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ARTICLE

Stressed	Coral	Reef	Identification	Using	Deep	Learning	CNN	Techniques
S.P. Aruna1, M. Thamarai2*

 

1 Skilltroniks Technologies, Tadepalligudem, Andhra Pradesh, 534101, India
2 ECE Department, Sri Vasavi Engineering College, Tadepalligudem, Andhra Pradesh, 534102, India

ABSTRACT
Deep learning is a machine learning technique that allows the computer to process things that occur naturally to 

humans. Today, deep learning techniques are commonly used in computer vision to classify images and videos. As a 
result, for challenging computer vision problems, deep learning provides state of the art solutions to it. Coral reefs are 
an essential resource of the earth. A new study finds the planet has lost half of its coral reefs since 1950. It is necessary 
to restore and prevent damage to coral reefs as they play an important role in maintaining a balance in the marine 
ecosystem. This proposed work helps to prevent the corals from bleaching and restore them to a healthy condition by 
identifying the root cause of the threats. In the proposed work, using deep learning CNN techniques, the images are 
classified into Healthy and Stressed coral reefs. Stressed coral reefs are an intermediate state of coral reef between 
healthy and bleached coral reefs. The pre-trained models Resnet50 and Inception V3 are used in this study to classify 
the images. Also, a proposed CNN model is built and tested for the same. The results of Inception V3 and Resnet50 
are improved to 70% and 55% by tuning the hypermeters such as dropouts and batch normalisation. Similarly, the 
proposed model is tuned as required and obtains a maximum of up to 90% accuracy. With large datasets, the optimum 
amount of neural networks and tuning it as required brings higher accuracy than other methods.
Keywords: Stressed coral reef; Deep learning; Convolutional neural network; Pre-trained models

1. Introduction

The ocean is a large resource that supports life, 

fights climate crises, and is home to large biodiver-
sity. Unlike landforms, oceans are one continuous 
body that connects every corner of our planet. Ocean 
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ecosystems are the largest of Earth’s aquatic eco-
systems which support many lives and also benefit 
human beings in many ways. Coral ecosystems are 
part of marine ecosystems formed up of coral reefs. 
These coral reefs provide shelter to millions of marine 
species and protect the land coastline from storms 
and erosions. It provides rich aquatic life for fishing 
and other purposes. Increasing ocean temperature 
and rapid global warming are some of the risks of 
coral reef bleaching. Human activities such as water 
pollution also affect the quality and life of the corals. 
So, it is necessary to prevent the coral from damage 
detect the early signs of coral damage and restore it. 
In this method, we are detecting whether the coral 
is stressed or not using a CNN deep learning algo-
rithmThe ocean is a large resource that supports life, 
fights climate crises, and is home to large biodiver-
sity. Unlike landforms, oceans are one continuous 
body that connects every corner of our planet. Ocean 
ecosystems are the largest of Earth’s aquatic eco-
systems which support many lives and also benefit 
human beings in many ways. Coral ecosystems are 
part of marine ecosystems formed up of coral reefs. 
These coral reefs provide shelter to millions of marine 
species and protect the land coastline from storms 
and erosions. It provides rich aquatic life for fishing 
and other purposes. Increasing ocean temperature 
and rapid global warming are some of the risks of 
coral reef bleaching. Human activities such as water 
pollution also affect the quality and life of the corals. 
So, it is necessary to prevent the coral from damage 
detect the early signs of coral damage and restore it. 
In this method, we are detecting whether the coral is 
stressed or not using a CNN deep learning algorithm.

1.1	Coral	reef	biodiversity

Coral reefs are formed of colonies of hundreds to 
thousands of tiny individual corals commonly known 
as polyps. These marine invertebrate animals have 
hard exoskeletons made of calcium carbonate and 
are sessile. The large coral reef (Great Barrier Reef) 
is found in Queensland, Australia. These corals are 
colourless in nature. The microscopic algae named 
Zooxanthellae that live in it, adds different colours. 

Corals and algae have a mutual relationship. The 
coral offers the zooxanthellae a safe environment as 
well as the substances essential for photosynthesis. 
The zooxanthellae create oxygen and aid the coral 
in removing trash as payment. Millions of zooxan-
thellae produce pigments that add colours to coral. 
Depending on the colour of the coral image, we can 
predict using CNN whether the coral is stressed or 
not. It is an advantage for us, at this point the dam-
age made is minimal we can prevent it from bleach-
ing.

1.2 Coral bleaching

The corals are classified into the following stages.
Healthy Coral: Healthy coral reefs are bright cor-

als filled with microscopic algae called zooxanthel-
lae that live in their tissues. These algae give bright 
colors to coral reefs.

Stressed Coral: Stressed coral reefs are less bright 
compared to healthy coral reefs. Due to the temper-
ature rise, it loses its color as algae tend to leave the 
coral reefs.

Bleached Coral: Bleached coral reefs are empty 
coral reefs with any algae present in them. It is white 
because only the coral skeleton is present.

The Healthy Coral, Stressed Coral and Bleached 
Coral are shown in Figures 1a. and 1b. and 1c. re-
spectively.

  a. Healthy coral        b. Stressed coral   c. Bleached coral

Figure 1. Coral reefs.

Causes for bleaching
Climate change causes a rise in the ocean temper-

ature that results in coral bleaching. Industrial pol-
lutants and fertilizer wastes that drain into the ocean 
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also change its environment and cause coral bleach-
ing. Direct exposure to sunlight in shallow waters 
also causes coral bleaching. Low tides and exposure 
to air may also cause bleaching. When water gets 
too warm for corals, corals release their colorful mi-
croalgae, turning skeletal white. If bleaching events 
are prolonged or happen too frequently with not 
enough time to recover in between, significant coral 
mortality can occur, sealing the fate of coral reefs.

The Global Coral Reef Monitoring Network 
(GCRMN) is a network of the International Coral 
Reef Initiative (ICRI) that has published a report 
titled The Status of Coral Reefs of the World: 2020. 
Its findings illustrate that, between 2009 and 2018, 
there was a progressive loss of 14% of the corals 
brought on by frequent, massive bleaching events. 
More hard coral was destroyed than is currently 
present on Australia’s coral reefs, totalling around 
11,700 square kilometres. Similar to the decline in 
hard coral throughout this time period, the amount of 
algae on coral reefs around the world has increased 
by roughly 20% since 2010. The report depicts four 
decades of falling coral abundance, increased bleach-
ing, and rising algae levels, which are indicators of 
deteriorating reef health. The paper also highlights 
the remarkable capacity of coral reefs to recover in 
the absence of local and global threats. Both conclu-
sions ought to spur immediate action. Coral reefs are 
largely invisible, but environmental protection must 
prioritize their health. Global Coral Reef Monitoring 
Network (GCRMN) is a network that maintains and 
operates the international coral reef and provides 
information about it [1]. GCRMN divides it into ten 
regional nodes. They are Australia, the Caribbean, 
ETP, etc, GCRMN collects the database, monitors it 
from time and time, and publishes its status. It states 
that almost all the coral reefs are extinct due to glob-
al warming and local human activities. Also, some 
parts of coral reefs proved to remain resilient and can 
recover from damage by taking appropriate meas-
ures. There are more than 600 subspecies in just the 
Great Barrier Reef in Australia. They come in a wide 
range of sizes, shapes, and colours, making them a 
diversified species. Hard corals and soft corals are 

the two main types of corals. Soft corals are flexible 
and frequently mistaken for plants because they lack 
the Skelton, which hard corals have. The best coral 
reef health indicator is hard coral. The most crucial 
factor in quantifying the coral population is the hard 
coral cover percentage.

Coral reefs that are dominated by algae lose some 
of their architectural complexity and structural integ-
rity. The goal of NOAA’s Coral Health and Monitor-
ing Programme (CHAMP), which was established 
to help protect and preserve the health of coral reefs 
around the world, is to offer resources and services 
to researchers and the general public.

The proposed work comprises the following:
· Pre-trained models such as InceptionV3 and 

Resnet50 are fine-tuned by adding batch normaliza-
tion and dropout layers to eliminate overfitting pa-
rameter problems and improve the stressed coral reef 
identification accuracy. 

· An efficient low-complexity CNN architecture 
is proposed for stressed coral reef identification.

· The performance of the pre-trained models and 
proposed CNN model are analysed using perfor-
mance metrics such as classification accuracy, F1 
score, precision and Recall.

The paper is organized as follows. Section 1 de-
scribes the introduction to coral reefs and the impor-
tance of coral reef identification. Section 2 reviews 
deep learning and previous work on coral reef classi-
fication using convolution neural networks. Section 
3 describes the proposed work for stressed coral reef 
identification using pre-trained models and proposed 
low-complexity CNN architecture. Section 4 dis-
cusses the results and Section 5 concludes the paper. 

2.	Deep	learning
Deep learning networks, which are advanced neu-

ral networks with a lower error rate, are crucial for 
solving prediction and classification problems. Deep 
learning networks, a subtype of artificial intelligence, 
are employed for a number of tasks, including image 
identification, speech to text conversion, scene de-
scription, drug discovery, face detection and recogni-
tion, weather forecasting, and more [2,3].
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2.1	Convolutional	neural	network	

A convolutional neural network is a network ar-
chitecture of deep learning algorithms [4]. It has high 
performance and accuracy in image classifications 
by finding or recognizing required patterns in the 
images. It breaks the pixels of the image into smaller 
pixels and detects the required data in them. A typi-
cal convolutional neural network has the following 
layers and the architecture is shown in Figure 2.

Figure 2. Typical convolution neural network architecture.

Convolutional layer
The convolution layer is the mathematical layer 

that processes the image segment by segment and fil-
ters it as given. The input image is divided into three 
for an RGB image and one for a grey image. The 
filter filters the input image with the provided kernel 
size. Using the Dot product, the value of the input 
image and filter is multiplied and stored in them. 
Pooling layer

The pooling layer is next to the convolution layer. 
There are two types of pooling, max pooling, and av-
erage pooling. Max pooling returns the max value in 
the feature map. Average pooling returns the average 
value of the feature map. For example, the kernel 
size is 2 × 2, and its values are 34, 56, 78, and 23. If 
max pooling is selected, it returns the value 78 from 
the feature map. If the average pooling is selected, 
it returns the value 48. Between the convolutional 
layer and the fully linked layer, the pooling layer fre-
quently acts as an intermediate.
Fully connected layer

The fully connected layer is the layer that con-
nects one neutral network to the output neutral net-
work. It connects the weights and biases of previous 

neurons to the weights and biases of the next neu-
rons. The final layers of CNN are used to summarize 
the network by flattening and connecting it to the 
output layer. The flattening layer reduces the dimen-
sion of the network to one. Here, based on the type 
of problem, the output layer is provided. For exam-
ple, if it is classification, then it is Sigmoid. 
Activation functions

The activation function is an essential function of 
the CNN model. It identifies and transfers the vari-
ables from one neuron to another neuron. It decides 
what should be transferred and what should be not. 
This network is non-linear. Activation functions like 
ReLu, Sigmoid, Tanh, and Softmax are used in it. 
ReLu connects the value of the variable from zero to 
infinity. If any negative value is present in the ReLu, 
it is considered zero. The tanh connects from a neg-
ative one to a positive one. Sigmoid is for binary 
classification problems and Softmax is for multiclass 
classification problems.

2.2	Deep	learning	in	coral	reef	classification

This section describes the previous work done in 
the coral reef classification using deep learning.

Automated underwater vehicles (AUVs) have 
been successfully used to monitor these reefs in 
recent years. These computers can be improved to 
categorise many coral species, though, by integrating 
neural networks [5,6]. 

Additionally, poor picture quality is a constant 
problem, resulting in hazy and blurry images. This is 
because the sediments in the water make it difficult 
to take high-quality pictures, even though the coral 
photos transect uses this technique for image capture 
and processing. Then, it generates photos of excel-
lent quality and makes it noticeably simpler to see 
the characteristics of corals [7].

Elawadyetal. developed a machine vision algo-
rithm to enable underwater robots to locate coral 
reefs and pick them up using CNN [8]. The shape and 
texture features are added as supplementary channels 
along with basic spatial color channels of coral input 
images and used for classification. Raphael et al. de-
veloped an automated DL classification scheme for 
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11 species of corals present in the Eilat Gulf regio [9]. 
Chindapol et al.used advection diffusion equations to 
model the effects of flow on coral reef colony growth 
and shape [10]. Mahmood et al. used neural networks 
and deep learning to distinguish various coral species 
and live corals from bleached corals. The author used 
VGGNet with a 2-layer MLP classifier for the clas-
sification of corals in their work [11]. Mahmood et al. 
discussed the power of deep learning for monitoring 
coral reefs in their survey work [12]. Mahmood et al. 
combined CNN images and handcrafted features for 
coral classification, but this approach is computation-
ally expensive and not suitable for large datasets [12].  
Mahmood et al. used VGGNet for the classification 
of unlabeled coral mosaics [13].

Gómez-Ríos et al. used three various CNN archi-
tectures—Inception V3, ResNet, and Densenet and 
data augmentation techniques to obtain high accu-
racy in coral texture image classification [14]. Mary 
et al. used improved local derivative patterns for 
submarine coral reef image classification [15]. Lumini 
et.al.developed ensemble-based different convolu-
tion neural network models for underwater imagery 
analysis [16].

3.	Proposed	work
The proposed work pre-trained models have been 

trained using the transfer learning concept and test-
ed. The pre-trained CNN models Inception V3 and 
Resnet50 are fine-tuned to improve the performance in 
stressed coral reef identification. In addition to it, a new 
CNN model was also built and studied and compared 
its performance with the pre-trained models. 

3.1 Resnet50 architecture

The pre-trained model, Resnet50 architecture is 
shown in Figure 3. The architecture has 50 layers 
and is specially designed to eliminate training errors. 
The network has a special block called residual block 
which is shown in Figure 3. A residual block also 
referred to as a “bottleneck”, uses 11 convolutions 
to cut down on the number of parameters and matrix 
multiplications. This makes each layer’s training sig-

nificantly faster. 

Figure 3. Resnet50 architecture.

3.2	Inception	V3	architecture

The important milestone in CNN development is 
the inception network which is shown in Figure 4. 
Convolutional neural network model Inception V3 
has 48 layers and was pre-trained. It is an Inception 
network variant that has been trained on more than 
a million images from the image net collection. It is 
the third iteration of Google’s Inception CNN model.

A popular image recognition algorithm called In-
ception V3 has demonstrated improved accuracy on 
the ImageNet dataset.

Figure 4. Inception network.

3.3	Fine-tuning	the	pre-trained	models

For the models, the pre-trained models of Incep-
tionV3 and Resnet50 are inherited using the keras 
library. For InceptionV3, the base model is loaded 
and then fine-tuned with the required parameters. 
Using the GlobalAveragePooling3D() function, the 
dimensions of the inputs given are adjusted cause 
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channels_last corresponds to inputs with shape 
(batch, height, width, channels) while channels_first 
corresponds to inputs with shape (batch, channels, 
height, width). To extend the base model, GlobalAv-
eragePooling3D is used and also to avoid dimension 
conflicts. In the case of InceptionV3, the model is 
trained with more accuracy and it is in an overfitting 
condition. To avoid this condition, a Dropout(0.1) of 
weights is added to improve the model efficiency and 
avoid overfitting. Dropout is the layer of keras that 
is used to remove the weights that are overtrained 
based on the percentage given. Then, it is connected 
to the intermediate dense layer with “Relu” activa-
tion and connected to the output layer with softmax 
activation. After the changes are made, the model 
is trained with train and test datasets. It is compiled 
using Adam optimizers and then fitted with the vali-
dation data as 20% and batch size as 32. 

Similarly, the works are done for the Resnet50 
model. The base model is loaded and then fine-tuned 
with the required parameters. Using the GlobalAv-
eragePooling3D() function, the dimensions of the 
inputs given are adjusted cause channels last cor-
respond to inputs with shape (batch, height, width, 
channels) while channels first correspond to inputs 
with shape (batch, channels, height, width). To ex-
tend the base model, GlobalAveragePooling3D is 
used and also to avoid dimension conflicts. In the 
case of Restnet50, our model is learning too slowly 
and also reaches a steady learning rate. Once the 
model reaches a steady learning rate, adjusting the 
learning rate may not give significant results. So, the 
Batchnormalisation function is added to the neutral 
network to improve the model efficiency. Like In-
ceptionV3, it is also connected to an intermediate 
dense layer with “Relu” activation and connected 
to the output layer as Softmax activation. After the 
changes are made, the model is trained with train and 
test datasets. It is compiled using Adam optimizers 
and then fitted with the validation data as 20% and 
batch size as 32.

3.4	Proposedlow	complexity	CNN	model

In the proposed CNN model, we trained the data 

separately and created a sequential model using 
keras. Inside the model, we added two convolu-
tion2D layers with the required parameters. RELU 
activation is used in each neutral network as shown 
in Figure 5. Also, dropouts and Batchmormalisation 
hypermeters and adjusted as required to improve 
the model efficiency. It is connected to output layers 
with dense = 1 and activation = Sigmoid since it is 
the binary class classification. The model size is very 
small when compared to the Resnet50 and Inception 
V3 pre-trained models. The proposed model is mem-
ory efficient with less number of training parameters. 
The model is compiled and fitted with the validation 
data as 20% and batch size as 4. 

Figure 5. Proposed CNN model.
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4. Results and metrics
The pre-trained models and proposed CNN mod-

el are trained and tested with our dataset collected 
from internet sources. The dataset contains 120 im-
ages. The dataset has an equal number of healthy and 
stressed coral images(healthy coral reef images: 60, 
stressed coral reef images). All the models are com-
piled and fitted with the validation data as 20% and 
different batch sizes. 

The sample input images in the two categories 
(healthy and stressed coral reef images) are shown 
in Figure 6. The healthy coral images used in the 
training dataset are shown in Figures 6a and 6b and 
stressed coral reefs used in the dataset are shown in 
Figures 6c and 6d respectively.

Figure 6. Input coral reef images. (a) and (b) represent the 
healthy coral reef images used in the dataset. (c) and (d) repre-
sent the stressed coral reef images used in the dataset. 

The confusion matrix of each model is extracted 
for the test images. Then, the precision, recall, and 
accuracy of each model are calculated. 

The confusion matrix for our model is represent-
ed in Table	1.

Precision = True Positive/(True Positive + False 
Positive)

Precision gives us the quality of positive predictions. 
Recall Formula = True Positive/(True Positive + 

False Negative)
Recall, also known as sensitivity gives us the 

proportion of actual positives that were identified 

correctly.
Accuracy Formula = (True Positive +True Neg-

ative)/(True Positive + False Positive + False Nega-
tive + True Negative)

Table	1. Confusion matrix for the coral reef classification (pro-
posed) model.

True positive—The image 
of stressed coral reefs are 
identified correctly.

False positive—The image of 
stressed coral reef is identified 
as healthy coral reef. (Type II 
error)

False Negative—The image of 
healthy coral reef is identified 
as stressed coral reef. (Type I 
error) 

True Negative—The image 
of coral reefs are found not 
stressed. 

Accuracy gives us the number of correct predic-
tions that the trained model achieves.

Comparing the precision, recall, and accuracy for 
the three models, based on the correct predictions of 
stressed coral reefs and healthy coral reefs, the val-
ues are calculated and given in Table	2. The dataset 
is collected from coral website images in Google. 
Totally 120 images are in the dataset. The train-
ing images are 100 (Healthy: 50 images; stressed: 
50 images). The sample test images given are 20 
images, 10—healthy coral reef images and 10—
stressed coral reef images. The performance of the 
proposed CNN in classifying stressed coral is 90%, 
which is the highest accuracy when compared to the 
fine tuned pre-trained models. The accuracy is 15% 
higher than the Inception V3 model and 35% higher 
than the Resnet50 model. The proposed model CNN 
model predicts the healthy and stressed coral with 
the same accuracy (90%).

Table	2. Performance comparison of the proposed CNN model 
with pre-trained models.

CNN model Test	data Precision Recall F1 
score

Inception V3 
(Pretrained fine tuned 
model using transfer 
learning concept)

Healthy 0.67 0.80 0.73

Stressed 0.75 0.60 0.67

Resnet50 (Pretrained 
finetuned model using 
transfer learning 
concept )

Healthy 0.56 0.50 0.53

Stressed 0.55 0.60 0.57

Proposed CNN model
Healthy 0.90 0.90 0.90
Stressed 0.90 0.90 0.90
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The classification accuracy is computed as fol-
lows for sample 20 input test images.

Accuracy of Inception V3 model is(8+6)/
(8+2+4+6)= 0.7

Accuracy of Resnet50 model is (5+6)/(5+5+4+6)= 
0.55

Accuracy	of	proposed	CNN	model	 is	 (9+9)/
(9+1+9+1)=	0.9

5. Conclusions
Action needs to be taken after identifying stressed 

corals.
Once the stressed coral reef is identified in a 

particular area. Scientists can analyse the reasons 
behind its decay and its root causes. If the coral is 
stressed, it tends to lose its pigmentation causing the 
algae that are living together to start to move away 
from it, due to some natural causes or man-made 
pollution. Natural causes involve ocean temperature 
rise, climate change, etc. Man-made causes involve 
water pollution, global warming, etc. Once the sci-
entists analysed and found its root cause, it would 
be easy to restore the coral reef to a healthy stressed 
state. It would take a lot of effort to restore it from a 
bleached state. Which is why, we are identifying it in 
the stressed state itself. 

Prevention is better than cure. The coral reef 
forms a major economic source of ocean resources 
for a country or a state. It is necessary to maintain 
it in its state of health. Because a healthy coral reef 
enhances fish production, healthy aquatic life such 
as seaweeds has economic value. That’s why it is 
significant to prevent the coral from bleaching. In 
our models, we are identifying in our early bleaching 
stage (i.e. stressed stage) and helping them to restore 
it to a healthy state.

The proposed work describes an efficient low 
computational complexity CNN model to predict the 
stressed corals and the model classification accuracy 
is 90% which is 15% higher than the Inception V3 
model accuracy and 35% higher than the Resnet50 
model. In the future, the pre-processing techniques 
will be applied to overcome the underwater image 
blur and colour balancing and then the proposed 

method will be suitable for real-time applications.
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ARTICLE

The	Application	of	Information	Systems	to	Improve	Ambulance	
Response	Times	in	the	UK

Alan Slater

University of Huddersfield, Huddersfield, HD13DH, UK

ABSTRACT
Emergency ambulance services in the UK are tasked with providing pre-hospital patient care and clinical services 

with a target response time between call connect to on-scene attendance. In 2017, NHS England introduced four new 
response time categories based on patient needs. The most challenging is to be on-scene for a life-threatening situation 
within seven minutes of the call being connected when such calls are random in terms of time and place throughout 
a large territory. Recent evidence indicates emergency ambulance services regularly fall short of achieving the target 
ambulance response times set by the National Health Service (NHS). To achieve these targets, they need to undertake 
transformational change and apply statistical, operations research and artificial intelligence techniques in the form of 
five separate modules covering demand forecasting, plus locate, allocate, dispatch, monitoring and re-deployment of 
resources. These modules should be linked in real-time employing a data warehouse to minimise computational data 
and generate accurate, meaningful and timely decisions ensuring patients receive an appropriate and timely response. 
A simulation covering a limited geographical area, time and operational data concluded that this form of integration of 
the five modules provides accurate and timely data upon which to make decisions that effectively improve ambulance 
response times.
Keywords: Ambulance response times; Demand forecasting; Geo-location models; Simulation

1. Introduction

Management in the UK Ambulance Service has 

accepted the challenge to develop the ability to col-
lect and apply information innovatively. However, 
the focus has been on rapidly changing technology 

mailto: alan@contactslater.co.uk
https://doi.org/10.30564/jeis.v5i2.5881
https://doi.org/10.30564/jeis.v5i2.5881
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and solving stand-alone issues such as crew schedul-
ing rotas rather than linking opportunities together to 
improve overall efficiency and productivity. The cen-
tre of attention for management since the COVID-19 
pandemic has been arresting a significant decline 
in ambulance response time (also known as ‘clock-
time’). This paper addresses the need to understand 
how identifying, upgrading and linking together sev-
eral focused micro-information modules will create 
a macro information system that offers a foundation 
for improved ambulance response times.

