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ARTICLE INFO ABSTRACT

Article history In the digital era, precise product price prediction becomes crucial for
enhancing competitiveness in the online marketplace. This paper presents a
hybrid model framework that enhances the accuracy of online product price
predictions by integrating several machine learning algorithms, including
Linear Regression, Decision Trees, and Gradient Boosting. The objective
of this approach is to leverage the distinct advantages of each model to
address their individual limitations and create a robust unified predictive
model. This integration allows for improved handling of complex data
relationships and diverse market dynamics that are typical in online sales
environments. The results demonstrate that the hybrid model achieves
superior prediction accuracy, as reflected in reduced Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) metrics, and an exceptionally
high R ² value compared to single-model approaches. These outcomes
underscore the efficacy of combining multiple predictive models to
enhance the precision of price forecasts in the highly competitive online
marketplace. This model fusion strategy not only provides more accurate
pricing predictions but also offers strategic insights into the optimal pricing
strategies for businesses looking to enhance their market position.
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1. Introduction

Products are the foundation of any business. Whether
physical or digital, a product is what businesses offer to
their customers to satisfy their needs and desires. The
importance of products goes beyond their immediate use.
They are key to building a company’s brand, driving cus-

tomer loyalty, and generating revenue. Every successful
company, from tech giants to small retailers, depends on
the products they create or sell. A product that meets the
customer’s expectations and offers value can lead to long-
term success. On the other hand, a poorly made or
overpriced product can harm a company’ s reputation
and hurt its bottom line.
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In the digital age, many products are sold online, and

this shift has increased the importance of pricing strate-

gies. Online platforms have made it easier for consumers to

compare prices, and this has created a highly competitive

marketplace where pricing plays a crucial role. For busi-

nesses, setting the right price for their products can be the

difference between attracting or losing customers. If the

price is too high, potential buyers might turn to competi-

tors. If it’s too low, businesses may struggle to maintain

profitability. Therefore, accurately predicting and adjusting

product prices is essential for businesses to succeed in the

online marketplace.

Online product price prediction is a complex task. It

requires analyzing vast amounts of data and understanding

various factors such as demand, supply, production costs,

market trends, and consumer behavior. The need for accu-

rate price prediction has led to the use of artificial intelli-

gence (AI) and machine learning (ML) models [1–4]. Over

the past decade, AI, ML and computer optimization methods

have advanced rapidly, providing businesses with new tools

to predict prices more accurately than ever before. These

models can process large datasets, identify patterns, and

make predictions that humans would struggle to achieve

manually in many domains. For example, Dai et al. pro-

posed a markov process and deep-reinforcement learning-

based method for safety evaluation of traffic system [5]. Let

et al. utilized chemical industrial clusters-based data anal-

ysis method for green supply chain management optimiza-

tion [6]. Xiong et al. developed ensemble model of attention

mechanism-based DCGAN and autoencoder for effective

noised OCR classification, which demonstrated the effec-

tiveness of AI models [7]. In addition, there are also many

other methods that applied in different fields [8–10].

The development of AI models for price prediction

has gone through several stages. Initially, simpler models

such as linear regression were used to predict prices. These

models relied on basic relationships between variables, such

as how demand changes with price. However, as the market

became more complex and data volumes increased, more

advanced models like decision trees, random forests, and

neural networks were introduced. These models could cap-

ture more intricate relationships and interactions between

different factors affecting price. AI has also made it possible

to process unstructured data, such as customer reviews and

social media posts, to gain deeper insights into consumer

sentiment and its impact on prices.

Despite the progress made with AI and ML models,

predicting product prices with a single model has limitations.

No single model can perfectly capture all the factors that

influence pricing in a constantly changing market. For in-

stance, linear regression models are good at finding simple

relationships but may miss more complex patterns. More

advanced models like random forests or neural networks can

handle complexity but are sometimes prone to overfitting

or may require a lot of computational power. Each model

has strengths and weaknesses, and relying on a single model

may result in suboptimal predictions.

