image analysis, 

focusing on expediting the annotation process and mitigating imbalanced datasets. In the context of imbalanced 
datasets, biases related to age and gender in clinical contexts and skewed representation in natural images can affect 
model performance. Strategies to mitigate these biases are explored to enhance efficiency and accuracy in semantic 
segmentation analysis. An in-depth exploration of various reinforced active learning methodologies for image 
segmentation is conducted, optimizing precision and efficiency across diverse domains. The proposed framework 
integrates Dueling Deep Q-Networks (DQN), Prioritized Experience Replay, Noisy Networks, and Emphasizing 
Recent Experience. Extensive experimentation and evaluation of diverse datasets reveal both improvements and 
limitations associated with various approaches in terms of overall accuracy and efficiency. This research contributes 
to the expansion of reinforced active learning methodologies for image segmentation, paving the way for more 
sophisticated and precise segmentation algorithms across diverse domains. The findings emphasize the need for 
a careful balance between exploration and exploitation strategies in reinforcement learning for effective image 
segmentation.
Keywords: Semantic segmentation; Active learning; Reinforcement learning

1. Introduction
Semantic segmentation involves assigning a class 

label to each pixel within an image, effectively di-
viding the image into segments that carry semantic 
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meaning. Unlike image classification, which assigns 
a single class label to the entire image, semantic 
segmentation is a more granular task, amounting to 
pixel-level classification [1]. Over the past few years, 
the computer vision community has heavily relied 
on effective deep neural networks (DNNs) designed 
for semantic segmentation, as evidenced by recent 
research [2-11]. These efficient DNNs are characterized 
by their low computational demands and quick in-
ference times [12], and their widespread adoption has 
significantly influenced applications in various fields 
such as autonomous driving [13,14], semantic segmen-
tation enables precise scene understanding, allowing 
the vehicle to identify and differentiate between 
various objects on the road, such as pedestrians, ve-
hicles, traffic signs, and obstacles. This technology 
aids in real-time decision-making, helping the vehi-
cle navigate complex environments and ensure the 
safety of passengers and pedestrians; robot manip-
ulation [15,16], for robots to interact intelligently with 
their environment, they require a comprehensive un-
derstanding of the objects and structures in their sur-
roundings. Semantic segmentation facilitates this by 
enabling robots to identify and differentiate between 
different objects and their corresponding spatial re-
lationships. This capability is crucial for tasks such 
as object manipulation, navigation in dynamic envi-
ronments, and human-robot collaboration, enhancing 
the overall efficiency and safety of robotic systems; 
and biomedical image analysis [17,18], this technology 
assists healthcare professionals in diagnosing dis-
eases, monitoring the progression of conditions, and 
planning effective treatment strategies. By providing 
detailed insights into complex biological structures, 
semantic segmentation contributes to advancements 
in medical research, patient care, and disease man-
agement. where advanced computer vision systems 
are paramount. For these models to operate effec-
tively, however, they typically rely on a substantial 
volume of pixel-level annotations, a process that of-
ten necessitates expensive human labor.

Semantic segmentation datasets, with their pix-
el-wise annotations for each image, have been instru-
mental in advancing computer vision tasks. How-

ever, they are not without their limitations. Here are 
some of the key limitations associated with semantic 
segmentation datasets: 1) Extensive pixel-level 
annotations. Semantic segmentation models often 
require a large volume of accurately labeled train-
ing data, where each pixel in the image is assigned 
a corresponding class label. This process demands 
meticulous and precise annotations, which can be 
time-consuming and resource-intensive. Obtaining 
such detailed annotations for diverse datasets can be 
challenging, particularly for complex scenes with 
numerous objects and intricate boundaries. 2) La-
bor-intensive annotation process. The pixel-wise an-
notation process for semantic segmentation datasets 
is a labor-intensive task, often requiring significant 
human effort and time [19]. This manual labeling pro-
cess is labor-intensive, time-consuming, and can be 
prone to human error, especially when dealing with 
large datasets. As a result, the creation of high-qual-
ity annotated datasets requires significant human re-
sources and can be a bottleneck in the development 
of accurate and robust semantic segmentation mod-
els. 3) Data imbalance and variability. Semantic seg-
mentation datasets may suffer from data imbalance 
and variability in the distribution of classes within 
the dataset. Certain classes may be underrepresent-
ed, leading to biased model predictions and reduced 
performance in specific classes. Handling such data 
imbalance and variability is crucial to ensure that 
the model can generalize effectively across different 
scenarios and accurately segment diverse objects in 
various contexts. 4) Generalization and robustness. 
Semantic segmentation models must be capable of 
generalizing well to unseen data and diverse en-
vironments. Achieving robust performance across 
different lighting conditions, viewpoints, and envi-
ronmental changes remains a significant challenge. 
Ensuring that the model can accurately segment 
objects in various real-world scenarios is essential 
for its practical deployment in applications such as 
autonomous driving, robotics, and biomedical image 
analysis.

