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1. Introduction
The train system, an integral part of the global 

transportation infrastructure, has played a pivotal 
role in shaping the socio-economic landscapes of 
nations worldwide. Offering a blend of efficiency, 

environmental sustainability, and unparalleled 
connectivity, rail transportation has not only bridged 
distant geographies but has also fostered economic 
growth, mitigated urban congestion, and introduced 
a greener mode of transit. Consequently, the study 
of such systems has received significant attention, 

*CORRESPONDING AUTHOR:
Yueheng Ding, School of Engineering, University of Kent, Canterbury, CT2 7NT, United Kingdom; Email: ingyueheng@126.com

ARTICLE INFO
Received: 11 November 2023 | Revised: 2 January 2024 | Accepted: 16 January 2024 | Published Online: 25 January 2024 
DOI: https://doi.org/10.30564/jeis.v6i1.6077

CITATION
Ding, Y.H., Yan, X.G., 2024. Sliding Mode Based Distributed Trajectory Tracking Control of Four-body Train Systems. Journal of Electronic & 
Information Systems. 6(1): 1–9. DOI: https://doi.org/10.30564/jeis.v6i1.6077

COPYRIGHT
Copyright © 2024 by the author(s). Published by Bilingual Publishing Group. This is an open access article under the Creative Commons Attribu-
tion-NonCommercial 4.0 International (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/).

ARTICLE

Sliding Mode-Based Distributed Trajectory Tracking Control of 
Four-body Train Systems

Yueheng Ding*
 

, Xinggang Yan
 

School of Engineering, University of Kent, Canterbury, CT2 7NT, United Kingdom

ABSTRACT
This paper considers the speed tracking of a four-body train system modelled mathematically based on Newton’s 

second law, which is described by a large-scale interconnected system with four subsystems. Uncertainties are included 
in the systems to represent the potential impacts on system performance caused by mechanical wear and external 
environmental changes. An adaptive sliding mode technique is employed to design a distributed control scheme to 
guarantee tracking accuracy. Coordinate transformations are introduced to transfer the model of train systems to a 
system in regular form to facilitate the design of the hyperplane and controllers. The Barbashin-Krasovskii theorem 
is employed to show the reachability of the hyperplane. In simulations, the Gaussian function is chosen as the desired 
signal, representing time-varying characteristics relevant to real-world situations, and the result demonstrates the 
feasibility of the proposed control strategy.
Keywords: Adaptive control; Distributed control; Large-scale interconnected systems; Sliding mode control; Trajectory 
tracking

https://doi.org/10.30564/jeis.v6i1.6077
https://doi.org/10.30564/jeis.v6i1.6077
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0003-4804-2499
https://orcid.org/0000-0003-2217-8398


2

Journal of Electronic & Information Systems | Volume 06 | Issue 01 | April 2024

leading to numerous research findings [1–3].
Due to its unique construction, train systems can 

be described as a type of large-scale system that 
consists of a collection of interconnected lower-
dimensional subsystems, where the behaviour of 
each subsystem is influenced by the interactions 
with other adjacent subsystems. Decentralised 
control, as a popular approach for interconnected 
systems, involves decomposing, if required, the 
system into smaller subsystems and designing local 
controllers for each subsystem independently [4,5]. In 
this approach, each subsystem’s local controller is 
responsible for regulating its own behaviour while 
interacting and collaborating with neighbouring 
subsystems to achieve a global control objective. 
However, the train systems considered in this paper 
exhibit a distinctive chain structure, where the inter-
connections between subsystems can be modelled 
as functions of their own states and adjacent system 
states only. In such cases, the distributed scheme al-
lows the local sub-controller to utilise not only infor-
mation from its own subsystem but also information 
from its neighbouring subsystems, like information 
from adjacent subsystems. This characteristic aligns 
well with the interconnected nature of the train 
system studied in this paper. Therefore, the use of 
distributed control is a natural choice [6,7] and serves 
as the motivation for employing distributed control 
techniques in this paper.

Tracking control is a crucial subject in both 
control theory and control engineering, and 
significant progress has been made in this field 
(refer to the works [8,9]). In the work [10], an adaptive 
fuzzy technique-based tracking control approach 
for interconnected systems is investigated, while 
the work [11] focuses on decentralised tracking 
control for large-scale systems, exploring model 
reference control. However, it is important to note 
that the findings, obtained in works [10,11], impose 
a relatively strong limitation on the structural 
characteristics of the studied system. This specific 
system structure deviates somewhat from real-world 
scenarios. Therefore, investigating a more general 
and realistic train model is a research direction 

that holds significant value, and it aligns with the 
problem addressed in this paper. Furthermore, the 
sliding mode technique is often employed to enhance 
the robustness of interconnected systems with 
uncertainties, as the sliding mode dynamics typically 
govern system performance without uncertainties [12].  
Hence, sliding mode control-based methods have 
been extensively applied in system tracking con-
trol. In the work [13], a tracking problem for a class 
of large-scale systems with interconnections is 
addressed using sliding mode techniques, which 
require that the desired signals are constant. 

