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This paper investigates the finite-time H∞ control problem for a class of 
nonlinear discrete-time one-sided Lipschitz systems with uncertainties. 
Using the one-sided Lipschitz and quadratically inner-bounded conditions, 
the authors derive less conservative criterion for the controller design 
and observer design. A new criterion is proposed to ensure the closed-
loop system is finite-time bounded (FTB). The sufficient conditions are 
established to ensure the closed-loop system is H∞ finite-time bounded (H∞ 
FTB) in terms of matrix inequalities. The controller gains and observer 
gains are given. A numerical example is provided to demonstrate the 
effectiveness of the proposed results.

Keywords:
Finite-time H∞ boundedness
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1. Introduction

It is widely accepted that a large percentage of systems 
are nonlinear in nature. As a result, many studies on non-
linear systems have been conducted in the previous sev-
eral decades. However, most of the times, nonlinearities 
discussed in these papers focus on traditional Lipschitz 
condition [1-4]. It is worth noting that the Lipschitz nonline-
ar system in the above literature is usually only applicable 
to some nonlinear systems with sufficiently small Lip-

schitz constant. The so-called one-sided Lipschitz nonlin-
ear system was developed to overcome this difficulty. Lat-
er, quadratically inner-bounded condition was proposed 
by Abbaszadeh and Marquez [5]. It is worth noting that the 
traditional Lipschitz system is a special case of one-sided 
Lipschitz system and quadratic inner bounded system. 
Therefore, nonlinear systems satisfying quadratic inner 
boundedness condition and one-sided Lipschitz condition 
describe a wider class of nonlinear systems.

In practical engineering, many control problems can 
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be summed up as H∞ standard control problems: interfer-
ence suppression problem, tracking problem, and robust 
stability problem. Because of its practical importance, 
the H∞ control problem has always been an important 
research topic. The main purpose of H∞ control is based 
on reducing the influence of external disturbance input 
on the adjustable output of the system. In order to ensure 
the required robust stability, some results have been ob-
tained on the design of H∞ control [6-11]. This control is 
usually available on the assumption that the entire state is 
accessible. However, in numerous cases, this assumption 
is invalid, so it is very important to construct an observer 
that can provide the estimated value of the system state [12]. 
In recent years, the observer-based control has attracted 
the attention of researchers, and some results have been 
obtained [13,14]. 

Moreover, in some practical cases, the system state 
cannot exceed a defined boundary within a finite time in-
terval. Hence, the finite-time transient performance should 
be considered. Recently, finite-time stability and H∞ con-
trol problems have gradually become a well-researched 
topic and have been applied to many systems [15-18]. In 
2020, Wang J X et al. [15] considered the problem of robust 
finite-time stabilization for uncertain discrete-time linear 
singular systems. Feng T et al. [16] studied the problem of 
finite time stability and stabilization for fractional-order 
switched singular continuous-time system. Zhang T L  

et al. [17] looked at the finite-time stability and stabilization 
for linear discrete stochastic systems.

However, so far, the problem of observer-based fi-
nite-time H∞ control for discrete-time one-sided Lipschitz 
systems have not been fully addressed, which leads to the 
main purpose of our research.

In this paper, the observer-based finite-time H∞ con-
troller for nonlinear discrete-time system with uncertain-
ties is studied. We design the observer and observer-based 
controller. Using Lyapunov function approach and some 
lemmas, we obtain the criterion of H∞ FTB for the closed-
loop system. Finally, the validity of the proposed method 
is demonstrated by a numerical example.

This paper is organized as follows. Section 2 covers 
some preliminary information as well as the problem 
statement. In Section 3, the sufficient conditions of FTB 
an H∞ FTB for nonlinear discrete-time systems are estab-
lished. In Section 4, a numerical example is presented. 
Conclusions are given in Section 5.

Notations nR  denotes the n-dimensional Euclidean 
space. ∗  denotes a block of symmetry. ( )B B< >0 0  denotes 
the matrix B  is a negative definite (positive definite) sym-
metric matrix. We define ( ) THe S =S S+ .  and  
denotes the maximum eigenvalue and minimum eigen-

value of a matrix respectively. ,  is inner product in the 
space nR , i.e. given , nx y R∈ , then , Tx y x y= .  denotes the 
non-negative integer set. 

2. Problem Formulation

Consider the following uncertain one-sided Lipschitz 
discrete-time system:
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matrices, which are assumed to be of the form:
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where α and β are known constants.
Remark 1 Different from the traditional Lipschitz condition, constant ρ , α and β in the

nonlinearity considered here can be negative, positive or zero.
In this paper, we construct the following state observer-based controller:
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where ˆkx is the estimate of ,kx K and L are the controller and observer gains, respectively, to
be designed.

Let ˆ .k k ke x x  Then we have:

 (1)

where n
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where  is the so-called one sided Lipschitz constant.

Assumption 2 [19] ( )g x  verifies the quadratic in-
ner-bounded condition:

nonlinear discrete-time systems are established. In Section 4, a numerical example is presented.
Conclusions are given in Section 5.

Notations nR denotes the n -dimensional Euclidean space.  denotes a block of
symmetry. ( )B B 0 0 denotes the matrix B is a negative definite (positive definite) symmetric
matrix. We define ( ) THe S =S S . max ( )λ  and min ( )λ  denotes the maximum eigenvalue and
minimum eigenvalue of a matrix respectively. , is inner product in the space nR , i.e. given

, nx y R , then , Tx y x y .  denotes the non-negative integer set.

2. Problem Formulation
Consider the following uncertain one-sided Lipschitz discrete-time system:

1 ( Δ ( )) ( ) ,
( Δ ( )) ,

,

k k k k k

k k

k k k

x A A k x g x Bu w
y C C k x
z Ex Fw

     
  
  

(1)

where n
kx R is the n -dimensional state vector, l

ky R is the output measurement, and
m

ku R is the control input. q
kz R is the control output. The disturbance p

kw R satisfies:

, .
N

T
k k

k
w w d d



  2

0

0 (2)

, , ,A B C E and F are known real constant matrices. Δ ( )A k and Δ ( )C k are time-varying
matrices, which are assumed to be of the form:

1 1 1 2 2 2Δ ( ) Δ ( ) , Δ ( ) Δ ( ) ,A k M k N C k M k N  (3)
where , ,M M N1 2 1 and 2N are known real constant matrices, and Δ ( )( , )i k i  1 2 are the unknown
time-varying matrix-valued function subject to the following conditions:
Δ ( )Δ ( ) , , , .T
i ik k I k i   1 2 (4)

( )kg x is a nonlinear function satisfying the following assumptions.
Assumption 1 [19] ( )g x verifies the one-sided Lipschitz condition:

ˆ ˆ ˆ ˆ( ) ( ), , , ,2 ng x g x x x ρ x x x x R      (5)
where ρ is the so-called one sided Lipschitz constant.

Assumption 2 [19] ( )g x verifies the quadratic inner-bounded condition:
2 2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ), ,

ˆ, ,n
g x g x β x x α g x g x x x

x x R

     

 
(6)

where α and β are known constants.
Remark 1 Different from the traditional Lipschitz condition, constant ρ , α and β in the

nonlinearity considered here can be negative, positive or zero.
In this paper, we construct the following state observer-based controller:

1ˆ ˆ ˆ ˆ( ) ( ),
ˆ ,

k k k k k k

k k

x Ax g x Bu L y Cx
u Kx

     
  

(7)

where ˆkx is the estimate of ,kx K and L are the controller and observer gains, respectively, to
be designed.