This aspect gains prominence during the process 
of collecting annotated data under human supervi-



47

Journal of Electronic & Information Systems | Volume 05 | Issue 02 | October 2023

sion for the creation of either a novel dataset or the 
supplementation of an existing one. Mitigating the 
challenges entails the systematic and efficient selec-
tion of image regions warranting annotation. Active 
learning (AL) represents a well-established research 
discipline explicitly focused on this area. Its primary 
objective is the identification of the most informative 
samples for annotation, with the overarching goal of 
enhancing the performance of learning algorithms 
with a minimized data requirement, in contrast to 
a non-selective approach where the entire dataset 
undergoes indiscriminate labeling. Active learning 
methodologies can be broadly categorized into two 
main groups: (i) methodologies that integrate vari-
ous manually crafted active learning strategies [20-22], 
and (ii) data-centric active learning approaches [23-25]. 
Notwithstanding the heightened cost and time asso-
ciated with acquiring labels for semantic segmenta-
tion in comparison to image classification, the realm 
of active learning for semantic segmentation has 
garnered relatively less attention [26-28], primarily em-
phasizing the development of manually engineered 
strategies.

How can reinforced active learning be effective-
ly employed to enhance semantic segmentation, 
specifically addressing challenges posed by dataset 
imbalances and improving annotation efficiency? 
The latest active learning techniques leveraging re-
inforcement learning primarily concentrate on anno-
tating one sample at each step [29-31], progressing until 
a predetermined label budget is fulfilled. Inspired 
by the AL-RL model by Casanova et al. [32], the pro-
posed approach expedites the annotation process by 
selectively choosing informative and representative 
images to accelerate model learning. Additionally, 
we tackle the issue of imbalanced datasets. For in-
stance, in clinical contexts, biases related to age and 
gender can arise due to constraints on the diversity 
of medical image contributors. In natural images, 
certain categories may be significantly more abun-
dant than others, potentially skewing the model’s 
performance towards the most frequently represented 
category. We investigate strategies to mitigate these 
biases with the aim of enhancing efficiency and ac-

curacy in semantic segmentation analysis.
Furthermore, we conduct an in-depth exploration 

of various Reinforced Active Learning methodol-
ogies for image segmentation to optimize the pre-
cision and efficiency of segmentation tasks across 
diverse domains. To achieve this, we implement a 
robust framework that integrates various Reinforce-
ment Learning (RL) techniques, including Dueling 
Deep Q-Networks (DQN) [33], Prioritized Experience 
Replay [34], Noisy Networks [35], Emphasizing Recent 
Experience [36], Soft Update Target Network [37], and 
Adaptive Epsilon Greedy [38]. We test the proposed 
method in the CamVid [39] dataset. Our results illus-
trate both improvements and limitations associated 
with various approaches in terms of overall accuracy 
and efficiency in image segmentation tasks. 

2. Related work
Active learning serves as a dedicated methodol-

ogy focused on optimizing performance gains with 
a minimal number of labeled samples. Its primary 
goal is to identify the most informative samples 
from the unlabeled dataset, subsequently presented 
to an oracle, such as a human annotator, for labe-
ling. This process effectively minimizes labeling 
costs while ensuring sustained performance. Active 
learning approaches can be classified into member-
ship query synthesis [40,41], stream-based selective 
sampling [42,43], and pool-based [44] strategies, each 
derived from diverse application scenarios [45]. Cer-
tain methodologies amalgamate various techniques 
to enhance the overall performance of active learn-
ing. For example, Shui et al. [46] take into account the 
diversity and uncertainty of query samples, and try 
to discover a balance between those two approaches. 
Further investigation into traditional query strategies 
is undertaken [47]. Despite the considerable volume 
of existing research on active learning, it continues 
to grapple with the challenge of extending its appli-
cability to high-dimensional data, such as images, 
text, and videos [48]. Consequently, the majority of 
active learning studies tend to focus on low-dimen-
sional problems [49]. Several methodologies integrate 
various techniques to enhance the performance of 
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artificial intelligence, such as leveraging the explo-
ration-exploitation trade-off [50], on a bandit formula-
tion [21] and reinforcement learning [51]. 

In recent times, there has been a growing inter-
est in reinforcement learning as an approach to ac-
quiring a labeling policy that directly optimizes the 
performance of the active learning algorithm. For 
example, Dhiman et al. [29] proposed an automated 
annotation model for Multimedia Streaming Appli-
cations (MAS) to address the existing challenges of 
slow speeds and inefficiencies in accessing multi-
media content. By leveraging Multi-modal Active 
Learning (MAL) and Convolutional Recurrent 
Neural Network (CRNN) in tandem with Deep Rein-
forcement Learning (DRL), the model demonstrates 
superior retrieval accuracy and performance metrics. 
Gong et al. [52] proposed Meta Agent Teaming Ac-
tive Learning (MATAL) framework that effectively 
minimizes the laborious efforts involved in pose an-
notations. Sadigh et al. [53] present an active learning 
method for Inverse Reinforcement Learning (IRL) 
that relies on human-provided preferences between 
two sample trajectories. In a similar vein, Kunapu-
li et al. [54] incorporate human expert information 
through preference elicitation for actions in a des-
ignated state. Ezzeddine et al. [55] integrate feedback 
from a human trainer, particularly in cases where the 
provided demonstrations are less than optimal. Liu 
et al. [56] utilize expert knowledge derived from ora-
cle policies to develop a labeling policy. In contrast, 
Pang et al. [57] employ policy gradient methods to 
acquire knowledge for the function. In an alternative 
strategy, certain techniques aggregate all labeled data 
in a single comprehensive step. Contardo et al. [58] 
employ a bi-directional RNN to select all samples 
simultaneously, particularly for the task of one-shot 
learning. Meanwhile, Sener et al. [59] suggest choos-
ing a batch of representative samples that maximize 
coverage across the entire unlabeled set.