Therefore, this paper focuses on a distributed 
control approach using sliding mode techniques 
to tackle the speed tracking challenge of a four-
body train system where some extensions and 
improvements of the time-varying desired signals 
and unknown interconnections are explored. 
According to the prior works [14,15], the train system 
is modelled as an interconnected system with 
unknown uncertainties and disturbances. Then, a 
sliding surface is synthesised based on the tracking 
and the Barbashin-Krasovskii theorem is introduced 
to guarantee the occurrence of a reaching phase and 
sliding motion with the proposed distributed control. 
The main contributions of this paper are listed as 
follows.

● Through the application of sliding mode 
techniques, the strong robustness of the four-
body train system can be guaranteed, due to 
the sliding motion is insensitive [12] to matched 
uncertainty and disturbance.

● In comparison to the existing result [16], the 
desired reference signal is permitted to have 
a more general form, specifically, a smooth 
function, and is no longer restricted to be 
constant.

● Asymptotically tracking the performance of 
the system with unknown uncertainties is 
achieved with the proposed control scheme, 
which involves the use of adaptive techniques.

Lastly, a simulation is conducted to demonstrate 
the effectiveness of the proposed approaches.
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2. System description
According to the work [17], the train system, as de-

picted in Figure 1, can be represented mathematically 
as:

1 1( ) ( ) ( ) ( ) ( )
ii i i i i rM z t F t F t F t F t− += + − −

(1)

for i = 1, 2, 3, 4, where Mi represents the mass of the 
ith body, y, � 

tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

 is the corresponding acceleration, and Fi 
is the traction force. Additionally, Fi−1 and Fi+1 are 
the restoring forces caused by adjacent bodies. Fri

 

denotes the resistive force.
Remark 1: Equation (1) describes the most 

general situation (the middle bodies). For the special 
parts, like the locomotive and caboose, some terms 
in (1) will be omitted due to the real situation, which 
will be discussed later.

Due to the relatively small displacements 
between bodies, the restoring force can be modelled 
approximately as the following linear function:

1 1 1( ) ( ) ( )i i i i i i iF t k z z d z z+ + += − + − 

(2)

where ki and di represent the spring and damping 
parameters, respectively. zi,  zi+1, 

y, � 
tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

,  and 

y, � 
tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

+1 
correspond to the ith and (i + 1)th displacements and 
corresponding speeds, respectively for i = 1, 2, 3, 4. 
The general resistance Fri(t) can be modelled by (see 
the works [18–20]):

2
1 1 1 1 1 , 1

( )
, 2,3, 4i

o v a
r

io iv i

b b z b z i
F t

b b z i
 + + =

= 
+ =

 



(3)

where bio , biv and b1a are the resistance coefficients. 

b1a12 denotes aerodynamic drag, while bio and biv

y, � 
tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

 
are rolling mechanical resistances.

From (1)–(3), the four-body train system in 
Figure 1 is given by:

1 1 1 1 1 1 2 1 1 1 2
2

1 1 1 1 1

( )( ) ( )( )

,o v a

M z F k k z z d d z z
b b z b z

= − + ∆ − − + ∆ −

− − −

  

 

(4)

1 1 1 1

1 1 1 1

( )( ) ( )( )
( )( ) ( )( )

, 2,3

i i i i i i i i i i i

i i i i i i i i

io iv i

M z F k k z z k k z z
d d z z d d z z

b b z i

+ − − −

+ − − −

= − + ∆ − − + ∆ −

− + ∆ − − + ∆ −

− − =



   



(5)

4 4 4 3 3 4 3 3 3 4 3

4 4 4

( )( ) ( )( )
,o v

M z F k k z z d d z z
b b z

= − + ∆ − − + ∆ −
− −

  



(6)

where ∆ki and ∆di for i = 1, 2, 3 are unknown 
constants. 

y, � 
tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

, 
y, � 
tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

, 
y, � 
tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

 and 
y, � 
tants. �1, �2, �3 and �4 are taken as the syste

pring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and

(i+ 1)th displacements and correspondin

 are taken as the system’s 
outputs.

Remark 2: In this paper, a more realistic 
situation is taken into account. It is assumed that 
there are variations in the spring and damping 
parameters, denoted by ∆ki and ∆di, respectively, in 
the interconnections compared with their nominal 
values. These variations may occur due to aging of 
components and external factors such as temperature 
changes, external disturbances, and other similar 
influences.

3. System structure analysis
For the four-body train described in system (4)–

(6), choose the following coordinate transformation:

3

3 12

4 3 2 1

124 3

Krasovskii theorem is introduced to guarantee the occurrence of a reaching phase and sliding motion with the proposed

distributed control. The main contributions of this paper are listed as follows.