Let ˆ .k k ke x x  Then we have:

 (6)

where  and  are known constants.
Remark 1 Different from the traditional Lipschitz con-

dition, constant ,  and  in the nonlinearity considered 
here can be negative, positive or zero.

In this paper, we construct the following state observ-
er-based controller: 
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where ˆkx  is the estimate of ,kx  K  and L  are the control-
ler and observer gains, respectively, to be designed.

Let ˆ .k k ke x x= −  Then we have:

1 1 1ˆ
ˆ( ) (Δ Δ ) ( , ) ,

k k k

k k k k k

e x x
A LC e A L C x g x x w

   

     

where ˆ ˆ( , ) ( ) ( ).k k k kg x x g x g x 

Let
TT T

k k kx x e .    The closed-loop system can be written as:

1 ( ) ,k+ k k kx Ax g x +Iw  (8)
where,

Δ
,

Δ Δ

( )
( ) , .

ˆ( , )
k

k
k k

A A BK BK
A

A L C A LC

g x I
g x I

g x x I

  
    

   
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  

(9)

The following definitions and some useful lemmas are introduced to establish our main
results.

Definition 1 (FTB) The closed-loop system (8) is said to be FTB with respect to
( , , , ),c c N R1 2

where c c 1 20 , ,R  0 if
 0 0 1 2 , 1,2, , .T T

k kx Rx c x Rx c k N      (10)
Definition 2 ( H  FTB) The closed-loop system (8) is said to be H  FTB with respect to

( , , , , )c c N R γ1 2
, where c c 1 20 , R 0 , if the system (8) is FTB with respect to ( , , , )c c N R1 2

and under the zero-initial condition the following condition is satisfied

,
N N

T T
k k k k

k k
z z γ w w

 

 2
0 0

(11)

where γ is a prescribed positive scalar.
Lemma 1 [18] Given constant matrices ,X X1 2 and X 3 , where TX =X1 1

, TX =X 2 2 0 , then

we obtain that TX +X X X 1
1 3 2 3 0 if and only if .

TX X
X X
 

  
1 3

3 2

0

Lemma 1 [18]

Lemma 2 [10] Let ,D S and Δ be real matrices with appropriate dimensions and
Δ Δ ,T I the following inequality holds:

1ΔS Δ .T T T T TD S D DD ηS S
η

   (12)

Lemma 3 [11] For matrices , ,Λ Λ Λ1 2 3 and Φ with appropriate dimensions and scalar φ ,
the following inequality holds,

,T TΛ +Λ Λ Λ Λ 1 3 2 2 3 0

if the following conditions satisfied:

.
T T

T

Λ φΛ +Λ Φ
φΦ φΦ

 
    

1 2 3 0 (13)

The goal of this paper is to construct an observer-based controller such that the system (8)
isH  FTB.

3. Main Results
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Furthermore, the controller gain is given by K Φ V 1 and observer gain is L P Y 1 .
Proof We first prove that the system (8) is FTB. So, we define the Lyapunov functional

candidate as:

 
and observer gain is L P Y−= 1 .
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12. In the left column on page 3, in the row right below equation (11), please change ‘ a’ to
‘ γ ’.

13. In the left column on page 3, the second line in Lemma 2, please change ‘ Δ ΔT I ’ to
‘Δ ΔT I ,’(add a comma).

13. In the left column on page 3, the line above equation (13) ‘if the following conditions
satisfied:’ should not be indented.

14. On the left bottom of page 4, formula (20a-20d) should be changed as follows:
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where , ,ε ε ε1 2 3 and ε4 are arbitrary strictly positive scalars.
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Using (14), we get that
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Using (14), we get that
.T

k kx Rx c 2

According to Definition 1, the system (8) is FTB. This completes the proof.
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and other parameters are given in (16). Furthermore, the controller gain is given by K Φ V 1

and the observer gain is .L P Y 1
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From (40), it is obvious that (31) holds. From Theorem 1, we get that the system (8) is FTB.
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From (40), it is obvious that (31) holds. From Theorem 1, we get that the system (8) is FTB.
According to Definition 2, the system (8) is H  finite-time boundedness. The proof is

completed.

Under zero-initial conditions, kV ≥ 0  and V =0 0. There-
fore, we have

,

Θ Θ
Θ Θ Θ

Θ = P
P

 
 
 
 
 
 
  

16 18

26 27 28

2

0 0 0

0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

,

,

, ,
( )

T T
N

Θ Θ Θ
Θ Θ Θ

Θ = Θ
Θ

Θ

γΘ Θ E E Θ I F F
μ

 
  
  
    
     

    


66 68 69

77 79 7 10

3 88

99

1010

2

11 11 55

0 0

0

0 0

0

1
 

and other parameters are given in (16). Furthermore, the controller gain is given by K Φ V 1

and the observer gain is .L P Y 1

Proof. We show that for any 0,kw  under the zero-initial condition the output kz
satisfies

.
N N

T T
k k k k

k k
z z γ w w

 

 2
0 0

Choose the same Lyapunov function as (17) and define
Δ .T T

k k k k k k kJ V μV z z w Qw    (39)
Let

.
( )N
γQ I
μ




2

1

Then from (38), we have
.kJ  0 (40)

From (40), it is obvious that

( ) [ ] ( ) .
k

k i T T k
k i i i i

i
V μ w Qw z z μ V


 



    
1

1
0

0

1 1

Under zero-initial conditions, kV  0 and V 0 0 . Therefore, we have

( ) [ ].
k

k i T T
i i i i

i
μ w Qw z z


 



  
1

1

0

0 1

It follows that

( ) .
( )

k k
T N T
i i i iN

i i

γz z μ w w
μ

 

 

 
 

21 1

0 0

1
1

It is deduced that

.
N N

T T
i i i i

i i
z z γ w w

 

 2
0 0

(41)
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Proof. The proof is similar to the proof of Theorem 2, omitted here.

Remark 5. Some new criteria of observer-based finite-time H  control for discrete-time
one-sided Lipschitz systems with uncertainties are given in Theorems 1 and 2. The main novelty
of equation (26) is that the bilinear term TP BK can be eliminated by defining matrix variables Φ
and .V
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.

5. Conclusions

The paper discusses the observer-based finite-time H∞  
control problem for a class of one-sided Lipschitz non-
linear discrete-time system with parameter uncertainties 
and external disturbances. By using one-sided Lipschitz 
condition and inner-bounded condition, a new criterion 
is obtained to ensure the closed-loop system is H∞  FTB. 
The observer and controller gains are designed. Finally, a 
numerical example is provided to demonstrate the appli-
cability and reduced conservativeness of the presented re-
sults. Furthermore, this paper does not consider time-var-
ying delay. Therefore, the problem of observer-based 
finite-time H∞  control for nonlinear discrete-time systems 
with time-varying delay can be investigated in the future 
work.
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This paper proposes a batteryless sensing and computational device to 
collect and process electrocardiography (ECG) signals for monitoring 
heart rate variability (HRV). The proposed system comprises of a passive 
UHF radio frequency identification (RFID) tag, an extreme low power 
microcontroller, a low-power ECG circuit, and a radio frequency (RF) 
energy harvester. The microcontroller and ECG circuits consume less 
power of only ~30 µA and ~3 mA, respectively. Therefore, the proposed 
RF harvester operating at frequency band of 902 MHz ~ 928 MHz can 
sufficiently collect available energy from the RFID reader to supply power 
to the system within a maximum distance of ~2 m. To extract R-peak of 
the ECG signal, a robust algorithm that consumes less time processing is 
also developed. The information of R-peaks is stored into an Electronic 
Product Code (EPC) Class 1st Generation 1st compliant ID of the tag and 
read by the reader. This reader is functioned to collected the R-peak data 
with sampling rate of 100ms; therefore, the user application can monitor 
fully range of HRV. The performance of the proposed system shows that 
this study can provide a good solution in paving the way to new classes of 
healthcare applications.