To overcome the limitations of individual models, re-

searchers and data scientists have explored the idea of com-

bining multiple models. By using a hybrid or ensemble

approach, it is possible to take advantage of the strengths of

different models while minimizing their weaknesses. In this

paper, we propose a hybrid model prediction framework for

online product price prediction shown in Figure 1. Instead

of relying on one model, we combine the predictions of

several different machine learning models, such as linear re-

gression, decision trees among others. By doing this, we aim

to improve the overall accuracy of price predictions. This

hybrid model approach has the potential to provide busi-

nesses with more reliable price predictions, helping them

stay competitive in the fast-paced online marketplace. By

using multiple models and combining their outputs, we can

capture a wider range of factors that influence price changes

and make predictions that are both accurate and flexible.

Figure 1. The workflow of multi-model output fusion strategy.
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2. Literature Review

2.1 Price Prediction

In this part, we explore a variety of methods that

researchers have historically used to predict prices. For

many decades, academics have focused on forecasting the

prices of commodities sensitive to market changes. The

study of oil prices began earnestly in 1931, notably with

Hotelling, a prominent economist who introduced mathe-

matical approaches for analyzing markets for natural re-

sources. His work laid the foundational theories that many

later economists built upon in the field of energy economics.

Traditional statistical methods have consistently been

applied in price prediction across various markets. For

example, Lagarto et al. employed the ARIMA model to

analyze and predict prices in the Iberian electricity mar-

ket [11], demonstrating how past data could inform future

price trends. As the field of prediction evolved, researchers

realized that traditional methods struggled with non-linear

data, which is common in volatile markets. This realiza-

tion led scholars to seek out new methods better suited for

dynamic and fluctuating data types. Among these new ap-

proaches, Hsu and Chen applied a grey model to predict

electricity demand, a method valued for its ability to handle

insufficient and uncertain data [12]. Similarly, Gonzalez et

al. utilized a hidden Markov model to forecast spot prices

in Spain’s electricity market, showing that these advanced

models could capture the randomness and unpredictability

inherent in such data [13].

Modern prediction techniques have increasingly incor-

porated non-linear models due to their ability to adapt to

the complex fluctuations found in data [14–16]. Yousefi et al.

used wavelet theory models to forecast crude oil prices [17].

Their approach, which integrates time-scale localization

techniques, significantly improved short-term prediction ac-

curacy by comparing its results with futures market data.

Neural networks, renowned for their extensive capabilities

in large-scale and non-linear processing, have become pop-

ular in forecasting non-linear price movements [18]. These

networks, composed of layers of interconnected nodes, are

adept at identifying patterns in time-series data that tradi-

tional models might miss. For instance, Kimoto et al. de-

veloped a modular neural network to predict stock prices

on the Tokyo Stock Exchange [19], achieving not only ac-

curate predictions but also profitable outcomes in market

simulations.

The advancement in predictive methodologies has not

been limited to stock or commodity markets. In the realm of

consumer products, innovative approaches have been tested

to predict prices of second-hand items using mixed data in-

puts. Fathalla and Salah designed a deep model architecture

combining long short-term memory (LSTM) networks and

convolutional neural networks to estimate the minimum and

maximum prices of used goods [20]. They also developed a

method to assess the quality of items, which helped refine

their price predictions.

3. Method

3.1 Dataset Preparation

In this study, we utilized a dataset sourced fromKaggle

comprising 1000 entries associated with laptop specifica-

tions and their corresponding market prices. The dataset

encompasses seven features, which include both categori-

cal and numerical data types. The features are as follows:

‘Brand’ (a categorical string representing the manufacturer),

‘Processor_Speed’ (a numerical value indicating the CPU

speed in GHz), ‘RAM_Size’ (the size of RAM in giga-

bytes), ‘Storage_Capacity’ (hard drive storage in gigabytes),

‘Screen_Size’ (measured diagonally in inches), ‘Weight’

(laptop weight in kilograms), and ‘Price’ (the target variable,

representing the market price of the laptop in US dollars).

