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ABSTRACT

This study aims to investigate the use of machine learning algorithms to predict the settlements of the ground surface

triggered by tunneling using a shielding method. First, a 2D tunnel calculation scheme was proposed for nonlinear

construction stage analysis using the “contraction” load, which can be used to simulate the soil volume loss. Further, this

model was verified by comparing the solution with the analytical method and numerical simulation, which uses standard

modeling approaches, including in the spatial formulation. Then, after briefly describing the main theoretical substantiation

of machine learning techniques, the 2D scheme was used to create the dataset. Finally, the dataset was processed by the

machine learning algorithms: linear regression, decision tree, random forests, polynomial regression, ridge regression

and neural network, which showed the best forecasting ability (R2 = 0.985; RMSE = 0.000986). The results indicate

that machine learning can provide a robust approach for predicting ground settlements, mitigating risks associated with

tunneling operations. Additionally, this research highlights the potential of integrating advanced computational methods with

traditional engineering analyses, enhancing the accuracy and efficiency of settlement prediction. Future work will explore
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the applicability of these algorithms to different soil and geological conditions, aiming to further improve predictive models

in geotechnical engineering. By establishing a strong correlation between simulated parameters and machine-learning

outcomes, this study opens avenues for more intelligent and adaptive tunneling practices.

Keywords: Subway; Tunnel; Forecasting Ground Surface Settlement; Machine Learning; Artificial Neural Network;

Decision Tree

1. Introduction

Nowadays, machine learning algorithms have been

widely used in various aspects of human activity, continuing

to develop and improve. Within the framework of ground

surface settlement prediction, the ability of machine learning

to solve a regression problem is used, in which an algorithm

based on an initial dataset predicts the value. Moreover,

machine learning methods are adapted for various fields

of civil engineering, such as prediction of bridge deck de-

terioration [1], seismic damage prediction [2], tunnel crack

identification [3, 4], etc.

Many researchers are engaged in predicting the defor-

mations of the surface when tunneling with the help of arti-

ficial intelligence [5, 6]. While the vast majority of research

focuses on specific study cases, this article offers a gener-

alized approach to creating datasets from different projects

with variable parameters, such as tunnel depth, soil charac-

teristics and soil volume loss.

2. Problem Statement

To use the machine learning method for predicting the

ground surface settlements it is necessary to have a dataset

for training models. Previously, obtaining such a dataset

was associated with a large expenditure of time and com-

putational resources to create and calculate a finite element

model, but the tool “Contraction” inMidas GTSNX software

allows one to set shrinking of the tunnel lining. In general,

this approach is a convention, since it is impossible to assess

the stress-strain state of the tunnel lining in such conditions,

however this tool can be used in one specific engineering

task: assessing the impact of the construction of a new tun-

nel on the surface. During the construction of a tunnel by

the shield method, due to the gap between the outer shell of

the shield and the lining, a soil volume loss occurs, which

has an influence on the deformation of the ground surface.

Using the simplest geometric transformations, it is possible

to express the soil volume loss through the shrinking of the

tunnel lining.

The numerical simulation is a nonlinear construction

stage analysis of a planar calculation scheme. The lin-

ing material is assumed to be infinitely linearly elastic.

The physical and mechanical properties of the lining cor-

respond to the properties of concrete: modulus of elasticity

E = 3.8 × 104 MPa, Poisson’s ratio µ = 0.2, density ρ =

24.5 kN/m3. The shape of the lining is accepted according

to the standard design: diameter –6.0 m; thickness –0.3 m.

The distance from the ground surface to the center of the

tunnel z varies from 8 to 23 meters (Figure 1). The amount

of contraction varies from 0.1% to 2.7% (which corresponds

to about 5.3% of soil loss). The soil array is described by the

popular Mohr-Coulomb model with varying parameters:

2.5 ≤ E ≤ 50 MPa; 0 ≤ c ≤ 38 kPa; 7 ≤ ϕ ≤ 43°; 

0.3 ≤ µ ≤ 0.42

Figure 1. Accepted calculation scheme used for dataset producing.