Recent active learning work has also looked at 
semantic segmentation [60]. Uncertainty-driven active 
learning identifies data samples with elevated alea-
toric uncertainty. Entropy [61], which estimates un-
certainty, serves as a commonly employed baseline 

in active learning selection. This function calculates 
per-pixel entropy for the predicted output and utiliz-
es the averaged entropy as the final score. BALD [62] 
frequently serves as a baseline in previous studies. 
It is applied in segmentation by integrating dropout 
layers into the decoder module of the segmentation 
model and subsequently computing pixel-wise mu-
tual information through multiple forwards passes. 
Kampffmeyer et al. [63] strive to optimize the average 
standard deviation of the predicted probabilities. 
Jain et al. [64] integrate metrics, defined by manually 
engineered heuristics, to promote the diversity and 
representativeness of labeled samples. Certain meth-
odologies leverage unsupervised super pixel-based 
over segmentation [65,66], relying heavily on the pre-
cision of the super-pixel segmentation. Others con-
centrate on foreground-background segmentation of 
biomedical images [67,68], employing similarly crafted 
heuristics. Golestaneh et al. [69] focus on self-con-
sistency that uses simple transformations should not 
change the observation in active learning for seman-
tic segmentation. Mackowiak et al. [70] concentrate on 
cost-effective strategies, emphasizing that the labe-
ling cost for an image is not uniformly treated across 
all images.

The advent of DQN marked a significant mile-
stone; however, numerous constraints associated 
with this algorithm have surfaced, leading to the 
proposal of various extensions. Double DQN [71] mit-
igates the overestimation bias of Q-learning [72] by 
separating the selection and evaluation of the boot-
strap action. Prioritized experience replay [34] enhanc-
es data efficiency by prioritizing more frequent re-
play of informative transitions. The dueling network 
architecture [33] aids in action generalization by in-
dependently representing state values and action ad-
vantages. Learning from multi-step bootstrap targets, 
as seen in A3C [73], adjusts the bias-variance trade-off 
and accelerates the propagation of newly observed 
rewards to earlier visited states. Noisy DQN [35]  
introduces stochastic network layers to facilitate 
exploration. To the best of our knowledge, our work 
is the first to examine an agent that integrates all the 
aforementioned components to the problem of active 
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learning for semantic segmentation. Emphasizing 
recent experience [36] typically refers to assigning 
greater importance to recent observations and actions 
when making decisions or updating the learning 
model. ERE is often driven by the recognition that 
the environment is non-stationary, implying that the 
optimal policy might evolve over time.

3. Methods

3.1 Active learning with reinforcement learn-
ing for semantic segmentation

Followed by Casanova et al. [32], we use their ar-
chitecture for training segmentation networks. We 
frame the active learning problem as a Markov de-
cision process (MDP). The proposed process entails 
an iterative active learning strategy for enhancing 
the performance of a segmentation network, denoted 
as f and parameterized by θ, within a limited labeled 
sample budget, B. At each iteration, a query network, 
represented by π and parameterized by φ, selective-
ly picks K regions from the large unlabeled set, Ut. 
These regions are then submitted to an oracle for 
labeling, subsequently augmenting the labeled set, 

t. The segmentation network f is trained using the 
enriched t, and its performance is evaluated based 
on the Intersection-over-Union (IoU) metric. This 
iterative procedure continues until the designated 
budget B is attained. By strategically selecting in-
formative regions for labeling, this process optimizes 
the performance of the segmentation network, thus 
efficiently leveraging a limited labeled dataset to 
achieve superior segmentation results. This data-cen-
tric approach enables the model to acquire selection 
strategies purely from past active learning encoun-
ters.

In the setting, we employ four distinct data parti-
tions. For training the query network π, we designate 
a portion of labeled data DT, utilizing it for multiple 
iterations of the active learning process to acquire 
an effective acquisition function that optimizes per-
formance within a B region budget. The evaluation 
of the query network takes place on a separate data 
split DV. Moreover, we utilize a distinct subset DR to 

generate the reward signal, which involves evaluat-
ing the segmentation network’s performance on this 
set. Additionally, the set DS (with DS being not larger 
than DT) is utilized for constructing the representa-
tion of the current state.

A Markov Decision Process (MDP) is defined 
as a tuple (S, A, r, T, γ) where S stands for a set of 
states; A for actions, the composed action, consisting 
of K sub-actions, relies on the segmentation network, 
along with the labeled and unlabeled sets. Each 
sub-action entails requesting the labeling of a par-
ticular region; r, S × A → R, for the function based 
on improvement in mean IoU per class of taking an 
action in a state; T, S × A × S → R, for the state-tran-
sition function; and r, for the discount factor imply-
ing that a reward obtained in the future is worth a 
smaller amount than an immediate reward. Figure 
1 describes this training workflow. In our approach, 
the episode concludes upon reaching the designated 
budget B for labeled regions. Post-episode termi-
nation, we reset the weights of the segmentation 
network, denoted as f, to the initial weights θ0, and 
initiate a new episode. The training process for the 
query policy π involves the simulation of multiple 
episodes, with weight updates occurring at each time 
step through the sampling of transitions {(st, at, rt+1, 
st+1)}from the experience replay buffer ɛ.

 

Figure 1. The overall workflow of active learning with rein-
forcement learning in semantic segmentation.

