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Optical Character Recognition (OCR) is a technology that converts images 
of text into machine-readable formats, essential for digitizing printed texts 
and enabling digital searches. Traditional OCR methods often struggle 
with variations in font styles and noise. This paper proposes an innovative 
approach to enhance OCR classification under challenging conditions by 
leveraging an ensemble model that combines an Attention Mechanism-
Based Generative Adversarial Network (GAN) and an Autoencoder. The 
GAN generates synthetic data to mitigate the limitations of small datasets, 
while the autoencoder extracts robust features from noisy images. The 
model undergoes a two-phase training process, initially learning from 
the augmented dataset and then fine-tuning on a smaller, labeled dataset. 
Grad-CAM is used to demonstrate interpretability, highlighting the 
attention regions during predictions. Experimental results show significant 
improvements in OCR accuracy and robustness, validating the effectiveness 
of the proposed method in handling noise and limited training data.
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1. Introduction

Optical Character Recognition (OCR) is a technolo-
gy that converts different types of documents, such as 
scanned paper documents, PDF files, or images captured 
by a digital camera, into editable and searchable data [1,2]. 
OCR is crucial for various applications, including digi-
tizing printed texts, enabling digital searches, automating 
data entry processes, and supporting accessibility for the 

visually impaired. By transforming images of text into 
machine-readable formats, OCR plays an essential role in 
data processing, information retrieval, and efficient docu-
ment management [3].

OCR technology has its roots in traditional image pro-
cessing methods, which primarily relied on handcrafted 
features and heuristic algorithms to identify and classify 
text within images. Techniques such as edge detection, 
contour tracing, and template matching were commonly 
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used in early OCR systems [4]. These methods focused on 
identifying characters based on their geometric properties 
and pixel intensity patterns. While effective for clean, 
high-contrast images, traditional approaches often strug-
gled with variations in font styles, sizes, and the presence 
of noise or distortions. The introduction of machine learn-
ing brought significant improvements to OCR technology. 
Machine learning algorithms have achieved excellent 
performance in many tasks [5,6]. For instance, Liu et al. 
proposes a framework to leverage cost-effective and ro-
bust ultra-wideband (UWB) radio technology for wireless 
distance sensing. It introduces a machine learning method 
based on the extreme gradient boosting decision tree and 
incorporates error mitigation techniques to enhance meas-
urement accuracy [7]. Xiong et al. tackles the scaling issue 
by utilizing Distributed Data Parallel (DDP) frameworks 
to improve the training of deep learning models, with a 
particular emphasis on the generation of synthetic finger-
prints [8]. These algorithms could adapt to different fonts 
and writing styles by learning discriminative features 
from the data, thus providing more flexibility and robust-
ness compared to heuristic methods. The advent of deep 
learning marked a paradigm shift in OCR research and 
development. Deep learning models, particularly Convo-
lutional Neural Networks (CNNs) [9–11], have demonstrated 
remarkable success in image recognition tasks, including 
OCR. CNNs can automatically learn hierarchical features 
from raw pixel data, making them highly effective for 
text recognition. These models excel at capturing spatial 
and temporal dependencies in text images, enabling accu-
rate recognition of complex scripts and handwritten text. 
During COVID-19, OCR technology, powered by CNNs, 
enhanced online courses by making materials more acces-
sible to students with disabilities and efficiently managing 
and organizing large volumes of course content [12,13]. Sim-
ilarly, in research, OCR technology converts experimental 
records and notes into searchable digital formats, enhanc-
ing efficiency and aiding data integration for biomass 
transformation studies [14].

Despite these advancements, OCR systems still face 
significant challenges, particularly in extreme scenarios. 
Two primary issues are the presence of noise and the 
availability of limited training data: (1) Noise and Distor-
tions: OCR accuracy can degrade significantly when deal-
ing with noisy images. Noise can arise from various sourc-
es, including poor image quality, background clutter, or 
distortions such as blurring and compression artifacts [15,16].  
Traditional denoising techniques are often insufficient, 
as they can remove essential text features along with the 
noise. (2) Limited Training Data: Deep learning models 
typically require large amounts of labeled data to achieve 

high performance [17,18]. However, obtaining a substantial 
volume of labeled OCR data can be challenging and cost-
ly. Small sample sizes can lead to overfitting, where the 
model performs well on training data but poorly on new, 
unseen data.