 Through the application of sliding mode techniques, the strong robustness of the four-body train system can be

guaranteed, due to the sliding motion is insensitive [12] to matched uncertainty and disturbance.

 In comparison to the existing result [16], the desired reference signal is permitted to have a more general form,

specifically, a smooth function, and is no longer restricted to be constant.

 Asymptotically tracking the performance of the system with unknown uncertainties is achieved with the proposed

control scheme, which involves the use of adaptive techniques.

Lastly, a simulation is conducted to demonstrate the effectiveness of the proposed approaches.

4 3 2 1

3 2 1

Figure 1. Sketch of a four-body train system.

2. System description

According to the work [17] , the train system, as depicted in Figure 1, can be represented mathematically as:

1 1( ) ( ) ( ) ( ) ( )
ii i i i i rM z t F t F t F t F t     (1)

for i= 1,2,3,4, where Mi represents the mass of the ith body, �  i s the corresponding acceleration, and Fi i s the traction force.

Additionally, Fi−1 and Fi+1 are the restoring forces caused by adjacent bodies. Fri denotes the resistive force.

Remark 1: Equation (1) describes the most general situation (the middle bodies). For the special parts, like the

locomotive and caboose, some terms in (1) will be omitted due to the real situation, which will be discussed later.

Due to the relatively small displacements between bodies, the restoring force can be modelled approximately as the following

linear function:

1 1 1( ) ( ) ( )i i i i i i iF t k z z d z z       (2)

where ki and di represent the spring and damping parameters, respectively. zi, zi+1, � , and � +1 correspond to the ith and (i+1)th
displacements and corresponding speeds, respectively for i= 1,2,3,4. The general resistance Fri(t) can be modelled by (see the works
[ 1 8 –2 0 ] ):

2
1 1 1 1 1 , 1

( )
, 2,3, 4i

o v a
r

io iv i

b b z b z i
F t

b b z i
   

 
 

 



(3)

Figure 1. Sketch of a four-body train system.
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[ ]
[ ]
11 12 21 22 31 32 41 42

1 1 2 2 3 3 4 4

T

T

x x x x x x x x

z z z z z z z z=    

(7)

Furthermore, an additional feedback transforma-
tion is introduced:

1 1 11 21 1 12 22 1 1 12
2

1 12 1 1

( ) ( )

,
o v

a

F k x x d x x b b x
b x M v

= − + − + +

+ +

(8)

,1 1,1 1 ,1 1,1 ,2 1,2

1 ,2 1,2 ,2

( ) ( ) ( )
( ) , 2,3

i i i i i i i i i i

i i i io iv i i i

F k x x k x x d x x
d x x b b x M v i

+ − − +

− −

= − + − + −

+ − + + + =

(9)

4 3 41 31 3 42 32 4

4 42 4 4

( ) ( )
,

o

v

F k x x d x x b
b x M v

= − + − +
+ +

(10)

where v1, v2, v3 and v4 are the new control inputs 
which will be designed later. In the new coordinates 
x = col(x11, x12, ..., x42), system (4)–(6) can be 
described by:

1 2i ix x=
(11)

2 ( ), 1, 2,3, 4i i ix v H x i= + =

(12)

where
1 1

1 11 21 12 22
1 1

( ) ( ) ( ),k dH x x x x x
M M
∆ ∆

= − − − −

(13)

1
,1 1,1 ,1 1,1 ,2 1,2

1
,2 1,2

( ) ( ) ( ) ( )

( ), 2,3

i i i
i i i i i i i

i i i

i
i i

i

k k dH x x x x x x x
M M M

d x x i
M

−
+ − +

−
−

∆ ∆ ∆
= − − − − − −

∆
− − =

(14)

3 3
4 41 31 42 32

4 4

( ) ( ) ( ),k dH x x x x x
M M
∆ ∆

= − − − −

(15)

where Hi(x) represents uncertainties in the intercon-
nections of the ith subsystems for i = 1, 2, 3, 4 with 

the state x = col(x11, x12, x21, x22, x31, x32, x41, x42 ) ∈ R8. 
The inputs vi ∈ R.

Remark 3:  According to  (13)–(15) ,  the 
interconnected uncertainties Hi (x) in the ith 
subsystem are functions of the unknown coefficients, 
state xi and its adjacent states xi−1 and xi+1. The state 
xi = col(xi1, xi2) for i = 1, 2, 3, 4. It is clear to see that 
the interconnected structure in (13)–(15) reflects the 
practical train system shown in Figure 1. Therefore, 
distributed control is naturally considered to cope 
with the tracking problem of the system above.