Before performing the numerical simulations directly,

the verification of the method was carried out by solving a

test task, which is described in the following paragraph.
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3. Test Task

At first, the problem was solved analytically using the

Park solution [7]. The displacements in polar coordinate sys-

tem are obtained as follows:

ur = −1.5

E

(
a0
r

+
γa2

2
ln rsinθ

)
(1)

uθ = −1.5

E

γa2

2
(1 + ln r)cosθ (2)

And the surface settlements:

uz = ursinθ − uθcosθ = − 1.5
E[

a0

r sinθ + γa2

2 (ln r
(
sin2θ − cos2θ

)
− cos2θ)

] (3)

Where E is Young’s modulus, r and θ are the polar coor-

dinates (Figure 2), γ is the unit weight, a is the tunnel radius,

a0 is the coefficient depending on boundary conditions.

Figure 2. Coordinate systems (left) and boundary conditions of prescribed displacements (right).

The following boundary condition of the prescribed

displacements is considered around the tunnel:

ur (r = a) = −u0 (4)

The value u0 = 0.5g and g = gap parameter estimated by

following the procedure suggested by Lee [8].

Numerical simulation is performed in a planar and spa-

tial formulation (Figure 3). The two-dimensional problem

is an object of interest, since this model is used to create a

dataset, as mentioned earlier. The three-dimensional prob-

lem is a multi-stage nonlinear analysis, in which the soil is

sequentially extracted and the tunnel lining is installed. Next,

the “contraction” load and friction are added to the spatial

scheme. The friction between the shell element of the tunnel

lining and the solid element of the soil is represented as a

plane interface element [9].

The tunnel is accepted with a diameter of 5 m and a

thickness of 0.25 m, the distance from the surface to the

tunnel center is 20 m, the lining material is adopted with the

characteristics of concrete: E = 3.8× 104 MPa, µ = 0.2, ρ

= 24.5 kN/m3, the soil is assumed as sand: E = 30 MPa,

c = 10 kPa, ϕ = 25°, µ = 0.3, ρ = 20 kN/m3. The results are

shown in Figure 4.

Figure 3. 2D (left) and 3D (right) calculation schemes.
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Figure 4. Surface settlement values obtained by analytical solution and numerical simulation.

The spatial calculation scheme with a construction

stage analysis only under the influence of gravity gives the

smallest value of the settlement (0.00955 m). It is notewor-

thy that when the “contraction” load is added, the settlement

increases to 0.0125 m. The case is also calculated with addi-

tional consideration of the friction in the 3D scheme, which

increases the settlement to 0.0129 m. Due to the complexity

of accounting for the friction (the properties of interface el-

ements should be recalculated each time depending on the

parameters of the surrounding soil mass and the elements

themselves complicate achieving the desired convergence

of the solution) and its negligible influence ( 3.2%), it was

decided not to take the friction into account when generat-

ing the dataset to save time and computing resources. The

target 2D model itself, which is verified in this test task,

demonstrates the results of the settlement of 0.0135 m. The

maximum settlement value is obtained using an analytical

solution (0.0145 m).

Thus, when studying the issues of assessing the impact

of tunnel construction on the ground surface settlement, it is

permissible to use the “contraction” load. The flat calculation

scheme shows reliable results, the model can be considered

verified.

4. Machine Learning

Machine learning [10] is a branch of the science of ar-

tificial intelligence that studies methods for constructing

algorithms capable of learning. It is based on the idea that a

system of such algorithms can learn to identify patterns and

make decisions with minimal human involvement. Machine

learning is at the intersection of mathematical statistics, opti-

mization methods and classical mathematical disciplines, but

it also has its unique field of research related to the problems

of computational efficiency and retraining. Many methods

have been developed as an alternative to classical statistical

approaches and are closely related to information extraction

and data mining.

4.1. Linear Models

4.1.1. Ordinary Least Squares

Ordinary Least Squares (OLS) linear regression is a

statistical method used for modeling the relationship between

a dependent variable and one or more independent variables

by fitting a linear equation to observed data. The goal is to

find the line of best fit, which minimizes the sum of squared

differences between the observed response and the response

predicted by the linear model. The method provides an esti-

mate of the coefficients of the linear equation, which can be

used to make predictions about the response variable based

on new observations of the independent variables.