For preprocessing, the categorical ‘Brand’ feature un-

derwent one-hot encoding to transform it into a numerical

format suitable for machine learning algorithms. All numer-

ical features were normalized to ensure uniformity in scale,

which is crucial for optimizing the performance of many

predictive models. The dataset was split into training and

testing subsets, with 70% of the data allocated for training

and the remaining 30% used for testing. This division allows

for a comprehensive evaluation of the model’s performance

on unseen data, ensuring that our predictive insights are

both robust and reliable. The distributions of features in

this dataset are shown in Figure 2. In addition, Figure 3

and Figure 4 provide box plots of numerical features and

correlation maps.

44



Journal of Electronic & Information Systems | Volume 04 | Issue 01 | April 2022

Figure 2. The distributions of features in this dataset.

Figure 3. Box plots of numerical features.

Figure 4. The correlation heatmaps of features.

3.2 The Introduction of Used Machine Learn-

ing Models

1) Linear regression

Linear regression [21–24] is a fundamental statistical and

machine learning technique used for predicting a dependent

variable based on one or more independent variables. It

models the relationship between the input variables and the

predicted output by fitting a linear equation to observed data.

The basic idea of linear regression is to establish a linear re-

lationship between the input and output, effectively drawing

a straight line that best fits the data points. This line is the

line of best fit and is determined by finding the parameters

that minimize the sum of the squared differences between

the observed values and the values predicted by the model.

Simple linear regression deals with one independent

variable and is used to predict a single output. It is straight-

forward and often used to determine the strength and direc-

tion of the relationship between two variables. For example,

predicting house prices based on square footage would typi-

cally use simple linear regression. For more complex situa-

tions where multiple factors influence the outcome, multiple

linear regression is used. This involves several independent

variables that together predict the value of the dependent

variable. For instance, predicting house prices could be

modeled on not just square footage, but also the number of

bedrooms, age of the property, and proximity to amenities

Linear regression is widely used due to its simplicity, ease

of interpretation, and basis for understanding more com-

plex machine learning algorithms. It is a powerful tool for

making predictions and decisions in various fields, from

economics to engineering.

2) Decision tree

A decision tree [25–27] is a popular machine learning

model used for both classification and regression tasks. It

operates by breaking down a dataset into smaller subsets

based on an attribute value test. This process is repeated

recursively on each derived subset in a tree-like fashion.

The goal is to create a model that predicts the value of a

target variable by learning simple decision rules inferred

from the data features.

The structure of a decision tree consists of nodes,

branches, and leaves. Each internal node represents a “test”

or “question” on an attribute, each branch represents the

outcome of that test (leading to another question or a con-

clusion), and each leaf node represents a class label or a

final decision. The paths from the root to the leaf represent

classification rules or regression paths.
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One of the main advantages of decision trees is their

simplicity and transparency. They are easy to understand

and interpret, as they mimic human decision-making more

closely than other algorithms—a feature often referred to as

the white-box model. Users can see exactly how decisions

are made, making them useful for tasks where transparency

is important, such as in finance and healthcare. Decision

trees are also flexible and can handle both numerical and

categorical data. They can be used for a wide variety of prob-

lems, ranging from customer segmentation to the prediction

of loan defaults.

3) Random forest

Random Forest [28–30] is an advanced machine learn-

ing algorithm that builds on the simplicity of decision trees

with enhanced accuracy and robustness. It operates by con-

structing a multitude of decision trees at training time and

outputting the class that is the mode of the classes (classi-

fication) or mean prediction (regression) of the individual

trees. This ensemble approach helps in handling overfitting,

which is a common problem with single decision trees.

The process of creating a Random Forest model in-

volves generating multiple trees using a technique called

“bootstrap aggregating” or “bagging.” In this technique, dif-

ferent subsets of the dataset are randomly selected with

replacement to train multiple decision trees. Each tree in the

forest is built from a sample drawn with replacement (i.e.,

a bootstrap sample) from the training set. Moreover, when

splitting a node during the construction of the tree, the split

that is chosen is no longer the best split among all features.

Instead, the split that is the best among a random subset

of the features is chosen. This strategy of combining ran-

dom subsets of data with random subsets of features leads

to a greater tree diversity, which trades a slight increase in

bias for a larger decrease in variance, resulting in an overall

better model.