Consider the interconnected system (11)–(12) 
with interconnections in (13)–(15). The desired 
displacement of each body in the train system is 
assumed as Sd(t). Its first derivate is thus the desired 
signal yd(t) (speed signal). Then, the objective of 
this paper is to design an adaptive-based distributed 
sliding mode control that allows the speed of each 
body to track the desired signal yd(t). In other words, 
the objective of this paper is to achieve limt→∞ 
|yd (t) − xi2(t)| = 0 for i = 1, 2, 3, 4. Additionally, 
the displacement errors between the desired 
displacement Sd(t) and the actual displacement 
of the four bodies should remain to be bounded, 
despite the presence of unknown uncertainties in the 
interconnections.

Remark 4: It is important to note that the 
displacement states z1, z2, z3, and z4 may tend towards 
infinity as time t approaches infinity, especially 
when the speeds are non-zero. However, from a 
practical perspective, it is essential to ensure that the 
displacement errors Sd (t) − z1, Sd (t) − z2, Sd (t) − z3, 
and Sd (t) − z4 remain bounded. Failure to do so may 
result in the connections between adjacent bodies 
being broken.

Assumption 3.1: The desired signal yd (t) and its 
first derivate d(t) are assumed to be smooth for all 
t ∈ [0, ∞). In this case, a proper transformation T = 
diag {Ti} for i = 1, 2, 3, 4 with Ti is defined by:

1

2

( ) ( ) ( )
( ) ( ) ( )

i d i
i

i d i

t S t x t
T

e t y t x t
δ −   

=   −   


(16)

where Sd(t) and yd(t) satisfy the Assumption 3.1. 
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Then, system (11)–(12) in the new coordinates col(δi, 
ei) can be described by:

( ) ( ),i it e tδ =

(17)

( ) ( ) ( , ), 1, 2,3, 4i d i ie t y t v e iδ= − +Γ = 

(18)

where δ = col(δ1, δ2, δ3, δ4), e = col(e1, e2, e3, e4) 
and

11 1 1 1 2 1 1 2 1( , )
( , ) ( ) | ( ) ( ),

x T col e
e T H x e e

δ
δ α δ δ β−=

Γ = = − + −

(19)

1 1 1 2 1( , )

1 1 2 1

( , ) ( ) | ( ) ( )

( ) ( ), 2,3
i i i i i i i i ix T col e

i i i i i i

e T H x

e e e e i
δ

δ α δ δ α δ δ

β β

− + −=

+ −

Γ = = − + −

+ − + − =

(20)

14 4 4 4 3 4 4 3 4( , )
( , ) ( ) | ( ) ( ),

x T col e
e T H x e e

δ
δ α δ δ β−=

Γ = = − + −

(21)

with 

and 3
4

4

d
M

β ∆
= .

11 1
1 1 1 2 1

1 1 1

1 3
2 4

4

, , , , ,

, ( 2,3),

i i i
i i i

i i

i
i

i

k k dk d
M M M M M

d ki
M M

α β α α β

β α

−

−

∆ ∆ ∆∆ ∆
= = = = =

∆ ∆
= = =

 

4. Stability analysis and control law 
construction

4.1 Stability analysis of sliding motion

For system (17)–(18), consider the sliding surface 
defined by:

1 2 3 4( , , , ) 0.col e e e e =
(22)

From the sliding mode control theory, the sliding 
motion of the system (17)–(18) corresponding to the 
sliding surface (22) is given by:

( ) 0. 1,2,3,4i t iδ = =

(23)

It is easy to see from (23) that δi(t) for i = 1, 2, 
3, 4 are bounded when the sliding motion occurs, 
which is consistent with the objective of this paper.

4.2 Reachability problem and distributed 
control design

This section aims to design a distributed sliding 
mode control to drive the system into the sliding 
surface (22). Then, the controllers are proposed as:

1 1 2 1 1 2 1 1 1
ˆˆ( ) ( )( ) ( )( ) ,dv y t t t e e k eα δ δ β= + − + − +

(24)

1 1 2 1 1 1

2 1

ˆˆ ˆ( ) ( )( ) ( )( ) ( )( )
ˆ ( )( ) , 2,3

i d i i i i i i i i i

i i i i i

v y t t t t e e

t e e k e i

α δ δ α δ δ β

β
+ − +

−

= + − + − + −

+ − + =



(25)

  4 4 3 4 4 3 4 4 4
ˆˆ( ) ( )( ) ( )( ) ,dv y t t t e e k eα δ δ β= + − + − +

(26)

where ki for i = 1, 2, 3, 4 are positive constants. 
αˆ1(t), β̂1(t), αˆi1(t), αˆi2(t), β̂ i1(t), β̂ i2(t), (i = 2, 
3), αˆ4(t) and β̂4(t) are the approximation to the 
parameters α1, β1, αi1, αi2, βi1, βi2, (i = 2, 3), α4 and β4 
in (19)–(21) respectively, and the adaptive laws are 
given by:

α˙ˆ1(t) = e1(δ2 − δ1),
β̂1(t) = e1(e2 − e1);

(27)

α˙ˆi1(t) = ei(δi+1 − δi), αˆ˙i2(t) = ei(δi−1 − δi),
β̂ i1(t) = ei(ei+1 − ei), β̂ i2(t) = ei(ei−1 − ei);i = 2, 3

(28)

α˙ˆ4(t) = e4(δ3 − δ4),
β̂4(t) = e4(e3 − e4).