3.2 Extensions to DQN

The evolution of Deep Q-Networks (DQN) has 



50

Journal of Electronic & Information Systems | Volume 05 | Issue 02 | October 2023

given rise to several significant extensions, each 
addressing specific limitations and enhancing the 
algorithm’s overall performance. Individually, each 
of these algorithms leads to significant performance 
enhancements. Given that they tackle fundamental-
ly different issues and share a common framework, 
there is a plausible opportunity for their integration. 
We suggest six extensions, each designed to over-
come a specific limitation, contributing to an overall 
improvement in performance. To maintain a manage-
able selection size, we have chosen extensions that 
address distinct concerns.
Double deep Q-Learning

Following the prior work [32], we set double DQN 
as our baseline architecture. One issue with the DQN 
algorithm is that it tends to overestimate the true re-
wards, leading to inflated Q-values. To address this, 
the Double DQN algorithm [71] introduces a modifi-
cation to the Bellman equation used in DQN. Instead 
of using the same equation, the action selection and 
action evaluation are decoupled in the following 
way:
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shown to reduce over-estimations and lead to better final policies.

Dueling deep Q-Learning
The Dueling DQN algorithm introduced by Wang et al. [33] seeks to improve upon

traditional DQN by decomposing the Q-values into two separate components: the value function,
  , and the advantage function,  ,  . The value function represents the expected reward for a
given state,  , while the advantage function reflects the relative advantage of taking a particular
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allows the network to learn more efficiently in situations where the exact values of individual
actions are not as important, as it can focus on learning the value function for the state.
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The hyperparameter alpha determines the degree of sampling bias desired. The priorities
correspond to the temporal difference error of the agent during its most recent training on that
particular experience. This strategy enables the agent to emphasize learning from its less accurate
predictions, thereby refining its weak areas and significantly improving sample efficiency. New
transitions are incorporated into the replay buffer with the highest priority, introducing a bias
toward recent transitions. It is essential to recognize that stochastic transitions may also receive
preference, even when there is limited remaining knowledge to be gained from them.

Emphasizing recent experience
Primarily conceived to expedite the convergence speed of Soft Actor Critic (SAC) [36],

this methodology can conceivably be extended to a wide array of algorithms and tasks that
inherently profit from accelerated learning of recent experiences, particularly those involving
multiple components. The fundamental concept entails, during the parameter update phase,
sampling the initial mini batch from the entire dataset within the replay buffer. Subsequently, for
each subsequent mini batch, the sampling range is gradually narrowed, enabling a more
pronounced focus on recent data points. This scheme revolves around two fundamental aspects: (i)
a heightened sampling frequency for more recent data, and (ii) a systematic arrangement of
updates ensuring that older data does not overwrite the more recent ones. The introduction of
Experience Replay Emphasis (ERE) establishes a straightforward yet effective sampling
technique that enables the agent to prioritize recent transitions without disregarding previously
learned policies.

Adaptive epsilon greedy
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The Dueling DQN algorithm introduced by Wang 
et al. [33] seeks to improve upon traditional DQN by 
decomposing the Q-values into two separate com-
ponents: the value function, V(s), and the advantage 
function, A(s, a). The value function represents the 
expected reward for a given state, s, while the advan-
tage function reflects the relative advantage of taking 
a particular action, a, compared to other actions. By 
combining these two functions, it is possible to com-
pute the full Q-values for each state-action pair.

To implement this decomposition, the Dueling 
DQN algorithm introduces a neural network with 
two separate output layers, one for the value function 
and one for the advantage function. These outputs 
are then combined to produce the final Q-values. 

This modification allows the network to learn more 
efficiently in situations where the exact values of in-
dividual actions are not as important, as it can focus 
on learning the value function for the state.
Prioritized experience replay

The proposition by Schaul et al. [34] in 2015 in-
troduces a resolution termed prioritized experience 
replay (PER). This approach involves the utilization 
of an added data structure that maintains the priori-
ty of each transition. Subsequently, experiences are 
sampled based on their respective priorities.
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ognize that stochastic transitions may also receive 
preference, even when there is limited remaining 
knowledge to be gained from them.
Emphasizing recent experience

Primarily conceived to expedite the convergence 
speed of Soft Actor Critic (SAC) [36], this methodol-
ogy can conceivably be extended to a wide array of 
algorithms and tasks that inherently profit from ac-
celerated learning of recent experiences, particularly 
those involving multiple components. The funda-
mental concept entails, during the parameter update 
phase, sampling the initial mini batch from the entire 
dataset within the replay buffer. Subsequently, for 
each subsequent mini batch, the sampling range is 
gradually narrowed, enabling a more pronounced 
focus on recent data points. This scheme revolves 
around two fundamental aspects: (i) a heightened 
sampling frequency for more recent data, and (ii) a 
systematic arrangement of updates ensuring that old-
er data does not overwrite the more recent ones. The 
introduction of Experience Replay Emphasis (ERE) 
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establishes a straightforward yet effective sampling 
technique that enables the agent to prioritize recent 
transitions without disregarding previously learned 
policies.
Adaptive epsilon greedy

The epsilon-greedy technique serves as a means 
to strike a balance between exploration and exploita-
tion in the process of training reinforcement learning 
policies. For instance, when epsilon is set to 0.3, the 
output action is randomly chosen from the action 
space with a probability of 0.3, and with a probabili-
ty of 0.7, the output action is selected greedily based 
on argmax (Q). 