The ambulance response time process is seen by 
management as the most significant issue in their 
service to critically ill patients because response time 
is both challenging and the key performance indica-
tor by which the service is judged by both politicians 
and the public. This paper focuses upon an alterna-
tive approach to improving the ambulance dispatch 
process by utilising the combination of several re-
al-time information systems which the ambulance 
service control directly on a day-to-day basis. There 
are, however, other influences on response times that 
cannot be controlled by the ambulance service on a 
day-to-day basis including vehicle design, vehicle 
maintenance, driver training, traffic management and 
public awareness. Attention to such issues may be 
combined with dispatch information to improve am-
bulance response times. 

Attention to the information systems which sup-
port the ambulance response system could be the first 
step in the creation of a ‘smart ambulance operation’ 
which uses a set of rules incorporated in an ‘artificial 
intelligence’ system to recommend appropriate ac-
tions to call-handlers and dispatchers. 

2.	Operating	environment
The objective of the ambulance service is to pro-

vide ‘out-of-hospital’ early medical assistance to ‘save 
lives’ by causing ‘no further harm’ before and during 
transporting a patient to a relevant hospital facility. 
Cooke [1] speculated that delays in pre-hospital care 
could lead to poorer patient outcomes and patient sat-
isfaction increased when response was rapid. 

In England, the public believes there is equality 

of access to appropriate pre-hospital care from the 
ambulance service based upon national ambulance 
response time targets—which are the time taken in 
minutes from an emergency call being connected 
to the ambulance service and the on-scene attend-
ance by appropriate staff. The UK public has been 
encouraged by both the NHS management and the 
press to judge the ambulance service by its response 
to ‘life-threatening’ calls. Indicating that when they 
make a call for an ambulance one will be dispatched 
immediately (with ‘blue lights and sirens’) implying 
that resources are always available to answer every 
call and that each call is equally important and taken 
in priority of receipt. 

In reality, ambulance managers prioritise calls 
using various response times according to patient 
needs. This means that calls classified as ‘life-threat-
ening’ have a short response time target, whereas 
calls classified as ‘urgent’ have a longer response 
time target. This practice creates a tiered system of 
requirements to respond which allows resources to 
be allocated throughout the territory as ‘ready to 
respond’ thus maximising the response time target 
achievement with limited resources. However, short-
term peaks in demand may lead to a lack of resourc-
es to respond to patient calls. In the event of a short-
age of resources, an outbound crew on less urgent 
calls may be diverted to a life-threatening call.

The public may be unaware and do not recognise 
that there is a variation in response times although 
call handlers normally quote a forecast on-scene 
arrival time either when a despatcher has allocated 
a resource or alternatively they quoted a forecast 
waiting time before a resource will be allocated. The 
public is not made aware of the contributory factors 
behind any change in response time performance. 
Only since COVID-19 has such factors as traffic de-
lays, hand-over delays at Accident and Emergency, 
or staff and vehicle availability been cited as causes 
for response time delays. 

Unfortunately, recent press reporting concentrates 
upon failures to attend ‘life-threatening emergencies’ 
within the 7-minute response time target even though 
such situations represent less than 10% of all calls. 
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In reality, emergency ambulance services are tasked 
with reaching patients, by category of clinical need, 
as defined by the Advanced Medical Priority System 
(AMPDS), with suitably qualified staff. The re-
sponse time targets, rather than the patient outcome, 
have become the key performance measure by which 
the press and public judge the success of ambulance 
services. However, Heath and Radcliffe [2,3] have crit-
icised the NHS for concentrating only on ambulance 
service response times when the ambulance service 
offers a greater range of skills.

The NHS has over recent years reviewed the AM-
PDS and adjusted the provisional patient diagnosis 
categories, which are accessed by the call-handlers, 
such that the target response time is more appro-
priate to the patient pathway measured in terms of 
potential further harm and probability of a successful 
outcome. The NHS is currently developing response 
time targets for some specific conditions for the full 
clinical pathway from initial call to treatment in hos-
pital and discharge to community care. These chang-
es are based on data gathered by the NHS on patient 
outcomes from particular clinical pathways. Such 
applied information systems are available to the am-
bulance service to target and improve the manage-
ment of ambulance response times. 

When the NHS was first formed in 1947 the 
ambulance service was tasked with providing 
out-of-hospital care by attending on-scene emergen-
cies providing patients with first-aid and transport to 
a suitable medical facility. In recent years the ambu-
lance service provision has been expanded into other 
areas of NHS social care provision including situa-
tions that arise from mental health, alcohol or drugs 
and homelessness. These situations have arisen from 
a combination of changes in primary care strategy 
and shortages in the provision of social care. Private-
ly, ambulance service managers indicate that many 
of their calls now relate to emergencies derived from 
a lack of social care where the ambulance service is 
the patient’s last port of call.

This increase in workload placed pressure on 
the service by expanding demand, increasing on-
scene time and increasing patient hand-over time at 

medical facilities. In addition, Gething, University 
of Wales, Health Board [4] reported a substantial 
increase in emergency calls mainly due to an ex-
panding elderly population and the widespread mis-
understanding amongst the general public of the am-
bulance service offering that all calls would obtain 
an immediate response. 

The nature of a medical emergency indicates that 
demand for the ambulance service will be somewhat 
random in terms of ‘time’, ‘place’, and the ‘required 
response’. The operational complexity of the am-
bulance response time problem is one of the most 
complex logistics tasks. The main difficulty is that 
in certain life-threatening situations there is an ex-
tremely short time before a patient may suffer further 
harm if no first-aid is administered. Figure 1 outlines 
a process flow chart and the related urgency of re-
sponses required for certain conditions. With average 
demand for the busiest ambulance services at over 
one call per minute with demand emphasised by sea-
sonal variations and event escalations the logistics 
requirements to achieve the response time targets are 
particularly difficult to manage. The challenge for 
operations managers is to recognise the urgency of 
the need, allocate appropriate resources, and achieve 
the target response time 24 hours/7 days a week/52 
weeks a year at any location in the territory served 
whatever the traffic or weather conditions. 

Figure 1. Response time flowchart compared to time to potential 
harm to patients.

3.	Response	time	targets
Price [5] and Wankhade [6] indicated that ambu-



13

Journal of Electronic & Information Systems | Volume 05 | Issue 02 | October 2023

lance services could not keep pace with demand and 
were managing the ‘response time’ target by dis-
patching more than one resource to life-threatening 
calls rather than considering overall patient needs. 
Cooke [1] concluded that response time targets had 
been the main motivator for service restructuring 
although ambulance service management recognised 
that targets themselves do not save lives, more sig-
nificantly ambulance availability, staff training and 
communications throughout the patient pathway 
would improve service and save lives. 

Following a study into ambulance response times 
by Sheffield University, NHS England [7,8] estab-
lished the Ambulance Response Programme with 
new integrated performance level and response time 
targets for all emergency calls based upon a combi-
nation of triage time by call handlers and ambulance 
response time by suitable crews for four categories 
of patient need:

Category 1—defined as ‘life threatening’ cases 
where the triage time is the earliest of 30 seconds 
from the call being connected, an ambulance being 
dispatched, or the patient needing to be identified. 
These cases require a 7-minute mean response with 
90% of the calls responded to within 15 minutes or 
less. In addition, suitable transport must be available 
to convey the patient within 15 minutes of the call 
being connected.

Category 2—defined as ‘emergency cases’ where 
the triage time is the earliest of 240 seconds from 
the call being connected, an ambulance being dis-
patched, or the patient needing to be identified. 
These cases require an 18-minute mean response 
time with 90% of the calls responded to within 40 
minutes or less. The ‘clock’ is only stopped by the 
arrival of a suitable vehicle to convey the patient, or 
if a vehicle is not required the first staff on the scene.

Category 3—defined as ‘urgent cases’ where the 
triage time is the earliest of 240 seconds from the 
call being connected or an ambulance being dis-
patched. These cases require a 90% response within 
120 minutes by suitable transport, but if the patient 
does not require transport then the first staff on-scene 
stops the ‘clock’.

Category 4—defined as ‘non-urgent’ cases where 
the triage time is 240 seconds from the call being 
connected, an ambulance being dispatched, or the 
patient needs to be identified. 90% of these cases 
should be responded to within 180 minutes and the 
‘clock’ is only stopped by the arrival of a vehicle 
suitable to transport the patient, but if the patient 
does not require transport then the arrival of the first 
staff is on-scene. 

Further integrated targets were also defined. For 
example, by 2022 90% of eligible heart attack pa-
tients should receive definitive treatment at a special-
ist heart centre within 150 minutes of the call being 
connected. These targets imply that ambulances take 
patients with certain defined conditions directly to 
the relevant hospital facility rather than Accident and 
Emergency (A & E).

4. Earlier theoretical solutions
In the past, operations research algorithms have 

offered a range of potential solutions addressing 
specific topics such as ambulance numbers and lo-
cations. Such studies have included Toregas et al. [9]  
who used optimisation to minimise the number of 
ambulances used to cover a defined geographical 
area. Whereas, Church and ReVelle [10] and Repede 
and Bernardo [11] indicated how fixed ambulance 
numbers could be located to obtain maximum geo-
graphical coverage. Gendreau et al. [12] and Dorner et 
al. [13] combined these two ideas to provide the min-
imum number of ambulances over a maximum geo-
graphical coverage. Daskin [14,15] modelled the impact 
of ambulance unavailability and Carter et al. [16]  
used queuing theory with fixed locations to tackle a 
similar problem. Larson [17] developed a ‘hypercube’ 
queuing model to select ambulances to respond from 
a fixed fleet. Lubicz and Meielczarek [18], Savas [19], 
Fitzsimmons [20], Swoveland et al. [21], Erkut et al. [22]  
and Inakawa et al. [23] have all used queuing and 
simulation techniques to predict ambulance response 
times in specific cities or geographical areas. Brot-
corne et al. [24] provide a comprehensive review of 
ambulance location models. Similar specific parame-
ters have been modelled by Fitch et al. [25], Blackwell 



14

Journal of Electronic & Information Systems | Volume 05 | Issue 02 | October 2023

and Kaufman [26] and Shane et al. [27]. These opera-
tions research techniques were employed to tackle 
location and historic deployment issues rather than 
address the end-to-end tasks of managing a short 
lead time 24/7 emergency ambulance service sup-
porting populations in a substantial territory

In addition, early operation research models 
were weak on input data and underlying operating 
assumptions and failed to provide credible solutions 
that represented an improvement upon existing op-
erations. When these models were compared with 
real-time ambulance deployment planning there 
were several significant weaknesses. Furthermore, 
these models failed to consider significant real-time 
opportunities such as the re-deployment of returning 
ambulances to alternative locations, staggered crew 
shift times, diverting ambulances from less non-ur-
gent tasks to life-threatening tasks, or the short-term 
use of alternative or third-party ambulance services 
for non-urgent cases.

Brotcorne et al. [24] indicated that several com-
ments had been made by both users and reviewers of 
these techniques. Firstly, the data sets employed are 
historic, time-limited and do not account for a dy-
namic starting position, or peaks and troughs in de-
mand on a seasonal, monthly, weekly, daily or hourly 
basis. Secondly, as shown by Carson and Batta [28], 
the travel time differences throughout the day are 
ignored and the travel time is either calculated on a 
straight-line distance at a constant speed or distance 
is calculated on the ‘square root law’ devised by 
Kolesar [29], leading to significant inaccuracies when 
compared with actual ambulance travel times. Third-
ly, each model limited its scope by addressing only 
the significant issues of either location or fleet size, 
although Naoum-Sawaya and Elhedhli [30] considered 
a continuous-time chain to redeploy ambulances to a 
location upon completion of a task.

None of the models quoted coped with dynamic 
operational practices such as the use of deployment 
locations only on specific days or times of day; var-
iable road speeds on different roads and the same 
road throughout the day. In addition, variations in 
on-site timings at different medical facilities includ-

ing handover delays were not considered. Further-
more, they do not consider what has now become 
the operational practice in terms of dispatching more 
than one ambulance from different locations to a sin-
gle call; the use of hubs (main ambulance stations) 
with satellites and despatch points (temporary stand-
by ambulance locations), and the use of crews when 
returning from a task or extending crew shift times.

5.	Operational	issues	
The shortfall in the operations research models 

indicates that problems facing the ambulance service 
are extremely complex and not those which could be 
solved by models which combine location selection 
with vehicle routing and scheduling because they in-
volve a combination of several real-time operational 
issues including:

· Call pick-up delays at the call-centre when busy
· Insufficient or incorrect information to catego-

rise patient needs correctly
· The immediate or subsequent availability of 

suitable crews
· Outbound (and inbound) traffic conditions
· Ability to obtain relevant patient information
· Selection or diversion to a suitable medical facility 
· Waiting time and handover delays at hospital 

facilities
· Make ready and/or crew break before returning 

to a standby location
· Knowledge of current resources deployed on 

which category of task
· Progress of each deployment and potential crew 

reassignment time
· Currently available resources by type and skill level
· Number of patients on-scene at each location
· Data on the changing condition of the patient(s)
· Location of the incident and access to the pa-

tient(s)
· Time of day, traffic conditions, weather conditions 
These issues delay the process flow of attending, 

on-site treatment and delivery of a patient to a suit-
able medical facility and may risk failing to achieve 
the target response time for the complete task. Lord 
Carter [31] suggested the reality of ambulance service 
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operations is currently very different from the op-
timum process due to the combination of increased 
demand and a need to substantially improve produc-
tivity. In addition to response times the ambulance 
service has a wider set of financial and operating key 
performance measures to report to NHS England 
monthly. However, in practice, there is real opera-
tional concentration on response times because both 
the general public and the national press highlight 
timing failures regularly. 

Following receipt of an emergency call current 
practice is to follow one of three pathways—see 
Figure 1 (where patient pathways are numbered 1, 
2 and 3). Initially, the patient’s need is categorised 
using AMPDS then call-centre staff will either de-
ploy a suitable resource or provide telephone advice 
(known as ‘hear and treat’ 1). Some emergency and 
urgent calls may be concluded on scene employing 
treatment or advice from the crew (known as ‘see 
and treat’ 2). For life-threatening and emergency 
calls (known as ‘see and convey’ 3). one or more 
resources may be despatched immediately (if avail-
able) or existing outbound crews servicing urgent or 
less urgent calls may be diverted. 

To assist with achieving target response times, 
call-centre staff have the electronic mapping of the 
territory which is combined with the use of full post-
codes, or the compass on a caller’s mobile phone, to 
give an accurate location of the patient. They have 
vehicle tracking and tracing to locate vehicles and 
coding to determine if vehicles are available and the 
category of the task they are undertaking. Workforce 
planning indicates the remaining shift time available 
to staff on duty and the potential availability of crews 
about to start a shift. On the local map, they have the 
locations of all medical facilities, on-call staff, com-
munity first responders, members of the hazardous 
area response team, the helicopter emergency medi-
cal service (HEMS), mountain rescue teams (MRT) 
and the location of static public access defibrillators 
and bleed control packs. 

Call-centre staff also know about handover de-
lays at each medical facility, vehicles out of service 
and crews on shift potentially taken out of service 

for operational reasons. On-scene staff need to know 
if they have multiple patients to consider at one site 
and the nature of any hazard that may impede staff 
either traveling to the site or at the site plus whether 
any other emergency service has been called out to 
assist and is a rendezvous arranged with anyone. 
Despatchers will monitor both the progress and re-
quirement for those resources where they have des-
patched more than one resource to enable them to 
achieve the response time; so that they could stand 
down duplicated resources at the first opportunity.

In the event of severe life-threatening trauma be-
ing recognised by staff they may in addition despatch 
support in the form of a mobile critical care team con-
sisting of a paramedic and/or doctor or the helicopter 
emergency medical service if suitable and available. 

6.	Alternative	approach
The key issues to facilitate improving ambulance 

response times and staff productivity are the collec-
tion, analysis and availability of relevant timely in-
formation. To overcome the deficiencies encountered 
when using operations research techniques to opti-
mise specific issues an alternative approach would 
be the combination of solutions from five real-time 
modules all of which could be integrated using a da-
ta-warehouse—see Figure 2.

Figure 2. Integrated in formation system.

In this instance, a module is represented by one 
or more algorithms that obtain real-time or historic 
data from a directly linked data-warehouse to either 
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answer a specific question or add further processed 
data to the data warehouse.

6.1 Demand forecasting from historic data 

Traditionally, the ambulance service has collected a 
large quantity of real-time data reflecting demand pa-
rameters including location of demand, timing of calls, 
classification of requirement, age of patients, operation-
al conditions and short-term outcome for patients. This 
data indicates that calls are in essence random both 
in location and nature but analysis over an extended 
period of 3 years shows similar macro patterns if one-
off factors such as mass-casualty incidents, pandemics, 
events or severe weather are discounted. 

By combining ambulance service data with data 
from public services such as postcodes [32] and popu-
lation data (see Office of National Statistics 2022) it 
is possible to determine some basic demand parame-
ters. Pidd et al. [33] showed that mapping volume data 
by location and time using a geographic information 
system (GIS) would highlight demand ‘hot spots’. 
Such analysis of both ambulance service and GIS 
data shows demand by postcode sector (defining 
area), showing potential forecasting variations, and 
defining demand by category of call, time of day and 
age of the population—see Table	1. 

The profile may differ in each selected territory, 
however, data will be more accurate for Functional 
Urban Areas (FUA) which are densely inhabited 
areas in cities (urban and sub-urban) and slightly 
less populated commuter zones (semi-rural and ru-
ral). With data, collected over 3 years and weighted 
to the current situation by employing exponential 
smoothing, it is possible to plot forecast demand at 
postcode sector level and time of day. Best forecasts 
are obtained for categories 1 and 2 calls for a limited 
period (say 12 weeks) which account for seasonality 
and key conditions such as holiday peaks in demand. 
Using such demand data by day of the week and 
considering weather details, it is possible to forecast 
ambulance requirements to potential ‘hot spots’ by 
the time of day which allow staff to locate unallocat-
ed resources throughout the territory to areas with a 
high probability of demand and therefore maximise 

the opportunity to achieve the target response times.

6.2 Resource allocation

Previously resources were located at local ambu-
lance stations and hospitals but with the development 
of direct-to-vehicle communications plus vehicle 
tracking and tracing the control centre has real-time 
knowledge of each crew’s location (even while they 
are traveling). The current thinking is to allocate re-
sources to ambulance stations and temporary deploy-
ment points in FUAs. Deployment points are parking 
places for a single front line double manned ambu-
lance awaiting a job, often located at fire or police 
stations, shopping centres or garages where there are 
suitable ‘comfort’ facilities for the crew.

However, based upon significantly improved 
analysis of demand data it is now more appropri-
ate to allocate resources based on forecast demand. 
‘Hot spots’ could be geo-fenced providing a forecast 
of potentially successful travel time to a call based 
upon travel time from the centre point of a hot-spot. 
However, the target distance to potentially travel 
in a defined time from the centre of a ‘hot-spot’ is 
known as a ‘geo-fence’ which will vary by factors 
such as the resource available, the road layout and 
the forecast demand. by season, day of the week and 
hour of the day—see Figure 3. Ambulance stations 
and deployment points could be provided in areas of 
potential ‘hot spots’. Significant gaps, not covered 
by ‘geo-fences’ could be filled by activating back-
up resources including shift overlaps, on-call staff, 
Volunteer Ambulance Crews (VAC) or Community 
First Responders (CFRs). Once a crew is despatched 
it may be necessary to backfill the location with 
another crew at the earliest opportunity. This form 
of resource allocation improves the probability of 
achieving ambulance response times for category 
one and two calls. 

Recognising that ‘hot spots’ alter throughout the 
day implies relocating operating and backup resourc-
es throughout the day as both demand patterns and 
travel times vary. Relocation is best undertaken at 
the beginning of a shift, as resources become free 
from a completed task or at the end of a crew break. 
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Table	1. Demand parameters: Data sheet.

GEOGRAPHIC	AND	POPULATION	CHARACTERISTICS
Parameters Post Code Split Area Population Daytime Population Night

% % % %
URBAN Below 0.5 square miles per post code 40 2 30 25

SUB-URBAN Between 0.5 and 2.0 square miles per post 
code 30 8 36 40

SEMI-RURAL Between 2.0 and 10.0 square miles per 
post code 20 20 26 25

RURAL Over 10 square miles per post code 10 70 8 10
100 100 100

(Data averaged and rounded up) 

FORECASTABLE VARIATIONS IN DEMAND
Season: Spring - Summer - Autumn - Winter 
Day of the Week: Mon - Tues - Wed - Thu - Fri - Sat - Sun - Bank Holiday 
Location Issues: Tourist Holiday Season - School Holidays
Special Events: Sporting Fixtures - County Shows - University Freshers Week
Zone: Travel Time Dependant by Time of Day
Temperature: Ice - Black Ice - Below Average - Above Average - Hot - Very Hot
Weather: Snow - Sleet - Rain - Heavy Rain - Dry

FORECASTABLE LOCATION OF DEMAND
Urban - Sub-Urban - Semi-Rural - Rural
Population Demographics including Income Levels
Industry/Work Related - Ethnic Origin/Background Related - Housing/Social Related 
Availability of Health and Social Services

CALL VOLUME BY TYPE AND TIME OF DAY CALL VOLUME BY POPULATION AGE

Time of Day     (hours) Life Threatening 
Emergencies Emergency Calls Age Group Total Population Split Demand by 

Age Group
% % % %

00.00 to 02.00 7 9 Under 10 12 9
02.00 to 04.00 5 6 11 to 20 13 5
04.00 to 06.00 2 3 21 to 30 12 7
06.00 to 08.00 7 6 31 to 40 15 5
08.00 to 10.00 9 7 41 to 50 14 8
10.00 to 12.00 11 9 51 to 60 13 10
12.00 to 14.00 11 10 61 to 70 10 14
14.00 to 16.00 10 10 71 to 80 7 18
16.00 to 18.00 10 10 81 to 90 3 16
18.00 to 20.00 10 11 Over 90 1 8
20.00 to 22.00 9 10 100 100
22.00 to 24.00 9 9

100 100
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Figure 3. Critical variables determining ambulance response 
time.

6.3	Resource	deployment

Traditionally the ambulance service has deployed 
the nearest available resource to a task. They have 
even redirected crews on-route to category 3 and 4 
calls to a category 1 or 2 call if they were the near-
est. However, if dispatchers adopt real-time vehicle 
tracking and tracing combined with geo-fencing 
methods they will be able to determine all potential 
options to attend the scene. Eglese et al. [34] indicated 
that the travel distance from any one point and each 
geo-fence structure is determined by the nature of 
the road speed and each vehicle geo-fence will be a 
different shape offering different ground coverage—
see Figure 3. Eglese et al. [34] also showed that road 
speed differs between nodal points (road junctions 
on all except minor roads and tracks) on a specific 
road and that a ‘road timetable’ may be developed 
showing the estimated speed between each nodal 
point for each vehicle type with variations for the 
time of day, day of the week and season of the year. 
It is also practical to impose speed reductions for 
specific short-term events which are known to reduce 

vehicle travel speeds such as long-term road works.
With the use of vehicle tracking, geo-fencing 

based upon a relevant ‘road timetable’, it is possible 
to calculate the realistic area that may be covered in 
7 minutes (for category 1 calls) or 18 minutes (for 
category 2 calls) from the vehicle’s current location 
(whether static or mobile). Such an analysis of alter-
native vehicles and alternative routes may show the 
despatcher that a vehicle with the shortest travel dis-
tance could be slower than a vehicle with the short-
est travel time.

It should be noted that urban and rural clusters 
will look different and there will be available re-
sources traveling through each demand cluster when 
returning to a standby location and when outbound 
to a task—see Figures 4 and 5. The ambulance ser-
vice could also use the combination of critical path 
programs, electronic mapping and vehicle tracking 
and tracing software to communicate in real-time 
with a caller who has a smart mobile the status and 
location of any outbound resource responding to 
their call—thus establishing a realistic expectation 
of an on-scene time and avoiding repeat requests for 
immediate ambulance services.