(29)

Remark 5: From (8)–(10), the final distributed 
controller in the original coordinate is given by:

1 1 1 1 11 21 1 1 1 12 22
2

1 1 1 1 12 1 12

1 1

ˆˆ( ( ))( ) ( ( ))( )

( )
( ( ) ),

o v a

d d

F k M t x x d M t x x
b b M k x b x
M y t k y

α β= + − + + −

+ + − +
+ +

(30)

1 ,1 1,1 1 2

,1 1,1 1 ,2 1,2

1 2 ,2 1,2

,2

ˆ ˆ( ( ))( ) ( ( ))
ˆ( ) ( ( ))( )

ˆ( ( ))( )
( ) ( ( ) ), 2,3

i i i i i i i i i

i i i i i i i

i i i i i

io iv i i i i d i d

F k M t x x k M t

x x d M t x x

d M t x x
b b M k x M y t k y i

α α

β

β

+ −

− +

− −

= + − + +

− + + −

+ + −

+ + − + + =

(31)
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4 3 4 4 41 31 3 4 4

42 32 4 4 4 4 42

4 4

ˆˆ( ( ))( ) ( ( ))
( ) ( )

( ( ) ).
o v

d d

F k M t x x d M t
x x b b M k x
M y t k y

α β= + − + +
− + + −

+ +

(32)

with the parameters αˆ1(t), β̂1(t), αˆi1(t), αˆi2(t), β̂
i1(t), β̂ i2, (i = 2, 3), αˆ4(t) and β̂4(t) satisfies (27)–
(29).

Theorem 1: For the interconnected system (17)–
(18) with the adaptive laws in (27)–(29), under 
Assumption 3.1, the controller (24)–(26) can drive 
the considered system to the sliding surface (22) and 
maintains a sliding motion on it thereafter.

Proof 1: Define the adaptive errors as:

1 1 1 1 1 1̂ˆ( ) ( ), ( ) ( );t t t tα α α β β β= − = −



(33)

1 1 1 2 2 2

1 1 1 2 2 2

ˆ ˆ( ) ( ), ( ) ( ),
ˆ ˆ( ) ( ), ( ) ( ); 2,3

i i i i i i

i i i i i i

t t t t

t t t t i

α α α α α α

β β β β β β

= − = −

= − = − =

 

 

             

(34)

4 4 4 4 4 4
ˆˆ( ) ( ), ( ) ( ).t t t tα α α β β β= − = −



(35)

Choose a Lyapunov candidate function as:
4 3

2 2 2 2 2
1 2 1 2

1 2

2 2 2 2
1 1 4 4

1 1 ( )
2 2

1 ( ).
2

i i i i i
i i

V e α α β β

α β α β

= =

= + + + +

+ + + +

∑ ∑  

 

 

 

(36)

Then, the time derivate of V along the trajectories 
of (18) is given by:

4 3

1 1 2 2 1 1 2 2
1 2

1 1 1 1 4 4 4 4
4 3

2
1 1 2 1

1 2

1 1 2 1 1 1 2 2 1 1
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(37)

From the analysis above, V  is a negative semi- 
definite function. Then, from the Barbashin-Krasovskii 
theorem (refer to section 4.2 in the work [21]),  
its solution ei(t) → 0 as t → ∞ for i = 1, 2, 3, 4. 
Therefore, the proposed controller (24)–(26) can 
drive the system to the sliding surface. By integrating 
(27)–(29) and considering the results limt→∞ ei(t) = 
0, it is evident that the adaptive parameters αˆ1(t), β̂
1(t), αˆi1(t), αˆi2(t), β̂ i1(t), β̂ i2(t), (for i = 2, 3), αˆ4(t) 
and β̂4(t) are bounded. Hence, the result is valid.

Remark 6: The boundedness of the sliding 
motion (23) is demonstrated. Theorem 1 illustrates 
that the control scheme (24)–(26) can drive system 
(17)–(18) to the sliding surface (22). According to 
sliding mode theory, this implies that the proposed 
distributed control approach (30)–(32) not only 
ensures that each body’s speed asymptotically tracks 
the desired signal yd(t) but also guarantees that all 
displacement errors between adjacent bodies remain 
bounded.

Remark 7: The adaptive laws (27)–(29) 
proposed above ensure the estimation of parameters 
rather than their identification. This implies that the 
adaptive parameters may not converge to their true 
values. Only the boundedness of the parameters’ 
estimation is guaranteed in this paper.