In this paper, we propose an innovative approach to en-
hance OCR classification under challenging conditions by 
leveraging an ensemble model that combines the strengths 
of an Attention Mechanism-Based Generative Adversarial 
Network (GAN) and an Autoencoder. The ensemble mod-
el operates in two key stages. First, the GAN, enhanced 
with an attention mechanism, generates a substantial 
amount of synthetic data. This data augmentation step is 
crucial for addressing the limitations posed by small da-
tasets, providing the model with a diverse set of training 
examples that encapsulate various patterns and distor-
tions. Once the synthetic data is generated, it is fed into 
an autoencoder for feature extraction. The autoencoder, 
trained to learn robust feature representations from noisy 
input images, undergoes a two-phase training process. Ini-
tially, the autoencoder is trained on the augmented dataset, 
allowing it to capture intricate details and patterns within 
the noisy data. After this pretraining phase, the autoencod-
er’s weights are partially frozen, specifically retaining the 
learned representations in the earlier layers. In the final 
phase, only the last few layers of the autoencoder are fine-
tuned using a smaller, labeled real dataset of noisy OCR 
images. This fine-tuning step focuses on optimizing the 
classification accuracy of the model, ensuring that it can 
effectively distinguish between different characters and 
texts even in the presence of significant noise.

This paper is structured as follows: Section 2 details the 
related works on optical character classification. Section 
3 describes the workflow of the proposed method. The 
experimental results and their corresponding discussions 
are presented in Section 4. Finally, Section 5 provides a 
comprehensive conclusion of the study.

2. Literature review

Optical character prediction

Recent advancements in machine learning-based Opti-
cal Character Recognition (OCR) have shown significant 
progress across various methodologies and applications. 
Notably, anchor graph hashing enhances OCR by enabling 
efficient text data indexing and retrieval, improving process-
ing speed and accuracy [19]. These advancements significantly 
boost OCR performance and usability. For instance, Memon 
et al. carried out a comprehensive review and outlined the 
evolution of handwritten OCR technologies, emphasizing 
the application of machine learning techniques [20]. This study 
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reviewed numerous papers to establish the quality and rele-
vance of research in the field, focusing on methodologies that 
incorporate feature extraction and classification techniques. 
This review highlights the increasing adoption of advanced 
machine learning methods in improving the accuracy and ef-
ficiency of OCR systems. Li et al. focuses on leveraging the 
power of pre-trained models like RoBERTa and MiniLM for 
OCR tasks. The approach involves a pipeline where textline 
images are input to extract visual features and predict word-
piece tokens, enhancing recognition capabilities for both 
printed and handwritten texts. The model employs pre-train-
ing on a large-scale dataset of textline images, followed by 
fine-tuning on specific OCR tasks, demonstrating substantial 
improvements in text recognition accuracy [21]. Deng et al. 
explores a neural network model that employs a coarse-to-
fine attention mechanism for generating structured docu-
ments from images. It is particularly useful for applications 
requiring detailed attention to text structure and layout, such 
as converting mathematical formulas from images to LaTeX 
code [22]. This technology could also aid remote learning by 
enabling the accurate digital conversion of handwritten notes 
and complex content [23]. Additionally, advanced OCR tech-
nology enables efficient extraction and processing of finan-
cial data, supporting precise market analysis and real-time 
monitoring, which aids in effective economic policy [24]. 
These advancements can be applied to studies of molecular 

mechanisms in protein function and lipid metabolism, auto-
mating the extraction and analysis of experimental data to 
enhance research efficiency and accuracy, while also stream-
lining the study of enzyme activity and expression inhibition 
mechanisms [25–27].

Despite significant progress in OCR, the challenges 
posed by noise and limited training data have frequent-
ly been neglected. These issues can severely impair the 
performance of OCR models, especially in practical sce-
narios where such imperfections are common. This paper 
seeks to tackle these overlooked problems by developing 
methods that enhance the accuracy of OCR models under 
noisy conditions and when training data is scarce.

3. Method

As shown in Figure 1, we propose a novel approach to 
improve OCR classification under difficult conditions by 
combining a Generative Adversarial Network (GAN) with 
an attention mechanism and an Autoencoder. First, the 
GAN generates a large amount of synthetic data to over-
come the limitations of small datasets. Then, this data is 
used to train an Autoencoder for robust feature extraction. 
The Autoencoder first learns from the synthetic data, and 
then its last few layers are fine-tuned with a smaller, labe-
led dataset to enhance classification accuracy.

Figure 1. The general framework of Ensemble Model of Attention Mechanism-Based GAN and Autoencoder for Noised 
OCR Classification.