Figure 4. Conceptual view of demand and resource zones (Ur-
ban).

CALL VOLUME BY TYPE AND TIME OF DAY CALL VOLUME BY POPULATION AGE

Time of Day     (hours) Life Threatening 
Emergencies Emergency Calls Age Group Total Population Split Demand by 

Age Group

UN-FORECASTABLE VARIATIONS IN DEMAND
Severe Weather - Pandemic 
Mass Casualty Incident - Short Term Localised Issues
Local Events
Requirement for Mutual Aid

Table 1 continued
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Figure 5. Conceptual view of demand and resource zones 
(Semi-rural).

6.4	Task	review

One of the most significant benefits to a patient 
is the backup service provided by call-centre staff 
to both on-scene public before a crew arrives and 
the ambulance crew as they undertake their obser-
vations, conclude what actions are necessary, which 
pathway the patient should take and which medical 
facility the patient should be taken. 

On-scene staff may also request assistance from 
senior clinicians within the call-centre or external 
supporting resources (for example Helicopter Emer-
gency Medical Service—HEMS). In addition, staff 
may request the public on-scene to assist with imme-
diate first-aid before an ambulance response arrives. 
This may take the form of advice by telephone, ad-
vice upon where to collect the nearest static defibril-
lator/bleed pack and how to use these resources. 

Staff should be aware of all resources currently 
tasked, their location and when they are likely to 
become available (upon completion of a task or after 
any break) or when their shift finishes and whether 
it could be extended if necessary. Constant monitor-
ing may indicate potential issues, for example, long 
ambulance handover times at a particular accident 
and emergency (A & E) department which may re-
quire further action to divert inbound ambulances to 
alternative accident and emergency departments or a 
local urgent care centre if practical.

6.5	Operating	environment

To be able to improve the accuracy of vehicle 
running time and on-scene crew operating time any 
standard times for each activity must be amended to 
reflect the actual operating conditions at the time of 
the call. Such variations are achieved by monitoring, 
recording and updating specific operating tasks; for 
example:

The ‘road timetable’ is a database that forecasts 
the speed of a vehicle (operating with blue lights and 
sirens) between two nodal points at hourly intervals, 
by day of the week, under specific weather and traf-
fic conditions during a specific season—an outbound 
travel forecast being the sum of the times between 
each nodal point on the route. The ‘road timetable’ 
is populated and updated from data gathered using 
the vehicle tracking and tracing system averaged to 
account for differed driver behaviours.

The ‘on scene operating time’ may be estimated 
for each AMPDS code, for each type and age of the 
patient, whether indoor or outdoor, at what time of 
day and in which geographic zone—collection of ac-
tual data over time could generate a ‘look-up’ table. 
Real-time monitoring against estimated will provide 
a clue as to whether the crew needs telephone or on-
scene assistance.

Direct access (on a portable tablet) to patient re-
cords also provides the crew with a patient history, 
medication history and particularly which ‘primary’ 
and ‘secondary’ medical facilities they have visited. 
This may influence both questions asked during the 
crew’s initial observations and the decision upon an 
onward pathway to a medical facility. Previous pa-
tient calls to the ambulance service should be availa-
ble on a database for crews to access while traveling 
outbound.

6.6	Data	warehouse

A ‘data warehouse’ could be generated and updat-
ed from relevant data from each module 1 to 5 which 
allows relevant staff access 24/7/365. The data ware-
house could be used to identify trends, recognise 
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resource deficiencies and highlight both existing and 
potential operating issues. Data could also represent 
the basis for comparisons between operations in dif-
ferent geographical zones supporting any necessary 
operational changes.

7. Simulation
To test the feasibility and practicality of devel-

oping and using the five modules a simulation was 
undertaken based on 24/7 operation, in a limited 
but representative geographical area, over the most 
difficult season of the year. A honeycomb pattern 
of adjusted hexagons was created based on a daily 
demand forecast at the response category level, cor-
rected by exponential smoothing of historic demand 
patterns and broken down into six-hour periods. The 
honeycomb pattern covered an area with urban, sub-
urban, semi-rural and rural populations. ‘Hub’ am-
bulance station locations were selected in functional 
urban areas, and ‘deployment points’ were selected 
in suitable facilities where there was up to 20 hours 
demand for 6 days each week. ‘Spokes’ (parking lo-
cations for Double Manned Front Line Ambulances 
DMFLA) were selected, throughout the rest of the 
territory, at other suitable facilities to cover forecast 
demand which was limited to specific periods in the 
day and days of the week. 

Before the simulation was attempted a small data 
warehouse was established for the geographical area 
selected comprising three years of demand data, 
resources potentially available (based upon use), 
a deployment of resources at the starting position, 
data on local medical facilities, a high on-scene time 
by AMPDS code and a road time table (adjusted 
for ‘blue-light’ vehicles). Several basic decision 
rules were adopted, for example, road traffic acci-
dents with two casualties would warrant two double 
manned front line vehicles (DMFLV). Additional de-
mand was covered where known, for example, when 
the fire service dispatched three or more tenders to 
an incident one DMFLV would be dispatched to sup-
port the fire crews. No mass casualty incidents were 
included.

The simulation was undertaken based upon a ge-

ographically and time-limited data set broken into 
three years ‘historic’ data to produce a three-month 
statistical forecast of demand. Several operating rules 
were tested which achieved the required ambulance 
response times for the daily demand. These calcula-
tions were targeted to determine the maximum and 
minimum number and type of resources required at 
each hub, deployment point and spoke in the defined 
area. The simulation was used to determine how re-
sources could be relocated throughout a shift pattern 
to meet forecast demand from the hub or deployment 
point to spokes and vice-versa to meet forecast de-
mand within and between each hexagon.

The simulation was based on the defragmentation 
of the problem and split into four separate but inter-
connected principles:

Firstly, the forecast of short-term demand (ex-
pressed as potential calls by patient category and 
time of day) to determine the potential number of 
calls in each hexagon for every six hours in a roll-
ing 24 hours. Calls were allocated an AMPDS code, 
day of the week and time of day based on weighted 
historic data. How many of these calls would fall 
into the ‘hear and treat’ and ‘see and treat’ groupings 
were estimated based on AMPDS coding. The AM-
PDS code would be translated into a category of pa-
tient need. A reduction factor was applied based on 
an estimate of how many would be duplicates or re-
peat calls for the same incident. Frequent caller data 
was identified but maintained in the dataset at cate-
gory three because a response would be required. A 
separate forecast was calculated for calls transferred 
from the 111 service all of which were allocated to 
category two demand.

Secondly, based upon demand the selection of 
‘hubs’, ‘deployment points’, ‘spokes’ and resources 
of all types would be initially allocated throughout 
the area. This would include a forecast of operational 
tasks by patient category in progress by location and 
percentage completion, so resources were limited at 
the start through a carry-over situation.

Thirdly, appropriate resources would be allocated 
to each call as it was forecast to occur (location, pa-
tient category by AMPDS code and time of day)—
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the rules would be based upon achieving the target 
response time while maintaining maximum avail-
ability throughout the area. Resources that became 
available would be redeployed and their transit mon-
itored.

Fourthly, all tasks would be monitored using a 
scheduling system with estimated task times and 
vehicle routing techniques to obtain operational data 
which would be used to determine when a task is 
likely to be completed and the crew available for the 
next task.

The simulation covered three months in the win-
ter but excluded support for known local events, 
pandemics and any mass casualty occurrences. Each 
simulation was reviewed and run again with alterna-
tive operational rules.

The best results from several simulations indi-
cated that 96% of the required ambulance response 
times would be achievable with 6% fewer resources 
than currently allocated in the area. However, this 
could only be achieved if and when resources be-
came available they were immediately either allocat-
ed a break period or redeployed to areas of forecast 
demand. It was particularly important to ensure that 
‘hubs’ would always have resources available or 
inbound following the completion of a task. The six 
most significant results include:

More than 15% of calls in FUAs were satisfied by 
crews being redeployed before reaching less urgent 
tasks or available in transit to a hub, deployment 
point or spoke.

Achievement for categories 1 and 2 patients was 
above the target emergency ambulance response 
time in FUAs but slightly below the target in other 
areas except where patients were initially attended 
by Community First Responders (CFRs) or on-call 
staff.

At periods of unusual peak demand times it 
would be necessary to convey category 4 patients 
using third-party ambulance services.

Over 20% of category 1 and 2 patients which 
achieved the target response time at peak times were 
responded to by crews from deployment points.

Less than 3% of category 1 and 2 calls required 

two or more crews
Spacing shift time starts, varying shift length and 

having a split shift for ‘hub’ based staff minimised 
the requirement to extend crew shifts to complete an 
allocated task.

The sensitivity of the simulation results showed 
that more than an 8% change in demand levels influ-
enced whether the response time was achieved for 
both category 1 and category 2 even if such meas-
ures as extending crew shift time were employed.

After undertaking various sensitivity analysis 
runs, as stress tests based on the best simulation re-
sult several other significant conclusions arose, the 
six most significant were:

If hand-over times for category 2 and 3 patients at 
accident and emergency facilities doubled then sig-
nificant local gaps appeared in resource availability 
at both hubs and deployment points leading to a need 
to convey category 4 patients employing third-party 
ambulance services.

The best results were obtained by having a para-
medic as part of every crew because the paramedic 
would after observation treat certain AMPDS codes 
as ‘see and treat’.

Utilising ‘retained staff’ in Rapid Response Vehi-
cles (RRVs) from rural Primary Care surgeries and 
Volunteer Ambulance Crews (VAC) from rural fire, 
police or coastguard stations significantly improved 
the response time for category 1 and 2 patients in 
both semi-rural and rural areas.

Overall response time targets improved if crews 
were allocated category 3 and 4 patients at the end 
of their shift and shift starters were deployed to ‘de-
ployment points’ and ‘spokes’ where they would in-
itially be tasked with responding to category 1 and 2 
patients.

Redirecting patients to either specialist medical 
facilities or alternative accident and emergency units 
(rather than the nearest one if hand-over times there 
exceeded the target) had little impact on the rede-
ployment of crews or overall achievement of the tar-
get ambulance response times except where a patient 
could be grouped as ‘hear and treat’ and directed by 
call-centre staff to attend alternative medical facili-
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ties or a pharmacy.
Following Hamet and Tremblay [35] the appli-

cation of operational rules targeted at testing an 
Artificial Intelligence (AI) response towards testing 
call-centre staff efficiency by limiting resource op-
tions to those which could either achieve the target 
response time or were at the nearest ‘hub’. These 
limited computing calculation time and offered the 
dispatcher a choice of the best results. 

8.	Conclusions
It has been widely understood that ambulance 

services in England have through their Computer 
Aided Dispatch (CAD), AMPDS and patient record 
systems collected a large amount of patient and 
operations data. However, updating, validating and 
processing this information in real-time has not been 
recognised as the backbone to achieving national 
emergency ambulance response times.

To address this problem the ambulance service 
could defragment the problem and using several cur-
rently available information technologies consider 
five key decisions in real time. 

Where are the demand clusters for life-threaten-
ing and emergency calls?

How many of each type of resource are required 
and where to locate these resources?

How many, of which resources and when to allo-
cate resources to each call? 

To which facility (if further treatment is required) 
the patient should be conveyed?

Which location an ambulance should be deployed 
to upon completion of the allocated task?

It has been recognised that these questions may 
be answered by separate modules in the form of:

GIS analysis and forecasting modules to deter-
mine demand ‘hot spots’ and demand clusters by 
location and time.

A resource coverage and availability module 
matched to statistical forecasting of demand over a 
short-term time, based upon hexagons each with a 
radius set by travel distance over the response time 
requirements.

A recommended call resource allocation module 

based upon interpreting both a set of basic rules and 
past dispatch behaviour to maintain maximum avail-
ability of resources covering the territory.

A task scheduling module to provide the basis 
for a resource allocation and redeployment module 
based upon matching forecast short-term demand 
with shift time remaining for each operating crew 
and alternative resources that may be available. 

A queuing theory module that monitors availabil-
ity at each secondary medical facility (also defining 
specialisations) servicing the territory to deliver the 
patient to the most appropriate facility, minimise pa-
tient queuing and maximise crew turn-round.

Simulation and sensitivity analysis have proved 
that linking the technologies in these modules to-
gether, by utilising a data warehouse in real-time, 
provides an opportunity to understand short-term 
demand and be able to resource enough calls within 
the national emergency ambulance service target re-
sponse times. 

These developments represent the first step to-
wards ‘smart ambulance operations’ by establishing 
the groundwork upon which information systems 
may be used in the decision-making process Subse-
quently, artificial intelligence will use a combination 
of activities to locate ‘stand-by’ crews, dispatch 
crews or alternative immediate assistance, select a 
receiving hospital, sending on-scene real-time inter-
net video recordings to medical teams and to com-
municate patient observations directly from equip-
ment in the ambulance to the hospital based medical 
team. Such activities are targeted to improve the 
medical assistance available throughout the patients’ 
pathway and thereby improve the patient experience 
and outcome.

Potential progress in the application of these 
techniques nationwide may be limited by the ability 
to allocate sufficient financial support and the ability 
to attract staff with relevant information technology 
skills.
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ABSTRACT
Active noise cancellation has become a prominent feature in contemporary in-ear personal audio devices. 

However, due to constraints related to component arrangement, power consumption, and manufacturing costs, most 
commercial products utilize fixed-type controller systems as the basis for their active noise control algorithms. These 
systems offer robust performance and a straightforward structure, which is achievable with cost-effective digital signal 
processors. Nonetheless, a major drawback of fixed-type controllers is their inability to adapt to changes in acoustic 
transfer paths, such as variations in earpiece fitting conditions. Therefore, adaptive-type active noise control systems 
that employ adaptive digital filters are considered as the alternative. To address the increasing system complexity, 
design concepts and implementation strategies are discussed with respect to actual hardware limitations. To illustrate 
these considerations, a case study showcasing the implementation of a filtered-x least mean square-based active noise 
control algorithm is presented. A commercial evaluation board accommodating a low-cost, fixed-point digital signal 
processor is used to simplify operation and provide programming access. The earbuds are obtained from a commercial 
product designed for noise cancellation. This study underscores the importance of addressing hardware constraints 
when implementing adaptive active noise cancellation, providing valuable insights for real-world applications.
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1. Introduction
The use of the active noise control (ANC) method 

to reduce ambient noise in the earbuds has achieved 
significant commercial success, demonstrating the 
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effectiveness of the method in the frequency range 
where the spatial control region is small in compar-
ison to the wavelength. The problem itself can be 
simply considered as a one-dimensional problem—
that is, the cancellation of plane waves. However, 
incorporating ANC into earbuds presents specific 
challenges, primarily due to the compact form factor 
essential for earbud design. These challenges include 
fitting all the required components into a tiny en-
closure and dealing with tight spacing between the 
sensor and actuator, which limits the response time 
of an ANC system. This necessitates low-latency 
audio processing devices and computationally effi-
cient control algorithms. Achieving significant noise 
reduction across a broad bandwidth depends on min-
imizing latency [1]. 

Another important factor to be considered for 
a well-performing ANC system is the variation in 
acoustic leakage within the acoustic control region. 
This variability is mainly associated with user pref-
erences for diverse earbud fit conditions to ensure 
comfortable wear. On some occasions, the fit may 
also loosen as the user moves. Obviously, a strong-
er anti-noise signal is required to compensate for 
the increase in acoustic leakage. However, even a 
minor alteration in the leakage causes variability in 
the way ambient noise propagates into the ear. This 
introduces uncertainty in how a controller would 
respond. Consequently, controller stability and noise 
reduction performance must be assured within the 
assumed perturbed range.

One of the earliest approaches proposed to ad-
dress uncertainty in active headsets is the utilization 
of a robust controller [2]. This method employs an 
algorithm based on the two Riccati equations to de-
termine appropriate parameters for a controller with 
guaranteed operating margins. The resulting control-
ler is implemented using operational amplifier cir-
cuitry. Another noteworthy alternative approach in-
volves employing a set of stable feedback controllers 
with various preset gains [3]. In response to specific 
fitness conditions, a comparator switches to the ap-
propriate operational controller. These studies shed 
light on the idea that a certain degree of controller 

adaptiveness is generally necessary to accommodate 
varying acoustic environments.

In the field of ANC applications, adaptive con-
trollers incorporating digital filters have gained 
popularity for their ability to efficiently adapt to dy-
namic and complex acoustic environments. Howev-
er, practical implementation within earbuds presents 
challenges due to the limited choice of computing 
hardware, which compromises the system’s ability to 
perform complex calculations. High-performing pro-
cessor is essential for executing sophisticated control 
algorithms requiring intensive and intricate digital 
filtering tasks [4]. 

Achieving effective ANC in resource-constrained 
earbuds demands a careful balance of design factors 
to ensure satisfactory noise cancellation performance. 
This article investigates practical considerations for 
implementing adaptive filters in noise cancellation, 
specifically utilizing a low-cost digital signal proces-
sor (DSP) suitable for earbud integration. The adap-
tive controller employs the well-known filtered-x 
least mean square algorithm (FxLMS). Details about 
the specifications of the speakers and microphone, as 
well as their spatial arrangement, are derived from 
a popular commercial earbud product. The overall 
configurations are determined based on computa-
tional resources and the functional features available 
within the chosen DSP. Finally, the article presents 
experimentation using broadband random noise to 
validate the proposed approach. 

2.	Adaptive	noise	control	system
Figure 1(a) illustrates a simplified ANC system 

within earbuds. The interface unit performs signal 
conditioning and audio codec, as well as signal 
mixing and amplification. To reduce ambient noise, 
typically assumed to be random and broadband, a 
feed-forward controller is commonly adopted. This 
setup involves one speaker to generate the anti-noise 
and two microphones: one positioned upstream and 
another downstream to measure the reference input, 
x(n), and the noise residue, e(n), respectively. When 
the speaker and error microphone are placed within a 
sealed enclosure, two propagation paths must be con-
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sidered. The first is referred to as the primary path, 
P(z), through which noise travels from the reference 
microphone to the error microphone. This path is 
purely acoustical in nature. The other is the second-
ary path, S(z), which exists between the controller’s 
output and input ports. It is a propagation medium 
that comprises both electrical components within the 
circuitry of the signal interface unit, speaker, and er-
ror microphone, as well as acoustic elements within 
the space between the speaker and error microphone.

Figure 1. A system overview: (a) ANC integration in earbuds. (b) 
FxLMS based controller.

In practical implementation, there may be an au-
dio signal feed from the connected device, such as 
a phone or audio player, that is sent to the speaker. 
This audio signal could potentially mix with the 
noise residue measured by the error microphone. 
However, because information about the audio sig-
nal is known, it becomes practical to separate the 
noise residue. Furthermore, the audio signal can be 
effectively utilized for both online and offline mod-
eling of the secondary path transfer function [5]. It is 
important to note that the scope of this work does 
not encompass a discussion of the algorithm for sep-
arating the noise residue from the audio signal.

The heart of the adaptive controller is a digital fil-
ter, generally classified into two major categories: re-
cursive and non-recursive. The former reuses a part 
of its output as the input, creating a feedback loop 
that results in a very long impulse response. While a 
recursive filter has the potential to reduce the com-
putational burden, it comes with inherent drawbacks, 
such as response instability and local minimum solu-
tions. In this work, the preference is for a non-recur-
sive digital filter to facilitate convergence during ad-
aptation. It consists of one row of unit delays, where 
a segment of input data is stored, and another row of 

coefficient memories of the same length. The output 
of the digital filter is the sum product of the values in 
the corresponding rows. Alongside an algorithm for 
adjusting filter coefficients, an adaptive controller is 
constructed.

2.1	A	review	of	the	FxLMS	algorithm

In this work, the least mean square algorithm 
is considered. The algorithm iteratively adjusts the 
filter coefficients in a way that minimizes noise 
residue by following the negative direction of the 
error gradient. However, the presence of a secondary 
path causes a phase mismatch in the arrival of the 
anti-noise signal, impeding the correct filter update. 
Therefore, an auxiliary filter must be introduced into 
the control loop to compensate for the alteration of 
the anti-noise signal by the secondary path [6]. This 
auxiliary filter, often referred to as a secondary path 
estimate, 
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same length. The output of the digital filter is the sum product of the values in the corresponding
rows. Alongside an algorithm for adjusting filter coefficients, an adaptive controller is
constructed.

2.1 A review of the FxLMS algorithm
In this work, the least mean square algorithm is considered. The algorithm iteratively

adjusts the filter coefficients in a way that minimizes noise residue by following the negative
direction of the error gradient. However, the presence of a secondary path causes a phase
mismatch in the arrival of the anti-noise signal, impeding the correct filter update. Therefore, an
auxiliary filter must be introduced into the control loop to compensate for the alteration of the
anti-noise signal by the secondary path [6]. This auxiliary filter, often referred to as a secondary
path estimate, �() , can be obtained through transfer function modeling or measurement. This
approach is known as the FxLMS algorithm.

The block diagram in Figure 1(b) illustrates an adaptive feed-forward controller, (),
which is implemented as a non-recursive filter with a length of . In response to the input, (),
provided by the reference microphone, the controller generates the anti-noise signal, (), which
can be calculated using the following relationship,

  =
=0

−1

    −  =   () (1)

Here,  denotes the -th coefficient of the controller. The anti-noise signal is transmitted
through the speaker to produce,

  =   + '  =     +   () (2)

which is the noise residue measured by the error microphone. This equation uses a positive sign
to signify the superposition of sound waves between the unknown ambient noise,   =
    , and the anti-noise, '  =   (), as they reach the control point.

The gradient of the error surface can be obtained by differentiating the cost function
  = 2() with respect to the filter coefficients. By applying the gradient descent algorithm,
the iterative process for adjusting the controller coefficients is expressed as follows,

  + 1 =   −  '  () (3)

Here, notations  and '  = �  () represent the iteration step and the filtered
reference input, respectively. The iteration step, which is associated with convergence speed, is a
positive coefficient that can be selected from a range of values that is not larger than,

. =
1

'() 2( + )
(4)

The notations . and  represent the maximum applicable iteration step and the
inherent delay in the secondary path, respectively. Accordingly, it is evident that the delay in the
secondary path imposes a constraint on convergence speed [7]. A longer path delay leads to slower
convergence.

2.2 The importance of the secondary path
If perfect noise cancellation is achievable, meaning   → 0 as the adaptation converges,

the optimal controller,  , can be derived from Equation (1) and Equation (2) as:

, can be obtained through transfer 
function modeling or measurement. This approach is 
known as the FxLMS algorithm. 

The block diagram in Figure 1(b) illustrates an 
adaptive feed-forward controller, W(z), which is 
implemented as a non-recursive filter with a length 
of 𝐿. In response to the input, x(n), provided by the 
reference microphone, the controller generates the 
anti-noise signal, y(n), which can be calculated using 
the following relationship,
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same length. The output of the digital filter is the sum product of the values in the corresponding
rows. Alongside an algorithm for adjusting filter coefficients, an adaptive controller is
constructed.

2.1 A review of the FxLMS algorithm
In this work, the least mean square algorithm is considered. The algorithm iteratively

adjusts the filter coefficients in a way that minimizes noise residue by following the negative
direction of the error gradient. However, the presence of a secondary path causes a phase
mismatch in the arrival of the anti-noise signal, impeding the correct filter update. Therefore, an
auxiliary filter must be introduced into the control loop to compensate for the alteration of the
anti-noise signal by the secondary path [6]. This auxiliary filter, often referred to as a secondary
path estimate, �() , can be obtained through transfer function modeling or measurement. This
approach is known as the FxLMS algorithm.

The block diagram in Figure 1(b) illustrates an adaptive feed-forward controller, (),
which is implemented as a non-recursive filter with a length of . In response to the input, (),
provided by the reference microphone, the controller generates the anti-noise signal, (), which
can be calculated using the following relationship,

  =
=0

−1

    −  =   () (1)

Here,  denotes the -th coefficient of the controller. The anti-noise signal is transmitted
through the speaker to produce,

  =   + '  =     +   () (2)

which is the noise residue measured by the error microphone. This equation uses a positive sign
to signify the superposition of sound waves between the unknown ambient noise,   =
    , and the anti-noise, '  =   (), as they reach the control point.