A refined version of the epsilon-greedy method 
is referred to as the Adaptive-epsilon-greedy ap-
proach [38]. In this approach, for instance, the policy 
is trained over N epochs/episodes, a value contingent 
upon the specific problem. Initially, the algorithm 
sets epsilon to pinit (e.g., pinit = 0.6), gradually reduc-
ing it to reach  = pend (e.g., pend = 0.1) over a desig-
nated number of training epochs/episodes (nstep). Pri-
marily, during the initial training phase, the model is 
granted increased exploration freedom with a higher 
probability (e.g., pinit = 0.6), followed by a gradual 
epsilon decrease at a rate r over the training epochs/
episodes, adhering to the subsequent formula:
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epsilon is set to 0.3, the output action is randomly chosen from the action space with a probability
of 0.3, and with a probability of 0.7, the output action is selected greedily based on argmax (Q).

A refined version of the epsilon-greedy method is referred to as the Adaptive-epsilon-
greedy approach [38]. In this approach, for instance, the policy is trained over N epochs/episodes, a
value contingent upon the specific problem. Initially, the algorithm sets epsilon to init (e.g.,
init = 0.6), gradually reducing it to reach  = end (e.g., end = 0.1) over a designated number of
training epochs/episodes (step). Primarily, during the initial training phase, the model is granted
increased exploration freedom with a higher probability (e.g., init = 0.6), followed by a gradual
epsilon decrease at a rate r over the training epochs/episodes, adhering to the subsequent formula:

 =  −step


, 0 (3)

 ← init − end  + end (4)
This adaptable approach concludes with a notably low exploration probability, end , after

step , thereby facilitating a transition towards an increased emphasis on exploitation (i.e., a
greedier approach) during the latter stages of the training process. Despite this shift, a minimal
exploration probability persists, ensuring the ability to explore even as the policy nears
convergence.

Noisy network
Noisy networks are often utilized instead of the epsilon-greedy method to promote more

effective and dynamic exploration during training. Unlike the epsilon-greedy approach, which
only adjusts the exploration probability, noisy networks introduce stochasticity directly into the
network’s parameters, enabling a more nuanced and continuous exploration process. The Noisy
Network [35] introduces a novel concept of a noisy linear layer, integrating both deterministic and
noisy components.

 =  + + noisy ⊙  + noisy ⊙   (5)
where  and  are random variables, and ⊙ denotes the element-wise product. With time, the
network can gradually disregard the noisy stream, albeit at varying rates across distinct regions of
the state space, thereby enabling state-specific exploration with a form of intrinsic self-annealing.
This dynamic exploration strategy allows for a more fine-grained balance between exploration
and exploitation, facilitating improved learning efficiency and adaptability in complex
environments.

Soft update for target network
The soft update target network is a key concept in the field of deep reinforcement

learning [37]. It refers to a technique used to stabilize and improve the training of deep neural
networks in reinforcement learning tasks. Unlike hard updates, which involve periodically
copying the parameters of the main network to the target network, soft updates gradually blend
the parameters of the target network towards those of the main network. This process helps to
mitigate the issue of drastic changes in the target network, which can lead to instability during the
learning process. The value of  is used. In the paper, it proposed an algorithm called DPG. They
used  = 0.001. The target network is updated as follows.

 =  ×  +  × 1 −  (6)
Due to the small value of the parameter  , the target network smoothly adjusts towards

the Q-network’s value. To ensure the noticeable impact of this adjustment, frequent updates are
required. By employing a soft update strategy, the target network can more smoothly track the
changes in the main network, enabling a more stable and effective learning process. This
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This adaptable approach concludes with a notably 
low exploration probability, pend, after nstep, thereby 
facilitating a transition towards an increased empha-
sis on exploitation (i.e., a greedier approach) during 
the latter stages of the training process. Despite this 
shift, a minimal exploration probability persists, en-
suring the ability to explore even as the policy nears 
convergence.
Noisy network

Noisy networks are often utilized instead of the 
epsilon-greedy method to promote more effective 
and dynamic exploration during training. Unlike 
the epsilon-greedy approach, which only adjusts the 
exploration probability, noisy networks introduce 

stochasticity directly into the network’s parameters, 
enabling a more nuanced and continuous exploration 
process. The Noisy Network [35] introduces a novel 
concept of a noisy linear layer, integrating both de-
terministic and noisy components.
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and exploitation, facilitating improved learning efficiency and adaptability in complex
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learning [37]. It refers to a technique used to stabilize and improve the training of deep neural
networks in reinforcement learning tasks. Unlike hard updates, which involve periodically
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 =  ×  +  × 1 −  (6)
Due to the small value of the parameter  , the target network smoothly adjusts towards
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required. By employing a soft update strategy, the target network can more smoothly track the
changes in the main network, enabling a more stable and effective learning process. This
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greedier approach) during the latter stages of the training process. Despite this shift, a minimal
exploration probability persists, ensuring the ability to explore even as the policy nears
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Noisy networks are often utilized instead of the epsilon-greedy method to promote more

effective and dynamic exploration during training. Unlike the epsilon-greedy approach, which
only adjusts the exploration probability, noisy networks introduce stochasticity directly into the
network’s parameters, enabling a more nuanced and continuous exploration process. The Noisy
Network [35] introduces a novel concept of a noisy linear layer, integrating both deterministic and
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network can gradually disregard the noisy stream, albeit at varying rates across distinct regions of
the state space, thereby enabling state-specific exploration with a form of intrinsic self-annealing.
This dynamic exploration strategy allows for a more fine-grained balance between exploration
and exploitation, facilitating improved learning efficiency and adaptability in complex
environments.