3.1 Dataset preparation

In our study, we utilized data sourced from Kaggle [28], 
a renowned platform for data science competitions. Kag-
gle allows users to find and publish datasets, explore and 
build models in a web-based environment, and collaborate 
with other data enthusiasts. The dataset was generated 

using 3,475 font styles available in Google Fonts, with 
each alphanumeric character (uppercase, lowercase, and 
numerals) produced in each font style and organized in a 
directory. This resulted in a total of 210,000 images across 
62 classes. To balance performance and task complexity, 
we selected only 10 categories, specifically the digits 0–9. 

https://paperswithcode.com/author/masato-fujitake
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Each image is in grayscale, and the final dataset for train-
ing consists of 31,257 images. These images were resized 
to 28x28 pixels and normalized. Normalization, which 
scales pixel values typically to a range of 0 to 1, improves 
model training efficiency and aids in faster convergence. 
The dataset was then split, with 80% used for training 
and 20% for testing. Sample images from the dataset are 
shown in Figure 2.

Figure 2. Sample images.

To simulate the presence of noise in our images, we 
introduced Gaussian noise to both the training and testing 
datasets. This was accomplished by adding noise with a 
mean of 0.0 and a standard deviation of 1.0, scaled by a 
noise factor of 0.1. By adjusting the noise factor, we con-
trolled the intensity of the noise added to the images. This 
approach creates a more realistic scenario where the im-
ages are affected by typical disturbances, thereby training 
our model to be robust against such variations. Sample 
images with added noise are shown in Figure 3.

Figure 3. Noised images.

3.2 The introduction of deep learning models

GAN

Generative Adversarial Networks (GANs) are a class of 
artificial intelligence algorithms used in unsupervised ma-
chine learning [29–31], implemented by a system of two neu-
ral networks contesting with each other in a game (hence 
“adversarial”). GANs were introduced by Ian Goodfellow 
et al. in 2014 and have since been used to generate photo-
realistic images, create art, and even simulate virtual envi-
ronments. DCGAN [32–34], or Deep Convolutional Genera-
tive Adversarial Network, is a variant of GAN introduced 
by Radford et al. that specifically uses convolutional and 
convolutional-transpose layers in the neural networks, 
making it more effective at learning spatial hierarchies of 
features.

In this study, we employed the architecture for DCGAN 
that leverages a series of specific convolutional layers in 
both the generator and discriminator models to enhance 
the generation and analysis of images. The generator mod-
el begins with a dense layer that expands a 100-dimen-
sional random noise vector into a substantial feature map. 
This is followed by a sequence of four transposed convo-
lutional layers, each playing a critical role in upscaling the 

image size while reducing the number of feature channels: 
(1) The first transposed convolutional layer increases the 
feature map from 256 channels of 7x7 to 128 channels of 
14x14. (2) The second layer maintains the spatial dimen-
sion (14x14) but reduces the depth to 64 channels. (3) The 
third layer continues at 64 channels, refining details with-
in the 14x14 spatial dimension. (4) The final transposed 
convolutional layer upscales the feature map to a 28x28 
image with a single output channel, suitable for generating 
grayscale images. Each of the transposed convolutional 
layers uses a kernel size of 3, a stride of 2 for the upscal-
ing layers, and a stride of 1 for layers that maintain spatial 
dimensions, with appropriate padding to preserve the size. 
The activation function between these layers is ReLU, ex-
cept for the final layer, where a tanh function is applied to 
normalize the output values. 

Conversely, the discriminator model is structured to 
effectively classify the generated images as real or fake, 
employing four convolutional layers: (1) The initial con-
volutional layer reduces the 28x28 input image to a 14x14 
feature map with 32 channels. (2) Subsequent layers fur-
ther compress and process these features, with the second 
layer maintaining the 14x14 dimension while increasing 
depth to 64 channels. (3) The third layer deepens the chan-
nel count to 128 while maintaining spatial dimensions. (4) 
The final convolutional layer further reduces the spatial 
dimension to 7x7 while increasing the feature depth to 
256 channels.

In addition, we also enhanced our convolutional ar-
chitecture by incorporating Squeeze-and-Excitation Net-
works (SE-Net) attention blocks into both the generator 
and discriminator models [35–37]. These attention blocks 
are designed to improve model performance by selective-
ly emphasizing more informative features during image 
generation and discrimination. The SE-Net block operates 
by compressing global spatial information into a channel 
descriptor, effectively allowing the network to prioritize 
relevant features while suppressing less critical ones. This 
dynamic recalibration of channel-wise feature responses 
enables more precise control over information process-
ing within the network. The integration of this attention 
mechanism significantly boosts the detail and realism of 
the generated images, as well as the accuracy with which 
the discriminator can distinguish between real and fabri-
cated images, thereby enhancing the overall efficacy of 
the GAN architecture.