4.1.2. Ridge Regression

Ridge Regression is a type of regularized linear re-

gression algorithm that aims to minimize the residual sum of

squares between the predicted response and the true response

by adding a penalty term to the loss function [11]:

PRidge (β) = λ
∑p

j=1
β2
j (5)
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LRidge (β) = ‖Y −Xβ‖
2 + λβTβ (6)

This penalty term, called “L2 regularization”, helps to

reduce the model complexity and avoid overfitting. The reg-

ularization term is the sum of the squares of the coefficients,

multiplied by a hyperparameter lambda, which determines

the strength of the regularization. Larger values of lambda

result in a more restricted model with smaller coefficients,

while smaller values result in a less restricted model with

larger coefficients. The optimal value of lambda is usually de-

termined by cross-validation. Ridge regression is well-suited

for cases where the number of predictors is large compared

to the number of observations, or where some predictors are

highly correlated.

4.1.3. Polynomial Regression

Polynomial Regression is a form of regression analysis

in which the relationship between the independent variable

x and the dependent variable y is modeled as an nth degree

polynomial. In polynomial regression, the independent vari-

able is raised to a power to create a new set of predictors,

which can model non-linear relationships between the depen-

dent and independent variables. The model is trained using

a training dataset, and the coefficients of the polynomial are

estimated using optimization techniques such as gradient

descent. The goal is to find the polynomial that best fits the

data, as measured by an appropriate error metric. Once the

model is trained, it can be used to make predictions for new

data points.

4.2. Artificial Neural Network

Artificial neural network (ANN) is formed by several

neurons as an information processing unit serving as the ba-

sis for the performing of a function in accordance with its

task [12]. A neuron is an element that calculates an output

signal using a particular rule from a set of input signals. It

consists of weights inputs, a function of summation, a func-

tion of activation and output (Figure 5). Neurons can be

connected to each other in different ways, but the essence of

the neural network always remains the same — transmitting

information ahead.

Thus, the input data is sent to the hidden layers for

computing. Finally, the last hidden layer sends the processed

information to the output layer, and receives the results. In

this study, a fully connected neural network is used, in which

each neuron of one layer is sequentially connected to each

neuron of the subsequent layer, including the input, hidden

and output layers (Figure 6).

Figure 5. Simplified model of an artificial neuron.

Figure 6. Schematic of an artificial neural network.

Different weights describe the different influence of

neighboring neurons on a particular one. These parameters

are configured by the network itself during training. The

weighted sum of the input data is transmitted to the hidden

neurons, where it is transformed using the activation func-

tion. The process of obtaining output data is described by

the equation:

Y n+1
k = f

(∑N

i=1
Xn

i w
n
ki + bni

)
(7)

Where Y n+1
k is output of unit k in the nth layer, f is the func-

tion of activation, Xn
i is the input vector, wn

ki is a weight

vector, bni is the bias weight.

The initial values of the weights are often set randomly,

and the training of the neural network is the selection of

weights — backpropagation algorithm.

Application of the network training rules for backprop-

agation consists of two stages: feedforward and backward

propagation. A set of training examples called training set
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is given on the network. This training set is represented by

a feature vector called the associated input vector with an

output that is the target of the training. In other words, the

training set consists of an input vector and a target output

vector. Exodus from the network is an actual output vector.

Next, a comparison is made between the actual output pro-

duced and the target output by reducing the two outputs. The

result of the reduction is an error. Errors are used to make

changes to each weight by re-propagating it. Any weight

changes that occur can reduce errors. Cycle weight changes

(epochs) are carried out in each training set so that the 50

stop is reached, when the set number of epochs is reached or

when a set threshold value is passed. The backpropagation

network training algorithm consists of 3 stages:

(1) The feedforward stage. The input layer is first calcu-

lated by summing the weight and bias values up to the

output layer using a predetermined activation function.