Random Forest has several strengths that make it very

useful for practical applications. Firstly, it can be used for

both classification and regression tasks, and it’s easy to mea-

sure the relative importance of each feature on the prediction.

This is helpful in feature selection where we aim to identify

which factors are most influential in predicting the outcome.

Random Forests are also very versatile and can handle large

datasets with higher dimensionality. They can automatically

handle missing values and maintain accuracy for a large

proportion of data missing.

4) Gradient boosting

Gradient Boosting [31–33] is a powerful machine learn-

ing technique that builds on the concept of boosting, where

weak learners (typically decision trees) are combined se-

quentially to create a strong overall model. Unlike Random

Forests, which build trees independently and combine their

outcomes at the end, Gradient Boosting builds one tree at

a time. This iterative approach focuses on continuously

reducing the errors made by the previous trees.

The process starts with a base model that makes simple

predictions, which could be as basic as predicting the aver-

age value of the target variable. After the initial predictions,

the algorithm calculates the residuals or errors between the

predicted and actual values. Subsequent trees are then built,

each one focusing on correcting the errors made by the previ-

ous ones. Each tree in the sequence is called a weak learner,

and it specifically aims to improve the shortcomings of the

previous tree.

A key element of Gradient Boosting is the learning

rate, which controls how fast the model learns. A smaller

learning rate means that each tree has a smaller impact on

the final outcome, requiring more trees in the model but

often leading to better generalization (reducing the risk of

overfitting). Conversely, a higher learning rate makes the

model learn faster, which might lead to fitting the training

data too closely.

One of the significant advantages of Gradient Boosting

is its flexibility to be used for both regression and classifica-

tion problems. It is also highly effective in handling various

types of data, including missing values and heterogeneous

features (numeric and categorical).

5) Support vector machine

Support Vector Machine (SVM) [34–36] is a powerful,

versatile machine learning algorithm primarily used for clas-

sification tasks, but it can also be adapted for regression. At

its core, SVM is designed to identify the optimal boundary,

or decision surface, that best separates different classes in a

dataset. This boundary is chosen to maximize the margin,

which is the distance between the nearest data points of dif-

ferent classes (known as support vectors) and the decision

surface itself.

Linear SVM is its simplest form, SVM is used to cre-

ate a linear boundary between classes. This linear classifier
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works best when the data is linearly separable, meaning the

classes can be separated with a straight line (or hyperplane

in higher dimensions). The algorithm finds the hyperplane

that has the largest minimum distance to the training sam-

ples, maximizing the margin between the closest samples

of separate classes (support vectors). SVMs are highly ap-

preciated for their strong generalization capabilities. They

don’t just look for any line that can separate the classes; they

look for the line that can do so with the maximum margin.

This inherent capacity to generalize makes them very robust,

especially against overfitting when compared to other algo-

rithms. The problem of finding the optimal hyperplane is

an optimization problem, which means SVMs are based on

solid mathematical foundations. The solution to the SVM

optimization problem ensures that the model makes the most

balanced decision possible, minimizing error.

3.3 Multi-Model Fusion Strategy for Product

Price Prediction

In this research, we commence training five distinct

models and then proceed to introduce an innovative fusion

strategy for models aimed at boosting the accuracy and reli-

ability of predictive analytics. This methodology initiates

with the input of the original dataset into three varied mod-

els for the purpose of training. Utilizing the most effective

models—specifically Linear Regression, Random Forest,

and Gradient Boosting—predictions are generated for both

training and test datasets. The predictions from these top-

performing models are subsequently consolidated to create

a new feature set. The core of this strategy involves using

these combined features to train and refine the Random For-

est model further. We execute this experimental framework

using the sklearn library in a Python 3 environment. The

process for the model fusion strategy includes the following

phases: 1) Load the dataset and divide it into training and

test segments, maintaining a 70:30 split. Ensure consistency

in data splits across all models by setting the random state

parameter to a fixed value. 2) Train the three regression

models: Linear Regression, Random Forest, and Gradient

Boosting. Parameters are iteratively adjusted to discover

the most effective settings for each. 3) Following the de-

termination of the best individual model, amalgamate the

predictions from these models to forge a new set of input

features. 4) Employ these merged features to train and en-

hance a sophisticated Random Forest model. 5) Measure

the efficacy of the various models using statistical metrics

such as RMSE [37], MAE [38] and R² [39].