The gradient of the error surface can be obtained by differentiating the cost function
  = 2() with respect to the filter coefficients. By applying the gradient descent algorithm,
the iterative process for adjusting the controller coefficients is expressed as follows,

  + 1 =   −  '  () (3)

Here, notations  and '  = �  () represent the iteration step and the filtered
reference input, respectively. The iteration step, which is associated with convergence speed, is a
positive coefficient that can be selected from a range of values that is not larger than,

. =
1

'() 2( + )
(4)

The notations . and  represent the maximum applicable iteration step and the
inherent delay in the secondary path, respectively. Accordingly, it is evident that the delay in the
secondary path imposes a constraint on convergence speed [7]. A longer path delay leads to slower
convergence.

2.2 The importance of the secondary path
If perfect noise cancellation is achievable, meaning   → 0 as the adaptation converges,

the optimal controller,  , can be derived from Equation (1) and Equation (2) as:

 (1)

Here, wl denotes the 𝑙-th coefficient of the con-
troller. The anti-noise signal is transmitted through 
the speaker to produce,
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same length. The output of the digital filter is the sum product of the values in the corresponding
rows. Alongside an algorithm for adjusting filter coefficients, an adaptive controller is
constructed.

2.1 A review of the FxLMS algorithm
In this work, the least mean square algorithm is considered. The algorithm iteratively

adjusts the filter coefficients in a way that minimizes noise residue by following the negative
direction of the error gradient. However, the presence of a secondary path causes a phase
mismatch in the arrival of the anti-noise signal, impeding the correct filter update. Therefore, an
auxiliary filter must be introduced into the control loop to compensate for the alteration of the
anti-noise signal by the secondary path [6]. This auxiliary filter, often referred to as a secondary
path estimate, �() , can be obtained through transfer function modeling or measurement. This
approach is known as the FxLMS algorithm.

The block diagram in Figure 1(b) illustrates an adaptive feed-forward controller, (),
which is implemented as a non-recursive filter with a length of . In response to the input, (),
provided by the reference microphone, the controller generates the anti-noise signal, (), which
can be calculated using the following relationship,

  =
=0

−1

    −  =   () (1)

Here,  denotes the -th coefficient of the controller. The anti-noise signal is transmitted
through the speaker to produce,

  =   + '  =     +   () (2)

which is the noise residue measured by the error microphone. This equation uses a positive sign
to signify the superposition of sound waves between the unknown ambient noise,   =
    , and the anti-noise, '  =   (), as they reach the control point.

The gradient of the error surface can be obtained by differentiating the cost function
  = 2() with respect to the filter coefficients. By applying the gradient descent algorithm,
the iterative process for adjusting the controller coefficients is expressed as follows,

  + 1 =   −  '  () (3)

Here, notations  and '  = �  () represent the iteration step and the filtered
reference input, respectively. The iteration step, which is associated with convergence speed, is a
positive coefficient that can be selected from a range of values that is not larger than,

. =
1

'() 2( + )
(4)

The notations . and  represent the maximum applicable iteration step and the
inherent delay in the secondary path, respectively. Accordingly, it is evident that the delay in the
secondary path imposes a constraint on convergence speed [7]. A longer path delay leads to slower
convergence.

2.2 The importance of the secondary path
If perfect noise cancellation is achievable, meaning   → 0 as the adaptation converges,

the optimal controller,  , can be derived from Equation (1) and Equation (2) as:

 (2)

which is the noise residue measured by the error 
microphone. This equation uses a positive sign to 
signify the superposition of sound waves between 
the unknown ambient noise, d(n) = pT(n)x(n), and the 
anti-noise, 
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same length. The output of the digital filter is the sum product of the values in the corresponding
rows. Alongside an algorithm for adjusting filter coefficients, an adaptive controller is
constructed.

2.1 A review of the FxLMS algorithm
In this work, the least mean square algorithm is considered. The algorithm iteratively

adjusts the filter coefficients in a way that minimizes noise residue by following the negative
direction of the error gradient. However, the presence of a secondary path causes a phase
mismatch in the arrival of the anti-noise signal, impeding the correct filter update. Therefore, an
auxiliary filter must be introduced into the control loop to compensate for the alteration of the
anti-noise signal by the secondary path [6]. This auxiliary filter, often referred to as a secondary
path estimate, �() , can be obtained through transfer function modeling or measurement. This
approach is known as the FxLMS algorithm.

The block diagram in Figure 1(b) illustrates an adaptive feed-forward controller, (),
which is implemented as a non-recursive filter with a length of . In response to the input, (),
provided by the reference microphone, the controller generates the anti-noise signal, (), which
can be calculated using the following relationship,

  =
=0

−1

    −  =   () (1)

Here,  denotes the -th coefficient of the controller. The anti-noise signal is transmitted
through the speaker to produce,

  =   + '  =     +   () (2)

which is the noise residue measured by the error microphone. This equation uses a positive sign
to signify the superposition of sound waves between the unknown ambient noise,   =
    , and the anti-noise, '  =   (), as they reach the control point.

The gradient of the error surface can be obtained by differentiating the cost function
  = 2() with respect to the filter coefficients. By applying the gradient descent algorithm,
the iterative process for adjusting the controller coefficients is expressed as follows,

  + 1 =   −  '  () (3)

Here, notations  and '  = �  () represent the iteration step and the filtered
reference input, respectively. The iteration step, which is associated with convergence speed, is a
positive coefficient that can be selected from a range of values that is not larger than,

. =
1

'() 2( + )
(4)

The notations . and  represent the maximum applicable iteration step and the
inherent delay in the secondary path, respectively. Accordingly, it is evident that the delay in the
secondary path imposes a constraint on convergence speed [7]. A longer path delay leads to slower
convergence.

2.2 The importance of the secondary path
If perfect noise cancellation is achievable, meaning   → 0 as the adaptation converges,

the optimal controller,  , can be derived from Equation (1) and Equation (2) as:

, as they reach the control 
point.

The gradient of the error surface can be obtained 
by differentiating the cost function J(n) = e2(n) with re-
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spect to the filter coefficients. By applying the gradient 
descent algorithm, the iterative process for adjusting the 
controller coefficients is expressed as follows,
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same length. The output of the digital filter is the sum product of the values in the corresponding
rows. Alongside an algorithm for adjusting filter coefficients, an adaptive controller is
constructed.

2.1 A review of the FxLMS algorithm
In this work, the least mean square algorithm is considered. The algorithm iteratively

adjusts the filter coefficients in a way that minimizes noise residue by following the negative
direction of the error gradient. However, the presence of a secondary path causes a phase
mismatch in the arrival of the anti-noise signal, impeding the correct filter update. Therefore, an
auxiliary filter must be introduced into the control loop to compensate for the alteration of the
anti-noise signal by the secondary path [6]. This auxiliary filter, often referred to as a secondary
path estimate, �() , can be obtained through transfer function modeling or measurement. This
approach is known as the FxLMS algorithm.

The block diagram in Figure 1(b) illustrates an adaptive feed-forward controller, (),
which is implemented as a non-recursive filter with a length of . In response to the input, (),
provided by the reference microphone, the controller generates the anti-noise signal, (), which
can be calculated using the following relationship,

  =
=0

−1

    −  =   () (1)

Here,  denotes the -th coefficient of the controller. The anti-noise signal is transmitted
through the speaker to produce,

  =   + '  =     +   () (2)

which is the noise residue measured by the error microphone. This equation uses a positive sign
to signify the superposition of sound waves between the unknown ambient noise,   =
    , and the anti-noise, '  =   (), as they reach the control point.

The gradient of the error surface can be obtained by differentiating the cost function
  = 2() with respect to the filter coefficients. By applying the gradient descent algorithm,
the iterative process for adjusting the controller coefficients is expressed as follows,

  + 1 =   −  '  () (3)

Here, notations  and '  = �  () represent the iteration step and the filtered
reference input, respectively. The iteration step, which is associated with convergence speed, is a
positive coefficient that can be selected from a range of values that is not larger than,

. =
1

'() 2( + )
(4)

The notations . and  represent the maximum applicable iteration step and the
inherent delay in the secondary path, respectively. Accordingly, it is evident that the delay in the
secondary path imposes a constraint on convergence speed [7]. A longer path delay leads to slower
convergence.

2.2 The importance of the secondary path
If perfect noise cancellation is achievable, meaning   → 0 as the adaptation converges,

the optimal controller,  , can be derived from Equation (1) and Equation (2) as:

 (3)
Here, notations μ and 
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same length. The output of the digital filter is the sum product of the values in the corresponding
rows. Alongside an algorithm for adjusting filter coefficients, an adaptive controller is
constructed.

2.1 A review of the FxLMS algorithm
In this work, the least mean square algorithm is considered. The algorithm iteratively

adjusts the filter coefficients in a way that minimizes noise residue by following the negative
direction of the error gradient. However, the presence of a secondary path causes a phase
mismatch in the arrival of the anti-noise signal, impeding the correct filter update. Therefore, an
auxiliary filter must be introduced into the control loop to compensate for the alteration of the
anti-noise signal by the secondary path [6]. This auxiliary filter, often referred to as a secondary
path estimate, �() , can be obtained through transfer function modeling or measurement. This
approach is known as the FxLMS algorithm.

The block diagram in Figure 1(b) illustrates an adaptive feed-forward controller, (),
which is implemented as a non-recursive filter with a length of . In response to the input, (),
provided by the reference microphone, the controller generates the anti-noise signal, (), which
can be calculated using the following relationship,

  =
=0

−1

    −  =   () (1)

Here,  denotes the -th coefficient of the controller. The anti-noise signal is transmitted
through the speaker to produce,

  =   + '  =     +   () (2)

which is the noise residue measured by the error microphone. This equation uses a positive sign
to signify the superposition of sound waves between the unknown ambient noise,   =
    , and the anti-noise, '  =   (), as they reach the control point.

The gradient of the error surface can be obtained by differentiating the cost function
  = 2() with respect to the filter coefficients. By applying the gradient descent algorithm,
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The notations . and  represent the maximum applicable iteration step and the
inherent delay in the secondary path, respectively. Accordingly, it is evident that the delay in the
secondary path imposes a constraint on convergence speed [7]. A longer path delay leads to slower
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If perfect noise cancellation is achievable, meaning   → 0 as the adaptation converges,
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same length. The output of the digital filter is the sum product of the values in the corresponding
rows. Alongside an algorithm for adjusting filter coefficients, an adaptive controller is
constructed.

2.1 A review of the FxLMS algorithm
In this work, the least mean square algorithm is considered. The algorithm iteratively

adjusts the filter coefficients in a way that minimizes noise residue by following the negative
direction of the error gradient. However, the presence of a secondary path causes a phase
mismatch in the arrival of the anti-noise signal, impeding the correct filter update. Therefore, an
auxiliary filter must be introduced into the control loop to compensate for the alteration of the
anti-noise signal by the secondary path [6]. This auxiliary filter, often referred to as a secondary
path estimate, �() , can be obtained through transfer function modeling or measurement. This
approach is known as the FxLMS algorithm.

The block diagram in Figure 1(b) illustrates an adaptive feed-forward controller, (),
which is implemented as a non-recursive filter with a length of . In response to the input, (),
provided by the reference microphone, the controller generates the anti-noise signal, (), which
can be calculated using the following relationship,
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The notations . and  represent the maximum applicable iteration step and the
inherent delay in the secondary path, respectively. Accordingly, it is evident that the delay in the
secondary path imposes a constraint on convergence speed [7]. A longer path delay leads to slower
convergence.
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If perfect noise cancellation is achievable, mean-
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To effectively attenuate broadband random noise, the transfer function of the controller,
(), should closely match the impulse response of the optimal controller. This is achievable if
the inverse of () exists. Therefore, it is desirable to have a secondary path that can be
represented by a causal and minimum-phase transfer function. In practice, the delay in the
secondary path should be shorter than that in the primary path. Additionally, when using a non-
recursive filter as the controller, it should have sufficient length to accommodate the rational part
of the equation. Fortunately, the control plant associated with this setup is expected to be of low
order due to the relatively small acoustical volume within the earbuds.

2.3 Performance factors in noise reduction
The causality condition, which must be satisfied by any ANC system to allow a

broadband noise cancellation, is met when the time required for the anti-noise to be generated and
delivered to the control point is faster than the noise propagation time across the primary path. In
short, it is fulfilled when the delay in the electrical path is smaller than that in the acoustical path.

The primary contributors to electrical delay include the time required for signal
conditioning, data conversion, and computation process. Signal conditioning in the anti-aliasing
and reconstruction filters introduces a latency that is proportional to the filter order and inversely
proportional to the filter corner frequency. The time for signal conversion between analog and
digital domains depends on the type of converter and the number of bits involved. For example,
given the same resolution, a Delta Sigma ADC is typically slower than a SAR ADC.
Computation in the controller consumes one sample period during which the processor executes
an adaptive control algorithm. The latency of the speaker and microphones also contributes to
electrical delay.

The delay of the acoustic primary path can be influenced by various factors. In earbuds,
device fitting and enclosure provide passive isolation that can increase the delay in the primary
path [8]. Intuitively, acoustic leakage reduces the delay and the lowest estimate of acoustic delay,
, can be calculated from the direct sound propagation as follows:

 = (∆ − ∆) / 0 (6)

Here, ∆ represents the distance between the two microphones, ∆ represents the
distance between the speaker and the error microphone, and 0 is the sound speed, approximately
343 m/s. However, when the path of arriving noise is closer to the error microphone than the
reference microphone, the acoustic delay may not be sufficient to ensure causality [9]. This
condition is purely physical and is less related to the allocated filter length in the controller.
Practical remedies include increasing the acoustic path delay by improving passive isolation and
enhancing spatial information using the multi-reference microphone method. The sound passing
through the earbuds enclosure and ear-tip can improve the performance of the feedforward
system by increasing the delay between the two microphones [10]. The use of additional reference
microphones provides a comprehensive representation of noise coming from various directions
[11].

Coherence in measurements defines the noise reduction performance of an ANC system
because the adaptation of controller coefficients relies on two correlated pieces of information
provided by the error microphone and reference microphone. Based on the analysis of random
processes, the noise reduction, , at a given frequency  can be estimated as:

  = 10 10 1 − 2  

 (5)
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point is faster than the noise propagation time across 
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order and inversely proportional to the filter corner 
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control algorithm. The latency of the speaker and 
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The delay of the acoustic primary path can be 
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timate of acoustic delay, 
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represented by a causal and minimum-phase transfer function. In practice, the delay in the
secondary path should be shorter than that in the primary path. Additionally, when using a non-
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of the equation. Fortunately, the control plant associated with this setup is expected to be of low
order due to the relatively small acoustical volume within the earbuds.
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proportional to the filter corner frequency. The time for signal conversion between analog and
digital domains depends on the type of converter and the number of bits involved. For example,
given the same resolution, a Delta Sigma ADC is typically slower than a SAR ADC.
Computation in the controller consumes one sample period during which the processor executes
an adaptive control algorithm. The latency of the speaker and microphones also contributes to
electrical delay.

The delay of the acoustic primary path can be influenced by various factors. In earbuds,
device fitting and enclosure provide passive isolation that can increase the delay in the primary
path [8]. Intuitively, acoustic leakage reduces the delay and the lowest estimate of acoustic delay,
, can be calculated from the direct sound propagation as follows:
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Here, ∆ represents the distance between the two microphones, ∆ represents the
distance between the speaker and the error microphone, and 0 is the sound speed, approximately
343 m/s. However, when the path of arriving noise is closer to the error microphone than the
reference microphone, the acoustic delay may not be sufficient to ensure causality [9]. This
condition is purely physical and is less related to the allocated filter length in the controller.
Practical remedies include increasing the acoustic path delay by improving passive isolation and
enhancing spatial information using the multi-reference microphone method. The sound passing
through the earbuds enclosure and ear-tip can improve the performance of the feedforward
system by increasing the delay between the two microphones [10]. The use of additional reference
microphones provides a comprehensive representation of noise coming from various directions
[11].

Coherence in measurements defines the noise reduction performance of an ANC system
because the adaptation of controller coefficients relies on two correlated pieces of information
provided by the error microphone and reference microphone. Based on the analysis of random
processes, the noise reduction, , at a given frequency  can be estimated as:
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an adaptive control algorithm. The latency of the speaker and microphones also contributes to
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The delay of the acoustic primary path can be influenced by various factors. In earbuds,
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, can be calculated from the direct sound propagation as follows:
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Practical remedies include increasing the acoustic path delay by improving passive isolation and
enhancing spatial information using the multi-reference microphone method. The sound passing
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Here, Δxre represents the distance between the 
two microphones, Δxye represents the distance be-
tween the speaker and the error microphone, and c0 
is the sound speed, approximately 343 m/s. How-
ever, when the path of arriving noise is closer to the 
error microphone than the reference microphone, the 
acoustic delay may not be sufficient to ensure cau-
sality [9]. This condition is purely physical and is less 
related to the allocated filter length in the controller. 
Practical remedies include increasing the acoustic 
path delay by improving passive isolation and en-
hancing spatial information using the multi-reference 
microphone method. The sound passing through 
the earbuds enclosure and ear-tip can improve the 



29

Journal of Electronic & Information Systems | Volume 05 | Issue 02 | October 2023

performance of the feedforward system by increas-
ing the delay between the two microphones [10]. The 
use of additional reference microphones provides a 
comprehensive representation of noise coming from 
various directions [11].

Coherence in measurements defines the noise 
reduction performance of an ANC system because 
the adaptation of controller coefficients relies on two 
correlated pieces of information provided by the er-
ror microphone and reference microphone. Based on 
the analysis of random processes, the noise reduc-
tion, 0, at a given frequency ω can be estimated as:
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given the same resolution, a Delta Sigma ADC is typically slower than a SAR ADC.
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an adaptive control algorithm. The latency of the speaker and microphones also contributes to
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The delay of the acoustic primary path can be influenced by various factors. In earbuds,
device fitting and enclosure provide passive isolation that can increase the delay in the primary
path [8]. Intuitively, acoustic leakage reduces the delay and the lowest estimate of acoustic delay,
, can be calculated from the direct sound propagation as follows:
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Here, ∆ represents the distance between the two microphones, ∆ represents the
distance between the speaker and the error microphone, and 0 is the sound speed, approximately
343 m/s. However, when the path of arriving noise is closer to the error microphone than the
reference microphone, the acoustic delay may not be sufficient to ensure causality [9]. This
condition is purely physical and is less related to the allocated filter length in the controller.
Practical remedies include increasing the acoustic path delay by improving passive isolation and
enhancing spatial information using the multi-reference microphone method. The sound passing
through the earbuds enclosure and ear-tip can improve the performance of the feedforward
system by increasing the delay between the two microphones [10]. The use of additional reference
microphones provides a comprehensive representation of noise coming from various directions
[11].

Coherence in measurements defines the noise reduction performance of an ANC system
because the adaptation of controller coefficients relies on two correlated pieces of information
provided by the error microphone and reference microphone. Based on the analysis of random
processes, the noise reduction, , at a given frequency  can be estimated as:
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where  represents the coherence function be-
tween the output of the reference microphone and 
the output of the error microphone when the ANC 
system is inactive [12]. The coherence function has 
a range of values between 0 and 1, indicating the 
quality of signal coherence, from poor to excel-
lent. This can be interpreted as follows: The higher 
the coherence between the signals provided by the 
microphones, the greater the noise reduction to be 
expected. In practice, signal coherence is primarily 
affected by the quality of the instrumentation system, 
such as microphone dynamic range, sensitivity, and 
directivity, as well as distortion in the signal amplifi-
cation unit. Additionally, cable shielding and circuit 
isolation can help minimize input contamination 
from signal interference.

In addition to its impact on system latency, the 
proper positioning of the speaker and microphones is 
crucial for controllability. While the enclosure of ear-
buds is the obvious place for a speaker, the opening 
of the ear tip can extend beyond the ear canal open 
end, creating an impedance mismatch where sound 
waves are transmitted and reflected. Conceptually, 
the optimal position for the speaker is at the domi-
nant anti-node. In terms of the reference microphone 
position, controller complexity can be reduced if 
the microphone picks up a negligible amount of the 
anti-noise radiated from the speaker. Therefore, it is 
desirable to block the acoustic feedback path through 
proper enclosure design. As for the error micro-

phone, the ideal location is near the speaker, where 
the noise residue is present with a high correlation to 
the reference noise.

The performance of the controller is intricately 
linked to numerical accuracy, which, in turn, is de-
pendent on the choice between floating-point and 
fixed-point systems in the processing hardware [13]. 
Floating-point systems offer the advantage of high 
precision, making them well-suited for applications 
where numerical accuracy is critical. However, typ-
ically demanding more computational resources can 
strain the limited processing capabilities of devices 
like earbuds. On the other hand, fixed-point systems, 
while more resource-efficient, may introduce numer-
ical errors due to lower precision, which can poten-
tially impact the accuracy of controller operations. 
The causes of numerical error in fixed-point systems 
are primarily related to the limited number of bits 
available for representing numbers and rounding 
during arithmetic operations. To address these errors, 
careful consideration of scaling, quantization, and 
rounding techniques can be employed in fixed-point 
implementations to enhance the accuracy of control-
ler calculations.

3.	Implementation	of	adaptive	ANC
Developing high-performance noise-canceling 

earbuds involves considering numerous aspects [14], 
such as the comprehensive acoustic design to pro-
duce favorable characteristics in the earbuds, which 
significantly impacts noise cancellation performance. 
Earbuds for ANC applications require careful in-
tegration of components such as speakers, micro-
phones, controllers, and partitions. The arrangement 
of these components within a compact, well-shaped 
enclosure defines the interaction between noise and 
anti-noise. Additionally, it is crucial to incorporate 
low-latency electroacoustic components into the sys-
tem. 

While the design of the earbuds is a critical factor, 
this study does not cover every aspect of creating the 
perfect earbuds. It primarily focuses on realizing the 
adaptive controller. Therefore, for the experimenta-
tion, earbuds sourced from the Bose QC30 are used. 
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Originally, these components were connected to the 
main board in the neckband via cables. Each unit of 
the earbuds has approximate dimensions of 28 × 30 ×  
20 mm and is equipped with two 4 mm electret mi-
crophones and one 15 mm speaker with an imped-
ance of 32 Ω. To gain access to the internal parts, a 
few modifications were made: the earbuds need to 
be separated from the main board and the connecting 
cables must be traced to identify the internal parts. 

Two compartments can be found within the ear-
buds. The first one houses the error microphone and 
the speaker, facing inward toward the ear tunnel. It is 
isolated from the second compartment where the ref-
erence microphone is set. The reference microphone 
is facing outward to pick up ambient noise entering 
the ear. The distance between the reference micro-
phone and the error microphone and the distance 
between the speaker and the error microphone is 8.5 
mm and 2 mm, respectively, resulting in an acoustic 
delay of approximately 19 μs in this setup.

High-performance DSP is essential for controller 
development in ANC applications, particularly for 
earbuds. However, implementing ANC in earbuds 
can have a significant impact on device operation 
time. In short, the DSP should be compact, require 
minimal components to support its operation, ener-
gy-efficient, and cost-effective. These qualifications 
hold especially true when considering processor 
choices for mid and upper-range commercial ear-
buds. For example, options like the Qualcomm S5 
Sound Platform and the Apple H2 BT5.3 Audio-
SoC offer functionality for audio processing, voice 
services, and device connectivity in a single SoC 
component, all while operating with low power con-
sumption. 

For performing general experimentation, several 
commercial DSP options with the corresponding 
development boards are available, including the 
CS47L85, i.MX RT1020, and TMS320C5517. Con-
cerning the computational speed, it must ensure that 
the delay in the electrical path is shorter than in the 
acoustical path. Theoretically, assuming a 19 μs 
acoustic delay, any DSP working at a sample rate of 
96 kHz or higher is sufficient. A minimum of two in-

put channels and one output channel are required. In 
this study, the evaluation board EVAL-ADAU1787Z 
from Analog Devices, depicted in Figure 2(a), is 
employed. This choice aligns with the study objec-
tives as it addresses the challenge posed by the lim-
itation of computational resources. Additionally, the 
small DSP footprint makes it a practical choice for 
integration into earbuds.