Keywords:
Batteryless ECG sensor
Heart rate monitoring
UHF RFID

1. Introduction

Wearable wireless body devices are widely deployed 
in health monitoring system nowadays. However, most of 
the distributed body sensor nodes consume more power 
due to wireless data transmission power [1-3]. To overcome 
the serious drawback in specific applications, in this work, 

the UHF RFID technology that does not require power 
to communicate with base station is considered instead 
of conventional wireless methods such as the ZigBee, 
BlueTooth, and WiFi standards. In addition, a RF energy 
harvester was designed to collect RF energy that is come 
from RFID reader for supplying power to the ECG sensor 
module. Therefore, the proposed system can power inde-

mailto:tvthang@ntt.edu.vn
https://doi.org/10.30564/jeis.v4i2.5225
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pendently in normal operation duration. 
HRV is one of critical parameters to diagnose a num-

ber of medical conditions, including diabetes, sleep ap-
nea, cardiovascular diseases, and mental stress [4]. HRV 
measurements are basically extracted from original ECG 
signals that are collected by wearable devices. These 
wearable devices traditionally transmitted data to the host 
over Bluetooth, ZigBee, or WiFi links [5]. However, some 
wearable sensors for measuring the biomedical signals 
showed that the power consumption of wireless standards 
consumes significant average power of 14.8 mW and 30.7 
mW in Bluetooth low energy (BLE) and ZigBee, respec-
tively [6]. In actual cases, assisted battery-based wearable 
devices need to replace battery after dozens of operating 
hours due to high wireless transmission power. Therefore, 
a compact, long life, real-time HVR assessment device 
has to be designed to enable and expand HVR diagnostic 
applications in future.

Recently RFID has become the critical component in 
the design of various applications in industries and social 
life. Emerging RFID applications extend from tracking 
areas, cold chain management, and patient identification [7], 
to battery-less sensing applications using RF energy har-
vester. A low-cost and battery-less smart sensor tag oper-
ating at high frequency (HF) can measure temperature and 
relative humidity within distance of 30 cm for monitoring 
the freshness of packaged vegetable. To monitor tempera-
ture and humidity in far distance of 27 m in outdoor envi-
ronment, a long-range UHF RFID tag with assisted solar 
panel was developed. Moreover, RFID sensor tag can be 
used to collect physiological signals from human body. A 
wearable UHF RFID-based smart tag that does not require 
battery can monitor electroencephalogram (EEG) signal 
at the distances up to 0.8 m. The autonomous sensor tags 
that operate at UHF band can measure ECG signals for 
monitoring HR and HRV [8]. The structure of our paper 
is organized as follows: Section 2 presents the related 
works; Section 3 introduces a system design; Section 3 
gives an explanation of the proposed algorithm; Section 4 
describes experimental results; and conclusions is shown 
in Section 5.

2. Related Works

2.1 UHF RFID System

Basically, the RFID systems consist of small low-cost, 
wireless battery-free devices, called tags, which use the 
radio signal from a specialized RFID reader for power 
and communication. When queried, each tag responds to 
a unique identification number by reflecting energy back 

to the reader through backscatter modulation. Tags are 
often application-specific fixed-function devices that have 
a range of 10 cm ~ 50 cm for high frequency (HF) devices 
and 3 m ~ 10 m for UHF tags [9,10]. The development of 
RFID technology has produced a robust physical layer ca-
pable of wirelessly powering and querying a tag. This core 
technology enables a new class of wireless battery-free 
devices with communication. This study just focuses on 
design of the UHF RFID-based sensor tag that operates at 
frequency of ~915 MHz.

2.1.1 Types of RFID Tags

Typically there are three types of RFID tags, namely, 
passive, semi-passive, and active tags [11]. The operation of 
each is shown in Figure 1.

Figure 1. Configuration of three types of tags

Passive tag: This type of tags contains no power supply 
on board; therefore, they are very cheap and small. Pas-
sive tags absorb their energy when they enter an electro-
magnetic field (also called Near Field) created by RFID 
reader’s antenna. The Near Field can be proximately cal-
culated by the following equation: r = λ / (2*π), where λ 
is the wavelength. Due to the reason of no power supplied 
on board, the read range of passive tags is very short of 
several mm. Once a RFID reader has interrogated passive 
tags, and passive tags have absorbed enough energy, they 
use backscatter which is an RF technique to send their 
data back to RFID reader.

Semi-passive tag: The main difference is to require 
battery compared with passive tag. Batteries in semi-pas-
sive tags are only used to power the internal circuitry. 
The semi-passive tags still need to be presented inside the 
Near Filed in order to absorb power for data transmission 
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between RFID readers and themselves. The advantage of 
semi-passive tags is longer read ranges than passive tags 
because the energy they absorb from Near Field is fully 
used to transmit data only. Batteries in semi-active tags 
are used exactly the same as those in active tags; however, 
the energy will only be released to power the tags when 
the tags are being interrogated by RFID readers. 

Active tag: Unlike passive tags, this type of tags comes 
with power supplied on board such as battery. Since they 
have their own power supply, they do not need to be 
powered by the Near Field of RFID readers’ antennas. 
Therefore, passive tags have longer read range than pas-
sive tag. The drawbacks are that they are more expensive 
and bigger in size. Active tags send out signals which are 
encoded with their identifiers at regularly scheduled rate 
usually between 1 to 15 seconds.

2.1.2 UHF RFID Air Communication Protocol

There are two main air communication protocols that 
are involved in developing standards for UHF RFID 
technology, namely, EPCglobal (electronic product code) 
GEN2 (second-generation) and ISO (international stand-
ard organization) 1800-Part 6. In this study, the EPCglobal 
GEN2 is only considered due to the proposed application.

EPCglobal is a joint venture between Uniform Code 
Council (UCC) and EAN International. The organization 
carries the mission of the former Auto-ID (auto identifica-
tion) Center at MIT (Massachusetts Institute of Technolo-
gy). It is primarily goal is to make the final EPC standard 
an official global standard. The EPC class types are sum-
marized in Table 1 and an example of Electronic Product 
Code (EPC) structure is presented in Table 2 [12].

Table 1. EPC class types

EPC class type Feature Tag type

Class 0 Read only Passive (64 bits only)

Class 1 Write one/ Read many
Passive (96 bits 
minimum)

Class 2 Read/Write
Passive (96 bits 
minimum)

Class 3
Read/Write with battery 
power to enhance range 

Semi-active

Class 4
Read/Write active 
transmitter

Active

2.1.3 Read Range Calculation

To calculate the reading range from the reader to the tag 
in frequency range of UHF band we can use the Friis equa-
tion. With the Friis equation, we can immediately draw 
the reversed link diagram for a directional antenna: the 

received power is simply increased by antenna again [11].  
The results are shown in Figure 2.

