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1. Introduction
The train system, an integral part of the global 

transportation infrastructure, has played a pivotal 
role in shaping the socio-economic landscapes of 
nations worldwide. Offering a blend of efficiency, 

environmental sustainability, and unparalleled 
connectivity, rail transportation has not only bridged 
distant geographies but has also fostered economic 
growth, mitigated urban congestion, and introduced 
a greener mode of transit. Consequently, the study 
of such systems has received significant attention, 
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leading to numerous research findings [1–3].
Due to its unique construction, train systems can 

be described as a type of large-scale system that 
consists of a collection of interconnected lower-
dimensional subsystems, where the behaviour of 
each subsystem is influenced by the interactions 
with other adjacent subsystems. Decentralised 
control, as a popular approach for interconnected 
systems, involves decomposing, if required, the 
system into smaller subsystems and designing local 
controllers for each subsystem independently [4,5]. In 
this approach, each subsystem’s local controller is 
responsible for regulating its own behaviour while 
interacting and collaborating with neighbouring 
subsystems to achieve a global control objective. 
However, the train systems considered in this paper 
exhibit a distinctive chain structure, where the inter-
connections between subsystems can be modelled 
as functions of their own states and adjacent system 
states only. In such cases, the distributed scheme al-
lows the local sub-controller to utilise not only infor-
mation from its own subsystem but also information 
from its neighbouring subsystems, like information 
from adjacent subsystems. This characteristic aligns 
well with the interconnected nature of the train 
system studied in this paper. Therefore, the use of 
distributed control is a natural choice [6,7] and serves 
as the motivation for employing distributed control 
techniques in this paper.

Tracking control is a crucial subject in both 
control theory and control engineering, and 
significant progress has been made in this field 
(refer to the works [8,9]). In the work [10], an adaptive 
fuzzy technique-based tracking control approach 
for interconnected systems is investigated, while 
the work [11] focuses on decentralised tracking 
control for large-scale systems, exploring model 
reference control. However, it is important to note 
that the findings, obtained in works [10,11], impose 
a relatively strong limitation on the structural 
characteristics of the studied system. This specific 
system structure deviates somewhat from real-world 
scenarios. Therefore, investigating a more general 
and realistic train model is a research direction 

that holds significant value, and it aligns with the 
problem addressed in this paper. Furthermore, the 
sliding mode technique is often employed to enhance 
the robustness of interconnected systems with 
uncertainties, as the sliding mode dynamics typically 
govern system performance without uncertainties [12].  
Hence, sliding mode control-based methods have 
been extensively applied in system tracking con-
trol. In the work [13], a tracking problem for a class 
of large-scale systems with interconnections is 
addressed using sliding mode techniques, which 
require that the desired signals are constant. 

Therefore, this paper focuses on a distributed 
control approach using sliding mode techniques 
to tackle the speed tracking challenge of a four-
body train system where some extensions and 
improvements of the time-varying desired signals 
and unknown interconnections are explored. 
According to the prior works [14,15], the train system 
is modelled as an interconnected system with 
unknown uncertainties and disturbances. Then, a 
sliding surface is synthesised based on the tracking 
and the Barbashin-Krasovskii theorem is introduced 
to guarantee the occurrence of a reaching phase and 
sliding motion with the proposed distributed control. 
The main contributions of this paper are listed as 
follows.

● Through the application of sliding mode 
techniques, the strong robustness of the four-
body train system can be guaranteed, due to 
the sliding motion is insensitive [12] to matched 
uncertainty and disturbance.

● In comparison to the existing result [16], the 
desired reference signal is permitted to have 
a more general form, specifically, a smooth 
function, and is no longer restricted to be 
constant.

● Asymptotically tracking the performance of 
the system with unknown uncertainties is 
achieved with the proposed control scheme, 
which involves the use of adaptive techniques.

Lastly, a simulation is conducted to demonstrate 
the effectiveness of the proposed approaches.
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2. System description
According to the work [17], the train system, as de-

picted in Figure 1, can be represented mathematically 
as:

1 1( ) ( ) ( ) ( ) ( )
ii i i i i rM z t F t F t F t F t− += + − −

(1)

for i = 1, 2, 3, 4, where Mi represents the mass of the 
ith body, y, � 

tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

 is the corresponding acceleration, and Fi 
is the traction force. Additionally, Fi−1 and Fi+1 are 
the restoring forces caused by adjacent bodies. Fri

 

denotes the resistive force.
Remark 1: Equation (1) describes the most 

general situation (the middle bodies). For the special 
parts, like the locomotive and caboose, some terms 
in (1) will be omitted due to the real situation, which 
will be discussed later.