Soft update for target network
The soft update target network is a key concept in the field of deep reinforcement

learning [37]. It refers to a technique used to stabilize and improve the training of deep neural
networks in reinforcement learning tasks. Unlike hard updates, which involve periodically
copying the parameters of the main network to the target network, soft updates gradually blend
the parameters of the target network towards those of the main network. This process helps to
mitigate the issue of drastic changes in the target network, which can lead to instability during the
learning process. The value of  is used. In the paper, it proposed an algorithm called DPG. They
used  = 0.001. The target network is updated as follows.
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the Q-network’s value. To ensure the noticeable impact of this adjustment, frequent updates are
required. By employing a soft update strategy, the target network can more smoothly track the
changes in the main network, enabling a more stable and effective learning process. This
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and exploitation in the process of training reinforcement learning policies. For instance, when
epsilon is set to 0.3, the output action is randomly chosen from the action space with a probability
of 0.3, and with a probability of 0.7, the output action is selected greedily based on argmax (Q).
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step , thereby facilitating a transition towards an increased emphasis on exploitation (i.e., a
greedier approach) during the latter stages of the training process. Despite this shift, a minimal
exploration probability persists, ensuring the ability to explore even as the policy nears
convergence.
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Noisy networks are often utilized instead of the epsilon-greedy method to promote more

effective and dynamic exploration during training. Unlike the epsilon-greedy approach, which
only adjusts the exploration probability, noisy networks introduce stochasticity directly into the
network’s parameters, enabling a more nuanced and continuous exploration process. The Noisy
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network can gradually disregard the noisy stream, albeit at varying rates across distinct regions of
the state space, thereby enabling state-specific exploration with a form of intrinsic self-annealing.
This dynamic exploration strategy allows for a more fine-grained balance between exploration
and exploitation, facilitating improved learning efficiency and adaptability in complex
environments.

Soft update for target network
The soft update target network is a key concept in the field of deep reinforcement

learning [37]. It refers to a technique used to stabilize and improve the training of deep neural
networks in reinforcement learning tasks. Unlike hard updates, which involve periodically
copying the parameters of the main network to the target network, soft updates gradually blend
the parameters of the target network towards those of the main network. This process helps to
mitigate the issue of drastic changes in the target network, which can lead to instability during the
learning process. The value of  is used. In the paper, it proposed an algorithm called DPG. They
used  = 0.001. The target network is updated as follows.
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the Q-network’s value. To ensure the noticeable impact of this adjustment, frequent updates are
required. By employing a soft update strategy, the target network can more smoothly track the
changes in the main network, enabling a more stable and effective learning process. This
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Due to the small value of the parameter τ, the 
target network smoothly adjusts towards the Q-net-
work’s value. To ensure the noticeable impact of 
this adjustment, frequent updates are required. By 
employing a soft update strategy, the target network 
can more smoothly track the changes in the main 
network, enabling a more stable and effective learn-
ing process. This technique has proven to be particu-
larly useful in complex reinforcement learning tasks 
where maintaining stability during the training phase 
is crucial for achieving optimal performance.
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4. Results
This section describes the setup of our experi-

ments, including the dataset, evaluation methods, 
and the baselines for comparison.

4.1 Experimental setup

Data collections
The dataset we primarily used in our experiments 

is the Cambridge-driving Labeled Video Database 
or CamVid [34] with samples shown in Figure 2. This 
public dataset comprises 360 × 480 street scene color 
images or frames, each annotated with ground truth 
semantic labels for pixels across 32 classes. The 
images were captured from a moving automobile 
using high-resolution cameras placed on the streets, 
allowing for the observation of various objects. In 
this study, our focus is on the segmentation of 11 key 
classes. Given the urban context, the Road, Building, 
and Sky classes collectively constitute most frame 
pixels, accounting for approximately 15.81% and 
27.35%, and appearing in almost all frames. Other 
significant classes, such as Car and Pedestrian, are 
consistently present throughout the frame sequence 
but occupy smaller portions, approximately 3.93% 
and 0.64%, respectively. Additionally, our analysis 
includes other classes depicted in Table 1. The ac-
companying table illustrates a significant imbalance 
among the different classes, a challenge that we 
address in our study. The video sequences were shot 
during the daytime and at dusk, where the objects in 
the scene can still be recognized but appear darker 
than in other sequences. Daylight sequences were 
captured in sunny weather conditions, featuring 
mixed urban and residential surroundings.

For a fair comparison between different methods, 
the segmentation networks of all methods have been 
pre-trained on the GTA dataset [74], which comprises 
extensive synthetic images with pixel-level semantic 
annotations. These images are generated through the 
open-world video game Grand Theft Auto 5, depict-
ing scenes from a car perspective within virtual cit-
ies designed in an American style, like our primary 
testing dataset introduced earlier.

Figure 2. Labeled frames from the video at 1 Hz.

Table 1. Statistics for each class used in this study: “%” shows 
the ratio of pixels and “Occurrence” shows the number of occur-
rences over all images.