Table 2. EPC code structure

Code Representation 

01 Version of EPC (8 bits header)

115A1D7
Manufacture Identifier; 28 bit (> 16 million possible 
manufactures)

28A1E6
Product Identifier; 24 bit (> 16 million possible 
products per manufacture)

421CBA30A
Item Serial Number; 36 bit (> 68 billion possible 
unique items per product)

Figure 2. Forward and reverse link budgets for directional 
antenna

The received power is the same as in the isotropic case, 
even though the tag is twice as far away because the pow-
er at the tag is the same in both cases, and the received 
power is decreased by 6 dB due to the larger distance but 
increased by 6 dB due to the receiver antenna again. We 
can also construct a mathematical statement of the same 
relationships using the Friis equation by defining the gain 
of the tag antenna Gtag and a backscatter transmission loss 
Tb (= 1/3 or –5 dB). Then we have:

2
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r

λ
π
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 

 (1)

2

, , 4RX reader TX tag tag readerP P G G
r

λ
π

 =  
 

 (2)

4
2 2

, , e 4RX reader TX reader b r ader tagP P T G G
r

λ
π

 =  
 

 (3)

In the most general case, the power received at the reader 
does as the inverse fourth power of the distance. It is also 
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proportional to the square of the antenna gains, so when re-
verse link power is important such as passive tag, the antenna 
gain plays a very large role in achievable read range. Real tag 
antennas have some gain, but it is typically modest (around  
2 dB, since they are usually dipole-like), and since the appli-
cation do not always control the exact orientation of the tag 
antenna and may not be able to guarantee that the main beam 
of the tag antenna is pointed at the reader, it is prudent to 
count on minimal gain from the tag antenna.

Using the Friis equation, we can also provide a couple 
of convenient range equations that can be useful for quick 
estimates. First, defining the minimum power, the tag re-
quires as Pmin,tag, therefore the forward-link-limited range 
can be obtained:

min,4
TX reader tag

forward
tag

P G G
R

P
λ
π

 =  
 

 (4)

and defining the minimum signal power for demodulation 
at the reader as Pmin,rdr, the reverse-link-limited range can 
be obtained:

2 2
,

4

min,4
TX reader b reader tag

reverse
rdr

P T G G
R

P
λ =  

 
 (5) 

2.2 Real-time ECG R-peak Detection Algorithm

Traditionally ECG waveforms are usually recorded in a 
clinical setting by medical professionals using twelve leads 
attached to the patient [13]. This work has developed a three-
lead ECG device for use by person at home. The ECG sig-
nals recorded by human body with a three-lead suffer greatly 
from baseline wandering and high frequency noises, as com-
pared to ECG signals recorded with twelve-leads in a clinical 
setting. Therefore, an accurate R-peak detection algorithm 
is an important step in ECG analysis. Various methods have 
been proposed in the past to detect R-peak under challenge 
conditions by using wavelet transform or Hilbert transform 
[14-16]. However, abovementioned methods consume more 
processing time and that suite to be applied in PC application 
or high-speed smart phones. In this study, we propose a new 
real-time R-peak detection algorithm for three-lead mobile 
ECG recordings. The proposed algorithm is simple to im-
plement, computationally efficient, and does not require any 
signal pre-processing. This conceptual simplicity is a quality 
that distinguishes our approach from existing solutions. And 
therefore, the proposed algorithm consumes less processing 
time and can easily be applied into firmware for low-speed 
MCU based applications. 

2.2.1 Characteristics of ECG Waveforms under 
Challenge Conditions

Recording ECG waveforms under motion artifacts and 

respiration conditions causes the signals containing data 
losses, low and high frequency noises. Figure 3 shows an 
example of the ECG waveforms with data loss. Therefore 
the R-R interval in case of data loss is difficult to release 
by conventional R-peak detection method. Basically, the 
ECG comprises four different waves, namely, Q-wave, 
R-wave, S-wave, and T-wave; among them, R-wave and 
T-wave have higher amplitude compared to others. Most 
of cases, R-wave amplitude is bigger than T-wave. How-
ever, in specific case, as shown in Figure 4, the T-wave 
amplitude can compare with R-wave due to motion ar-
tifacts or respiration conditions. In this case, the R-peak 
detection method is easy to makemistakes. Therefore, the 
proposed algorithm focuses on considering those errors to 
overcome. 

Figure 3. ECG waveforms with data loss

Figure 4. ECG waveforms under motion artifacts or respiration conditions.Figure 4. ECG waveforms under motion artifacts or 
respiration conditions

2.2.2 Algorithm

The proposed algorithm is a modified algorithm that 
was studied in previous work for real-time peak detection 
of PPG signals [17]. Figure 5 shows the operation of the 
proposed R-peak detection method.

In this method, a threshold distance that was described 
in Equation (6) is used to detect R-peak as following:

The reference distance is an adaptive value, dadt, given 
by Equation (1).

In Equation (1), K is a dynamic value that depends on the 
peak-peak amplitude (VP-P) of the AC component in the 
PPG signal; n is the number of samples from the last local 
extreme point to the current point; hc is the current heart rate; 
fs is the sampling frequency. With each new detected R-peak, 
If EPpos, which is the distance from the previous R-peak point 
to the current one, is lower than RP, the peak is considered to 
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be a fake point and is removed as shown in Figure 6. There-
fore, the problem in Figure 4 will be solved. In the proposed 
method, refractory period (RP) that enables us to determine 
the premature peaks and dth are empirically chosen as 55% of 
the previous R-R value and 5% of the previous extreme point 
amplitude, respectively.

Figure 5. Proposed real-time R-peak detection method

 (6)

The proposed method can accurately detect R-peak of 
ECG waveforms under challenge conditions and elim-
inate error peak like premature peaks. However, some 
error peaks that come from data loss problems as shown 
in Figure 3 cannot be moved by the proposed method. 
Therefore, the random error detection method is used to 
eliminate those error peaks.

Figure 6. Comparison between R-R and RP for 
eliminating error peaks

3. System Design & Implementation

The integration of sensing capability into UHF RFID 

tags has recently generated a lot of interest among the 
RFID community [10,18,19]. In any sensor enabled RFID sys-
tem data collection is done continuously. Data collection 
in this context can refer to the computation of statistical 
means and moments, as well as other cumulative quanti-
ties that summarize the data obtained by the system. One 
of important application areas is healthcare where sensor 
enabled RFID tags are used in hospitals, clinics, and at 
home to provide various healthcare services by collecting 
different environmental and physiological data [20]. This 
work also focused on design a health-monitoring system 
based on RFID technology applying in home healthcare 
services. 

Figure 7 shows the block diagram of the proposed sys-
tem, including a UHF RFID tag, a MCU, an ECG module, 
a voltage monitor module, and RF energy harvester. The 
tag that does not require battery can wirelessly communi-
cate with RFID reader. In this work, the proposed system 
can be powered by energy from the RF harvester that op-
erates at the frequency of ~915 MHz to collect available 
RF energy from the reader. However, received RF energy 
is not always sufficient to supply to the system. Therefore 
a voltage monitor is designed to manage the power. The 
proposed ECG sensor tag can collect ECG signal, then 
the received data are processed and transmitted to the host 
over the reader as shown in Figure 8. 