Autoencoder-based classification

An autoencoder is a type of neural network used to learn 
efficient coding of unlabeled data, typically for the pur-
pose of dimensionality reduction or feature learning [38,39].  
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The network is divided into two parts: the encoder, which 
maps the input to a lower-dimensional representation, and 
the decoder, which reconstructs the input from this rep-
resentation.

The goal of using this autoencoder in our research is to 
harness its capability to extract meaningful features from 
artificially generated data, which are then fine-tuned on 
real OCR datasets. This approach is intended to improve 
the predictive accuracy of OCR models by training them 
on rich, feature-enhanced data before applying them to 
real-world tasks, thereby enhancing the model’s ability to 
generalize from synthetic to authentic text images. The 
encoder part comprises three convolutional layers, each 
followed by a max pooling layer to progressively reduce 
the spatial dimensions and increase the depth of feature 
extraction. These layers employ a stride of 1 and padding 
to maintain the size of the feature maps, with ReLU acti-
vations to introduce non-linearity [40,41]. Max pooling helps 
to distill the essential features while reducing dimension-
ality. The decoder reverses this process. Starting with the 
compressed feature map, it uses max unpooling layers to 
restore the spatial dimensions, paired with transposed con-
volutional layers that aim to reconstruct the original image 
from the encoded features. The unpooling layers utilize 
stored indices from the pooling layers of the encoder to 
accurately place values in the expanded map, ensuring a 
precise structural reconstruction. The final layer uses a 
sigmoid activation to normalize the output, producing a 
reconstructed image.

3.3 Implementation details

In this paper, both the DCGAN and the Autoencoder 

are trained using the Adam optimizer [42,43]. The DCGAN 
utilizes a loss function based on binary cross-entropy to 
effectively train the discriminator and generator. The Au-
toencoder uses Mean Squared Error (MSE) for reducing 
reconstruction errors. During the fine-tuning phase, the 
Autoencoder is trained using sparse categorical crossen-
tropy to handle classification tasks [44,45], with a batch size 
of 256. The models are trained and evaluated in phases, 
utilizing accuracy, precision, recall, and F1 score as key 
metrics. All training and evaluation are performed on a 
3090 GPU, ensuring high computational efficiency.

4. Results and Discussion

4.1 The performance of the GAN

Figure 4 depicts a graph showing the training curves 
of a DCGAN. There are two lines representing the losses 
for the generator (G loss, in green) and the discriminator 
(D loss, in blue). Both lines show a significant decrease 
in loss over the initial training epochs, followed by a sta-
bilization. The generator loss levels out slightly below 
0.5, whereas the discriminator loss stabilizes around 0.7, 
continuing through 350 epochs. This suggests that the 
network is learning effectively, but the generator and dis-
criminator are still competing, which is typical for GANs. 
In addition, some generated sample images are provided 
in Figure 5. Although the graph indicates that many imag-
es generated during the training are of good quality, it also 
implies that there are still some images with suboptimal 
quality. This variability in output quality is common in 
GAN training, especially in cases where the generator has 
not perfectly learned to mimic the distribution of the train-
ing dataset.

Figure 4. The training curve in terms of the loss.



38

Journal of Electronic & Information Systems | Volume 04 | Issue 01 | April 2022

Figure 5. Generated images.

4.2 The performance of classification

In this experiment, different machine learning models 
were utilized to process features extracted by the encoder 
part of an autoencoder. The results show that the Fully 
Connected Layers model performed best across all metrics, 
followed by the Random Forest [46,47], Decision Tree [48,49],  
and K-Nearest Neighbors (KNN) models [50,51]. 

The superior performance of the Fully Connected Lay-
ers model can be attributed to its ability to learn complex 
non-linear relationships between features, which is crucial 
in handling encoded data. This model’s high accuracy, 
precision, recall, and F1 score indicate its effectiveness in 
capturing and utilizing the nuances of the input features. 
On the other hand, the Random Forest model also showed 
commendable results, likely due to its ensemble approach, 
which helps in reducing overfitting and improving gener-
alization over diverse data sets. However, its performance 
was slightly lower than the fully connected layers, pos-

sibly because it may not capture as complex patterns as 
neural networks can. The Decision Tree and KNN models 
trailed in performance, which might be due to their rela-
tively simpler decision boundaries that struggle with the 
complexity and high dimensionality of encoded features. 
Decision trees, in particular, are prone to overfitting un-
less carefully tuned, while KNN’s performance heavily 
depends on the choice of neighbors and distance metrics, 
which might not have been optimal in this case.