(2) The stage of feedback (backpropagation). The differ-

ence between network output with the desired target is

calculated, which is then referred to as an error. Next

is the back-propagation phase, where the error factor is

propagated backward, starting from the corresponding

line directly with the units in the output layer.

(3) The stage of updating the weights and biases. The last

phase is modifying the weights to reduce occurred er-

rors [13].

4.3. Decision Tree

The decision tree is an effective tool for data mining

and predictive analytics. It helps in solving classification

and regression problems. The decision tree is a hierarchical

tree structure consisting of a “If ... then ...” rule. Due to

useusing the training set, the rules are generated automati-

cally during the training process. The rules are generated

by generalizing a set of individual observations (training

examples) describing the subject area. Therefore, they are

called inductive rules, and the learning process itself is called

the induction of decision trees. In the training set, a target

value should be set for the examples, since decision trees are

models created based on supervised learning. Two types of

trees are distinguished by the type of variable: classification

tree, when the target variable is discrete, and regression one,

when the target variable is continuous.

The root node, or the decision node, represents an op-

tion that will occur in splitting all records into two or more

mutually exclusive subsets. Internal nodes, or random nodes,

are one of the possible options available at this stage of the

tree structure; the upper edge of the node is connected to

its parent node, and the lower edge is connected to its child

nodes or leaf nodes. Leaf nodes, or end nodes, are the final

result of a combination of decisions or events (Figure 7).

Before compiling the model, the most significant in-

put variables shall be identified first, and then based on the

status of these variables the records at the root node and at

subsequent internal nodes shall be divided into two or more

categories or “bins”. Characteristics entropy, Gini index,

classification error, information gain, gain ratio and twoing

criteria [14] are related to the degree of “purity” of the resul-

tant child nodes (i.e., the proportion with the target condition)

and used to select between different potential input variables.

This splitting procedure continues until pre-determined ho-

mogeneity or stopping criteria are met. In most cases, not all

potential input variables will be used to build the decision

tree model and in some cases a specific input variable may be

used multiple times at different levels of the decision tree [15].

Figure 7. Schematic of a simple decision tree.

4.3.1. Classification and Regression Tree

(CART)

The CART (Classification and Regression Tree) algo-

rithm recursively divides the original dataset into subsets

that become more and more homogeneous with respect to

certain features, resulting in a tree-like hierarchical struc-

ture [16]. The division is carried out on the basis of traditional

logical rules in the form of IF (A) THEN (B), where A is

some logical condition, and B is the procedure for dividing
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a subset into two parts, for one of which condition A is true,

and for the other it is false.

At the first iteration, the root node of the tree is as-

sociated with the most optimal conditional judgment, and

the entire set of objects is divided into two groups. Two

branches can also branch off from each subsequent parent

node to the descendant nodes, which in turn are associated

with the boundary values of other most suitable variables and

determine the rules for further splitting (splitting criterion).

The final nodes of the tree are the “leaves” corresponding

to the solutions found and combining all the objects of the

training sample divided into groups.

The described process refers to the so-called “greedy”

algorithms that strive, regardless of anything, to build the

most “bushy” tree (also “deep tree”). Naturally, the more

extensive and bushier the tree, the better the results of its test-

ing will be on the training sample, but not as successful on

the test sample. Therefore, the constructed model must also

be optimal in size, i.e., contain information that improves the

quality of recognition, and ignore the information that does

not improve it. To ensure this, it is common to “prune” the

tree (tree pruning) – to cut off branches where this procedure

does not lead to a serious increase in errors.

It is impossible to find an objective internal criterion

that leads to a good compromise between error-free and com-

pact, thus the standard mechanism for optimizing trees is

based on cross-validation [17]. To do this, the training sample

is divided, for example, into 10 equal parts: 9 parts are used

to build a tree, and the remaining part plays the role of verifi-

cation aggregate. After repeating this procedure many times,

the tree that showed the best result during cross-validation

is selected from a certain set of candidate trees that have a

practically acceptable range of model quality criteria.