Figure 2. Device selection: (a) DSP board and earbuds. (b) Pas-
sive noise isolation in earbuds.

The evaluation board is equipped with four ADC 
channels, two DAC channels, a low-power audio co-
dec, and two fixed-point DSP cores. The first core is 
the FastDSP audio processing engine, offering built-
in features such as biquad filters, signal limiters, 
mixers, and volume controls. When passing a signal 
from the ADC input to the DAC output at a sampling 
frequency of 768 kHz, a group delay of 5 μs can be 
expected [15]. This particular core can be programmed 
to perform specific tasks using no more than 64 in-
struction cycles. Here, group delay represents the 
time shift of a packet of oscillating waves centered 
around one frequency that travels together. An in-
struction cycle denotes a discrete step a processor 
takes to execute a single machine-level instruction.

The second core in the processor is the 28-bit 
SigmaDSP audio processing core, offering additional 
built-in functions, including FIR filters and many 
custom algorithms. For this particular core, the max-
imum number of instruction cycles varies depending 
on the sampling frequency, ranging from 32 in-
structions at 768 kHz to 512 instructions at 48 kHz. 
Moreover, the core supports a high-performance 
mode achieved by overclocking, which doubles the 
number of available instruction cycles. It is worth 
to note the aforementioned active noise algorithm is 
implemented here using one DSP core, which is, the 
SigmaDSP core at the normal clock mode.
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3.1	Software	development	tool

For programming the SigmaDSP product lineup, 
Analog Devices provides SigmaStudio, which is a 
graphical programming environment for creating and 
deploying signal processing programs on the eval-
uation board. It comprises two fundamental frame-
works, the first one offers access at the DSP register 
level to assign built-in operational features, including 
power management, signal conditioning filters, data 
interpolation and decimation, and channel routing 
between input and output (I/O) ports and the DSP 
cores.

The second framework involves schematic tools 
that allow the assembly of functional blocks to per-
form signal manipulation and control. These com-
posed schematics establish operational flow in the 
device, which is called repeatedly at the start of each 
sampling period. Each schematic block consumes 
computational resources in terms of instruction cy-
cles and memory usage. Given the limited instruction 
capacity at high sampling frequencies, it is crucial to 
know the minimum feasible sampling frequency and 
utilize computationally efficient blocks accordingly. 
Fortunately, memory resources are relatively abun-
dant.

There are scenarios where essential schematic 
blocks for ANC applications cannot be used due to 
their high instruction cycle demands. For instance, 
the built-in L-tap FIR filter function consumes 13 in-
struction cycles for function overhead and L + 8 in-
struction cycles for sub-routine overhead. Moreover, 
modifying the filter coefficients during program ex-
ecution is also not feasible. Therefore, to implement 
an efficient ANC program, it becomes necessary to 
employ custom code that grants access to low-level 
functionality such as shift registers, multiply and ac-
cumulate (MAC) operations, as well as the memory 
read and the memory write operations. With custom 
code, an L-tap FIR filtering can be accomplished in 
L cycles of MAC instructions and 1 cycle of memory 
transfer. The shifting of filter data is automatically 
managed in the shift register at the start of each sam-
pling period. Detailed discussions of low-level pro-
gramming are beyond the scope of this article.

3.2 Design of the controller

A reasonable target performance of the controller 
must be defined, such as the desired minimum noise 
attenuation within a given bandwidth. One way to 
determine these parameters is by assessing the pas-
sive noise isolation provided by the earbuds. To eval-
uate this, measurement was conducted in a controlled 
listening environment using an artificial head and 
torso (HEAD Acoustic HTB V) with a loudspeaker 
as the sound source. The loudspeaker was positioned 
one meter in front of the ear. A broadband, uniform-
ly distributed random noise served as the excitation 
signal. By comparing the internal microphone re-
sponses with and without the earbuds attached to 
the ears, the passive noise isolation plot displayed in 
Figure 2(b) was obtained. From the data, one may 
say the passive noise attenuation below 750 Hz is 
poor. Therefore, the target to achieve in this work is 
a significant noise reduction of at least 10 dB in the 
operating bandwidth extending up to 1 kHz.

Considering that the earbuds are sourced from an 
external commercial product and cannot be modified, 
it is crucial to ensure the system is causal. To do this, 
initial data about acoustic paths in the earbuds was 
collected through measurements using the mentioned 
test equipment. A sine-sweep signal served as the 
excitation source. In the primary path measurement, 
the signal was directed towards an external loud-
speaker, and the impulse response function between 
the two microphones was recorded. In the case of the 
secondary path, the signal was directed to the speak-
er in the earbuds, and the path response was captured 
from the DSP output port, which is directly connect-
ed to the earbuds error microphone. 

Taking into account the assumed 19 μs acoustic 
delay, the DSP sampling rate option that meets the 
minimum requirement is 96 kHz. The measurement 
results at this specific sampling frequency are depict-
ed in Figure 3(a). One can notice that the leading 
peak in the impulse response function of the primary 
path exhibits a lower amplitude compared to the 
secondary path, which is expected due to higher path 
attenuation. It is worth noting that the first peak in 
the primary path impulse response follows that of 
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the secondary path, indicating the system is causal. 
In conclusion, the arrangement of microphones and 
the speaker within the earbuds, along with the choice 
selection of a 96 kHz DSP sampling rate, confirms 
system causality.

Based on the initial assessment, the programming 
work for creating the adaptive feedforward control-
ler can begin. Running at 96 kHz, the SigmaDSP 
core at its normal clock rate can handle a maximum 
of 256 instruction cycles. Approximately 43 instruc-
tion cycles are reserved for core housekeeping. This 
means the entire algorithm, along with I/O port as-
signments, must fit within a total of 213 instruction 
cycles. The bare minimum noise cancellation pro-
gram comprises built-in functions and custom code. 
The built-in functions handle essential tasks such as 
ADC input, signal generator, two-state logic switch-
ing, and DAC output. On the other hand, the custom 
functions are responsible for signal conditioning 
in the upstream path, reference input filtering, and 
adaptive control. After allocating computational re-
sources to the built-in functions, 200 instruction cy-
cles remain available for reference input filtering and 
adaptive control. It is important to optimize the filter 
lengths for these functions to ensure efficient use of 
this allocated resource. 

There are three functional blocks in the FxLMS 
algorithm that handle: anti-noise calculation, as rep-
resented by Equation (1), reference input filtering, 
and coefficient adaptation following Equation (3). 
The first two blocks, essentially filters, consume one 

instruction cycle per filter coefficient, while the last 
block consumes three instruction cycles per filter 
coefficient. Table	1 provides a summary of the dis-
tribution of instruction allocations for three potential 
design scenarios. In the first column, the controller 
and the secondary path estimates are non-recursive 
filters. Referring to Figure 3(a), it is evident that 
a substantial filter length is required when using a 
non-recursive filter to represent the secondary path 
estimate, approximately 100 taps to cover the first 
microsecond. This condition restricts the length of 
the controller to no more than 25 coefficients.

The second scenario involves using a recursive 
filter to model the secondary path estimate, which 
has proven advantageous as it significantly reduc-
es the required filter length without compromising 
controller stability. The optimal filter length for the 
secondary path estimate is determined using the 
line search method, which is 16 coefficients in the 
feed-forward part and 19 coefficients in the feedback 
part. Figure 3(b) provides a comparison between the 
impulse response functions of the measured the sec-
ondary path and secondary path estimate. The length 
of the controller is significantly expanded to 40 coef-
ficients.

The optimal controller can be used to determine 
an appropriate controller length. Figure 4(a) dis-
plays an estimate of the impulse response function 
of the optimal controller. This calculation, performed 
without regularization, utilizes the measured acous-
tic paths. Although not entirely precise, this estimate 

Table	1. Basic computational requirements for various programming schemes.

Computation	process
Computation	cost	(instruction	cycle)

Notes
FxLMS	(a) FxLMS	(b) FuLMS	(c)

Core housekeeping 43 43 43 (a). W(z) and  are non 
recursive filters
(b). W(z) is non recursive 
filter,  is recursive filter
(c). W(z) and  are 
Recursive filters

Notations WA and WB 
in the table indicate filter 
association to the feedback 
and the feed-forward parts, 
respectively

ADC: Reference signal 2 2 2
ADC: Error signal 2 2 2
DAC: Control signal 2 2 2
Controller output LWB + 1 LWB + 1 (LWB + LWA )+ 1
Filtering of input SWB + 1 (SWB + SWA )+ 1 (SWB + SWA )+ 1
Filtering of output - - (SWB + SWA )+ 1

Controller adaptation 2 + 3 LWB 2 + 3 LW 4 + 3(SWB + SWA )
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serves as an initial approximation for determining 
the required length of the controller filter. It becomes 
evident that the first microsecond of the impulse 
response function carries over 90% of the signal 
power. While it is conceivable to set the controller 
length near 100 to mimic the dominant optimal re-
sponse, this proves unrealistic because the remaining 
resources support only 40 coefficients. 

Figure 3. The modeling of secondary paths: (a) The measured 
impulse response functions of the earbud’s primary path (red) 
and secondary path (blue). (b) Comparison between impulse 
response functions of the measured (blue) and the modeled (red, 
dashed) secondary paths.

Figure 4. Design of the controller: (a) A non-regularized impulse 
response function of the optimal controller estimate. (b) The 
performance of the controller in terms of noise reduction at a given 
multi-rate factor Nd = n (green), Nd = 2n (red), Nd = 4n (blue).

While one may suggest an alternative approach 
involving a recursive filter as the controller, it is es-
sential to note that, as detailed in the third column 
of Table	1, additional resources must be allocated 
for output filtering during the adaptation of the feed-
back filter. The feedback loop may potentially put 
controller stability at risk during adaptation. Never-
theless, there is some potential, considering recent 
developments in alternative algorithms that aim to 
address stability [16]. Another suggestion, applied 
here, is based on multi-rate signal processing [17]. It is 
a straightforward approach that involves decimating 
the signals. The processes for filter adaptation and 
anti-noise generation are performed at different rates. 

In summary, the final configuration is as follows: 
a 40-tap non-recursive filter for the controller and a 

35-tap recursive filter as the secondary path estimate, 
which corresponds to a total of 248 instruction cy-
cles. A few more instruction cycles were allocated 
for a second-order recursive filter, inserted upstream 
for input signal treatment. The performance of the 
controller to cancel broadband random noise is de-
picted in Figure 4(b). Interestingly, the slopes of 
the plots at different multi-rate factors, denoted as 
Nd, show variations around 450 Hz. It is believed 
that with a smaller multi-rate factor, the observation 
time in the controller becomes shorter, making it 
challenging for the controller to regulate the low-fre-
quency components, and vice versa. When Nd is set 
to 2n, an average noise reduction exceeding 10 dB is 
achieved in the frequency range up to 1 kHz, satis-
fies the given design target.

The experimentation showcases adaptive control-
ler design by limiting DSP capability. Greater noise 
reduction over a wider frequency range becomes at-
tainable with additional resources. For instance, run-
ning the DSP board in overclock mode doubles the 
total instruction cycles to 512. Furthermore, utilizing 
Biquad filters in the FDSP core to model the second-
ary path estimate frees up more instruction cycles. 
Some signal processing functions, such as multi-rate 
signal processing, are performable by the hardware. 
These additional resources offer the feasibility of ex-
panding controller length and implementing sophis-
ticated algorithms for improved noise cancellation. 

4. Conclusions
The study discussing the development of active 

noise control systems for earbuds has been present-
ed, emphasizing the significance of maintaining low 
latency to ensure causality for effective broadband 
noise cancellation. Nevertheless, when working 
within the constraints of earbuds, the available hard-
ware resources are limited, hindering the utilization 
of sophisticated adaptive control algorithms. To 
overcome these limitations, optimization of filter 
configuration is employed, along with implementing 
a computationally efficient program. Moreover, mul-
ti-rate signal processing techniques provide practical 
solutions for achieving the desired noise reduction.
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ABSTRACT
The human body has symmetric bones. This paper uses control engineering concepts to design a suitable controller 

to synchronize two symmetric bones of the human body to control and treat bone cancer. A Nonsingular Terminal 
Sliding Mode Control (NTSMC) method will be employed to design the proposed control inputs. The control inputs 
can be the chemical drugs that can be used to treat bone cancer. The dynamical equations of bone cancer will be used 
to apply the designed control method and test it. For testing the designed controller, Simulink/MATLAB software will 
be used. The proposed controller is chattering-free, robust against uncertainties and external disturbances, and finite-
time stable in the control engineering view. Bone cancer will be treated for almost one year using the proposed control 
method.
Keywords: Bone cancer; Synchronization; Finite-time stability; Biomedical engineering

1. Introduction
The human bones are composed of two types 

of cells: Osteoblast (OB) and Osteoclast (OC). 
This collection is called a Basic Multicellular Unit  
(BMU) [1,2]. Bone diseases are diverse, one of them is 
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bone cancer. Bone cancer happens when the growth 
rate order of the bone cells (OB or OC) is disrupted, 
which grows into cancer cells (CCs) [1-3]. Osteosar-
coma (OS) is a type of bone disease. When the OS 
happens in the bone, the discipline of the growth of 
the bone cells disorganizes. OS is more likely to hap-
pen at 13-16 years old and after 55 years old. This 
sickness more occurs in boy children [3,4]. OB cells 
are responsible for the remodeling of bone, and OC 
cells are for bone growth. If the order of growth and 
reproduction of these cells is lost, OB cells will grow 
more and cause CCs [5,6]. In the healthy bone (bone 
without cancer), OB and OC cells multiply clearly 
and periodically. However, in sick bone (cancerous 
bone), there is no systematic growth and reproduc-
tion [1].

Bones are the skeleton of the human body, and 
almost all of them are symmetrical. If one of the 
human bones becomes cancerous, the closest value 
of the parameters is its symmetric bone. Therefore, 
symmetric bone parameters can be used for the re-
construction and treatment of cancerous bone. This 
fact can be used to model, design, and control can-
cerous bones. This concept in control engineering 
is called “synchronization”. In the synchronization 
problem, the variables and parameters of the “slave” 
system will be the same as the variables and parame-
ters of the “master” system [7]. In the synchronization 
of two human bones, the cancerous bone (slave) 
will be the same as the healthy bone (master). For 
synchronization, the systems need to apply control 
inputs to the system. These control inputs in the syn-
chronization of the human bones can be considered 
as the effect of the dose of the chemical drugs. Re-
cently, many control efforts have been made using 
the synchronization concept in different fields, such 
as synchronizing communication systems [8,9], chaot-
ic systems [10,11], and chemical systems [12,13].

The Nonsingular Terminal Sliding Mode Control 
(NTSMC) method is a robust finite-time control 
strategy that guarantees that the system states reach 
zero at a finite time. The NTSMC is an extended ver-
sion of Finite-time Sliding Mode Control methods 
that have been used in controlling different applica-

tions. This method has been used to solve the stability 
and tracking problems of rigid manipulators, high-order 
nonlinear systems, and robotic surgery [14-16]. It is used 
for controlling some practical systems such as ma-
nipulator robots [17], perturbed nonlinear systems [18], 
DC-DC buck converters [19], Quadrotor unmanned 
aerial vehicles [20], underactuated underwater robots [21], 
acute Leukemia therapy [22]. Recently control engi-
neering methods have been used to increase biomed-
ical applications such as drug delivery in cancerous 
tumors [23], tumor treatment immunity [24], cancer 
chemotherapy [25], control the tumor growth [26], and 
angiogenic inhibition therapy [27]. An extended adap-
tive NTSMC using fractional disturbance observer 
has been presented to accelerate system response 
without resulting in chattering [28]. Also, the NTSMC 
has been used to deal with the time delay for con-
trolling the integrating processes [29].

One of the challenges in the designed controller 
by NTSMC is the chattering phenomenon. The chat-
tering phenomenon is because of the high frequency 
switching gain in the controller. Chattering is a very 
harmful phenomenon in control applications. It can 
reduce the actuators’ age and add unwanted noise to 
the system. In biomedical applications, especially 
cancer treatment, the chattering causes to control in-
puts will be uncreatable. It means that the chattered 
control inputs cannot be created in the practical tests. 
Some types of control methods are developed to 
remove, eliminate or reduce the chattering from the 
control input signals [30-33]. 

This paper proposes three control signals to syn-
chronize two symmetrical human bones to control 
bone cancer. It is assumed that one of the human 
bones (arm or leg bones) is cancerous with can-
cer, and it will be treated by applying the proposed 
control inputs, which are the effect of the chemical 
drugs. The proposed control inputs will be designed 
by the NTSMC control method. The control inputs 
are designed using the chattering-free concepts. Be-
low are the most important features of the proposed 
control method:

● Robustness against model uncertainties and ex-
ternal disturbances,

https://www.sciencedirect.com/science/article/pii/S1746809421007187
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● Chattering-free control of the bone cancer,
● Accurate tracking of the healthy cells,
● Smooth control of the system,
● Fast tracking of the master states,
● Implementable results in control signals.

2. Mathematics
Definition 1. Function siɡa(x) with the relation 

between absolute function |x| and symbol-function 
for siɡa(x) = |x|asiɡn(x) is defined. Function siɡn(x) is 
defined as follows [34,35]:

siɡn(x) =  (1)

Definition 2. The relation between absolute and 
signum function is as |x| = xsiɡn(x) [34].

Lemma 1. For a nonlinear system  = f(x), f(0) = 
0, x  D , x(0) = x0 by assuming the constants ρ1 

to ρ4 as ρ1 > 0, ρ2 > 0, ρ3 > 1, ρ4 = 1 – , ρ5 = 1 +  

and Lyapunov function , as a sca-
lar continuous radially unbounded function therefore 
if  – ρ1V

ρ4(x) – ρ2V
ρ5(x) so the equilibrium x = 0 

of this system will be globally finite-time stable, and 
state variables of this system converge from each 
initial condition to zero, and the upper bound of its 
settling time is for T  [36].

Lemma 2. Considering scalars a1, a2,..., an  and 
choosing 0 < q < 2 then will have |a1|

q + |a2|
q + ... + 

|an|
q ≥  [37].

3.	Explanation	of	the	purpose	
This paper aims to synchronize the OBs and OCs 

cells of the cancerous bone to OBs and OCs cells of 
the symmetrical healthy bone and destroy the CCs. 
The model of bone OBs, OCs cells, and CCs for can-
cerous and healthy bones are the same, and only the 
parameter values are different [1]. The provided bone 
model and the values of its parameters for healthy 
and cancerous bone are published [1,2,38] for Mixed 
Lesion and Osteolytic Lesion diseases. These are the 
most common cancerous bone diseases. This model 
is called the Komarova model, which is presented in 
Equation (2).

2. Mathematics
Definition 1. Function   with the relation between absolute function || and symbol-function for

  =  () is defined. Function   is defined as follows [34,35]:

  =
1 ;  > 0
0 ;  = 0
−1 ;  < 0

(1)

Definition 2. The relation between absolute and signum function is as  = () [34].

Lemma 1. For a nonlinear system � =   ,  0 = 0,  ∈  ⊆ ℜ,  0 = 0 by assuming the constants
1 to 4 as 1 > 0, 2 > 0, 3 > 1, 4 = 1 − 1

23
, 5 = 1 + 1

23
and Lyapunov function   : ℜ → ℜ+ ∪ 0 , as a

scalar continuous radially unbounded function therefore if � () ≤− 14  − 25() so the equilibrium  = 0
of this system will be globally finite-time stable, and state variables of this system converge from each initial
condition to zero, and the upper bound of its settling time is for  ≤ 3 12

−1 [36].
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3. Explanation of the purpose
This paper aims to synchronize the OBs and OCs cells of the cancerous bone to OBs and OCs cells of the

symmetrical healthy bone and destroy the CCs. The model of bone OBs, OCs cells, and CCs for cancerous and
healthy bones are the same, and only the parameter values are different [1]. The provided bone model and the values
of its parameters for healthy and cancerous bone are published [1,2,38] for Mixed Lesion and Osteolytic Lesion
diseases. These are the most common cancerous bone diseases. This model is called the Komarova model, which is
presented in Equation (2).
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 + 32 + 41  − 3

(2)

where ,  and  are the density of OC, OB and CC cells, respectively. , ,  = (1, 2, 3) multiplication rate of OC,
OB and CCs and are fixed parameters and positive. ,  = (1, 2, 3, 4) coefficients constant for the relationship
between OC, OB and CCs that 1, 3 are positive and 2, 4 are negative or positive. 1, 2 are the rate of signaling
between OBs and OCs that are coefficient and 1 < 0, 2 > 0 and  is the ability to carry CCs. As well as the
model of bone mass is as follows [2]:>

� =− 1 max  − �, 0 + 2 max { − �, 0} (3)

where  is the bone mass and 1, 2 are normalized activities of bone formation that are constant and positive. � , �
are steady-state of the OB and OC cells that are presented as follows:
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For healthy bone, the values of parameters are presented as follows:

1 = 0.3, 2 = 0.1, 1 = 0.2, 2 = 0.02, 1 =− 0.3, 2 = 0.5, 1 = 0.07, 2 = 0.0022, 3 =
0.045, 3 = 0.05, 1 = 0.001, 2 =− 0.00005, 3 = 0.005, 4 = 0,  = 300 (5)

In addition, for the Fixed Lesion disease, these parameters have values as follows:
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where z is the bone mass and k1, k2 are normalized 
activities of bone formation that are constant and 
positive. 
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For healthy bone, the values of parameters are 
presented as follows:
α1m = 0.3, α1m = 0.1, β1m = 0.2, β2m = 0.02,  
γ1m = -0.3, γ2m = 0.5, k1m = 0.07,k2m = 0.0022,  
α3m = 0.045, β3m = 0.05, σ1m = 0.001, σ2m = -0.00005,  

(5)
 

σ3m = 0.005, σ4m = 0.005, σ4m = 0, Km = 300 

In addition, for the Fixed Lesion disease, these 
parameters have values as follows:
α1s = 0.3, α2s = 0.1, β1s = 0.2, β2s = 0.02, γ1s = -0.3,  
γ2s = 0.5, k1s = 0.023, k2s = 0.0023, α3s = 0.055,   (6) 
β3s = 0.05, σ1s = σ2s = -0.005, σ3s = 0.001, σ4s = 0, Ks = 3

For the synchronization of two healthy and can-
cerous bones, the synchronization errors are defined 
as e1 = us – um, e2 = vs – vm, e3 = ωs – ωm where m is 
the abbreviation of the master system (healthy bone), 
also s is the abbreviation of the slave system (cancer-
ous bone). This paper aims to reach these errors to 
zero at a finite time.

The error dynamic will be as follows:
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0.05, 1 = 0.001, 2 =− 0.005, 3 = 0.001, 4 = 0,  = 3 (6)

For the synchronization of two healthy and cancerous bones, the synchronization errors are defined as 1 =
 − , 2 =  − , 3 =  −  where  is the abbreviation of the master system (healthy bone), also  is the
abbreviation of the slave system (cancerous bone). This paper aims to reach these errors to zero at a finite time.

The error dynamic will be as follows:

1� = 1 − 1 + 1 + 1
2� = 2 − 2 + 2 + 2
3� = 3 − 3 + 3 + 3

(7)

where

1 = 1
1 −1+1

2 = 2
2 −2+2

3 = 3 1−


 + 3
2 +4

1 −3
(8)

And<>
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3 = �3 + 3131(3) + 3232(3)

(11)

where 1, 2 are positive control parameters and 1, 2 are positive constants as
1 = 
2 =


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and  ∈ (0,1).
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In these control inputs 1, 2 are positive constants and 1, 2 are positive and smaller than one constant.

Proof: It has been shown that sliding surfaces Equation (11) have finite-time stability, provided that 1, 2
are chosen so polynomial of 2 + 2 + 1 = 0 is Hurwitz [39]. For prooving the reaching phase (second part),
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,  = (1, 2, 3) are the models of the control inputs that will be designed in the next section and  are the
models of unknowns and uncertainties. Assuming that the upper bounds for  are available as follows:

|| ≤ 1
|� | ≤ 2

(10)

4. Designing the control inputs
Designing the controller using the NTSMC method consists of two parts. The first part is designing the

sliding surfaces and proof of their stability, and the second part is proof of reaching the sliding surface. Since this
paper aims for finite-time stability, must both these parts prove at a finite time to ensure the finite-time stability.