5. Simulation study
In this section, a simulation is conducted to 

demonstrate the obtained results. For the simulation 
purpose, the following generalized Gaussian 
distribution depicted in Figure 2 from the works [22,23] 
is chosen as the desired speed signal. 

6| 10|( )
56( ) , 01( )

6

t

dy t e t
−

−
= ⋅ ≥
Γ

(38)

where Γ(·) denotes the Gamma function. This signal 
is consistent with the practical train system running 
between two stations.
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Figure 2. Time responses of the desired signal.

The nominal parameters of all bodies are set as:

M1 = M2 = M3 = M4 = 126000 kg,
d1 = d2 = d3 = 80 × 104 Ns/m,
k1 = k2 = k3 = 100 × 106 N/m,
b1o = b2o = b3o = b4o = 6.362 × 10−3 N/kg,
b1v = b2v = b3v = b4v = 1.08 × 10−4 Ns/(mkg),
b1a = 2.06 × 10−5 Ns2/(m2kg).
The initial condition is set as [x11, x12, x21, x22, x31, x32, 

x41, x42]⊤ = [0 0.8 0 0.5 0 0.2 0 0]⊤. The controller gains 
are determined as k1 = 0.7, k2 = 5, k3 = 2 and k4 = 1.

With the distributed sliding mode control 
(DSMC) proposed in this paper, the speed of each 
body asymptotically tracks the desired signal yd(t), 
as illustrated by the blue line in Figure 3. For 
comparison, a robust distributed controller (DC) 
in the work [16] is also considered as shown by the 
red line in Figure 3. It can be observed that the 
controller using DSMC achieved rapid convergence 
within the first 5 seconds, while the controller 
using DC exhibited poorer tracking performance. 
Concurrently, the displacement errors δi(t) for i = 
1, 2, 3, 4 remain stable, as shown in Figure 4. The 
adaptive parameters αˆ1(t), β̂1(t), αˆi1(t), αˆi2(t), β̂
i1(t), β̂ i2(t), (i = 2, 3), αˆ4(t) and β̂4(t) are bounded, 
as demonstrated in Figure 5. The simulation results 
align with the theoretical findings, validating the 
proposed approach. 

Figure 3. Tracking the performance of the system. (a). A 
comparative tracking results of the body 1. (b). A comparative 
tracking results of the body 2. (c). A comparative tracking results 
of the body 3. (d). A comparative tracking results of the body 4.

Figure 4. Displacement errors between the desired displacement 
Sd & the displacement of each body with DSMC. (a). 
Displacement error of the body 1. (b). Displacement error of the 
body 2. (c). Displacement error of the body 3. (d). Displacement 
error of the body 4. 

Figure 5. The time response of the estimated parameters. (a). 
Estimated parameters of the body 1. (b). Estimated parameters 
of the body 2. (c). Estimated parameters of the body 3. (d). 
Estimated parameters of the body 4.
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6. Conclusions
This paper introduces a distributed tracking 

control method for a four-body train system with 
unknown uncertainties in its interconnections, 
leveraging sliding mode techniques. Unlike previous 
methods, our approach accommodates time-varying 
desired signals. The proposed distributed sliding 
mode control scheme based on the Barbashin-
Krasovskii theorem has been proposed to fulfil the 
reachability condition, ensuring the reachability 
condition is met. Additionally, the unknown 
interconnections are approximated by using adaptive 
techniques. Simulation results for the four-body 
system validate the effectiveness and practicality of 
the proposed approach.

In the process of train control, the use of 
distributed control may lead to the entire system 
coming to a halt. For this, one of the advantages 
of decentralised control is that the controller of 
each subsystem only collects local information, 
meaning that even if other subsystems experience 
malfunctions, decentralised control can still ensure 
the normal operation of the entire system. Therefore, 
combining decentralised control with the tracking 
control of trains is a promising research direction.
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1. Introduction
1.1 Background

Cyberbullying is the act of harming or harassing 
someone online through messages or images 
that are malicious or harmful. Cyberbullying can 
negatively affect the mental health and well-being 
of the victims, causing depression, anxiety, low self-
esteem, and suicidal thoughts [1].

Another study by Erbic¸er et al. (2023) [2] defines 
cyberbullying perpetration as a form of harmful 
behavior, which can be defined as the deliberate, 
repetitive, and damaging attitude of individuals or 
groups harming others using the internet, mobile 
phones, or other communication tools such as e-mail, 
messages, or social media.

There are many definitions of cyberbullying, 
however, many definitions are deemed insufficient, 
often lacking clarity and consistency. The challenges 
involved typically included variations in the defined 
electronic methods [3]. Different scholars and 
organizations may conceptualize cyberbullying in 
various ways, ranging from explicit threats to subtle 
forms of harassment. Some definitions encompass 
the misuse of power differentials, while others 
focus on the intent to cause harm. By recognizing 
this diversity, our research seeks to address the 
multifaceted nature of cyberbullying, encompassing 
a broad spectrum of aggressive behaviors within the 
context of online communication.