4.3.2. Random Forests (RF)

Random forests is a method invented after CART by

Leo Breiman, which is based on the use of a committee (en-

semble) of decision trees [18]. The essence of the algorithm is

that at each iteration a random sample of variables is made,

after which, on this new sample, the construction of a deci-

sion tree begins. At the same time, “bagging” is performed—

a sample of random two-thirds of observations for training,

and the remaining third is used to evaluate the result. This

operation is performed hundreds or thousands of times. The

resulting model will be the result of a “vote” of a set of trees

obtained during modeling.

4.4. Statistical Accuracy Measurement

When using forecasting machine learning models, there

is always some degree of uncertainty. The accuracy and cor-

rectness of the prediction results are characterized by the

magnitude of the prediction error, which shows the differ-

ence between the actually measured value and the predicted

one. There are five main indicators to evaluate the accu-

racy and forecasting power: the predictive coefficient of

determination R2, the mean absolute error (MAE), the mean

absolute percentage error (MAPE), the mean square error

(MSE), the root mean square error (RMSE).

R2(y, ŷ) = 1−
∑n

i=1 (yi−ŷi)
2∑n

i=1

(
yi−

−
y

)2 ,

where
−
y= 1

n

∑n
i=1 yi

(8)

MAE(y, ŷ) =
1

n

∑n

i=1
|yi − ŷi| (9)

MAPE(y, ŷ) =
1

n

∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (10)

MSE(y, ŷ) =
1

n

∑n

i=1
(yi − ŷi)

2
(11)

RMSE(y, ŷ) =

√
1

n

∑n

i=1
(yi − ŷi)

2
(12)

where y, ŷ — actual and predicted value respectively.

In this research, RMSE and R2 score are used to evalu-

ate the performance of machine learning algorithms.

4.5. Dataset

The dataset is a table of 400 rows, each of which con-

tains data on a separate calculation case, and 7 columns (soil

parameters: Young’s modulus, cohesion, frictional angle,

Poisson’s ratio; depth of location of the central axis of the

tunnel; the amount of lining shrinking through which the soil

volume lost is expressed; surface settlement, which is the

target value for forecasting). Figure 8 shows a correlation

matrix of features, from which it can be seen that the features

with the highest influence on the settlement are contraction

(0.74) and the distance from the surface to the center of the

tunnel (0.29).
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Figure 8. Correlation matrix of the features.

4.6. Results

To determine the reliability of the proposed machine

learning solutions, solving algorithms are trained with a train-

ing set. The entire volume of data is randomly divided in

training (60%), validation (20%) and test (20%) sets.

Figure 9 shows the results of comparing calculated

settlement values and predicted values by the algorithms.

Each graph contains dot diagrams, which are plotted relative

to the line y = x and show a correlation between predictions

of the models and settlements obtained by the numerical

simulation.

In Figure 10, the models are sorted in descending or-

der by the magnitude of the R2 score for the test set. The

neural network model has the best predictive ability with

the value R2 = 0.985; worst of all, as expected, the linear

regression model copes with the prediction with the value

of R2 = 0.879.

In Figure 11, the models are sorted by the RMSE value

from the largest value (Linear regression, RMSE = 0.00278)

to the smallest one (Neural network, RMSE = 0.000986).

Figure 9. Cont.
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Figure 9. Results of the forecasting models, the values of RMSE and R2 scores for each model.

Figure 10. Gradation of the models by value R2 Score.
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Figure 11. Gradation of the models by value RMSE.

5. Conclusions

This study shows that machine learning techniques 
can be used to accurately predict ground surface settlements 
caused by tunneling, thereby improving tunnel excavation 
efficiency.

The two-dimensional calculation scheme using the 
“contraction” loading is proposed; verification of the solution 
of this approach is carried out by comparing it with the spatial 
formulation of the problem and the analytical method. A the-
oretical description of machine learning algorithms is given. 
Then the data is processed and prepared for machine learn-
ing analysis. Finally, several machine learning algorithms 
are applied to the data, including linear regression, decision 
tree, random forest, polynomial regression, ridge regression 
and neural network to predict the settlements of ground sur-
face. The results show that the neural network outperformed 
the other algorithms in terms of accuracy, achieving an R-
squared value of 0.985.