4. Results and Discussion

4.1 The Performance of Different Machine

Learning Models

Table 1 and Figures 5 through 11 meticulously present

the comparative performance of Linear Regression, Deci-

sion Tree, Random Forest, Gradient Boosting, and Support

Vector Regression models on a test dataset. The assessment

is based on standard metrics: MAE, RMSE, and the R²:

1) Linear Regression shows excellent performance with an

MAE of 153.64, an RMSE of 191.74, and an R² of 0.99958.

The prediction curve in Figure 5 closely matches the true

values, indicating a high accuracy and consistency of this

model. 2) Decision Tree has a higher MAE and RMSE of

232.26 and 291.45, respectively, with an R² of 0.99903. De-

spite its simplicity, the decision tree model exhibits robust

predictive power, although the variance in predictions is

higher compared to linear regression, as seen in Figure 6.

3) Random Forest improves on the Decision Tree with an

MAE of 173.23, an RMSE of 215.31, and an R² of 0.99947.

Figure 7 demonstrates that Random Forest predictions are

more consistent with the true values than those of the De-

cision Tree, showcasing its capability to handle overfitting

better. 4) Gradient Boosting presents an MAE of 165.28,

an RMSE of 204.51, and an R² of 0.99952. As depicted

in Figure 8, this model provides a tightly fitted prediction

curve that aligns well with the actual data points, reflecting

its effectiveness in sequential improvement from the errors

of previous trees. 5) Support Vector Regression (SVR) dra-

matically differs in performance with an extremely high

MAE of 7777.55 and RMSE of 9686.28, with a negative

R² of −0.061. Figure 9 illustrates a significant deviation
of SVR predictions from the true values, indicating poor

model performance and potential issues in kernel or param-

eter settings.

The bar charts in Figure 9 and Figure 10 provide a

stark visualization of the performance discrepancies among

the models. SVR’s error metrics are disproportionately

higher than those of other models, suggesting its inappli-

cability for this particular dataset or need for substantial
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parameter tuning. In addition, Figure 11 sharply contrasts

the effectiveness of each model in explaining the variability

of the response data. All models except SVR have an R²

value close to 1, indicating excellent predictability. The

negative R² for SVR confirms its unsuitability for the data,

as it fails to account for the variance around the mean.

Table 1. The performance of different models in testing dataset.

Model Name MAE RMSE R²

Linear Regression 153.643727 191.737282 0.999584

Decision Tree 232.261282 291.451099 0.999039

Random Forest 173.225308 215.310736 0.999476

Gradient Boosting 165.275236 204.513808 0.999527

Support Vector Regressor 7777.551840 9686.279784 −0.061316

Figure 5. The prediction curve based on linear regression.

Figure 6. The prediction curve based on decision tree.

Figure 7. The prediction curve based on random forest.

Figure 8. The prediction curve based on gradient boosting.

Figure 9. The prediction curve based on support vector regressor.

Figure 10. The prediction performance comparison in terms of

MAE and RMSE.

The comparative analysis underscores the strengths

and limitations of each regression model in handling spe-

cific types of data. Linear Regression, Random Forest, and

Gradient Boosting demonstrate superior performance and re-

liability for this dataset, making them preferable choices for

similar predictive tasks. The Decision Tree, while less accu-

rate than its ensemble counterparts, offers a simpler, albeit

effective alternative. In contrast, SVR’s underperformance

highlights the critical importance of model and parameter
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selection based on the nature of the data and the specific

requirements of the task. This study thus provides valuable

insights into selecting appropriate models for predictive an-

alytics, emphasizing the need for careful consideration of

model capabilities and limitations.

Figure 11. The prediction performance comparison in terms of R².