Social media platforms, such as X (formerly 
known as Twitter), allow millions of people to share 
their opinions, thoughts, and feelings online. However, 
they also enable cyberbullies to target and harass 
others based on their personal characteristics, such 
as religion, age, ethnicity, and gender [4]. Therefore, 
it is crucial to develop effective methods to detect 
and prevent cyberbullying on social media platforms 
and to protect the online safety and dignity of the 
users. A global survey by Microsoft [5] found that 75% 
of participants agreed that social media companies 
needed to moderate harmful speech online. Being 
able to detect cyberbullying on these social media 
platforms is the first step in achieving this.

Artificial intelligence (AI) is a field of computer 
science that aims to create machines or systems that 
can perform tasks that require human intelligence, 
such as reasoning, learning, and decision-making [6].  
AI can be used to analyze and understand large 
amounts of data, such as text, images, and videos, 
and to extract useful information or insights from 
them [7].

AI can be applied to detect cyberbullying on 
social media platforms by using techniques such 
as natural language processing (NLP) and machine 
learning (ML). NLP is a subfield of AI that deals 
with the interaction between computers and human 
languages, such as understanding, generating, and 
translating natural language texts [8] and ML is a 
subfield of AI that focuses on creating systems that 
can learn from data and improve their performance 
without explicit programming [9].

1.2 Motivation

The motivation behind undertaking this research 
is underscored by the increasing severity and 
diversity of cyberbullying incidents. In recent years, 
cyberbullying has transcended traditional forms, 
branching into attribute-based attacks that target 
individuals based on characteristics such as religion, 
age, ethnicity, and gender. The consequences of such 
attacks are profound, affecting not only the mental 
well-being of individuals but also perpetuating 
societal divisions.

The ever-evolving nature of online communication 
poses a unique challenge. Traditional approaches 
to cyberbullying detection often struggle to keep 
pace with the dynamic patterns and expressions 
of harassment on platforms like Twitter (X). The 
motivation is thus driven by the need for adaptive, 
sophisticated algorithms capable of discerning 
nuanced forms of cyberbullying, particularly 
those tied to specific attributes. In an era where 
cyberbullying is a growing concern in the digital era, 
with notable implications for individuals’ mental 
health [10], the motivation for this research extends 
beyond academic curiosity to a commitment to foster 
digital spaces that are free from the detrimental 
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effects of cyberbullying.

1.3 Problem statement

Cyberbullying encompasses a range of harmful 
behaviors manifesting in digital spaces, impacting 
individuals based on attributes such as religion, 
age, ethnicity, and gender. The lack of effective 
mechanisms to identify and curb cyberbullying on 
platforms like X Twitter perpetuates an environment 
where users may experience online harassment, 
leading to psychological distress and potential real-
world consequences. Existing studies [11] emphasize 
the need for advanced techniques to automatically 
detect and mitigate cyberbullying instances, tailoring 
approaches to the nuanced nature of social media 
interactions.

1.4 Objectives

This research is anchored in the goal of crafting 
a machine learning-backed cyberbullying detection 
tool that utilizes the vast sea of social media data. 
The following detailed objectives are set to support 
this ambition:

1) Data Acquisition and Preprocessing: To 
achieve robust data-driven insights, the study aims 
to collect a diverse dataset from social media posts, 
particularly Twitter (X). The gathered data will then 
undergo meticulous preprocessing, encompassing 
noise reduction, text normalization, and the 
resolution of challenges inherent to cyberbullying 
content.

2) Development	of	Attribute-Specific	Detection	
Models: Moving to the development phase, the 
research will conduct a thorough literature review 
to inform the creation of advanced machine learning 
models. Utilizing both Naive Bayes and Long Short-
Term Memory (LSTM) algorithms, special attention 
will be given to attribute-specific detection. This 
entails tailoring models to recognize cyberbullying 
instances related to ‘religion’, ‘age’, ‘ethnicity’, and 
‘gender’ categories. The iterative fine-tuning and 
optimization of these models will be paramount to 
ensuring their effectiveness.

3) Comprehensive Evaluation of Model Perfor-
mance: Subsequently, the research will shift focus to 
the comprehensive evaluation of model performance. 
This involves the selection and justification of appro-
priate evaluation metrics, considering factors such as 
accuracy, precision, recall, and F1 score. Real-world 
testing will be conducted using representative social 
media data from Twitter (X), and a comparative anal-
ysis will benchmark the developed models against 
each other and existing state-of-the-art cyberbullying 
detection models.

Ethical considerations will be woven into each 
stage of the research, with a specific emphasis on 
addressing bias and ensuring fairness. The objective 
is to propose strategies that mitigate ethical concerns 
and enhance the responsible deployment of the 
developed models.