Figure 7. Block diagram of the proposed ECG sensor tag

Figure 8. Architecture of the proposed UHF RFID system

3.1 RFID Tag

The RFID tag is built around the SL900A (AMS Co., 
Australia) that is an EPC global class 1 and class 3 com-
pliant tag chip. Figure 9 shows the block diagram of the 
tag chip [21].
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Figure 9. Block diagram of SL900A

The tag chip comprises of some main components: 
an internal temperature sensor, a SPI interface module 
for communication data with external MCU (using four 
signals: Din, Dout, SCLK, and SEN), an external sensor 
front-end circuit for interfacing with two other external 
sensors (EXT1 and EXT2), and a power management 
module that is used to supply voltage from external pow-
er in semi-passive mode of the tag. Figure 10 shows the 
schematic circuit of the proposed tag that can operate 
in two different strategies, namely, passive mode and 
semi-passive most. The SPI signals (MISO, MOSI, SCK, 
SEL) are connected to MCU for receiving ECG data; the 
battery connecter is wired to the RF harvester in semi-pas-
sive mode to enhance read range; whereas TP1, TP2 is 
connected to the tag antenna as shown in Figure 11. 

SCK

TP2
1

L1
2 1

TP1
1

U2

SL900A_AMS

3
4

8

1

5

2

6 7

9
10
11
12

13141516

ANT
DIGItest

V
ss

Vpos

V
re

f

Vssa

E
X

T
1

E
X

T
2

SEN
SCLK

Din
Dout

V
ba

t
M

E
A

S
E

X
C

A
N

A
te

st

J1

VSEN

1
2

J8

EXT. SENSORS

123

MOSI
MISO

SEL

J6

BATTERY

1
2

Figure 10. Schematic circuit of the proposed tag

Referring to functions of the SL900A [22], the designed 
tag antenna has parameters as shown in Figure 11. How-
ever, matching inductor (L1) has to be selected to obtain 
frequency of UHF band for operation of the tag. This 
study found the best value of 13.4 nH among values from 
5.2 nH to 16.4 nH for inductor L1 by using the network 
analyzer to measure maximum antenna gain at UHF band 

(860 MHz ~ 960 MHz) as shown in Figure 12.

Figure 11. Design of the proposed tag antenna

Figure 12. S11-value of the proposed tag antenna with L1 
at 13.4 nH

3.2 MCU, ECG, and Harvester Modules

Figure 13 shows the block diagram for MCU, ECG, 
and harvester modules. The MCU is created around an ex-
treme low-power microcontroller (PIC16F15xx); the ECG 
module is based on the ECG circuit that was presented 
in the next section; whereas the harvester is built around 
the P1110 (Power Cast Co., USD) that can collect RF en-
ergy. In this work, a super-capacitor (C1) whose value is 
0.22 F is used to store received power from the harvester. 
To remain the proposed system in stable operation state, 
the K-switch is designed to manage the received power. 
Figure 14 shows the schematic of the K-switch that com-
prises of a voltage monitor (MAX6264, MAXIM Co.) and 
a NPN-CMOS transistor. When capacitor voltage is lower 
a threshold, the K-switch will be off; when the voltage is 
equal or greater the threshold, the K-switch will be on to 
supply power to the proposed sensor system. 

3.3 The ECG Module

Differences in the speed of wavefront propagation 
through the cardiac cycle are reflected by different fre-
quencies content of ECG waves. The content of T wave 
lays mostly within a range from zero (DC) to 10 Hz. 
The content of P wave is characterized by 5 Hz ~ 30 Hz 
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frequencies. The content of QRS usually contains with-
in 8 Hz ~ 50 Hz frequencies while abnormal ventricular 
conduction is characterized by high frequencies (above 
70 Hz), forming notches on the QRS. However, the full 
spectrum of frequencies producing the QRS complex has 
not been adequately explored. In this study, we chose the 
frequency of ECG signal from 0.5 Hz to 50 Hz. The pro-
posed ECG circuit is designed using 3 electrodes (LA -  
left arm, RA - right arm and RLD - GND) as shown in 

Figure 15 and Figure 16. The ECG signal obtained from 
the human body is fed through an IA (Instrument) ampli-
fier. Amplifier), then passed through an HPF (High Pass 
Filter) filter with a cutoff frequency of 0.2 Hz to filter out 
baseline noise, then passed to a PA (Power Amplifier) 
amplifier to increase the signal amplitude, then fed into a 
120 Hz LPF (Low Pass Filter) to eliminate high frequency 
noise before filtering out power line interference using a 
NF (Notch Filter) to extract the ECG raw signal.

Figure 13. Block diagram of the sensor module with energy harvester
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Figure 14. Schematic circuit of the K-switch

Figure 15. Block diagram of the proposed ECG circuit
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3.4 The Power Management

The harvesting energy management plays a very im-
portant role in voltage distribution to the main power 
consuming components, the design of which is shown in 
Figure 17. In this design, the harvested energy is recti-
fied and stored in a 50 mF super capacitor, which is then 
connected to a 2.1 V voltage lever to close the K1 circuit 
that powers an MCU. When powered, the MCU controls 
the power obtained through the voltage divider bridge R1 
and R2. When the voltage is enough, the MCU will close 
K2 to provide the ECG circuit to receive the signal and 
transmit it to the reader. The harvesting energy control 
algorithm is shown in Figure 18. When the MCU device 
is not powered on, the harvester voltage detector checks if  
V > 2.1 V, it will power the MCU, at which point the 
MCU checks. control energy, when reaching 3.2 V will 
activate the ECG measuring circuit to work and collect 
data.

Figure 17. Block diagram of the proposed power manager

Figure 18. System power controlling

4. Experimental Results

Energy harvesting ECG signal measuring device has 
been implemented as Figure 19, where Figure 19a is the 
top side showing upper-capacitor devices (50 mF/5 V) 
and ECG signal measuring circuit while Figure 19b is the 
bottom side showing the designed PCB-antenna and the 
dedicated power harvester, the MCU, the Voltage mon-
itor, and the electrodes. Experimental results are shown 
from Figure 20 and Figure 21. The results showed that the 
collected power at distance of 2 m from reader to the pro-
posed ECG sensor. They verified that the proposed system 
works well with the implemented parameters. The imple-
mented circuit could monitor HRV when it is attached on 
the human body.

Figure 16. Schematic circuit of the proposed ECG circuit
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The proposed R-peak detection was codded into the firm-
ware for MCU in the proposed system to detect the peak 
of the original ECG signals. Figure 22 shows results of the 
threshold-based method to extract R-peak from ECG raw 
signal; the results addressed some error peaks due to noise, 
so that the HRV also have some wrong values (very low val-

ue). Figure 23 shows the results of the proposed algorithm. 
The results show that premature peaks can be detected. 
The experimental results highlight the performance of the 
proposed algorithm under challenge conditions. Therefore 
the proposed algorithm can be a good solution for real-time 
R-peak detection in MCU application. 