Due to the relatively small displacements 
between bodies, the restoring force can be modelled 
approximately as the following linear function:

1 1 1( ) ( ) ( )i i i i i i iF t k z z d z z+ + += − + − 

(2)

where ki and di represent the spring and damping 
parameters, respectively. zi,  zi+1, 

y, � 
tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

,  and 

y, � 
tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

+1 
correspond to the ith and (i + 1)th displacements and 
corresponding speeds, respectively for i = 1, 2, 3, 4. 
The general resistance Fri(t) can be modelled by (see 
the works [18–20]):

2
1 1 1 1 1 , 1

( )
, 2,3, 4i

o v a
r

io iv i

b b z b z i
F t

b b z i
 + + =

= 
+ =

 



(3)

where bio , biv and b1a are the resistance coefficients. 

b1a12 denotes aerodynamic drag, while bio and biv

y, � 
tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

 
are rolling mechanical resistances.

From (1)–(3), the four-body train system in 
Figure 1 is given by:

1 1 1 1 1 1 2 1 1 1 2
2

1 1 1 1 1

( )( ) ( )( )
,o v a

M z F k k z z d d z z
b b z b z

= − + ∆ − − + ∆ −

− − −

  

 

(4)

1 1 1 1

1 1 1 1

( )( ) ( )( )
( )( ) ( )( )

, 2,3

i i i i i i i i i i i

i i i i i i i i

io iv i

M z F k k z z k k z z
d d z z d d z z

b b z i

+ − − −

+ − − −

= − + ∆ − − + ∆ −

− + ∆ − − + ∆ −

− − =



   



(5)

4 4 4 3 3 4 3 3 3 4 3

4 4 4

( )( ) ( )( )
,o v

M z F k k z z d d z z
b b z

= − + ∆ − − + ∆ −
− −

  



(6)

where ∆ki and ∆di for i = 1, 2, 3 are unknown 
constants. 

y, � 
tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

, 
y, � 
tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

, 
y, � 
tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

 and 
y, � 
tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

 are taken as the system’s 
outputs.

Remark 2: In this paper, a more realistic 
situation is taken into account. It is assumed that 
there are variations in the spring and damping 
parameters, denoted by ∆ki and ∆di, respectively, in 
the interconnections compared with their nominal 
values. These variations may occur due to aging of 
components and external factors such as temperature 
changes, external disturbances, and other similar 
influences.

3. System structure analysis
For the four-body train described in system (4)–

(6), choose the following coordinate transformation:

3

3 12

4 3 2 1

124 3

Krasovskii theorem is introduced to guarantee the occurrence of a reaching phase and sliding motion with the proposed

distributed control. The main contributions of this paper are listed as follows.

 Through the application of sliding mode techniques, the strong robustness of the four-body train system can be

guaranteed, due to the sliding motion is insensitive [12] to matched uncertainty and disturbance.

 In comparison to the existing result [16], the desired reference signal is permitted to have a more general form,

specifically, a smooth function, and is no longer restricted to be constant.

 Asymptotically tracking the performance of the system with unknown uncertainties is achieved with the proposed

control scheme, which involves the use of adaptive techniques.

Lastly, a simulation is conducted to demonstrate the effectiveness of the proposed approaches.
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Figure 1. Sketch of a four-body train system.

2. System description

According to the work [17] , the train system, as depicted in Figure 1, can be represented mathematically as:

1 1( ) ( ) ( ) ( ) ( )
ii i i i i rM z t F t F t F t F t     (1)

for i= 1,2,3,4, where Mi represents the mass of the ith body, �  i s the corresponding acceleration, and Fi i s the traction force.

Additionally, Fi−1 and Fi+1 are the restoring forces caused by adjacent bodies. Fri denotes the resistive force.

Remark 1: Equation (1) describes the most general situation (the middle bodies). For the special parts, like the

locomotive and caboose, some terms in (1) will be omitted due to the real situation, which will be discussed later.