Theorem 1: Consider system Equation (7), defined sliding surfaces Equation (11), and control inputs
Equation (12). So the states of this system reach zero in a finite time.

1 = �1 + 1111(1) + 1212(1)
2 = �2 + 2121(2) + 2222(2)
3 = �3 + 3131(3) + 3232(3)

(11)

where 1, 2 are positive control parameters and 1, 2 are positive constants as
1 = 
2 =


2−

and  ∈ (0,1).

 =  + 
 =  −  − 11  − 22 
�  = − 11  − 22  − 2 

(12)

In these control inputs 1, 2 are positive constants and 1, 2 are positive and smaller than one constant.

Proof: It has been shown that sliding surfaces Equation (11) have finite-time stability, provided that 1, 2
are chosen so polynomial of 2 + 2 + 1 = 0 is Hurwitz [39]. For prooving the reaching phase (second part),

 and N 

1 = 0.3, 2 = 0.1, 1 = 0.2, 2 = 0.02, 1 =− 0.3, 2 = 0.5, 1 = 0.023, 2 = 0.0023, 3 = 0.055, 3 =
0.05, 1 = 0.001, 2 =− 0.005, 3 = 0.001, 4 = 0,  = 3 (6)

For the synchronization of two healthy and cancerous bones, the synchronization errors are defined as 1 =
 − , 2 =  − , 3 =  −  where  is the abbreviation of the master system (healthy bone), also  is the
abbreviation of the slave system (cancerous bone). This paper aims to reach these errors to zero at a finite time.

The error dynamic will be as follows:

1� = 1 − 1 + 1 + 1
2� = 2 − 2 + 2 + 2
3� = 3 − 3 + 3 + 3

(7)

where

1 = 1
1 −1+1

2 = 2
2 −2+2

3 = 3 1−


 + 3
2 +4

1 −3
(8)

And<>

1 = 1
1 − 1 + 1

2 = 2
2 − 2 + 2

3 = 3 1 − 


 + 3
2 + 4

1  − 3

(9)

,  = (1, 2, 3) are the models of the control inputs that will be designed in the next section and  are the
models of unknowns and uncertainties. Assuming that the upper bounds for  are available as follows:

|| ≤ 1
|� | ≤ 2

(10)

4. Designing the control inputs
Designing the controller using the NTSMC method consists of two parts. The first part is designing the

sliding surfaces and proof of their stability, and the second part is proof of reaching the sliding surface. Since this
paper aims for finite-time stability, must both these parts prove at a finite time to ensure the finite-time stability.

Theorem 1: Consider system Equation (7), defined sliding surfaces Equation (11), and control inputs
Equation (12). So the states of this system reach zero in a finite time.

1 = �1 + 1111(1) + 1212(1)
2 = �2 + 2121(2) + 2222(2)
3 = �3 + 3131(3) + 3232(3)

(11)

where 1, 2 are positive control parameters and 1, 2 are positive constants as
1 = 
2 =


2−

and  ∈ (0,1).

 =  + 
 =  −  − 11  − 22 
�  = − 11  − 22  − 2 

(12)

In these control inputs 1, 2 are positive constants and 1, 2 are positive and smaller than one constant.

Proof: It has been shown that sliding surfaces Equation (11) have finite-time stability, provided that 1, 2
are chosen so polynomial of 2 + 2 + 1 = 0 is Hurwitz [39]. For prooving the reaching phase (second part),

 (1, 2).

1 = 0.3, 2 = 0.1, 1 = 0.2, 2 = 0.02, 1 =− 0.3, 2 = 0.5, 1 = 0.023, 2 = 0.0023, 3 = 0.055, 3 =
0.05, 1 = 0.001, 2 =− 0.005, 3 = 0.001, 4 = 0,  = 3 (6)

For the synchronization of two healthy and cancerous bones, the synchronization errors are defined as 1 =
 − , 2 =  − , 3 =  −  where  is the abbreviation of the master system (healthy bone), also  is the
abbreviation of the slave system (cancerous bone). This paper aims to reach these errors to zero at a finite time.

The error dynamic will be as follows:

1� = 1 − 1 + 1 + 1
2� = 2 − 2 + 2 + 2
3� = 3 − 3 + 3 + 3

(7)

where

1 = 1
1 −1+1

2 = 2
2 −2+2

3 = 3 1−


 + 3
2 +4

1 −3
(8)

And<>

1 = 1
1 − 1 + 1

2 = 2
2 − 2 + 2

3 = 3 1 − 


 + 3
2 + 4

1  − 3

(9)

,  = (1, 2, 3) are the models of the control inputs that will be designed in the next section and  are the
models of unknowns and uncertainties. Assuming that the upper bounds for  are available as follows:

|| ≤ 1
|� | ≤ 2

(10)

4. Designing the control inputs
Designing the controller using the NTSMC method consists of two parts. The first part is designing the

sliding surfaces and proof of their stability, and the second part is proof of reaching the sliding surface. Since this
paper aims for finite-time stability, must both these parts prove at a finite time to ensure the finite-time stability.

Theorem 1: Consider system Equation (7), defined sliding surfaces Equation (11), and control inputs
Equation (12). So the states of this system reach zero in a finite time.

1 = �1 + 1111(1) + 1212(1)
2 = �2 + 2121(2) + 2222(2)
3 = �3 + 3131(3) + 3232(3)

(11)

where 1, 2 are positive control parameters and 1, 2 are positive constants as
1 = 
2 =


2−

and  ∈ (0,1).

 =  + 
 =  −  − 11  − 22 
�  = − 11  − 22  − 2 

(12)

In these control inputs 1, 2 are positive constants and 1, 2 are positive and smaller than one constant.

Proof: It has been shown that sliding surfaces Equation (11) have finite-time stability, provided that 1, 2
are chosen so polynomial of 2 + 2 + 1 = 0 is Hurwitz [39]. For prooving the reaching phase (second part),

 (12)

In these control inputs ki1, ki2 are positive con-
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constant.
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Equation (11) have finite-time stability, provid-
ed that ci1, ci2 are chosen so polynomial of p2 +  
ci2p + ci1 =0 is Hurwitz [39]. For prooving the reach-
ing phase (second part), consider the Lyapunov 
function V = consider the Lyapunov function  = =1

3 1
2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

 which has conditions of the 
Lyapunov function of Lemma 1. Then will have consider the Lyapunov function  = =1

3 1
2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

 and with applying the control inputs to 
the system also putting up 

consider the Lyapunov function  = =1
3 1

2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

 in 
consider the Lyapunov function  = =1

3 1
2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

 so can be written 
consider the Lyapunov function  = =1

3 1
2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

 as follows:

consider the Lyapunov function  = =1
3 1

2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

 

  

consider the Lyapunov function  = =1
3 1

2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

 (13)

by simplifying:

consider the Lyapunov function  = =1
3 1

2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

 (14)

since the 

consider the Lyapunov function  = =1
3 1

2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

 also 

consider the Lyapunov function  = =1
3 1

2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

 so:

consider the Lyapunov function  = =1
3 1

2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

 (15)

due to the Lemma 2:

consider the Lyapunov function  = =1
3 1

2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

 (16)

with the selection of parameters values as follows:

consider the Lyapunov function  = =1
3 1

2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

 

  

consider the Lyapunov function  = =1
3 1

2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

 
(17)

where r3 > 1:

consider the Lyapunov function  = =1
3 1

2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

 (18)

due to the Lemma 1, the system Equation (2) is 
stable for a finite time, and the settling time is 

consider the Lyapunov function  = =1
3 1

2
 which has conditions of the Lyapunov function of Lemma 1. Then

will have � = =1
3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:

� = =1
3  − 11  − 22  − 2  + �  (13)

by simplifying:

� = =1
3 − 1  1+1 − 2  1+2 − 2|| + �  (14)

since the �  ≤ |� ||| also � ≤ 2 so:

� ≤ =1
3 − 1  1+1 − 2  1+2 (15)

due to the Lemma 2:

�  ≤ =1
3 − 2

1+1
1 

1+1
2 − 2

2+1
2

2+1
2 (16)

with the selection of parameters values as follows:

1 = 2
1+1

1 > 0, 2 = 2
2+1

2 > 0, 4 = 1 = 1 − 1
3

, 5 = 2 = 1 + 1
3

(17)

where 3 > 1:

�  ≤ − 14 − 25 (18)

due to the Lemma 1, the system Equation (2) is stable for a finite time, and the settling time is  ≤ 3 12
−1
.

Theorem 1 is proved. ∎

5. Simulation
The aim of this paper was to show that OB and OC cells of cancerous bone track the OB and OC cells of

healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:

1 = 0.02, 2 = 0.0001, 1 = 0.01, 2 = 0.01,  = 0.9, 3 = 0.5 (19)

Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).

. Theorem 1 is proved.

5. Simulation
The aim of this paper was to show that OB and 

OC cells of cancerous bone track the OB and OC 
cells of healthy bone as well as eliminate the CCs of 
the cancerous bone. The simulation was conducted 
in MATLAB software. The control parameters are 
selected as follows: 
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consider the Lyapunov function  = =1
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 which has conditions of the Lyapunov function of Lemma 1. Then
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3 �  and with applying the control inputs to the system also putting up �  in � so can be written

� = =1
3 (�  + � ) as follows:
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healthy bone as well as eliminate the CCs of the cancerous bone. The simulation was conducted in MATLAB
software. The control parameters are selected as follows:
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Figure 1 shows the curves of the OC cells, and Figure 2 shows the OB cells of the healthy and cancerous
bones. Figure 3 shows the curve of the CCs for cancerous bone. As well as Figure 4 illustrates the curves of the
designed control inputs. In this simulation, the initial conditions of healthy bone are 0, 0,0 = (10, 5, 1). Since
the cancerousness happens, the distances of the OC and CCs cells are more than a healthy bone, and the distance of
the OB cells is less than, so the initial conditions of cancerous bone are selected as 0, 0,0 = (40, 1, 5).
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Figure 1 shows the curves of the OC cells, and 
Figure 2 shows the OB cells of the healthy and can-
cerous bones. Figure 3 shows the curve of the CCs 
for cancerous bone. As well as Figure 4 illustrates 

the curves of the designed control inputs. In this sim-
ulation, the initial conditions of healthy bone are (u0, 
v0, ω0) = (10, 5, 1). Since the cancerousness happens, 
the distances of the OC and CCs cells are more than 
a healthy bone, and the distance of the OB cells is 
less than, so the initial conditions of cancerous bone 
are selected as (u0, v0, ω0) = (40, 1, 5).
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Figure 1. The curves of the OC cells of cancerous and healthy bone.
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Figure 2. The curves of the OB cells of cancerous and healthy bone.
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Figure 3. The curves of the CCs of cancerous bone.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-4

-2

0

2

A
m

pl
itu

de

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-200

-100

0

A
m

pl
itu

de

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time [day]

-0.1

-0.05

0

A
m

pl
itu

de
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6. Discussion
As the figures are precise, after about 300 days 

(almost one year), the OC cells of cancerous bone 
have tracked the OC cells of healthy bone until the 
CCs have disappeared. In the OB cells, because the 
initial conditions of cancerous bone and healthy 
bone are close and the amplitude of the figure is big, 
the result is not clear correctly. Figure 5 shows the 
curve of the OB cells in 30 days (zoomed in). The 
period of OS treatment is almost five years in the 

real world. This is the reason for selecting the final 
time of the simulation as 2000 days. The control in-
puts are smooth. They are possible to implement in 
real tests. The smoothness happened because of the 
chattering-free design.

In brief, all the required features of a controller 
for controlling bone cancer have been considered 
in designing the proposed controller. The controller 
is robust, chatter-free, accurate, smooth, fast, and 
implementable. The results presented in Figures 1-5 
show the power of the proposed controller. 
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Figure 5. The curve of the OB cells of cancerous and healthy bone in 30 days.

7. Conclusions
In this paper, the NTSMC control method is em-

ployed to synchronize two human body bones. One 
of these bones was cancerous bone, and the other 
bone was healthy. This paper was a theoretical study 
that controlled and treated bone cancer with a theo-
retical method. Three designed control inputs have 
the features of chattering-free, finite-time stability 

and robustness against unknowns and uncertainties, 
which can be used in practical tests. These control 
inputs can be the effects of doses of medicines or the 
power of X-rays. After about a year, it was shown 
that the CCs had disappeared, and the cancerous 
bone looked like symmetrical healthy bone. For the 
subsequent studies, it is suggested to work on im-
plementing these types of studies in real tests for the 
treatment of some animals’ bone cancer.
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Enhancing	Semantic	Segmentation	through	Reinforced	Active	
Learning:	Combating	Dataset	Imbalances	and	Bolstering	Annotation	
Efficiency

Dong Han, Huong Pham, Samuel Cheng*
 

School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, 74135, USA

ABSTRACT
This research addresses the challenges of training large semantic segmentation models for image analysis, 

focusing on expediting the annotation process and mitigating imbalanced datasets. In the context of imbalanced 
datasets, biases related to age and gender in clinical contexts and skewed representation in natural images can affect 
model performance. Strategies to mitigate these biases are explored to enhance efficiency and accuracy in semantic 
segmentation analysis. An in-depth exploration of various reinforced active learning methodologies for image 
segmentation is conducted, optimizing precision and efficiency across diverse domains. The proposed framework 
integrates Dueling Deep Q-Networks (DQN), Prioritized Experience Replay, Noisy Networks, and Emphasizing 
Recent Experience. Extensive experimentation and evaluation of diverse datasets reveal both improvements and 
limitations associated with various approaches in terms of overall accuracy and efficiency. This research contributes 
to the expansion of reinforced active learning methodologies for image segmentation, paving the way for more 
sophisticated and precise segmentation algorithms across diverse domains. The findings emphasize the need for 
a careful balance between exploration and exploitation strategies in reinforcement learning for effective image 
segmentation.
Keywords: Semantic segmentation; Active learning; Reinforcement learning

1. Introduction
Semantic segmentation involves assigning a class 

label to each pixel within an image, effectively di-
viding the image into segments that carry semantic 
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meaning. Unlike image classification, which assigns 
a single class label to the entire image, semantic 
segmentation is a more granular task, amounting to 
pixel-level classification [1]. Over the past few years, 
the computer vision community has heavily relied 
on effective deep neural networks (DNNs) designed 
for semantic segmentation, as evidenced by recent 
research [2-11]. These efficient DNNs are characterized 
by their low computational demands and quick in-
ference times [12], and their widespread adoption has 
significantly influenced applications in various fields 
such as autonomous driving [13,14], semantic segmen-
tation enables precise scene understanding, allowing 
the vehicle to identify and differentiate between 
various objects on the road, such as pedestrians, ve-
hicles, traffic signs, and obstacles. This technology 
aids in real-time decision-making, helping the vehi-
cle navigate complex environments and ensure the 
safety of passengers and pedestrians; robot manip-
ulation [15,16], for robots to interact intelligently with 
their environment, they require a comprehensive un-
derstanding of the objects and structures in their sur-
roundings. Semantic segmentation facilitates this by 
enabling robots to identify and differentiate between 
different objects and their corresponding spatial re-
lationships. This capability is crucial for tasks such 
as object manipulation, navigation in dynamic envi-
ronments, and human-robot collaboration, enhancing 
the overall efficiency and safety of robotic systems; 
and biomedical image analysis [17,18], this technology 
assists healthcare professionals in diagnosing dis-
eases, monitoring the progression of conditions, and 
planning effective treatment strategies. By providing 
detailed insights into complex biological structures, 
semantic segmentation contributes to advancements 
in medical research, patient care, and disease man-
agement. where advanced computer vision systems 
are paramount. For these models to operate effec-
tively, however, they typically rely on a substantial 
volume of pixel-level annotations, a process that of-
ten necessitates expensive human labor.

Semantic segmentation datasets, with their pix-
el-wise annotations for each image, have been instru-
mental in advancing computer vision tasks. How-

ever, they are not without their limitations. Here are 
some of the key limitations associated with semantic 
segmentation datasets: 1) Extensive pixel-level 
annotations. Semantic segmentation models often 
require a large volume of accurately labeled train-
ing data, where each pixel in the image is assigned 
a corresponding class label. This process demands 
meticulous and precise annotations, which can be 
time-consuming and resource-intensive. Obtaining 
such detailed annotations for diverse datasets can be 
challenging, particularly for complex scenes with 
numerous objects and intricate boundaries. 2) La-
bor-intensive annotation process. The pixel-wise an-
notation process for semantic segmentation datasets 
is a labor-intensive task, often requiring significant 
human effort and time [19]. This manual labeling pro-
cess is labor-intensive, time-consuming, and can be 
prone to human error, especially when dealing with 
large datasets. As a result, the creation of high-qual-
ity annotated datasets requires significant human re-
sources and can be a bottleneck in the development 
of accurate and robust semantic segmentation mod-
els. 3) Data imbalance and variability. Semantic seg-
mentation datasets may suffer from data imbalance 
and variability in the distribution of classes within 
the dataset. Certain classes may be underrepresent-
ed, leading to biased model predictions and reduced 
performance in specific classes. Handling such data 
imbalance and variability is crucial to ensure that 
the model can generalize effectively across different 
scenarios and accurately segment diverse objects in 
various contexts. 4) Generalization and robustness. 
Semantic segmentation models must be capable of 
generalizing well to unseen data and diverse en-
vironments. Achieving robust performance across 
different lighting conditions, viewpoints, and envi-
ronmental changes remains a significant challenge. 
Ensuring that the model can accurately segment 
objects in various real-world scenarios is essential 
for its practical deployment in applications such as 
autonomous driving, robotics, and biomedical image 
analysis.

This aspect gains prominence during the process 
of collecting annotated data under human supervi-
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sion for the creation of either a novel dataset or the 
supplementation of an existing one. Mitigating the 
challenges entails the systematic and efficient selec-
tion of image regions warranting annotation. Active 
learning (AL) represents a well-established research 
discipline explicitly focused on this area. Its primary 
objective is the identification of the most informative 
samples for annotation, with the overarching goal of 
enhancing the performance of learning algorithms 
with a minimized data requirement, in contrast to 
a non-selective approach where the entire dataset 
undergoes indiscriminate labeling. Active learning 
methodologies can be broadly categorized into two 
main groups: (i) methodologies that integrate vari-
ous manually crafted active learning strategies [20-22], 
and (ii) data-centric active learning approaches [23-25]. 
Notwithstanding the heightened cost and time asso-
ciated with acquiring labels for semantic segmenta-
tion in comparison to image classification, the realm 
of active learning for semantic segmentation has 
garnered relatively less attention [26-28], primarily em-
phasizing the development of manually engineered 
strategies.

How can reinforced active learning be effective-
ly employed to enhance semantic segmentation, 
specifically addressing challenges posed by dataset 
imbalances and improving annotation efficiency? 
The latest active learning techniques leveraging re-
inforcement learning primarily concentrate on anno-
tating one sample at each step [29-31], progressing until 
a predetermined label budget is fulfilled. Inspired 
by the AL-RL model by Casanova et al. [32], the pro-
posed approach expedites the annotation process by 
selectively choosing informative and representative 
images to accelerate model learning. Additionally, 
we tackle the issue of imbalanced datasets. For in-
stance, in clinical contexts, biases related to age and 
gender can arise due to constraints on the diversity 
of medical image contributors. In natural images, 
certain categories may be significantly more abun-
dant than others, potentially skewing the model’s 
performance towards the most frequently represented 
category. We investigate strategies to mitigate these 
biases with the aim of enhancing efficiency and ac-

curacy in semantic segmentation analysis.
Furthermore, we conduct an in-depth exploration 

of various Reinforced Active Learning methodol-
ogies for image segmentation to optimize the pre-
cision and efficiency of segmentation tasks across 
diverse domains. To achieve this, we implement a 
robust framework that integrates various Reinforce-
ment Learning (RL) techniques, including Dueling 
Deep Q-Networks (DQN) [33], Prioritized Experience 
Replay [34], Noisy Networks [35], Emphasizing Recent 
Experience [36], Soft Update Target Network [37], and 
Adaptive Epsilon Greedy [38]. We test the proposed 
method in the CamVid [39] dataset. Our results illus-
trate both improvements and limitations associated 
with various approaches in terms of overall accuracy 
and efficiency in image segmentation tasks. 

2.	Related	work
Active learning serves as a dedicated methodol-

ogy focused on optimizing performance gains with 
a minimal number of labeled samples. Its primary 
goal is to identify the most informative samples 
from the unlabeled dataset, subsequently presented 
to an oracle, such as a human annotator, for labe-
ling. This process effectively minimizes labeling 
costs while ensuring sustained performance. Active 
learning approaches can be classified into member-
ship query synthesis [40,41], stream-based selective 
sampling [42,43], and pool-based [44] strategies, each 
derived from diverse application scenarios [45]. Cer-
tain methodologies amalgamate various techniques 
to enhance the overall performance of active learn-
ing. For example, Shui et al. [46] take into account the 
diversity and uncertainty of query samples, and try 
to discover a balance between those two approaches. 
Further investigation into traditional query strategies 
is undertaken [47]. Despite the considerable volume 
of existing research on active learning, it continues 
to grapple with the challenge of extending its appli-
cability to high-dimensional data, such as images, 
text, and videos [48]. Consequently, the majority of 
active learning studies tend to focus on low-dimen-
sional problems [49]. Several methodologies integrate 
various techniques to enhance the performance of 
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artificial intelligence, such as leveraging the explo-
ration-exploitation trade-off [50], on a bandit formula-
tion [21] and reinforcement learning [51]. 

In recent times, there has been a growing inter-
est in reinforcement learning as an approach to ac-
quiring a labeling policy that directly optimizes the 
performance of the active learning algorithm. For 
example, Dhiman et al. [29] proposed an automated 
annotation model for Multimedia Streaming Appli-
cations (MAS) to address the existing challenges of 
slow speeds and inefficiencies in accessing multi-
media content. By leveraging Multi-modal Active 
Learning (MAL) and Convolutional Recurrent 
Neural Network (CRNN) in tandem with Deep Rein-
forcement Learning (DRL), the model demonstrates 
superior retrieval accuracy and performance metrics. 
Gong et al. [52] proposed Meta Agent Teaming Ac-
tive Learning (MATAL) framework that effectively 
minimizes the laborious efforts involved in pose an-
notations. Sadigh et al. [53] present an active learning 
method for Inverse Reinforcement Learning (IRL) 
that relies on human-provided preferences between 
two sample trajectories. In a similar vein, Kunapu-
li et al. [54] incorporate human expert information 
through preference elicitation for actions in a des-
ignated state. Ezzeddine et al. [55] integrate feedback 
from a human trainer, particularly in cases where the 
provided demonstrations are less than optimal. Liu 
et al. [56] utilize expert knowledge derived from ora-
cle policies to develop a labeling policy. In contrast, 
Pang et al. [57] employ policy gradient methods to 
acquire knowledge for the function. In an alternative 
strategy, certain techniques aggregate all labeled data 
in a single comprehensive step. Contardo et al. [58] 
employ a bi-directional RNN to select all samples 
simultaneously, particularly for the task of one-shot 
learning. Meanwhile, Sener et al. [59] suggest choos-
ing a batch of representative samples that maximize 
coverage across the entire unlabeled set.

Recent active learning work has also looked at 
semantic segmentation [60]. Uncertainty-driven active 
learning identifies data samples with elevated alea-
toric uncertainty. Entropy [61], which estimates un-
certainty, serves as a commonly employed baseline 

in active learning selection. This function calculates 
per-pixel entropy for the predicted output and utiliz-
es the averaged entropy as the final score. BALD [62] 
frequently serves as a baseline in previous studies. 
It is applied in segmentation by integrating dropout 
layers into the decoder module of the segmentation 
model and subsequently computing pixel-wise mu-
tual information through multiple forwards passes. 
Kampffmeyer et al. [63] strive to optimize the average 
standard deviation of the predicted probabilities. 
Jain et al. [64] integrate metrics, defined by manually 
engineered heuristics, to promote the diversity and 
representativeness of labeled samples. Certain meth-
odologies leverage unsupervised super pixel-based 
over segmentation [65,66], relying heavily on the pre-
cision of the super-pixel segmentation. Others con-
centrate on foreground-background segmentation of 
biomedical images [67,68], employing similarly crafted 
heuristics. Golestaneh et al. [69] focus on self-con-
sistency that uses simple transformations should not 
change the observation in active learning for seman-
tic segmentation. Mackowiak et al. [70] concentrate on 
cost-effective strategies, emphasizing that the labe-
ling cost for an image is not uniformly treated across 
all images.