Class name Percentage Occurrence
Road 27.3 701
Building 22.7 687
Sky 15.8 699
Tree 10.4 636
Sidewalk 6.33 672
Car 3.4 643
Column_Pole 0.98 698
Fence 1.43 363
Pedestrian 0.64 640
Bicyclist 0.53 365
Sign_Symbol 0.12 416

Data collection instruments
The CamVid dataset was captured using a digi-

tal film camera under fixed conditions without auto 
zooming, focus, or adjustments during the collecting 
process. The camera’s focus was adjusted to infinity, 
and both gain and shutter speed were fixed. At the 
outset, the aperture was widened to its maximum 
extent while ensuring that white objects in the scene 
did not become overexposed.
Data analysis

In a real-world scenario where we have unlabeled 
data, it’s possible to involve a human annotator to 
label the necessary dataset based on active learning 
recommendations. Nevertheless, in this paper, as a 
proof of concept, we opted to work with fully la-
belled data and selectively concealed portions of it 
to assess the active learning algorithm’s performance 
on the segmentation task.

The dataset we primarily used in our experiments 
is CamVid [39] discussed earlier. The training, val-
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idation, and test sets consist of 370, 104, and 234 
images, respectively. In the training set, we used 100 
labelled images for building DT to train the DQN 
network for several episodes and learn a good acqui-
sition function that maximizes performance with a 
budget of B regions. A set of 10 images or DS is used 
to construct the state representation. For the baseline 
evaluation set DV, we utilized 260 images. DS has a 
similar class distribution to DT to represent it. The 
original validation set was used to build DR. The 
dataset’s test set was employed to train the model 
to obtain the final segmentation results. Each image 
was divided into K regions (in this case, K = 24) 
with a resolution of 80 × 90. For implementation, we 
executed 5 different runs with random seeds to cal-
culate the mean and standard deviation. Horizontal 
flips and random crops of 224 × 224 were applied 
for data augmentation.
Evaluation

We trained the active learning agent on DT with 
approximately 0.5 k regions to learn the selection 
of regions that would improve performance in da-
ta-scarce scenarios. Subsequently, we evaluated the 
model using DV, where the model could access an 
increasing number of images within different fixed 
budgets. Once the fixed budget was reached, the 
segmentation network was trained with LT until it 
met the early stopping condition in DR. The segmen-
tation network f for all algorithms was pre-trained 
with the GTA dataset [74], a synthetic dataset, and DT. 
Finally, we measured the segmentation model’s per-
formance on the CamVid test set using the Intersec-
tion over Union (IoU) score.
Hardware usage

The models were trained using a single NVIDIA 
RTX A5000 GPU with 24 GB of VRAM. Training 
the active learning agents took approximately 18 
hours for 5 runs, and training the segmentation mod-
els to test the active learning algorithm required a 
total of 8 hours for 5 runs at each of the 6 budgets.

4.2 Experiment results

In Figures 3 and 4, we compare various methods 
across increasing budgets of labeled 128 × 128 pixel 

regions. The x-axis, labeled as “Budget”, represents 
the additional number of regions in thousands and 
the percentage of utilized unlabeled data. The plots 
include means and standard deviations of 5 runs. 
The segmentation network utilized in these meth-
ods has been pre-trained with the GTA dataset and 
part of their respective target datasets. The dashed 
line represents 96% of the best performance (Inter-
section Over Union) achieved by the segmentation 
network trained with all available labels. Given that 
the performance of the preceding work [32] surpasses 
that of the other baseline models, we will adopt it as 
the new baseline model for comparisons with other 
methods.

Figure 3. Comparisons of various active learning methods.

In detail, Figure 3 illustrates the performance 
of various methods, including Prioritized Expe-
rience Replay (PRIO) [34], the reproduced DQN 
baseline (BASELINE) [32], Dueling Deep Q-net-
work (MDQN) [33], Emphasizing Recent Experi-
ences (ERE) [36], and Noisy Network (NOISY) [35], 
Adaptive Epsilon Greedy (ESP) [38], Soft Update 
for Target Network [37]. It’s important to note that 
at 1.5 k regions, the performance of some methods 
exceeds 96% of the maximum achieved with fully 
supervised training (having access to all labels). In 
these experiments, the NOISY model performs the 
worst, suggesting that acquiring new labels does 
not provide significant additional information to the 
model. PRIO and SOFT outperform the other meth-
ods, including the baseline, in all budget scenarios, 
except for the 1K case for the PRIO method. They 
achieve this without overfitting the training model, 
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while the other methods yield similar results. This 
suggests that effective active learning, through se-
lective labeling or additional information, can assist 
the segmentation model in avoiding local minima 
and achieving better performance.

Figure 4. Compare the PRIO method with varying replay buffer 
sizes.

In Figure 4, a comparison is made between the 
baseline and PRIOR methods, considering different 
replay buffer pool sizes: 600, 30,000, 60,000, and 
120,000. Performance remains relatively stable for 
both 60,000 and 120,000. Interestingly, PRIOR, 
despite having a smaller replay buffer (around 600 
compared to 30,000, 60,000, and 120,000), outper-
forms the others by a significant margin.