Due to the relatively small displacements between bodies, the restoring force can be modelled approximately as the following

linear function:

1 1 1( ) ( ) ( )i i i i i i iF t k z z d z z       (2)

where ki and di represent the spring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and (i+1)th
displacements and corresponding speeds, respectively for i= 1,2,3,4. The general resistance Fri(t) can be modelled by (see the works
[ 1 8 –2 0 ] ):

2
1 1 1 1 1 , 1

( )
, 2,3, 4i

o v a
r

io iv i

b b z b z i
F t

b b z i
   

 
 

 



(3)

Figure 1. Sketch of a four-body train system.
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[ ]
[ ]
11 12 21 22 31 32 41 42

1 1 2 2 3 3 4 4

T

T

x x x x x x x x

z z z z z z z z=    

(7)

Furthermore, an additional feedback transforma-
tion is introduced:

1 1 11 21 1 12 22 1 1 12
2

1 12 1 1

( ) ( )
,

o v

a

F k x x d x x b b x
b x M v

= − + − + +

+ +

(8)

,1 1,1 1 ,1 1,1 ,2 1,2

1 ,2 1,2 ,2

( ) ( ) ( )
( ) , 2,3

i i i i i i i i i i

i i i io iv i i i

F k x x k x x d x x
d x x b b x M v i

+ − − +

− −

= − + − + −

+ − + + + =

(9)

4 3 41 31 3 42 32 4

4 42 4 4

( ) ( )
,

o

v

F k x x d x x b
b x M v

= − + − +
+ +

(10)

where v1, v2, v3 and v4 are the new control inputs 
which will be designed later. In the new coordinates 
x = col(x11, x12, ..., x42), system (4)–(6) can be 
described by:

1 2i ix x=
(11)

2 ( ), 1, 2,3, 4i i ix v H x i= + =

(12)

where
1 1

1 11 21 12 22
1 1

( ) ( ) ( ),k dH x x x x x
M M
∆ ∆

= − − − −

(13)

1
,1 1,1 ,1 1,1 ,2 1,2

1
,2 1,2

( ) ( ) ( ) ( )

( ), 2,3

i i i
i i i i i i i

i i i

i
i i

i

k k dH x x x x x x x
M M M

d x x i
M

−
+ − +

−
−

∆ ∆ ∆
= − − − − − −

∆
− − =

(14)

3 3
4 41 31 42 32

4 4

( ) ( ) ( ),k dH x x x x x
M M
∆ ∆

= − − − −

(15)

where Hi(x) represents uncertainties in the intercon-
nections of the ith subsystems for i = 1, 2, 3, 4 with 

the state x = col(x11, x12, x21, x22, x31, x32, x41, x42 ) ∈ R8. 
The inputs vi ∈ R.

Remark 3:  According to  (13)–(15) ,  the 
interconnected uncertainties Hi (x) in the ith 
subsystem are functions of the unknown coefficients, 
state xi and its adjacent states xi−1 and xi+1. The state 
xi = col(xi1, xi2) for i = 1, 2, 3, 4. It is clear to see that 
the interconnected structure in (13)–(15) reflects the 
practical train system shown in Figure 1. Therefore, 
distributed control is naturally considered to cope 
with the tracking problem of the system above.

Consider the interconnected system (11)–(12) 
with interconnections in (13)–(15). The desired 
displacement of each body in the train system is 
assumed as Sd(t). Its first derivate is thus the desired 
signal yd(t) (speed signal). Then, the objective of 
this paper is to design an adaptive-based distributed 
sliding mode control that allows the speed of each 
body to track the desired signal yd(t). In other words, 
the objective of this paper is to achieve limt→∞ 
|yd (t) − xi2(t)| = 0 for i = 1, 2, 3, 4. Additionally, 
the displacement errors between the desired 
displacement Sd(t) and the actual displacement 
of the four bodies should remain to be bounded, 
despite the presence of unknown uncertainties in the 
interconnections.

Remark 4: It is important to note that the 
displacement states z1, z2, z3, and z4 may tend towards 
infinity as time t approaches infinity, especially 
when the speeds are non-zero. However, from a 
practical perspective, it is essential to ensure that the 
displacement errors Sd (t) − z1, Sd (t) − z2, Sd (t) − z3, 
and Sd (t) − z4 remain bounded. Failure to do so may 
result in the connections between adjacent bodies 
being broken.