The advent of DQN marked a significant mile-
stone; however, numerous constraints associated 
with this algorithm have surfaced, leading to the 
proposal of various extensions. Double DQN [71] mit-
igates the overestimation bias of Q-learning [72] by 
separating the selection and evaluation of the boot-
strap action. Prioritized experience replay [34] enhanc-
es data efficiency by prioritizing more frequent re-
play of informative transitions. The dueling network 
architecture [33] aids in action generalization by in-
dependently representing state values and action ad-
vantages. Learning from multi-step bootstrap targets, 
as seen in A3C [73], adjusts the bias-variance trade-off 
and accelerates the propagation of newly observed 
rewards to earlier visited states. Noisy DQN [35]  
introduces stochastic network layers to facilitate 
exploration. To the best of our knowledge, our work 
is the first to examine an agent that integrates all the 
aforementioned components to the problem of active 
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learning for semantic segmentation. Emphasizing 
recent experience [36] typically refers to assigning 
greater importance to recent observations and actions 
when making decisions or updating the learning 
model. ERE is often driven by the recognition that 
the environment is non-stationary, implying that the 
optimal policy might evolve over time.

3. Methods

3.1	Active	learning	with	reinforcement	learn-
ing for semantic segmentation

Followed by Casanova et al. [32], we use their ar-
chitecture for training segmentation networks. We 
frame the active learning problem as a Markov de-
cision process (MDP). The proposed process entails 
an iterative active learning strategy for enhancing 
the performance of a segmentation network, denoted 
as f and parameterized by θ, within a limited labeled 
sample budget, B. At each iteration, a query network, 
represented by π and parameterized by φ, selective-
ly picks K regions from the large unlabeled set, Ut. 
These regions are then submitted to an oracle for 
labeling, subsequently augmenting the labeled set, 

t. The segmentation network f is trained using the 
enriched t, and its performance is evaluated based 
on the Intersection-over-Union (IoU) metric. This 
iterative procedure continues until the designated 
budget B is attained. By strategically selecting in-
formative regions for labeling, this process optimizes 
the performance of the segmentation network, thus 
efficiently leveraging a limited labeled dataset to 
achieve superior segmentation results. This data-cen-
tric approach enables the model to acquire selection 
strategies purely from past active learning encoun-
ters.

In the setting, we employ four distinct data parti-
tions. For training the query network π, we designate 
a portion of labeled data DT, utilizing it for multiple 
iterations of the active learning process to acquire 
an effective acquisition function that optimizes per-
formance within a B region budget. The evaluation 
of the query network takes place on a separate data 
split DV. Moreover, we utilize a distinct subset DR to 

generate the reward signal, which involves evaluat-
ing the segmentation network’s performance on this 
set. Additionally, the set DS (with DS being not larger 
than DT) is utilized for constructing the representa-
tion of the current state.

A Markov Decision Process (MDP) is defined 
as a tuple (S, A, r, T, γ) where S stands for a set of 
states; A for actions, the composed action, consisting 
of K sub-actions, relies on the segmentation network, 
along with the labeled and unlabeled sets. Each 
sub-action entails requesting the labeling of a par-
ticular region; r, S × A → R, for the function based 
on improvement in mean IoU per class of taking an 
action in a state; T, S × A × S → R, for the state-tran-
sition function; and r, for the discount factor imply-
ing that a reward obtained in the future is worth a 
smaller amount than an immediate reward. Figure 
1 describes this training workflow. In our approach, 
the episode concludes upon reaching the designated 
budget B for labeled regions. Post-episode termi-
nation, we reset the weights of the segmentation 
network, denoted as f, to the initial weights θ0, and 
initiate a new episode. The training process for the 
query policy π involves the simulation of multiple 
episodes, with weight updates occurring at each time 
step through the sampling of transitions {(st, at, rt+1, 
st+1)}from the experience replay buffer ɛ.

 

Figure 1. The overall workflow of active learning with rein-
forcement learning in semantic segmentation.

3.2	Extensions	to	DQN

The evolution of Deep Q-Networks (DQN) has 
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given rise to several significant extensions, each 
addressing specific limitations and enhancing the 
algorithm’s overall performance. Individually, each 
of these algorithms leads to significant performance 
enhancements. Given that they tackle fundamental-
ly different issues and share a common framework, 
there is a plausible opportunity for their integration. 
We suggest six extensions, each designed to over-
come a specific limitation, contributing to an overall 
improvement in performance. To maintain a manage-
able selection size, we have chosen extensions that 
address distinct concerns.
Double deep Q-Learning

Following the prior work [32], we set double DQN 
as our baseline architecture. One issue with the DQN 
algorithm is that it tends to overestimate the true re-
wards, leading to inflated Q-values. To address this, 
the Double DQN algorithm [71] introduces a modifi-
cation to the Bellman equation used in DQN. Instead 
of using the same equation, the action selection and 
action evaluation are decoupled in the following 
way:
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Dueling deep Q-Learning
The Dueling DQN algorithm introduced by Wang et al. [33] seeks to improve upon

traditional DQN by decomposing the Q-values into two separate components: the value function,
  , and the advantage function,  ,  . The value function represents the expected reward for a
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correspond to the temporal difference error of the agent during its most recent training on that
particular experience. This strategy enables the agent to emphasize learning from its less accurate
predictions, thereby refining its weak areas and significantly improving sample efficiency. New
transitions are incorporated into the replay buffer with the highest priority, introducing a bias
toward recent transitions. It is essential to recognize that stochastic transitions may also receive
preference, even when there is limited remaining knowledge to be gained from them.
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Primarily conceived to expedite the convergence speed of Soft Actor Critic (SAC) [36],

this methodology can conceivably be extended to a wide array of algorithms and tasks that
inherently profit from accelerated learning of recent experiences, particularly those involving
multiple components. The fundamental concept entails, during the parameter update phase,
sampling the initial mini batch from the entire dataset within the replay buffer. Subsequently, for
each subsequent mini batch, the sampling range is gradually narrowed, enabling a more
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a heightened sampling frequency for more recent data, and (ii) a systematic arrangement of
updates ensuring that older data does not overwrite the more recent ones. The introduction of
Experience Replay Emphasis (ERE) establishes a straightforward yet effective sampling
technique that enables the agent to prioritize recent transitions without disregarding previously
learned policies.
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simple change has been shown to reduce over-esti-
mations and lead to better final policies.
Dueling deep Q-Learning

The Dueling DQN algorithm introduced by Wang 
et al. [33] seeks to improve upon traditional DQN by 
decomposing the Q-values into two separate com-
ponents: the value function, V(s), and the advantage 
function, A(s, a). The value function represents the 
expected reward for a given state, s, while the advan-
tage function reflects the relative advantage of taking 
a particular action, a, compared to other actions. By 
combining these two functions, it is possible to com-
pute the full Q-values for each state-action pair.

To implement this decomposition, the Dueling 
DQN algorithm introduces a neural network with 
two separate output layers, one for the value function 
and one for the advantage function. These outputs 
are then combined to produce the final Q-values. 

This modification allows the network to learn more 
efficiently in situations where the exact values of in-
dividual actions are not as important, as it can focus 
on learning the value function for the state.
Prioritized experience replay

The proposition by Schaul et al. [34] in 2015 in-
troduces a resolution termed prioritized experience 
replay (PER). This approach involves the utilization 
of an added data structure that maintains the priori-
ty of each transition. Subsequently, experiences are 
sampled based on their respective priorities.
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updates ensuring that older data does not overwrite the more recent ones. The introduction of
Experience Replay Emphasis (ERE) establishes a straightforward yet effective sampling
technique that enables the agent to prioritize recent transitions without disregarding previously
learned policies.

Adaptive epsilon greedy
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The hyperparameter alpha determines the degree 
of sampling bias desired. The priorities correspond 
to the temporal difference error of the agent during 
its most recent training on that particular experience. 
This strategy enables the agent to emphasize learning 
from its less accurate predictions, thereby refining 
its weak areas and significantly improving sample 
efficiency. New transitions are incorporated into the 
replay buffer with the highest priority, introducing a 
bias toward recent transitions. It is essential to rec-
ognize that stochastic transitions may also receive 
preference, even when there is limited remaining 
knowledge to be gained from them.
Emphasizing recent experience

Primarily conceived to expedite the convergence 
speed of Soft Actor Critic (SAC) [36], this methodol-
ogy can conceivably be extended to a wide array of 
algorithms and tasks that inherently profit from ac-
celerated learning of recent experiences, particularly 
those involving multiple components. The funda-
mental concept entails, during the parameter update 
phase, sampling the initial mini batch from the entire 
dataset within the replay buffer. Subsequently, for 
each subsequent mini batch, the sampling range is 
gradually narrowed, enabling a more pronounced 
focus on recent data points. This scheme revolves 
around two fundamental aspects: (i) a heightened 
sampling frequency for more recent data, and (ii) a 
systematic arrangement of updates ensuring that old-
er data does not overwrite the more recent ones. The 
introduction of Experience Replay Emphasis (ERE) 
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establishes a straightforward yet effective sampling 
technique that enables the agent to prioritize recent 
transitions without disregarding previously learned 
policies.
Adaptive epsilon greedy

The epsilon-greedy technique serves as a means 
to strike a balance between exploration and exploita-
tion in the process of training reinforcement learning 
policies. For instance, when epsilon is set to 0.3, the 
output action is randomly chosen from the action 
space with a probability of 0.3, and with a probabili-
ty of 0.7, the output action is selected greedily based 
on argmax (Q). 

A refined version of the epsilon-greedy method 
is referred to as the Adaptive-epsilon-greedy ap-
proach [38]. In this approach, for instance, the policy 
is trained over N epochs/episodes, a value contingent 
upon the specific problem. Initially, the algorithm 
sets epsilon to pinit (e.g., pinit = 0.6), gradually reduc-
ing it to reach  = pend (e.g., pend = 0.1) over a desig-
nated number of training epochs/episodes (nstep). Pri-
marily, during the initial training phase, the model is 
granted increased exploration freedom with a higher 
probability (e.g., pinit = 0.6), followed by a gradual 
epsilon decrease at a rate r over the training epochs/
episodes, adhering to the subsequent formula:
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The epsilon-greedy technique serves as a means to strike a balance between exploration
and exploitation in the process of training reinforcement learning policies. For instance, when
epsilon is set to 0.3, the output action is randomly chosen from the action space with a probability
of 0.3, and with a probability of 0.7, the output action is selected greedily based on argmax (Q).

A refined version of the epsilon-greedy method is referred to as the Adaptive-epsilon-
greedy approach [38]. In this approach, for instance, the policy is trained over N epochs/episodes, a
value contingent upon the specific problem. Initially, the algorithm sets epsilon to init (e.g.,
init = 0.6), gradually reducing it to reach  = end (e.g., end = 0.1) over a designated number of
training epochs/episodes (step). Primarily, during the initial training phase, the model is granted
increased exploration freedom with a higher probability (e.g., init = 0.6), followed by a gradual
epsilon decrease at a rate r over the training epochs/episodes, adhering to the subsequent formula:

 =  −step


, 0 (3)

 ← init − end  + end (4)
This adaptable approach concludes with a notably low exploration probability, end , after

step , thereby facilitating a transition towards an increased emphasis on exploitation (i.e., a
greedier approach) during the latter stages of the training process. Despite this shift, a minimal
exploration probability persists, ensuring the ability to explore even as the policy nears
convergence.

Noisy network
Noisy networks are often utilized instead of the epsilon-greedy method to promote more

effective and dynamic exploration during training. Unlike the epsilon-greedy approach, which
only adjusts the exploration probability, noisy networks introduce stochasticity directly into the
network’s parameters, enabling a more nuanced and continuous exploration process. The Noisy
Network [35] introduces a novel concept of a noisy linear layer, integrating both deterministic and
noisy components.

 =  + + noisy ⊙  + noisy ⊙   (5)
where  and  are random variables, and ⊙ denotes the element-wise product. With time, the
network can gradually disregard the noisy stream, albeit at varying rates across distinct regions of
the state space, thereby enabling state-specific exploration with a form of intrinsic self-annealing.
This dynamic exploration strategy allows for a more fine-grained balance between exploration
and exploitation, facilitating improved learning efficiency and adaptability in complex
environments.

Soft update for target network
The soft update target network is a key concept in the field of deep reinforcement

learning [37]. It refers to a technique used to stabilize and improve the training of deep neural
networks in reinforcement learning tasks. Unlike hard updates, which involve periodically
copying the parameters of the main network to the target network, soft updates gradually blend
the parameters of the target network towards those of the main network. This process helps to
mitigate the issue of drastic changes in the target network, which can lead to instability during the
learning process. The value of  is used. In the paper, it proposed an algorithm called DPG. They
used  = 0.001. The target network is updated as follows.

 =  ×  +  × 1 −  (6)
Due to the small value of the parameter  , the target network smoothly adjusts towards

the Q-network’s value. To ensure the noticeable impact of this adjustment, frequent updates are
required. By employing a soft update strategy, the target network can more smoothly track the
changes in the main network, enabling a more stable and effective learning process. This
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This adaptable approach concludes with a notably 
low exploration probability, pend, after nstep, thereby 
facilitating a transition towards an increased empha-
sis on exploitation (i.e., a greedier approach) during 
the latter stages of the training process. Despite this 
shift, a minimal exploration probability persists, en-
suring the ability to explore even as the policy nears 
convergence.
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the epsilon-greedy approach, which only adjusts the 
exploration probability, noisy networks introduce 
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terministic and noisy components.
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the parameters of the target network towards those of the main network. This process helps to
mitigate the issue of drastic changes in the target network, which can lead to instability during the
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required. By employing a soft update strategy, the target network can more smoothly track the
changes in the main network, enabling a more stable and effective learning process. This

 (5)

where 

Updated on April 30, 2023

The epsilon-greedy technique serves as a means to strike a balance between exploration
and exploitation in the process of training reinforcement learning policies. For instance, when
epsilon is set to 0.3, the output action is randomly chosen from the action space with a probability
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step , thereby facilitating a transition towards an increased emphasis on exploitation (i.e., a
greedier approach) during the latter stages of the training process. Despite this shift, a minimal
exploration probability persists, ensuring the ability to explore even as the policy nears
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Noisy network
Noisy networks are often utilized instead of the epsilon-greedy method to promote more

effective and dynamic exploration during training. Unlike the epsilon-greedy approach, which
only adjusts the exploration probability, noisy networks introduce stochasticity directly into the
network’s parameters, enabling a more nuanced and continuous exploration process. The Noisy
Network [35] introduces a novel concept of a noisy linear layer, integrating both deterministic and
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network can gradually disregard the noisy stream, albeit at varying rates across distinct regions of
the state space, thereby enabling state-specific exploration with a form of intrinsic self-annealing.
This dynamic exploration strategy allows for a more fine-grained balance between exploration
and exploitation, facilitating improved learning efficiency and adaptability in complex
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learning [37]. It refers to a technique used to stabilize and improve the training of deep neural
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required. By employing a soft update strategy, the target network can more smoothly track the
changes in the main network, enabling a more stable and effective learning process. This
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increased exploration freedom with a higher probability (e.g., init = 0.6), followed by a gradual
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step , thereby facilitating a transition towards an increased emphasis on exploitation (i.e., a
greedier approach) during the latter stages of the training process. Despite this shift, a minimal
exploration probability persists, ensuring the ability to explore even as the policy nears
convergence.

Noisy network
Noisy networks are often utilized instead of the epsilon-greedy method to promote more

effective and dynamic exploration during training. Unlike the epsilon-greedy approach, which
only adjusts the exploration probability, noisy networks introduce stochasticity directly into the
network’s parameters, enabling a more nuanced and continuous exploration process. The Noisy
Network [35] introduces a novel concept of a noisy linear layer, integrating both deterministic and
noisy components.
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where  and  are random variables, and ⊙ denotes the element-wise product. With time, the
network can gradually disregard the noisy stream, albeit at varying rates across distinct regions of
the state space, thereby enabling state-specific exploration with a form of intrinsic self-annealing.
This dynamic exploration strategy allows for a more fine-grained balance between exploration
and exploitation, facilitating improved learning efficiency and adaptability in complex
environments.

Soft update for target network
The soft update target network is a key concept in the field of deep reinforcement

learning [37]. It refers to a technique used to stabilize and improve the training of deep neural
networks in reinforcement learning tasks. Unlike hard updates, which involve periodically
copying the parameters of the main network to the target network, soft updates gradually blend
the parameters of the target network towards those of the main network. This process helps to
mitigate the issue of drastic changes in the target network, which can lead to instability during the
learning process. The value of  is used. In the paper, it proposed an algorithm called DPG. They
used  = 0.001. The target network is updated as follows.

 =  ×  +  × 1 −  (6)
Due to the small value of the parameter  , the target network smoothly adjusts towards

the Q-network’s value. To ensure the noticeable impact of this adjustment, frequent updates are
required. By employing a soft update strategy, the target network can more smoothly track the
changes in the main network, enabling a more stable and effective learning process. This
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and exploitation in the process of training reinforcement learning policies. For instance, when
epsilon is set to 0.3, the output action is randomly chosen from the action space with a probability
of 0.3, and with a probability of 0.7, the output action is selected greedily based on argmax (Q).

A refined version of the epsilon-greedy method is referred to as the Adaptive-epsilon-
greedy approach [38]. In this approach, for instance, the policy is trained over N epochs/episodes, a
value contingent upon the specific problem. Initially, the algorithm sets epsilon to init (e.g.,
init = 0.6), gradually reducing it to reach  = end (e.g., end = 0.1) over a designated number of
training epochs/episodes (step). Primarily, during the initial training phase, the model is granted
increased exploration freedom with a higher probability (e.g., init = 0.6), followed by a gradual
epsilon decrease at a rate r over the training epochs/episodes, adhering to the subsequent formula:
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This adaptable approach concludes with a notably low exploration probability, end , after

step , thereby facilitating a transition towards an increased emphasis on exploitation (i.e., a
greedier approach) during the latter stages of the training process. Despite this shift, a minimal
exploration probability persists, ensuring the ability to explore even as the policy nears
convergence.

Noisy network
Noisy networks are often utilized instead of the epsilon-greedy method to promote more

effective and dynamic exploration during training. Unlike the epsilon-greedy approach, which
only adjusts the exploration probability, noisy networks introduce stochasticity directly into the
network’s parameters, enabling a more nuanced and continuous exploration process. The Noisy
Network [35] introduces a novel concept of a noisy linear layer, integrating both deterministic and
noisy components.

 =  + + noisy ⊙  + noisy ⊙   (5)
where  and  are random variables, and ⊙ denotes the element-wise product. With time, the
network can gradually disregard the noisy stream, albeit at varying rates across distinct regions of
the state space, thereby enabling state-specific exploration with a form of intrinsic self-annealing.
This dynamic exploration strategy allows for a more fine-grained balance between exploration
and exploitation, facilitating improved learning efficiency and adaptability in complex
environments.

Soft update for target network
The soft update target network is a key concept in the field of deep reinforcement

learning [37]. It refers to a technique used to stabilize and improve the training of deep neural
networks in reinforcement learning tasks. Unlike hard updates, which involve periodically
copying the parameters of the main network to the target network, soft updates gradually blend
the parameters of the target network towards those of the main network. This process helps to
mitigate the issue of drastic changes in the target network, which can lead to instability during the
learning process. The value of  is used. In the paper, it proposed an algorithm called DPG. They
used  = 0.001. The target network is updated as follows.

 =  ×  +  × 1 −  (6)
Due to the small value of the parameter  , the target network smoothly adjusts towards

the Q-network’s value. To ensure the noticeable impact of this adjustment, frequent updates are
required. By employing a soft update strategy, the target network can more smoothly track the
changes in the main network, enabling a more stable and effective learning process. This
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The epsilon-greedy technique serves as a means to strike a balance between exploration
and exploitation in the process of training reinforcement learning policies. For instance, when
epsilon is set to 0.3, the output action is randomly chosen from the action space with a probability
of 0.3, and with a probability of 0.7, the output action is selected greedily based on argmax (Q).
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value contingent upon the specific problem. Initially, the algorithm sets epsilon to init (e.g.,
init = 0.6), gradually reducing it to reach  = end (e.g., end = 0.1) over a designated number of
training epochs/episodes (step). Primarily, during the initial training phase, the model is granted
increased exploration freedom with a higher probability (e.g., init = 0.6), followed by a gradual
epsilon decrease at a rate r over the training epochs/episodes, adhering to the subsequent formula:
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step , thereby facilitating a transition towards an increased emphasis on exploitation (i.e., a
greedier approach) during the latter stages of the training process. Despite this shift, a minimal
exploration probability persists, ensuring the ability to explore even as the policy nears
convergence.

Noisy network
Noisy networks are often utilized instead of the epsilon-greedy method to promote more

effective and dynamic exploration during training. Unlike the epsilon-greedy approach, which
only adjusts the exploration probability, noisy networks introduce stochasticity directly into the
network’s parameters, enabling a more nuanced and continuous exploration process. The Noisy
Network [35] introduces a novel concept of a noisy linear layer, integrating both deterministic and
noisy components.
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where  and  are random variables, and ⊙ denotes the element-wise product. With time, the
network can gradually disregard the noisy stream, albeit at varying rates across distinct regions of
the state space, thereby enabling state-specific exploration with a form of intrinsic self-annealing.
This dynamic exploration strategy allows for a more fine-grained balance between exploration
and exploitation, facilitating improved learning efficiency and adaptability in complex
environments.

Soft update for target network
The soft update target network is a key concept in the field of deep reinforcement

learning [37]. It refers to a technique used to stabilize and improve the training of deep neural
networks in reinforcement learning tasks. Unlike hard updates, which involve periodically
copying the parameters of the main network to the target network, soft updates gradually blend
the parameters of the target network towards those of the main network. This process helps to
mitigate the issue of drastic changes in the target network, which can lead to instability during the
learning process. The value of  is used. In the paper, it proposed an algorithm called DPG. They
used  = 0.001. The target network is updated as follows.

 =  ×  +  × 1 −  (6)
Due to the small value of the parameter  , the target network smoothly adjusts towards

the Q-network’s value. To ensure the noticeable impact of this adjustment, frequent updates are
required. By employing a soft update strategy, the target network can more smoothly track the
changes in the main network, enabling a more stable and effective learning process. This

 (6)

Due to the small value of the parameter τ, the 
target network smoothly adjusts towards the Q-net-
work’s value. To ensure the noticeable impact of 
this adjustment, frequent updates are required. By 
employing a soft update strategy, the target network 
can more smoothly track the changes in the main 
network, enabling a more stable and effective learn-
ing process. This technique has proven to be particu-
larly useful in complex reinforcement learning tasks 
where maintaining stability during the training phase 
is crucial for achieving optimal performance.
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4. Results
This section describes the setup of our experi-

ments, including the dataset, evaluation methods, 
and the baselines for comparison.

4.1	Experimental	setup

Data collections
The dataset we primarily used in our experiments 

is the Cambridge-driving Labeled Video Database 
or CamVid [34] with samples shown in Figure 2. This 
public dataset comprises 360 × 480 street scene color 
images or frames, each annotated with ground truth 
semantic labels for pixels across 32 classes. The 
images were captured from a moving automobile 
using high-resolution cameras placed on the streets, 
allowing for the observation of various objects. In 
this study, our focus is on the segmentation of 11 key 
classes. Given the urban context, the Road, Building, 
and Sky classes collectively constitute most frame 
pixels, accounting for approximately 15.81% and 
27.35%, and appearing in almost all frames. Other 
significant classes, such as Car and Pedestrian, are 
consistently present throughout the frame sequence 
but occupy smaller portions, approximately 3.93% 
and 0.64%, respectively. Additionally, our analysis 
includes other classes depicted in Table	1. The ac-
companying table illustrates a significant imbalance 
among the different classes, a challenge that we 
address in our study. The video sequences were shot 
during the daytime and at dusk, where the objects in 
the scene can still be recognized but appear darker 
than in other sequences. Daylight sequences were 
captured in sunny weather conditions, featuring 
mixed urban and residential surroundings.