Table 1. The classification performance of the different 
models in testing dataset.

Model Accuracy Precision Recall F1 score

Fully connected layers 0.9107 0.9122 0.9127 0.9130

Random forest 0.8920 0.8928 0.8955 0.8898

Decision tree 0.8811 0.8702 0.8791 0.8795

KNN 0.8628 0.8604 0.8681 0.8692

Figure 6 provides the relationship between the number 
of images generated using a DCGAN and the accuracy of 
a model trained with these images. As shown, there is a 
clear upward trend in accuracy as more images are gener-
ated, indicating that the model benefits from a larger num-
ber of training samples. The plot visually demonstrates 
how accuracy increases from 0.9021 with 3000 images to 
0.9107 with 9000 images.

Figure 6. The relationship between the number of images generated and accuracy.

The improvement in model accuracy with an increasing 
number of images generated by a DCGAN can be largely 
attributed to the enhanced data diversity and the reduced 
risk of overfitting. As more images are generated, they 
provide a broader spectrum of data variations, which helps 
in training models that can generalize better to new, un-
seen data. This diversity not only prevents the model from 
learning irrelevant details—thus mitigating overfitting—
but also aids the autoencoder in extracting more meaning-

ful and discriminative features from a richer dataset. Con-
sequently, the model trained with these features becomes 
more robust and performs better in predictive tasks, as it 
is based on a more comprehensive understanding of the 
data’s underlying patterns.

4.3 Ablation study

Table 2 presents the results of an ablation study focus-
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ing on the impact of incorporating an attention module, 
specifically an attention mechanism in SENet, into a 
model trained using features extracted via DCGAN and 
autoencoder techniques. The comparison is between two 
configurations: one model includes the attention module, 
and the other does not.

The model equipped with the attention module achieves 
higher performance across all metrics compared to the model 
without the attention module. Specifically, the accuracy of 
the model with the attention module is 0.9107, versus 0.9021 
for the model without it. Similarly, precision, recall, and F1 

score are also improved with the inclusion of the attention 
module—precision rises from 0.9008 to 0.9122, recall from 
0.9043 to 0.9127, and the F1 score from 0.9033 to 0.9130. 
These results underscore the advantages of integrating the 
SENet attention module in models involving complex fea-
ture extraction and generation tasks such as those performed 
by DCGANs and autoencoders. The attention module likely 
helps the model focus more effectively on the most informa-
tive features of the input data, thereby enhancing the model’s 
ability to generalize and perform more accurately on diverse 
datasets.

Table 2. The ablation study for the attention module.

Model Accuracy Precision Recall F1 score

Model with attention module 0.9107 0.9122 0.9127 0.9130

Model without attention module 0.9021 0.9008 0.9043 0.9033

4.4 Interpretability visualization

This study utilizes Gradient-weighted Class Activation 
Mapping (Grad-CAM) to demonstrate the interpretability 
of model predictions during the fine-tuning of an autoen-
coder and shows the results in Figure 7. The heatmaps 
illustrate how the model focuses on specific areas to make 
its predictions. These visualizations confirm that the fine-
tuned autoencoder has good interpretability, as the Grad-
CAM technique effectively highlights the important fea-
tures used by the model for its predictions.

Figure 7. The interpretability of the model based on Grad-
CAM.

5. Conclusion

In conclusion, this study presents a novel ensemble 
model combining an Attention Mechanism-Based Gener-
ative Adversarial Network (GAN) and an Autoencoder to 
enhance OCR classification under challenging conditions. 
The approach effectively addresses the limitations posed 
by noise and limited training data. By generating synthetic 
data through the GAN and extracting robust features using 
the autoencoder, the model significantly improves OCR 
accuracy and robustness. The use of Grad-CAM for inter-

pretability further highlights the model’s ability to focus 
on relevant features, ensuring reliable predictions.

Our experimental results demonstrate that the ensemble 
model outperforms traditional OCR methods, particularly 
in noisy environments. The inclusion of attention mech-
anisms within the GAN enhances the quality of generat-
ed data, contributing to better model performance. This 
study’s findings underscore the potential of combining 
advanced generative models with robust feature extraction 
techniques to tackle real-world OCR challenges. Future 
work will focus on refining the model architecture, explor-
ing additional attention mechanisms, and expanding the 
dataset to include more diverse and complex text patterns. 
The proposed approach paves the way for more accurate 
and reliable OCR systems, benefiting applications across 
various domains, from document digitization to accessi-
bility support.
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