Assumption 3.1: The desired signal yd (t) and its 
first derivate d(t) are assumed to be smooth for all 
t ∈ [0, ∞). In this case, a proper transformation T = 
diag {Ti} for i = 1, 2, 3, 4 with Ti is defined by:

1

2

( ) ( ) ( )
( ) ( ) ( )

i d i
i

i d i

t S t x t
T

e t y t x t
δ −   

=   −   


(16)

where Sd(t) and yd(t) satisfy the Assumption 3.1. 
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Then, system (11)–(12) in the new coordinates col(δi, 
ei) can be described by:

( ) ( ),i it e tδ =

(17)

( ) ( ) ( , ), 1, 2,3, 4i d i ie t y t v e iδ= − +Γ = 

(18)

where δ = col(δ1, δ2, δ3, δ4), e = col(e1, e2, e3, e4) 
and

11 1 1 1 2 1 1 2 1( , )
( , ) ( ) | ( ) ( ),

x T col e
e T H x e e

δ
δ α δ δ β−=

Γ = = − + −

(19)

1 1 1 2 1( , )

1 1 2 1

( , ) ( ) | ( ) ( )

( ) ( ), 2,3
i i i i i i i i ix T col e

i i i i i i

e T H x

e e e e i
δ

δ α δ δ α δ δ

β β

− + −=

+ −

Γ = = − + −

+ − + − =

(20)

14 4 4 4 3 4 4 3 4( , )
( , ) ( ) | ( ) ( ),

x T col e
e T H x e e

δ
δ α δ δ β−=

Γ = = − + −

(21)

with 

and 3
4

4

d
M

β ∆
= .

11 1
1 1 1 2 1

1 1 1

1 3
2 4

4

, , , , ,

, ( 2,3),

i i i
i i i

i i

i
i

i

k k dk d
M M M M M

d ki
M M

α β α α β

β α

−

−

∆ ∆ ∆∆ ∆
= = = = =

∆ ∆
= = =

 

4. Stability analysis and control law 
construction

4.1 Stability analysis of sliding motion

For system (17)–(18), consider the sliding surface 
defined by:

1 2 3 4( , , , ) 0.col e e e e =
(22)

From the sliding mode control theory, the sliding 
motion of the system (17)–(18) corresponding to the 
sliding surface (22) is given by:

( ) 0. 1,2,3,4i t iδ = =

(23)

It is easy to see from (23) that δi(t) for i = 1, 2, 
3, 4 are bounded when the sliding motion occurs, 
which is consistent with the objective of this paper.

4.2 Reachability problem and distributed 
control design

This section aims to design a distributed sliding 
mode control to drive the system into the sliding 
surface (22). Then, the controllers are proposed as:

1 1 2 1 1 2 1 1 1
ˆˆ( ) ( )( ) ( )( ) ,dv y t t t e e k eα δ δ β= + − + − +

(24)

1 1 2 1 1 1

2 1

ˆˆ ˆ( ) ( )( ) ( )( ) ( )( )
ˆ ( )( ) , 2,3

i d i i i i i i i i i

i i i i i

v y t t t t e e

t e e k e i

α δ δ α δ δ β

β
+ − +

−

= + − + − + −

+ − + =



(25)

  4 4 3 4 4 3 4 4 4
ˆˆ( ) ( )( ) ( )( ) ,dv y t t t e e k eα δ δ β= + − + − +

(26)

where ki for i = 1, 2, 3, 4 are positive constants. 
αˆ1(t), β̂1(t), αˆi1(t), αˆi2(t), β̂ i1(t), β̂ i2(t), (i = 2, 
3), αˆ4(t) and β̂4(t) are the approximation to the 
parameters α1, β1, αi1, αi2, βi1, βi2, (i = 2, 3), α4 and β4 
in (19)–(21) respectively, and the adaptive laws are 
given by:

α˙ˆ1(t) = e1(δ2 − δ1),
β̂1(t) = e1(e2 − e1);

(27)

α˙ˆi1(t) = ei(δi+1 − δi), αˆ˙i2(t) = ei(δi−1 − δi),
β̂ i1(t) = ei(ei+1 − ei), β̂ i2(t) = ei(ei−1 − ei);i = 2, 3

(28)

α˙ˆ4(t) = e4(δ3 − δ4),
β̂4(t) = e4(e3 − e4).