For a fair comparison between different methods, 
the segmentation networks of all methods have been 
pre-trained on the GTA dataset [74], which comprises 
extensive synthetic images with pixel-level semantic 
annotations. These images are generated through the 
open-world video game Grand Theft Auto 5, depict-
ing scenes from a car perspective within virtual cit-
ies designed in an American style, like our primary 
testing dataset introduced earlier.

Figure 2. Labeled frames from the video at 1 Hz.

Table	1. Statistics for each class used in this study: “%” shows 
the ratio of pixels and “Occurrence” shows the number of occur-
rences over all images.

Class name Percentage Occurrence
Road 27.3 701
Building 22.7 687
Sky 15.8 699
Tree 10.4 636
Sidewalk 6.33 672
Car 3.4 643
Column_Pole 0.98 698
Fence 1.43 363
Pedestrian 0.64 640
Bicyclist 0.53 365
Sign_Symbol 0.12 416

Data collection instruments
The CamVid dataset was captured using a digi-

tal film camera under fixed conditions without auto 
zooming, focus, or adjustments during the collecting 
process. The camera’s focus was adjusted to infinity, 
and both gain and shutter speed were fixed. At the 
outset, the aperture was widened to its maximum 
extent while ensuring that white objects in the scene 
did not become overexposed.
Data analysis

In a real-world scenario where we have unlabeled 
data, it’s possible to involve a human annotator to 
label the necessary dataset based on active learning 
recommendations. Nevertheless, in this paper, as a 
proof of concept, we opted to work with fully la-
belled data and selectively concealed portions of it 
to assess the active learning algorithm’s performance 
on the segmentation task.

The dataset we primarily used in our experiments 
is CamVid [39] discussed earlier. The training, val-
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idation, and test sets consist of 370, 104, and 234 
images, respectively. In the training set, we used 100 
labelled images for building DT to train the DQN 
network for several episodes and learn a good acqui-
sition function that maximizes performance with a 
budget of B regions. A set of 10 images or DS is used 
to construct the state representation. For the baseline 
evaluation set DV, we utilized 260 images. DS has a 
similar class distribution to DT to represent it. The 
original validation set was used to build DR. The 
dataset’s test set was employed to train the model 
to obtain the final segmentation results. Each image 
was divided into K regions (in this case, K = 24) 
with a resolution of 80 × 90. For implementation, we 
executed 5 different runs with random seeds to cal-
culate the mean and standard deviation. Horizontal 
flips and random crops of 224 × 224 were applied 
for data augmentation.
Evaluation

We trained the active learning agent on DT with 
approximately 0.5 k regions to learn the selection 
of regions that would improve performance in da-
ta-scarce scenarios. Subsequently, we evaluated the 
model using DV, where the model could access an 
increasing number of images within different fixed 
budgets. Once the fixed budget was reached, the 
segmentation network was trained with LT until it 
met the early stopping condition in DR. The segmen-
tation network f for all algorithms was pre-trained 
with the GTA dataset [74], a synthetic dataset, and DT. 
Finally, we measured the segmentation model’s per-
formance on the CamVid test set using the Intersec-
tion over Union (IoU) score.
Hardware usage

The models were trained using a single NVIDIA 
RTX A5000 GPU with 24 GB of VRAM. Training 
the active learning agents took approximately 18 
hours for 5 runs, and training the segmentation mod-
els to test the active learning algorithm required a 
total of 8 hours for 5 runs at each of the 6 budgets.

4.2	Experiment	results

In Figures 3 and 4, we compare various methods 
across increasing budgets of labeled 128 × 128 pixel 

regions. The x-axis, labeled as “Budget”, represents 
the additional number of regions in thousands and 
the percentage of utilized unlabeled data. The plots 
include means and standard deviations of 5 runs. 
The segmentation network utilized in these meth-
ods has been pre-trained with the GTA dataset and 
part of their respective target datasets. The dashed 
line represents 96% of the best performance (Inter-
section Over Union) achieved by the segmentation 
network trained with all available labels. Given that 
the performance of the preceding work [32] surpasses 
that of the other baseline models, we will adopt it as 
the new baseline model for comparisons with other 
methods.

Figure 3. Comparisons of various active learning methods.

In detail, Figure 3 illustrates the performance 
of various methods, including Prioritized Expe-
rience Replay (PRIO) [34], the reproduced DQN 
baseline (BASELINE) [32], Dueling Deep Q-net-
work (MDQN) [33], Emphasizing Recent Experi-
ences (ERE) [36], and Noisy Network (NOISY) [35], 
Adaptive Epsilon Greedy (ESP) [38], Soft Update 
for Target Network [37]. It’s important to note that 
at 1.5 k regions, the performance of some methods 
exceeds 96% of the maximum achieved with fully 
supervised training (having access to all labels). In 
these experiments, the NOISY model performs the 
worst, suggesting that acquiring new labels does 
not provide significant additional information to the 
model. PRIO and SOFT outperform the other meth-
ods, including the baseline, in all budget scenarios, 
except for the 1K case for the PRIO method. They 
achieve this without overfitting the training model, 
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while the other methods yield similar results. This 
suggests that effective active learning, through se-
lective labeling or additional information, can assist 
the segmentation model in avoiding local minima 
and achieving better performance.

Figure 4. Compare the PRIO method with varying replay buffer 
sizes.

In Figure 4, a comparison is made between the 
baseline and PRIOR methods, considering different 
replay buffer pool sizes: 600, 30,000, 60,000, and 
120,000. Performance remains relatively stable for 
both 60,000 and 120,000. Interestingly, PRIOR, 
despite having a smaller replay buffer (around 600 
compared to 30,000, 60,000, and 120,000), outper-
forms the others by a significant margin.

4.3 Discussion

Implications and suggestions
In this section, we examine the primary findings 

from the experiments. As the experiment results 
show, implementing a soft target network update can 
improve performance. This is due to the smoother 
tracking of changes in the main network by the tar-
get network through the use of soft updates. Conse-
quently, a more stable learning process is achieved, 
and the algorithm is able to converge to a better pol-
icy, resulting in improved performance reflected in 
better results and more reliable Q-value estimations. 
The Dueling DQN algorithm improves upon earlier 
models by decoupling value and advantage func-
tions in Q-value estimation. This allows for better 
recognition of action importance in varying states, 

thereby enhancing learning and generalization. The 
resulting architecture enables more effective com-
prehension of state value and action advantage, 
leading to improved action selection and overall per-
formance. Moreover, this division reduces the vari-
ability in learned action values, stabilizes learning, 
and provides more precise estimates. This solves the 
problems of overestimation or underestimation of 
Q-values. Prioritized Experience Replay (PER) im-
proves reinforcement learning by enhancing sample 
efficiency, stabilizing the learning process, and pro-
moting effective exploration of the state space. PER 
prioritizes experiences based on higher probabilities 
for transitions with greater TD errors, accelerating 
convergence and fostering efficient learning. Empha-
sizing rare events also aids agents in handling critical 
scenarios adeptly. The learning process stability is 
ensured by policy updates that efficiently lead to rap-
id learning and enhanced convergence. Emphasiz-
ing transitions with high learning potential aids the 
thorough exploration of the state space, resulting in 
improved overall performance and decision-making 
by the agent. PER usage reduces bias from uniform 
sampling and mitigates high variance issues, result-
ing in more accurate and stable Q-value updates. 
This enhances the learning process and improves 
performance in various reinforcement learning tasks.

Our experiments showed that certain techniques, 
like incorporating noisy networks to encourage di-
verse segmentation strategies, had a negative impact 
on segmentation performance by introducing insta-
bility in the learning process, resulting in decreased 
accuracy in certain scenarios. In intricate settings 
with sparse rewards or high-dimensional state spac-
es, challenges arise where adjusting the exploration 
rate alone may prove ineffective. Poor adjustment 
of the exploration rate adaptation and disregard for 
specific learning dynamics can disturb the balance 
between exploration and exploitation, despite the 
use of adaptable epsilon-greedy approaches, creating 
difficulties in obtaining the ideal exploration-ex-
ploitation equilibrium, especially in some settings. 
Overemphasizing recent experiences in a DQN can 
hinder reinforcement learning performance by re-
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ducing sample efficiency, impeding generalization, 
introducing increased variance, and destabilizing the 
learning process. It also limits exploration across 
the state space, restricting the discovery of critical, 
infrequently encountered states and thereby compro-
mising the agent’s convergence to an optimal policy. 
Thus, in order to improve performance, it is crucial 
to achieve a balance between prioritizing recent ex-
periences and maintaining a varied set of samples 
that support efficient learning and exploration across 
the entire state space.
Limitations and future work

We have illustrated the successful integration of 
various enhancements into the DQN, enhancing the 
semantic segmentation model to achieve state-of-
the-art performance. Furthermore, our findings in-
dicate that certain components within the integrated 
algorithm yield distinct performance advantages. 
While numerous algorithmic components couldn’t 
be incorporated in this study, they stand as promising 
candidates for future experiments involving integrat-
ed agents. Below, we discuss several of these poten-
tial candidates.

Policy-based methods directly parameterize 
the policy, allowing for more flexible and complex 
policies compared to value-based approaches like 
DQN. Investigating the application of policy-based 
methods to active learning in semantic segmentation 
could provide valuable insights into optimizing de-
cision-making strategies. Actor-critic methods com-
bine the strengths of both policy and value-based 
approaches by maintaining separate networks for 
policy and value estimation. Exploring the integra-
tion of actor-critic methods in our active learning 
framework may offer advantages in terms of stability 
and efficiency. N-step methods extend the traditional 
DQN by incorporating multiple consecutive states 
and actions. Evaluating the impact of N-step methods 
on active learning performance in semantic segmen-
tation could enhance our understanding of the tem-
poral dynamics involved. Distributional RL models 
the distribution of returns rather than focusing solely 
on expected values. Introducing distributional RL 
techniques into our framework may contribute to a 

more nuanced understanding of uncertainty and risk 
management in the active learning process. Imitation 
learning leverages expert demonstrations to guide 
the learning process. Integrating imitation learning 
into active learning for semantic segmentation could 
offer a valuable mechanism for initializing the model 
and accelerating the learning curve.

The exploration of these alternative RL tech-
niques represents a promising direction for future 
research. Investigating how those methods can be 
tailored to the specific challenges of active learning 
in semantic segmentation is essential. The strengths 
of different RL paradigms could be harnessed by 
exploring the combination of these techniques in 
hybrid models or ensembles. Moreover, the transfer-
ability and generalization of learned policies across 
diverse datasets and domains require attention in fu-
ture investigations.

5. Conclusions
In conclusion, our study provides a compre-

hensive comparison of different DQN extensions 
designed to improve active learning in semantic 
segmentation through reinforcement learning. Our 
primary objective is to mitigate the labour-intensive 
task of obtaining pixel-wise labels with human in-
tervention. Our results demonstrate that the NOISY 
model performs the worst, showing rapid overfitting, 
therefore implying that acquiring new labels does not 
significantly enhance the model’s information. No-
tably, prioritized experience replay and soft update 
outperform all other methods, including the baseline, 
in all budget scenarios. Importantly, these methods 
achieve superior performance without overfitting, 
while the other techniques yield similar results. Ad-
ditionally, the comparison of the baseline and PER 
methods, considering different replay buffer pool 
sizes, indicates that PRIOR outperforms others de-
spite having a smaller replay buffer. This emphasizes 
the importance of utilizing information effectively to 
improve the segmentation process. This highlights 
the effectiveness of selective labelling or including 
additional information to help the segmentation 
model avoid local minimum and achieve better per-
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formance. These findings highlight the prospect of 
utilizing sophisticated DQN extensions to enhance 
active learning in semantic segmentation, resulting 
in streamlined label acquisition and improved model 
performance.
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Development	of	Technology	and	Equipment	for	Non-destructive	Testing	
of	Defects	in	Sewing	Mandrels	of	a	Three-roll	Screw	Mill	30-80

Shatalov Roman Lvovich*
 

, Zagoskin Egor Evgenievich
 

Moscow Polytechnic University, Moscow, 115280, Russian Federation

ABSTRACT
The conditions of heating and cooling of piercing mandrels made of 4X5MFS steel of a three-roll screw mill 30-

80 in the production of a closed cavity of steel vessels of small volume are determined. It is established that multiple 
cycles of heating up to 600 °C and cooling with water up to 80 °C for about 7 seconds/1 cycle lead to the formation 
of ridges, shells and cracks on the surface and in the volume of the tool. The loss of structural strength of the material 
leads to the breakdown of the mandrel during the stitching process. The technique and equipment of magnetic powder 
control have been developed to establish the dynamics of the growth of internal and external defects of mandrels. An 
equation is obtained that allows determining the increase in the number of defects in the sewing tool of a screw rolling 
mill. The technology of non-destructive testing made it possible to develop a rational plan for replacing the sewing 
mandrels, which allows for predicting the appearance of defects leading to a complex breakdown of the deforming tool 
at the NPO Pribor machine-building enterprise.
Keywords: Screw rolling mill 30-80; Piercing mandrel made of 4X5MFS steel; Vessel made of 50 steel; Temperature; 
Crack; Magnetic powder control of hidden defects

1. Introduction

Automation of rolling production in mechanical 
engineering and metallurgy makes it possible to 
ensure high quality and low cost of flat, round and 

shaped rolled products [1,2]. One of the most popular 
types of rolled products for quality control today 
is steel vessels of the responsible purpose of small 
internal volume. That is why for the hot production 
of semi-finished products, lines consisting of screw 
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rolling mills with a sewing mandrel installed along 
the axis are increasingly used [3-5].

The technology provides for significant heating 
temperatures of the initial bars-blanks to ensure the 
continuity of the process of screw rolling, stitching 
and final heat treatment of products. The high temper-
ature of about 2/3 of the melting makes it possible to 
ensure the high plasticity of the deformed material [5,6].

The heating of semi-finished products affects the 
deforming tool by heat transfer of the contacting 
surfaces [7,8]. The outer surface of the heated metal 
comes into contact with massive rolling rolls, which 
are continuously cooled by water. For this reason, 
their heating rarely exceeds critical values that re-
duce mechanical properties and lead to the formation 
of thermal stresses and defects on the surface and in 
the volume of the rolls [9,10]. The inner surface of a 
small volume vessel is formed by a mandrel with a 
low mass, without the possibility of cooling during 
flashing [11-13]. The time of the piercing cycle and the 
subsequent extraction of the mandrel from the vessel 
cavity is not infrequently sufficient to warm up the 
material to the temperature of the beginning of phase 
rearrangements [14]. Intensive cooling with water al-
lows us to exclude the influence of temperature on 
the mandrel at the moment of inactivity. However, in 
this case, there is a risk of the formation of thermal 
stresses due to the reverse rearrangement of the crys-
tal lattice leading to the formation of cracks in the 
volume of the tool [15,16]. Multiple cycles of intensive 
heating and cooling increase the risk of tool break-
age and failure of the process line [17,18]. Therefore, 
this work was aimed at developing technology and 
equipment for non-destructive testing of unaccept-
able defects in sewing mandrels.

The purpose of the work was the development 
of technology and equipment for non-destructive 
testing of defects in sewing mandrels of a three-roll 
screw mill 30-80.

2.	The	methodology	of	the	experiment
The experiment was carried out during the hot 

production of vessels made of steel 50 on the pro-
duction line of the BF JSC NPO Pribor, which in-

cludes heating equipment, a three-roll screw mill 
30-80 with a rotating mandrel installed along the 
axis with the possibility of moving along the axis of 
the firmware. The vessel was extracted with a “P” 
shaped stop. The initial rod-blank had dimensions 
of a length of 70 mm diameter of 40 mm. The roll-
ing speed was 1.2 m/s. The rhythm of rolling and 
stitching, including the extraction of the vessel from 
the mandrel, is about 7 seconds. The deformed ves-
sel was diverted along the stream and fell into the 
quenching tank. Figure 1 shows the main line of the 
screw rolling mill 30-80.

Figure 1. The main line of the screw rolling mill is 30-80.

The rolling mill line consisted of 1—asynchro-
nous motor with a power of 50 kW each with a 
rotation speed of 1250 revolutions per minute, 2—
gimbals transmitting the moment of rotation, 3—
gearboxes, 4—guide chutes, 5—pusher rod, 6—roll-
ing cage, 7—rotating mandrel, 8—mechanism fixing 
the position of the mandrel relative to rolling axes, 
9—stop removing the vessel from the mandrel, 10—
diverting stream.

The scheme of production of steel vessels on the 
production line: The initial rod-billet was heated in 
an induction and resistance furnace to a temperature 
of about 1160 °C, after which it was rolled and not 
completely stitched with a rotating mandrel, after 
which it was removed with a U-shaped stop and di-
verted to the quenching tank along the gutter. Water 
cooling of the rolling rolls was carried out continu-
ously, and the mandrels were at the time of extrac-
tion from the cavity of the vessel.

Figure 2 shows the geometric dimensions of the 
deforming tool and steel vessels at the outlet of the 
processing line.
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a

b

c
Figure 2. Geometric dimensions: a—rolling rolls, b—sewing 
mandrel, c—steel vessel at the outlet of the processing line.

Figure 2a shows the permissible geometric di-
mensions of 3 pieces of identical rolling rolls made 
of 35 HGSA steel that are part of the equipment of 
the rolling mill 30-80, Figure 2b shows the geomet-
ric dimensions of the working part of the piercing 
mandrel made of 4X5MFS steel, Figure 2c shows 
the geometric dimensions of the completed product 
in the form of a vessel made of ST50 material. Per-
missible deviations from the dimensions in Figure 2 
are not more than ± 0.1 mm.

The heating temperature of the mandrel was de-
termined using an optical pyrometer SEM 1600 after 
its extraction from the vessel cavity.

The magnetic particle inspection method is a uni-
versal way of detecting defects in a deforming tool. 
The method is based on the occurrence of magnetic 

field inhomogeneity in places of discontinuity of fer-
romagnetic material, including steel and iron-based 
alloys.

The formation of internal defects of the sewing 
mandrel was investigated in accordance with GOST 
56512-2015 “Non-destructive testing. Magnetic 
powder method”. For this purpose, the design of the 
mandrel magnetization equipment was developed. 
Figure 3 shows the developed magnetization setup 
of the sewing mandrels.

Figure 3. Installation of magnetization of sewing mandrels.

MD-I was used as a direct current source. The 
magnetization parameters were a current of 2 V, and 
a voltage of 160 A. Iron powder with a particle size 
not exceeding 0.001 mm was used as an indicator. 
The amount of powder was about 1/8 of the carrier 
liquid, which included: 1/3 kerosene, 1/3 soap solu-
tion, and the rest of industrial oil and 20. Defects on 
the surface of the mandrel were determined after the 
release of a batch of vessels from 250 to 1200 piec-
es.

The sequence of technological operations when 
checking the sewing mandrel for hidden defects:

● mechanical cleaning of the surface from dirt 
and scale layer with sandpaper grain size 80.

● preparation of the suspension consists of inten-
sive mixing in the bathroom.

● the mandrel was installed on the lower elec-
trode, the upper electrode was moved along the 
screw of the press all the way to the opposite part of 
the mandrel.
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● magnetization took place in 2 seconds between 
the electrodes immersed in the suspension, under the 
action of the applied field, the particles moved in the 
area of magnetic disturbances, which indicate exter-
nal and internal defects of the material.

● defects of mandrels were determined visually.
Measurements of traces of accumulations of iron 

powder were carried out with an electronic calliper.

3.	The	results	of	the	experiment	and	
their discussion

The heating temperature of the sewing mandrel 
was studied at an interval of 10 mm from the toe of 
the mandrel. Its bow is taken as the beginning of the 
countdown. Figure 4 shows the results of measure-
ments of the heating of the mandrel of the screw mill 
30-80.

Figure 4. The results of measurements of the heating tempera-
ture of the screw machine mandrel 30-80.

Based on the temperature measurements carried 
out, it can be assumed that the main formation of man-
drel defects will occur in the nasal region and further 
decrease due to the cyclical heating modes shown in 
Figure 4 and cooling with water up to 80 °C.

The stitching mandrel of a three-roll screw mill 
30-80 was examined after the formation of the vessel 
cavity. The check interval was every 250 pieces of 
vessels. Figure 5 shows the development of defects 
in the outer surface and inner volume of the sewing 
mandrel after the formation of the vessel cavity.

The defects shown in Figure 5 indicate the influ-
ence of heating cycles up to 600 °C and cooling to 
80 °C at intervals of 7 seconds. After the release of 
250 pieces. there are no accumulations of powder on 

the surface of the mandrel, its surface is smooth. Af-
ter the release of 500 pieces in the transition area of 
the diameter from 16 to 18 mm, a longitudinal risk 
is visible with a length of about 9 mm and a depth 
of up to 1.2 mm. After the release of 750 pieces of 
semi-finished products, external shells with a depth 
of up to 1.1 mm and a diameter of about 3 mm are 
added to the longitudinal risks in the same area. In 
the nasal part, there is a pitted surface in small and 
frequent shells. With the release of 1000 pieces, a 
pronounced accumulation of magnetized powder is 
observed in the nasal vessels at a distance of about 
10 mm, which suggests the formation of through 
fistulas. On the side surface of the mandrel, external 
defects do not grow in length, but their depth in-
creases by about 30%. After the release of 1200 piec-
es, the mandrel toe collapsed at a distance of about 
5 mm and a crack formed at a distance of about 20 
mm. The experiment was stopped.

Figure 5. The development of defects in the outer surface and 
inner volume of the sewing mandrel after the formation of the 
vessel cavity: 1—250 pieces, 2—500 pieces, 3—750 pieces, 
4—1000 pieces, and 5—1200 pieces.

The evolution of the growth of defects in a 
4X5MFS steel sewing mandrel during the release of 
steel vessels, with an interval of 250 pieces. The area 
of defect formation was measured, as well as deter-
mined in the area of their formation at a distance of 
50 mm from the toe of the mandrel. The total surface 
area at this length was 2811 mm2. The sum of the 
outer area of powder accumulations indicating the 
formation of internal defects was taken into account. 
Figure 6 shows the effect of the number of rolled 
vessels on the area of defects on the surface of the 
sewing mandrel.

Based on the measurements carried out, it can 
be concluded that with an increase in the firmware 
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cycles, the number of defects increases and reaches 
maximum values of about 12% of the studied outer 
surface with the release of 1000 pieces of vessels. 
The increase in the number of defects is subject to 
the developed second-order polynomial equation 
with a determination coefficient equal to 99%.

Figure 6. The effect of the number of rolled vessels on the area 
of defects on the surface of the sewing mandrel.

4. Conclusions
1) Testing of the design and technology of mag-

netic powder inspection of defects of the piercing 
mandrel made of 4X5MFS steel of a three-roll screw 
mill 30-80 was carried out. It has been established 
that with an increase in the number of rolled prod-
ucts, there is an increase in the number of external 
and internal defects. A rationally planned interval of 
replacement of mandrels for the production of steel 
vessels of about 1000 pieces has been determined.

2) A significant influence of the number of rolled 
vessels on the growth of the area of shells and cracks 
on the sewing mandrel has been established. It is 
shown that the critical area of defects at which the 
destruction of the deforming tool can occur is about 
12% of the total area of the mandrel under study. A 
second-order polynomial equation is obtained that 
allows determining the increase in the number of 
defects of the mandrel surface with a determination 
coefficient equal to 99%.

3) The development of a system and technolo-
gy for non-destructive quality control of the screw 
mill mandrel allowed us to develop a rational plan 
for replacing the piercing mandrels, which allows 
us to predict the appearance of defects leading to 

complex breakage of the deforming tool at the 30-
80 mill, which ensured an increase in the efficiency 
of production of steel vessels at the NPO Pribor ma-
chine-building enterprise.
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