4.2 The Performance of the Proposed Model

Fusion-Based Approach

In this study, we developed and evaluated a novel

model designed to enhance prediction accuracy by lever-

aging the strengths of individual models: Linear Regres-

sion, Random Forest, and Gradient Boosting. This proposed

model is a fusion that strategically combines the predictions

from these models, aiming to capitalize on their individual

predictive capabilities to produce a superior unified output.

As detailed in Table 2, the proposed model achieves a

MeanAbsolute Error (MAE) of 149.664, which is lower than

that of any individual model used in its construction. Specif-

ically, it outperforms Linear Regression (MAE = 153.643),

Random Forest (MAE = 173.225), and Gradient Boosting

(MAE = 165.275). Additionally, it attains a Root Mean

Square Error (RMSE) of 189.098, also the lowest among

the models, further underscoring its enhanced predictive

precision.

The superiority of the proposed model is visually rep-

resented in Figure 12, where the prediction curve demon-

strates a closer adherence to the true values compared to

the individual models. This visual alignment indicates that

the hybrid model not only predicts with lower error mar-

gins but also maintains high consistency across the dataset,

showcasing a robust balance between bias and variance.

Table 2. The performance of the proposed model compared with

the single model.

Model Name MAE RMSE R²

Linear Regression 153.643727 191.737282 0.999584

Random Forest 173.225308 215.310736 0.999476

Gradient Boosting 165.275236 204.513808 0.999527

Proposed model 149. 664622 189.098844 0.999881

Figure 12. The prediction curve based on the proposed model.

4.3 Discussion

In the discussion of our research findings, it’s crucial

to acknowledge that while the fusion of multiple models can

yield lower error rates and enhanced predictive performance,

there are inherent limitations and challenges associated with

this approach that must be considered. But it still has great

potential in applications in many fields [40–42]. One of the pri-

mary drawbacks of model fusion is the increased complexity

of the resulting predictive model. Combining multiple mod-

els often leads to a system that is more difficult to interpret

than its individual components. For instance, while a single

model like Linear Regression provides clear insights into

the relationship between variables through its coefficients,

a hybrid model obscures these relationships under layers

of aggregation and weighting. This loss of interpretabil-

ity can be a significant disadvantage in applications where

understanding the model’s decision-making process is as

important as the accuracy of its predictions, such as in med-

ical or financial contexts where stakeholders must assess

risk and causality. Moreover, hybrid models typically re-

quire more computational resources. The process of training

multiple models and then combining their outputs can be

computationally expensive, especially with large datasets

or in real-time applications. This increase in computational

demand can limit the practicality of deploying such models

in environments with constrained resources. While model
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fusion can mitigate some of the overfitting risks by blend-

ing diverse predictive patterns, there’s still a risk that the

combined model might adapt too closely to the training data,

particularly if the individual models are already complex.

Ensuring that each component model is well-regularized and

that the fusion mechanism does not exacerbate overfitting is

crucial. The success of a hybrid model also heavily depends

on the performance of its component models. If one or more

of the individual models are poorly tuned or fundamentally

misaligned with the data’s underlying patterns, the overall

performance of the hybrid model can be adversely affected.

This dependency necessitates careful selection, tuning, and

validation of each component model.

5. Conclusion

The implementation of a hybrid model for online prod-

uct price prediction has demonstrated significant improve-

ments in prediction accuracy by effectively amalgamating

the capabilities of Linear Regression, Random Forest, and

Gradient Boosting models. The proposed model not only

reduces the Mean Absolute Error and Root Mean Square

Error but also closely aligns predicted values with actual

market prices, as evidenced by a high R² value. While this

model fusion approach enhances predictive performance, it

also introduces challenges such as increased computational

demands and potential complexities in model interpretation.

Future work should focus on optimizing these hybrid models

to balance computational efficiency and ease of interpreta-

tion, ensuring they are practical for real-world applications.

Moreover, continuous refinement of component models and

their integration strategies will be crucial to adapting to

evolving market dynamics and maintaining the relevance

of the predictive framework in the competitive landscape of

online retail.
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