Overall, the study highlights the potential of machine 
learning for improving the efficiency and accuracy of tun-
nel excavation. Authors hope that presented findings will 
encourage further research in this area and help to advance 
the field of tunneling engineering.

This article is intended as an initial study. In the fore-
seeable future, it is planned to search for data on settlements 
of the ground surface from real objects and construction 
sites. The model for the numerical simulation will be com-
plicated for more sensitive analysis: the use of two metro 
tunnels instead of one, which will simulate a real subway 
line; several layers of soil of different properties will be taken 
into account; it is assumed transition from the Mohr Coulomb

Model to the Hardening Soil Model [19], which more accu-

rately describes the behavior of soils.

Author Contributions

Conceptualization, M.M. and F.Y.; methodology, M.M.,

F.Y., K.S. and A.V.; software, M.M., K.S. and A.V.; vali-

dation, M.M., K.S. and A.V.; formal analysis, M.M., F.Y.;

investigation, M.M., N.I.; resources, F.Y.; data curation,

F.Y.; writing—original draft preparation, M.M.; writing—re-

view and editing, A.V.; visualization, N.I.; supervision, F.Y.;

project administration, F.Y.; funding acquisition, F.Y. All

authors have read and agreed to the published version of the

manuscript.

Funding

This work was financially supported by the National

Natural Science Foundation of China [52078428].

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data is available on reasonable request to the cor-

responding author.

47



Journal of Electronic & Information Systems | Volume 06 | Issue 02 | October 2024

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] Rashidi Nasab, A., Elzarka, H., 2023. Optimizing ma-

chine learning algorithms for improving prediction of

bridge deck deterioration: Acase study of Ohio bridges.

Buildings. 13(6), 1517. DOI: https://doi.org/10.3390/

buildings13061517

[2] Bhatta, S., Dang, J., 2023. Seismic damage predic-

tion of RC buildings using machine learning. Earth-

quake Engineering & Structural Dynamics. 52(11),

3504–3527. DOI: https://doi.org/10.1002/eqe.3907

[3] Dang, L.M., Wang, H., Li, Y., et al., 2022. Automatic

tunnel lining crack evaluation and measurement us-

ing deep learning. Tunnelling and Underground Space

Technology. 124, 104472. DOI: https://doi.org/10.

1016/j.tust.2022.104472

[4] Liao, J., Yue, Y., Zhang, D., et al., 2022. Auto-

matic tunnel crack inspection using an efficient mo-

bile imaging module and a lightweight CNN. IEEE

Transactions on Intelligent Transportation Systems.

23(9), 15190–15203. DOI: https://doi.org/10.1109/

TITS.2021.3138428

[5] Li, C., Li, J., Shi, Z., et al., 2022. Prediction of sur-

face settlement induced by large-diameter shield tun-

neling based on machine-learning algorithms. Geoflu-

ids. 2022(1), 4174768. DOI: https://doi.org/10.1155/

2022/4174768

[6] Liu, L., Zhou, W., Gutierrez, M., 2023. Physics-

informed ensemble machine learning framework for

improved prediction of tunneling-induced short- and

long-term ground settlement. Sustainability. 15(14),

11074. DOI: https://doi.org/10.3390/su151411074

[7] Park, K.H., 2004. Elastic solution for tunneling-

induced ground movements in clays. International Jour-

nal of Geomechanics. 4(4), 310–318. DOI: https:

//doi.org/10.1061/(ASCE)1532-3641(2004)4:4(310)

[8] Lee, K.M., Rowe, R.K., Lo, K.Y., 1992. Subsidence

owing to tunnelling. I. Estimating the gap parameter.

Canadian Geotechnical Journal. 29(6), 929–940. DOI:

https://doi.org/10.1139/t92-104

[9] Miller, M.R., Titov, E.Y., Kharitonov, S.S., et al., 2022.

The stress-strain state of the tunnel lining that crosses

the fault zone of soil blocks during an earthquake.