Figure 19. Photograph of the proposed ECG sensor tag;
a) top side, b) bottom side

Figure 19. Photograph of the proposed ECG sensor tag;

a) top side, b) bottom side

Figure 20. Operation of the boost circuit under various input voltage
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Figure 21. Collected power at distance of 2 m from reader to the proposed ECG sensor tag

Figure 22. Comparison between R-R and RP for eliminating error peaks

Figure 23. Experimental results of HRV monitoring using the proposed system
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5. Conclusions
In this paper, we proposed and implemented a battery 

less sensing and computational device for monitoring 
heart rate variability. The implemented system operated 
well with an ECG circuit that consumes less power of 
only ~30 µA and ~3 mA on RF harvester at frequency 
band of 902 MHz ~ 928 MHz. The performance of the 
proposed system shows that this study can provide a good 
solution in paving the way to new classes of healthcare 
applications.
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friendly manner where facility managers can benefit from this application. 
Hence, this research focuses on gathering design guidelines for a deep 
learning-based application and further validates the design considerations 
with a developed application for efficient human-computer interaction 
through qualitative analysis. The approach taken to gather design guidelines 
demonstrated a positive correlation between expert-suggested features and 
the user-friendly aspect of the application as 67.08% of participants found 
the features suggested by experts to be most satisfactory. Furthermore, it 
evaluates user satisfaction with the advanced developed application for 
TES-AC according to the gathered design guidelines.
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1. Introduction

Global warming has become evident with rising tem-
peratures, heat waves, and hurricanes being felt across 
the world more [1]. Mainly in tropical or subtropical areas, 
air-conditioning is considered a basic aspect of a building 
for warm weather conditions. Other than harmful Green-
house Gas (GHG) emissions, buildings account for around 
one-fifth of global energy consumption due to the ineffi-
ciency of air-conditioning (AC) [2,3]. Some major corpora-
tions are shifting their focus to a more sustainable form of 
ac such as thermal storage air conditioning (TES-AC) sys-
tems instead of conventional AC units. By using TES-AC, 
the power consumption of a commercial building along 
with interrelated costs has been drastically reduced [4].  
In a tropical country like Malaysia, Air Conditioners 
(ACs) have the most energy consumption in commercial 
buildings, and 68.5% savings can be achieved per year 
by using TES-AC [4]. A TES-AC simply works by trans-
ferring the charging time from on-peak to off-peak hours 
and storing the thermal energy to cool buildings for the 
next day thereby decreasing management costs as well 
as GHG emissions [5]. There are two types of chiller: air-
cooled chiller and water-cooled chiller, and a Thermal-En-
ergy-Storage (TES) water-cooled chiller is known to be 
more energy efficient [6]. Yet the companies are hesitant to 
incorporate TES-AC in commercial buildings as they are 
concerned about maintenance issues related to tanks not 
having an optimal volume of water to cool the building 
during working hours. 

A water-cooled chiller has a lot of sensor data which is 
crucial for Facility Management and Maintenance (FMM) 
of the TES-AC system. FMM of a building is under the 
supervision of facility managers, and with the use of digi-
tal technologies, Industry 4.0 focuses on efficient building 
facility handling [7,8]. By applying deep learning tech-
niques, such sensor data can be utilized for an efficient 
FMM as deep learning is essentially a subset of Machine 
Learning of Artificial Intelligence and is capable of iden-
tifying complex patterns in big data i.e., a large dataset 
with deep layers [9,10]. Adopting eco-friendly solutions like 
TES-AC with a proper maintenance system is important 
now more than ever to contribute positively to the envi-
ronment. With deep learning, a smart predictive system 
to calculate the water volume needed to charge the tanks 
is possible for optimal water volume prediction for the 
next day’s use considering the external factor of weather 
temperature [11,12]. Although deep learning has a significant 
role to play in benefiting facility managers mainly in pre-
dictive maintenance, the applications of deep learning can 
be explored further [13]. Predictive Maintenance is when 

facility managers use computational intelligence to predict 
a failure, downtime, or maintenance requirements before 
a failure happens or maintenance is required to lessen 
downtime and improve building efficiency. According 
to the study conducted by Sanzana et al. [14], Multilayer 
Perceptron, besides being one of the most common deep 
learning techniques has demonstrated satisfactory predic-
tion for cooler conditions compared to other common Ma-
chine Learning algorithms. Thus, Multilayer Perceptron 
was preferred for applying deep learning techniques to the 
TES system to assist facility managers in managing the 
TES system and is intended to be deployed on the applica-
tion developed in this study. However, such an advanced 
system based on deep learning such as Multilayer Percep-
tron, and Long-Short-Term-Memory, will not be useful to 
the facility managers if it is not deployed in a proper way 
for them to utilize it. 

Hence, this paper researches the appropriate us-
er-friendly design guidelines for a deep learning-based 
TES-AC application for efficient human-computer in-
teraction through survey questionnaires for qualitative 
content analysis. Initially, experts were asked about their 
preferred features of an advanced FMM application for 
a water-cooled TES-AC system, and the application was 
developed accordingly. After that, engineering students 
were asked about their feedback on the Graphical User 
Interface (GUI) of the application. The paper aims to find 
the appropriate design guidelines for an advanced deep 
learning-based TES-AC application and then to analyze 
the user-satisfaction in consideration of the suggested 
guidelines.

2. Literature Review

Human-computer interaction is defined as a way a 
human interacts with a computer and is a crucial part of 
designing the GUI of applications. For human-computer 
interaction research, proper user engagement is a desira-
ble effect and O’Brien et al. [15] suggest focusing on dis-
engagement as a necessary human-computer interaction 
design. There are many challenges in designing graphical 
user interfaces due to the lack of availability of guidance 
and targeted experience [16]. Various graphical objects, 
such as cursors, and rendered objects are analyzed in user 
interaction [17]. In advanced applications where there is 
complex computational intelligence deployed, it becomes 
even more of a necessity to gather design guidelines so 
non-experts can benefit from it. Chaudhari et al. [18] focus 
on finding key characteristics of advanced applications for 
design considerations guidance. 

However, in many cases, applications are developed 
without consulting the target audience which makes the 
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application cumbersome and not targeted towards the 
actual needs but solely based on the developer’s intui-
tion. Stephanidis [19] thoroughly discusses the appropriate 
methods to undergo for developing a computational envi-
ronment that caters to the preferences, usability, and skills 
of non-experts as well so an advanced application can be 
used by the widest user base. Before an advanced appli-
cation is developed for a specific use, experts can share 
valuable information such as pointing out which features 
they would want. This allows for sound development 
including the necessary features. When there is big sen-
sor data involved, and when deep learning requires high 
Graphical Processing Units (GPUs), the application needs 
to be well-planned and useful for the target audience [9]. 
Martin-Rodilla et al. [20] mentioned how suitable interac-
tion techniques are required to understand large data-de-
pendent systems and discuss the challenges faced between 
human-computer interaction and data analysis applica-
tions. Using deep learning techniques, this study suggests 
improving the usability of the graphical user interface as 
compared to the manual process of fruit and vegetable 
identification with Internet-of-Things (IoT) [21]. 

Before an application is deployed, it is better to test 
the user-friendly aspect of the application. It is important 
to note the way the target audience manages to interact 
with the application’s GUI. A way to test the necessary 
features is through a survey-based approach as it allows 
the consumers to outline the desired features through this 
and this is the reason this research adopted a survey-based 
approach [22]. The GUI involves how the application looks, 
and whether the features in the application manage to ex-
ecute its actual purpose. It is required to have a methodol-
ogy that will not let the users be overwhelmed when they 
are interacting with the GUI and the methodologist can 
implement new computational methods which will be al-
ready integrated into the GUI for ease of use [23]. It is also 
important to note if the ambiance, background, fonts, and 
navigation are not causing any visual disturbance to the 
users. A dark interface for an application is preferred as it 
causes less strain on the eyes mainly when it is used for a 
long. Recently, there has been an increase in the dark user 
interface trend to reduce ocular diseases of people in con-
tinuous use of digital devices [24]. Yang et al. [25] suggest 
a natural user interface to lessen the cognitive load. This 
study mentions the importance of having a user-friendly 
environment to run deep learning models [26]. Underlying 
human factors are reviewed by Leung et al. [27] to under-
stand how targeted users may interact with the research 
area of highlighting techniques. The way users perceive 
an application is an important evaluation before an appli-

cation is deployed.