(29)

Remark 5: From (8)–(10), the final distributed 
controller in the original coordinate is given by:

1 1 1 1 11 21 1 1 1 12 22
2

1 1 1 1 12 1 12

1 1

ˆˆ( ( ))( ) ( ( ))( )
( )

( ( ) ),
o v a

d d

F k M t x x d M t x x
b b M k x b x
M y t k y

α β= + − + + −

+ + − +
+ +

(30)

1 ,1 1,1 1 2

,1 1,1 1 ,2 1,2

1 2 ,2 1,2

,2

ˆ ˆ( ( ))( ) ( ( ))
ˆ( ) ( ( ))( )

ˆ( ( ))( )
( ) ( ( ) ), 2,3

i i i i i i i i i

i i i i i i i

i i i i i

io iv i i i i d i d

F k M t x x k M t

x x d M t x x

d M t x x
b b M k x M y t k y i

α α

β

β

+ −

− +

− −

= + − + +

− + + −

+ + −

+ + − + + =

(31)
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4 3 4 4 41 31 3 4 4

42 32 4 4 4 4 42

4 4

ˆˆ( ( ))( ) ( ( ))
( ) ( )

( ( ) ).
o v

d d

F k M t x x d M t
x x b b M k x
M y t k y

α β= + − + +
− + + −

+ +

(32)

with the parameters αˆ1(t), β̂1(t), αˆi1(t), αˆi2(t), β̂
i1(t), β̂ i2, (i = 2, 3), αˆ4(t) and β̂4(t) satisfies (27)–
(29).

Theorem 1: For the interconnected system (17)–
(18) with the adaptive laws in (27)–(29), under 
Assumption 3.1, the controller (24)–(26) can drive 
the considered system to the sliding surface (22) and 
maintains a sliding motion on it thereafter.

Proof 1: Define the adaptive errors as:

1 1 1 1 1 1̂ˆ( ) ( ), ( ) ( );t t t tα α α β β β= − = −



(33)

1 1 1 2 2 2

1 1 1 2 2 2

ˆ ˆ( ) ( ), ( ) ( ),
ˆ ˆ( ) ( ), ( ) ( ); 2,3

i i i i i i

i i i i i i

t t t t

t t t t i

α α α α α α

β β β β β β

= − = −

= − = − =

 

 

             

(34)

4 4 4 4 4 4
ˆˆ( ) ( ), ( ) ( ).t t t tα α α β β β= − = −



(35)

Choose a Lyapunov candidate function as:
4 3

2 2 2 2 2
1 2 1 2

1 2

2 2 2 2
1 1 4 4

1 1 ( )
2 2

1 ( ).
2

i i i i i
i i

V e α α β β

α β α β

= =

= + + + +

+ + + +

∑ ∑  

 

 

 

(36)

Then, the time derivate of V along the trajectories 
of (18) is given by:

4 3

1 1 2 2 1 1 2 2
1 2

1 1 1 1 4 4 4 4
4 3

2
1 1 2 1

1 2

1 1 2 1 1 1 2 2 1 1

ˆ ˆˆ ˆ( )

ˆ ˆˆ ˆ

( ( ( ) ( )

ˆˆ ˆ( ) ( ))

i i i i i i i i i i
i i

i i i i i i i i i
i i

i i i i i i i i i i i i

V e e

k e e

e e e e

α α α α β β β β

α α β β α α β β

α δ δ α δ δ

β β α α α α β β

= =

+ −
= =

+ −

= − + + +

− − − −

= − + − + −

+ − + − − − −

∑ ∑

∑ ∑

 

 

 

 

 

 

 

 

 



 

  

  2 2

1 1 2 1 1 2 1 1 1 1 1 4 4 3 4

4 3 4 4 4 4 4
4

2

1

ˆ )

ˆˆ( ( ) ( )) ( ( )

ˆˆ( ))

.

i i

i i
i

e e e e

e e

k e

β β

α δ δ β α α β β α δ δ

β α α β β

=

−

+ − + − − − + −

+ − − −

= −∑









 

  





 



(37)

From the analysis above, V  is a negative semi- 
definite function. Then, from the Barbashin-Krasovskii 
theorem (refer to section 4.2 in the work [21]),  
its solution ei(t) → 0 as t → ∞ for i = 1, 2, 3, 4. 
Therefore, the proposed controller (24)–(26) can 
drive the system to the sliding surface. By integrating 
(27)–(29) and considering the results limt→∞ ei(t) = 
0, it is evident that the adaptive parameters αˆ1(t), β̂
1(t), αˆi1(t), αˆi2(t), β̂ i1(t), β̂ i2(t), (for i = 2, 3), αˆ4(t) 
and β̂4(t) are bounded. Hence, the result is valid.