4.3 Discussion

Implications and suggestions
In this section, we examine the primary findings 

from the experiments. As the experiment results 
show, implementing a soft target network update can 
improve performance. This is due to the smoother 
tracking of changes in the main network by the tar-
get network through the use of soft updates. Conse-
quently, a more stable learning process is achieved, 
and the algorithm is able to converge to a better pol-
icy, resulting in improved performance reflected in 
better results and more reliable Q-value estimations. 
The Dueling DQN algorithm improves upon earlier 
models by decoupling value and advantage func-
tions in Q-value estimation. This allows for better 
recognition of action importance in varying states, 

thereby enhancing learning and generalization. The 
resulting architecture enables more effective com-
prehension of state value and action advantage, 
leading to improved action selection and overall per-
formance. Moreover, this division reduces the vari-
ability in learned action values, stabilizes learning, 
and provides more precise estimates. This solves the 
problems of overestimation or underestimation of 
Q-values. Prioritized Experience Replay (PER) im-
proves reinforcement learning by enhancing sample 
efficiency, stabilizing the learning process, and pro-
moting effective exploration of the state space. PER 
prioritizes experiences based on higher probabilities 
for transitions with greater TD errors, accelerating 
convergence and fostering efficient learning. Empha-
sizing rare events also aids agents in handling critical 
scenarios adeptly. The learning process stability is 
ensured by policy updates that efficiently lead to rap-
id learning and enhanced convergence. Emphasiz-
ing transitions with high learning potential aids the 
thorough exploration of the state space, resulting in 
improved overall performance and decision-making 
by the agent. PER usage reduces bias from uniform 
sampling and mitigates high variance issues, result-
ing in more accurate and stable Q-value updates. 
This enhances the learning process and improves 
performance in various reinforcement learning tasks.

Our experiments showed that certain techniques, 
like incorporating noisy networks to encourage di-
verse segmentation strategies, had a negative impact 
on segmentation performance by introducing insta-
bility in the learning process, resulting in decreased 
accuracy in certain scenarios. In intricate settings 
with sparse rewards or high-dimensional state spac-
es, challenges arise where adjusting the exploration 
rate alone may prove ineffective. Poor adjustment 
of the exploration rate adaptation and disregard for 
specific learning dynamics can disturb the balance 
between exploration and exploitation, despite the 
use of adaptable epsilon-greedy approaches, creating 
difficulties in obtaining the ideal exploration-ex-
ploitation equilibrium, especially in some settings. 
Overemphasizing recent experiences in a DQN can 
hinder reinforcement learning performance by re-
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ducing sample efficiency, impeding generalization, 
introducing increased variance, and destabilizing the 
learning process. It also limits exploration across 
the state space, restricting the discovery of critical, 
infrequently encountered states and thereby compro-
mising the agent’s convergence to an optimal policy. 
Thus, in order to improve performance, it is crucial 
to achieve a balance between prioritizing recent ex-
periences and maintaining a varied set of samples 
that support efficient learning and exploration across 
the entire state space.
Limitations and future work

We have illustrated the successful integration of 
various enhancements into the DQN, enhancing the 
semantic segmentation model to achieve state-of-
the-art performance. Furthermore, our findings in-
dicate that certain components within the integrated 
algorithm yield distinct performance advantages. 
While numerous algorithmic components couldn’t 
be incorporated in this study, they stand as promising 
candidates for future experiments involving integrat-
ed agents. Below, we discuss several of these poten-
tial candidates.

Policy-based methods directly parameterize 
the policy, allowing for more flexible and complex 
policies compared to value-based approaches like 
DQN. Investigating the application of policy-based 
methods to active learning in semantic segmentation 
could provide valuable insights into optimizing de-
cision-making strategies. Actor-critic methods com-
bine the strengths of both policy and value-based 
approaches by maintaining separate networks for 
policy and value estimation. Exploring the integra-
tion of actor-critic methods in our active learning 
framework may offer advantages in terms of stability 
and efficiency. N-step methods extend the traditional 
DQN by incorporating multiple consecutive states 
and actions. Evaluating the impact of N-step methods 
on active learning performance in semantic segmen-
tation could enhance our understanding of the tem-
poral dynamics involved. Distributional RL models 
the distribution of returns rather than focusing solely 
on expected values. Introducing distributional RL 
techniques into our framework may contribute to a 

more nuanced understanding of uncertainty and risk 
management in the active learning process. Imitation 
learning leverages expert demonstrations to guide 
the learning process. Integrating imitation learning 
into active learning for semantic segmentation could 
offer a valuable mechanism for initializing the model 
and accelerating the learning curve.

The exploration of these alternative RL tech-
niques represents a promising direction for future 
research. Investigating how those methods can be 
tailored to the specific challenges of active learning 
in semantic segmentation is essential. The strengths 
of different RL paradigms could be harnessed by 
exploring the combination of these techniques in 
hybrid models or ensembles. Moreover, the transfer-
ability and generalization of learned policies across 
diverse datasets and domains require attention in fu-
ture investigations.

5. Conclusions
In conclusion, our study provides a compre-

hensive comparison of different DQN extensions 
designed to improve active learning in semantic 
segmentation through reinforcement learning. Our 
primary objective is to mitigate the labour-intensive 
task of obtaining pixel-wise labels with human in-
tervention. Our results demonstrate that the NOISY 
model performs the worst, showing rapid overfitting, 
therefore implying that acquiring new labels does not 
significantly enhance the model’s information. No-
tably, prioritized experience replay and soft update 
outperform all other methods, including the baseline, 
in all budget scenarios. Importantly, these methods 
achieve superior performance without overfitting, 
while the other techniques yield similar results. Ad-
ditionally, the comparison of the baseline and PER 
methods, considering different replay buffer pool 
sizes, indicates that PRIOR outperforms others de-
spite having a smaller replay buffer. This emphasizes 
the importance of utilizing information effectively to 
improve the segmentation process. This highlights 
the effectiveness of selective labelling or including 
additional information to help the segmentation 
model avoid local minimum and achieve better per-
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formance. These findings highlight the prospect of 
utilizing sophisticated DQN extensions to enhance 
active learning in semantic segmentation, resulting 
in streamlined label acquisition and improved model 
performance.
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