3. Materials and Methods
This section will describe the research design adopted 

for this study in brief and will discuss how the study was 
conducted. The participants of the study including the 
questionnaire will be also discussed along with a summa-
rized overview of the application.

3.1 Research Design and Methods

The methodology taken by this research can be viewed 
in the research framework in Figure 1. There were two 
different groups of participants, where the initial group 
consisted of experts in the construction industry, and the 
latter group involved University students who are pursu-
ing Engineering degrees. Qualitative content analysis is 
carried out initially by 15 experts to understand the fea-
tures that will be useful regarding the deep learning-based 
TES-AC application. After the application is structured 
based on the suggested features according to the analysis, 
further analysis is carried out to evaluate the user satisfac-
tion, usability, and interactivity of the application by 35 
participants. The participants got a demonstration of the 
application, and all information they received was in the 
English Language. No personal information was collected 
from the participants, and they all were informed about 
the reasons for the study being conducted before they took 
part in it. The study had minimal risk and all the partici-
pants were adults i.e., 18 years and older. The study was 
verified to be conducted by the institutional ethics com-
mittee.

The following questions were asked in the survey ques-
tionnaire for the experts as shown in Table 1. The ques-
tions were in Multiple-Choice-Question (MCQ) format 
in Google Forms for their availability. The MCQ format 
was chosen so the experts can point out what they prefer 
within options instead of completely giving them a blank 
canvas. These questions helped to understand the desira-
ble features and outlook of the application such as wheth-
er they want a horizontal or vertical navigation bar. There 
were also questions to understand whether the experts will 
find it useful if deep learning is deployed in the predictive 
maintenance of FMM. Then they were also asked how 
they would like to view predictions for charging load, 
statistics related to efficiency, and whether they wanted 
a “Tips” tab. The experts were also asked regarding the 
Import feature to upload the sensor data related to TES-
AC for charging load prediction and the Export feature to 
retrieve all the information from the application in a PDF 
file to view the information.
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Figure 1. Research Methodology Framework

The following questions as shown in Table 2 were 
asked to measure the user-interaction aspect of the appli-
cation to the participants who were pursuing engineering 
since they might choose to become facility managers. The 
questions were on a linear scale where 1 denoted least 
satisfaction and 5 denoted most satisfaction and were 
available on Google Forms. The questions were designed 
to understand how they like the overall look of the appli-
cation, and whether they find a feature easy to use.

3.2 Application Overview

The application has been designed in an untraditional 
way to make it easier to use and to keep it more interest-
ing. While most maintenance applications would have a 
very simple design that does not pay attention to details 
and just places controls and information in front of the 
user, this application design focused on making an im-
pactful design. The user interface is very easy to use with 
buttons and text being very clear. The whole application is 
designed using a science fiction-like theme which makes 
it more appealing to younger audiences who are most 
likely to be using this application. It reflects a futuristic 
design to uplift the mood of the user and relies on visuals 
and graphics to keep it interesting to look at and boost 
creativity.

Table 1. Survey questionnaire to understand opinion of 
experts

No. Question description

Q1
Do you suggest a Login feature for the application so not 
just anybody gets to view your information?

Q2
For the overall outlook of the application, which option 
do you suggest will help you to concentrate on your daily 
activities?

Q3

A navigation bar for the application will allow you to 
switch to different windows within the application. For 
the application, do you suggest a horizontal navigation 
bar or a vertical one?

Q4

This application will be based on a deep learning model 
for water prediction of Thermal Energy Storage Air-
Conditioning (TES AC). Knowing the volume of water 
needed for the demand of the next day helps improve the 
building efficiency. Do you believe it will help the facility 
managers to know the water prediction for the tank?

Q5
Would you want to view the deep learning model-based 
water volume prediction in a graphical form or just a 
numerical value?

Q6

A tasking feature will allow you to add tasks and show 
the completed ones. For better management of TES-AC 
related tasks, would you suggest the application to have 
an in-built tasking feature?

Q7

The main reason of water volume prediction is to 
optimize the energy efficiency of the building. Besides 
the water volume prediction of the chiller plant, do you 
also want to view the energy efficiency of your building?

Q8
Do you think displaying the current weather temperature 
inside the application is useful?

Q9

A lack of interest in upgrading in utilizing deep learning 
methods are mainly related to many models requiring 
constant real-time input of sensor data that have specific 
requirements. Do you suggest that more enterprises will 
be interested to utilize such advanced deep learning 
methods if they do not require to change their equipment?

Q10
Would you suggest the application to have an import 
feature so the .csv dataset files can be used to predict the 
water volume?

Q11
Do you suggest letting the Facility Managers control the 
settings for the overall outlook of the application to have 
a customization aspect?

Q12
Do you think it will be useful to also have an export 
feature to export the charts and information to a .pdf file 
for viewing?

Q13

In this TES-AC application, do you think adding a “Tips” 
tab with helpful information regarding maintenance, or 
using the application or what certain values depict will 
make the app better?
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Table 2. Survey questionnaire to evaluate the user-
interaction of the application

No. Question description

Q1 Do you like the ambience of the application?

Q2
Do you find the login feature to access the application to 
be complicated?

Q3
Do you find the overall controls of the application, such 
as navigating, easy-to-use?

Q4
Do you find the form of water volume prediction easy 
to understand by looking at the application’s graphical 
output?

Q5 Do you find the efficiency graphical output to be useful?

Q6
Do you like the customization aspect of the application to 
control the general settings?

Q7
Do you find changing the control settings of the 
application easy-to-use?

Q8 Do you find the tasking feature easy-to-use?

Q9 Do you think the “Tips” tab is useful for the users?

Q10
Do you think displaying the current weather temperature 
is useful?

Q11
Do you think the “Import/Export” tab is a necessary 
feature for the application?

As seen in Figure 2 (top), the design of the application 
relies on a simple but informative interface. The user can 
easily access the most crucial information and it is easy to 
navigate the rest of the application. Proper graphics and 
visuals are used to convey the meaning of the information 
without the user having to look through manuals to un-
derstand what each component of the interface stands for. 
Figure 2 (bottom) shows how statistics are displayed in 
the application, using simple graphics that look better than 
traditional charts but also provide very rich information. 
A top navigation bar makes it easy to access the different 
main components of the application while the bottom bar 
displays information like the time, date, and weather in-
formation.

Figure 2. Application snippets

4. Results

According to the QCA, for a user-friendly GUI, the 
features to include based on experts in the field in the 
application are displayed in Figure 3. The experts were 
asked to fill up a survey to understand their desirable 
features in a deep learning-based facility management ap-
plication. The participants for the application feature eval-
uation involved experts aged from 34-60 years (average 
age 51.8 years), and 14 were males and 1 female. Among 
15 experts, 9 were facility managers, 5 were from Civil 
Engineering and 1 was from Architectural Engineering. 