Communications-Scientific Letters of the University

of Zilina. 24(1), D9–D22.

[10] Miller, M., Yong, F., Hu, L., et al., 2023. Prediction

of subway vibration values on the ground level using

machine learning. Geotechnical and Geological Engi-

neering. 41(6), 3753–3766. DOI: https://doi.org/10.

1007/s10706-023-02486-6

[11] McNeish D. M., 2015. Using Lasso for predictor selec-

tion and to assuage overfitting: A method long over-

looked in behavioral sciences. Multivariate Behavioral

Research. 50(5), 471–484. DOI: https://doi.org/10.

1080/00273171.2015.1036965

[12] Fausett, L.V., 1993. Fundamentals of neural networks:

Architectures, algorithms, and applications. Pearson

Education India: New Delhi, India. p. 480.

[13] Afandi, A., Lusi, N., Catrawedarma, I.G.N.B., et al.,

2022. Prediction of temperature in 2 meters temper-

ature probe survey in Blawan geothermal field us-

ing artificial neural network (ANN) method. Case

Studies in Thermal Engineering. 38, 102309. DOI:

https://doi.org/10.1016/j.csite.2022.102309

[14] Patel, N., Upadhyay, S., 2012. Study of various deci-

sion tree pruning methods with their empirical com-

parison in WEKA. International Journal of Computer

Applications. 60(12), 20–25. DOI: https://doi.org/10.

5120/9744-4304

[15] Song, Y.Y., Ying, L.U., 2015. Decision tree meth-

ods: Applications for classification and prediction.

Shanghai Archives of Psychiatry. 27(2), 130. DOI:

https://doi.org/10.11919/j.issn.1002-0829.215044

[16] Breiman, L., Friedman, J., Olshen, R.A., et al., 1984.

Classification and Regression Trees, 1st ed. Chapman

and Hall/CRC: New York, US. DOI: https://doi.org/

10.1201/9781315139470

[17] Loh, W.Y., Shih, Y.S., 1997. Split selection methods

for classification trees. Statistica Sinica. 7, 815–840.

[18] Breiman, L., 2001. Random forests. Machine Learn-

ing. 45(1), 5–32. DOI: https://doi.org/10.1023/A:

1010933404324

[19] Cocco, L.J., Ruiz, M.E., 2018. Numerical implementa-

tion of hardening soil model. In: Cardoso, A., Borges,

J., Costa, P., et al. (eds.). Numerical Methods in

Geotechnical Engineering IX, Volume 1. CRC Press:
London, UK. pp. 195–203.

48

https://doi.org/10.3390/buildings13061517
https://doi.org/10.3390/buildings13061517
https://doi.org/10.1002/eqe.3907
https://doi.org/10.1016/j.tust.2022.104472
https://doi.org/10.1016/j.tust.2022.104472
https://doi.org/10.1109/TITS.2021.3138428
https://doi.org/10.1109/TITS.2021.3138428
https://doi.org/10.1155/2022/4174768
https://doi.org/10.1155/2022/4174768
https://doi.org/10.3390/su151411074
https://doi.org/10.1061/(ASCE)1532-3641(2004)4:4(310)
https://doi.org/10.1061/(ASCE)1532-3641(2004)4:4(310)
https://doi.org/10.1139/t92-104
https://doi.org/10.1007/s10706-023-02486-6
https://doi.org/10.1007/s10706-023-02486-6
https://doi.org/10.1080/00273171.2015.1036965
https://doi.org/10.1080/00273171.2015.1036965
https://doi.org/10.1016/j.csite.2022.102309
https://doi.org/10.1016/j.csite.2022.102309
https://doi.org/10.5120/9744-4304
https://doi.org/10.5120/9744-4304
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324

	Introduction
	Problem Statement
	Test Task
	Machine Learning 
	Linear Models
	Ordinary Least Squares
	Ridge Regression
	Polynomial Regression

	Artificial Neural Network
	Decision Tree 
	Classification and Regression Tree (CART)
	Random Forests (RF)

	Statistical Accuracy Measurement
	Dataset
	Results 

	Conclusions and Future Prospects