Remark 6: The boundedness of the sliding 
motion (23) is demonstrated. Theorem 1 illustrates 
that the control scheme (24)–(26) can drive system 
(17)–(18) to the sliding surface (22). According to 
sliding mode theory, this implies that the proposed 
distributed control approach (30)–(32) not only 
ensures that each body’s speed asymptotically tracks 
the desired signal yd(t) but also guarantees that all 
displacement errors between adjacent bodies remain 
bounded.

Remark 7: The adaptive laws (27)–(29) 
proposed above ensure the estimation of parameters 
rather than their identification. This implies that the 
adaptive parameters may not converge to their true 
values. Only the boundedness of the parameters’ 
estimation is guaranteed in this paper.

5. Simulation study
In this section, a simulation is conducted to 

demonstrate the obtained results. For the simulation 
purpose, the following generalized Gaussian 
distribution depicted in Figure 2 from the works [22,23] 
is chosen as the desired speed signal. 

6| 10|( )
56( ) , 01( )

6

t

dy t e t
−

−
= ⋅ ≥
Γ

(38)

where Γ(·) denotes the Gamma function. This signal 
is consistent with the practical train system running 
between two stations.
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Figure 2. Time responses of the desired signal.

The nominal parameters of all bodies are set as:

M1 = M2 = M3 = M4 = 126000 kg,
d1 = d2 = d3 = 80 × 104 Ns/m,
k1 = k2 = k3 = 100 × 106 N/m,
b1o = b2o = b3o = b4o = 6.362 × 10−3 N/kg,
b1v = b2v = b3v = b4v = 1.08 × 10−4 Ns/(mkg),
b1a = 2.06 × 10−5 Ns2/(m2kg).
The initial condition is set as [x11, x12, x21, x22, x31, x32, 

x41, x42]⊤ = [0 0.8 0 0.5 0 0.2 0 0]⊤. The controller gains 
are determined as k1 = 0.7, k2 = 5, k3 = 2 and k4 = 1.

With the distributed sliding mode control 
(DSMC) proposed in this paper, the speed of each 
body asymptotically tracks the desired signal yd(t), 
as illustrated by the blue line in Figure 3. For 
comparison, a robust distributed controller (DC) 
in the work [16] is also considered as shown by the 
red line in Figure 3. It can be observed that the 
controller using DSMC achieved rapid convergence 
within the first 5 seconds, while the controller 
using DC exhibited poorer tracking performance. 
Concurrently, the displacement errors δi(t) for i = 
1, 2, 3, 4 remain stable, as shown in Figure 4. The 
adaptive parameters αˆ1(t), β̂1(t), αˆi1(t), αˆi2(t), β̂
i1(t), β̂ i2(t), (i = 2, 3), αˆ4(t) and β̂4(t) are bounded, 
as demonstrated in Figure 5. The simulation results 
align with the theoretical findings, validating the 
proposed approach. 

Figure 3. Tracking the performance of the system. (a). A 
comparative tracking results of the body 1. (b). A comparative 
tracking results of the body 2. (c). A comparative tracking results 
of the body 3. (d). A comparative tracking results of the body 4.

Figure 4. Displacement errors between the desired displacement 
Sd & the displacement of each body with DSMC. (a). 
Displacement error of the body 1. (b). Displacement error of the 
body 2. (c). Displacement error of the body 3. (d). Displacement 
error of the body 4. 

Figure 5. The time response of the estimated parameters. (a). 
Estimated parameters of the body 1. (b). Estimated parameters 
of the body 2. (c). Estimated parameters of the body 3. (d). 
Estimated parameters of the body 4.
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6. Conclusions
This paper introduces a distributed tracking 

control method for a four-body train system with 
unknown uncertainties in its interconnections, 
leveraging sliding mode techniques. Unlike previous 
methods, our approach accommodates time-varying 
desired signals. The proposed distributed sliding 
mode control scheme based on the Barbashin-
Krasovskii theorem has been proposed to fulfil the 
reachability condition, ensuring the reachability 
condition is met. Additionally, the unknown 
interconnections are approximated by using adaptive 
techniques. Simulation results for the four-body 
system validate the effectiveness and practicality of 
the proposed approach.

In the process of train control, the use of 
distributed control may lead to the entire system 
coming to a halt. For this, one of the advantages 
of decentralised control is that the controller of 
each subsystem only collects local information, 
meaning that even if other subsystems experience 
malfunctions, decentralised control can still ensure 
the normal operation of the entire system. Therefore, 
combining decentralised control with the tracking 
control of trains is a promising research direction.
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