Out of the participants, 86.67% of participants sug-
gested a login feature, 53.33% suggested a futuristic sci-fi 
background whereas 26.67% wanted a dark background. 
A total of 73.33% of expert participants wanted a horizon-
tal navigation bar. However, all participants mentioned 
knowing the charging load required will be useful, and 
66.67% wanted to view the information in a graphical 
form and suggested including a tasking feature. 86.67% 
of participants also mentioned that viewing energy effi-
ciency statistics will be useful, and 60% of participants 
said that displaying weather data within the application 
will be beneficial. When asked if more enterprises will be 
interested in utilizing advanced technologies such as deep 
learning if they do not require changing or upgrading their 
equipment, no participants said no, and 86.67% said that 
more enterprises will be interested. All the participants 
wanted an import .csv file feature. 86.67% of participants 
mentioned that customization of the application would be 
interesting. Regarding exporting the information displayed 
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in the application in a pdf file, 86.67% of participants 
suggested it whereas 13.33% said maybe it will be useful. 
80% of participants mentioned including a “Tips” tab as it 
will be useful for staff.

Among the participants who evaluated the developed 
application, they were mostly of Civil Engineering back-
ground i.e., 20 (68.57%), 5 participants were from Me-
chanical Engineering background, and 4 participants were 
from Electrical Engineering background. The age range of 
participants was between 19-32 years with an average age 
of 24.66 years. The participants were selected to be young 
individuals as they will be going for jobs and will handle 
the chores. Hence their feedback regarding the application 
interaction was important. As mentioned earlier, the sur-
vey was based on a linear scale of 1-5 where 5 exhibited 
the most satisfaction, and 1 exhibited the least satisfaction. 
The graphical form of the feedback is shown in Figure 3.

Out of the participants, 19 participants i.e., 54.29% 
showed the most satisfaction, i.e., scale 5 regarding the 
ambiance of the application, and 12 participants i.e., 
34.29% chose scale 4. Regarding the login feature, no 
participants found it complicated and found the appli-
cation controls easy to use. 33 participants i.e., 94.29% 
chose scale 5 as they found the water volume prediction 
easy to understand. A total of 29 participants i.e., 82.86% 
found the graphical efficiency output to be useful, and 
30 participants (85.71%) liked the customization aspect 
of the application. Out of the 35 participants, 25 partic-
ipants (71.42%) chose scale 5 for changing the controls 
of the application, and 27 participants (77.14%) found 
the tasking feature easy to use. Regarding the display of 
tips for facility management of TES-AC, 19 participants 
i.e., 54.29% chose a scale of 5. A total of 22 participants 

which is 62.86% found the displaying of current weather 
information within the application to be useful. However, 
17 participants (48.57%) found the Import/Export feature 
to be a necessity for the application as they chose a scale 
of 5.

To find out if some of the questions’ responses had a 
significant dependency on the responses of other ques-
tions the Chi-square method was used. Using SPSS, the 
questions that had more than one answer chosen were 
paired and tested for dependency with other questions. 
For instance, Q2 asking about the general design of the 
application retained the null hypothesis with all the other 
questions confirming that the answers were independent 
of each other, however, the asymptotic 2-sided p-value 
was 0.010 with Q9, indicating some sort of relationship 
between the responses of the two questions. Similarly, 
Q3 asking about the choice of the navigation bar and Q13 
asking about whether to include a Tips section or not had 
an asymptotic 2-sided p-value of 0.039 indicating that the 
responses might share a relationship and are somehow 
interconnected. Moreover, Q5 asking about the choice of 
visualization for the deep learning model outcome had 
a significant relationship to Q12 asking about an export 
feature to export the charts as PDF files. The asymptotic 
2-sided p-value here was 0.032. Finally, an asymptotic 
2-sided p-value of 0.029 meant that Q11 regarding allow-
ing facility managers to customize the application had a 
significant relationship with Q13 regarding adding a “tips” 
feature to the software. All the other question combina-
tions had p-values over 0.05 and therefore retained the 
null hypothesis which means there are no significant rela-
tionships between those questions.

Figure 3. Feedback from the participants on the application
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5. Discussion

The facility managers clearly factored in the need for a 
user-friendly application that can predict the charging load 
required for the next day’s use for the commercial build-
ing. As charging load prediction will utilize deep learning, 
the application needs to be developed with the aspect of 
user-friendly human-computer interaction. The experts 
in the facility management field chose certain features to 
be included in the application. They pointed out that they 
want a dark futuristic interface for the application which 
may be because it causes less stress on the eyes. The 
login feature was suggested by 86.67% as it is an installed 
desktop application, and it may be useful in data protec-
tion. Since 53.33% of experts suggested a futuristic sci-fi 
background and 26.67% of experts wanted a dark back-
ground, the application was developed with a dark futur-
istic interface. 73.33% of participants wanted a horizontal 
navigation bar to access the tabs which can be because it 
is a desktop application, and it is easier to navigate with a 
horizontal bar. Most of the participants suggested demon-
strating energy efficiency statistics and 60% of experts 
suggested displaying weather data within the application 
for accessibility reasons. A “Tips” tab was also included 
according to the suggestion. 

When the application was tested for the human-com-
puter interaction aspect by the participants, the overall 
feedback was positive. This shows initially gathering de-
sign guidelines for an advanced application from experts 
and then developing it is a good approach as it meets the 
necessary requirements. Among the participants, 88.57% 
were satisfied with the interface, and 85.71% liked the 
customization aspect. Also, most of the participants in-
dicated high satisfaction with the user-friendly aspect of 
switching tabs, using the application, and viewing the 
predicted charging load and statistics. The participants 
also appreciated the tasking feature and the accessibility 
of getting to know the “Tips”. Based on the analysis after 
the demonstration of the application developed, it had the 
necessary features for the GUI, and the analysis, these de-
sign guidelines demonstrated a satisfactory output. To test 
if the responses to any given question had any significant 
relationship with the responses to another question, a Chi-
square test was applied to the results and while most of 
the questions retained the null hypothesis and had no sig-
nificant relationships, four question fairs rejected the null 
hypothesis and demonstrated having a significant relation-
ship.

5.1 Limitation

The application takes a unique approach in how it was 

designed, which resulted in positive feedback, however, it 
might also result in negative feedback. While most people 
preferred this type of interface, some users might not be 
very satisfied with the futuristic design and might prefer a 
simpler black-and-white interface. This application design 
would not be very suitable if the users who will be using 
it prefer the old and traditional way of application designs. 
It requires the users to be more open to change and willing 
to adapt.

5.2 Future Direction

The application could be further enhanced by turning 
it into a website that could be accessed from anywhere 
so that there is no need to install the application every 
time on the computers. This allows for better productivi-
ty and allows the staff to use the application from home. 
Moreover, the application could be developed as a phone 
application which allows the users to have access to it 
anywhere and at any time. However, developing either of 
these would be time-consuming, or require professionals 
to develop it.

6. Conclusions

This research determines the appropriate features to be 
integrated with a user-friendly GUI for the application for 
facility management and maintenance of TES-AC that can 
be used by facility managers and deduces the validity of the 
human-computer interaction aspect of the application. Fur-
thermore, this study contributes to being a possible approach 
for gathering design guidelines for an advanced application 
as the expert suggestions demonstrate satisfaction from the 
users when included in the application. Among the partici-
pants, 67.08% participants found the application developed 
from the design guidelines collected from the experts to be 
most satisfactory, which shows the positive correlation meas-
ure from expert feedback and user-friendly features. By using 
the deep learning-based application, facility managers will 
be able to prepare in advance regarding the charging load, 
handle the maintenance schedule, allocate tasks, and even 
prepare for maintenance with suggested tips increasing labor 
and building efficiency. Also, the design guidelines collected 
for the deep learning-based application for facility manage-
ment and maintenance of TES-AC will be beneficial for 
future researchers and developers who wish to apply compu-
tational intelligence for assisting facility managers to make 
better management decisions through user-friendly softwarei.
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