2. Literature review
The exploration of cyberbullying within the 

context of social media platforms, notably Twitter 
(X), has been a subject of significant scholarly 
inquiry. The extensive body of work in this research 
area underscores the gravity of the issue and the 
imperative to comprehend the various facets of 
online harassment.

2.1 Categorization of aggressive messages

The categorization of aggressive messages is a 
crucial aspect of understanding and addressing online 
harassment and cyberbullying. Previous research 
has delved into various approaches for categorizing 
aggressive content on social media platforms. 
Elsafoury et al. (2020) conducted a comprehensive 
analysis of cyberbullying datasets, including those 
from Twitter, Kaggle, Wikipedia Talk pages, and 
YouTube [12]. Their work involved the extraction 
and classification of over 47,000 tweets, providing 
insights into different forms of cyberbullying, 
including age-based, religion-based, ethnicity-based, 
and gender-based aggression.

The study emphasized the importance of 
diverse demographic parameters in categorizing 
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cyberbullying instances. This aligns with the present 
research, which leverages demographic attributes 
such as age, ethnicity, gender, and religion in the 
detection and categorization of cyberbullying tweets. 
The distribution of instances across classes reflects 
the varied nature of cyberbullying content within 
each category.

2.2 Existing approaches to cyberbullying de-
tection

Cyberbullying detection has been addressed 
through a spectrum of approaches, ranging from 
traditional rule-based systems to advanced machine 
learning and deep learning models. Prior studies [10,13] 
have extensively explored various methodologies for 
cyberbullying detection. Each methodology brings 
distinct advantages and challenges to the forefront.

1) Rule-Based Systems: Rule-based systems 
leverage predefined patterns or heuristics to identify 
potential instances of cyberbullying. An example 
is the use of keyword matching where predefined 
sets of offensive words or phrases trigger an alert. 
These systems are straightforward to implement and 
interpret but often struggle with the dynamic and 
nuanced nature of cyberbullying, as they may not 
capture context well [14].

2) Machine Learning Models: Machine learning 
models, including classic algorithms like Support 
Vector Machines (SVMs) and Random Forests, 
have demonstrated efficacy in learning patterns 
from labeled data. SVMs, for instance, have been 
employed to classify cyberbullying instances based 
on features extracted from textual data [15]. Random 
Forests, with their ensemble learning approach, offer 
robustness against overfitting and have been applied 
to cyberbullying detection tasks [16]. These models 
exhibit adaptability to evolving cyberbullying 
patterns but may require significant labeled data for 
effective training.

3) Deep Learning Models: Deep learning models, 
characterized by architectures like recurrent neural 
networks (RNNs) and convolutional neural networks 
(CNNs), excel at capturing complex relationships 
in textual data. For instance, Almomani et al. 

(2024) [17] proposed a method using a CNN to detect 
cyberbullying incidents on Instagram, demonstrating 
the capacity of deep learning models to discern 
intricate patterns in multimedia-rich content. Long 
Short-Term Memory (LSTM) networks, a type of 
RNN, have been employed for sequential modeling, 
enabling the understanding of temporal dynamics 
in cyberbullying conversations [18]. Deep learning 
models showcase a high degree of sophistication in 
understanding context and semantics, making them 
well-suited for cyberbullying detection tasks.

The landscape of cyberbullying detection is 
dynamic, and the effectiveness of each approach 
depends on the context, the nature of the data, and 
the specific nuances of cyberbullying instances.

2.3 Ethical considerations in cyberbullying 
detection

The ethical dimensions surrounding the deploy-
ment of cyberbullying detection machine learning 
models have become increasingly prominent in re-
cent works. Scholars have scrutinized the impact of 
these models on various ethical aspects, including 
issues of bias, fairness, and privacy.

Existing works have explored different avenues 
to address these ethical concerns. Aizenberg and 
Van Den Hoven (2020) [19] shed light on the broader 
landscape of big data ethics, emphasizing the need 
for responsible practices in handling sensitive 
information. This broader perspective encompasses 
considerations beyond individual instances of 
cyberbullying and extends to the overarching ethical 
responsibilities tied to data usage in the digital 
sphere.

Sap et al. (2019) [20] delved specifically into 
the risk of racial bias in hate speech detection, 
recognizing the profound implications of biases 
within detection models. Their work highlighted 
the challenges of ensuring fairness in models that 
are designed to discern harmful online content. 
Such biases could potentially exacerbate existing 
inequalities and societal divisions, necessitating a 
careful examination of the underlying algorithms.

In the pursuit of advancing cyberbullying 
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detection models ethically, it is imperative to 
acknowledge and bridge these gaps. The current 
research aims to contribute to this ongoing discourse 
by proposing strategies that not only address biases 
but also ensure the responsible and fair deployment 
of cyberbullying detection models within the 
intricate landscape of social media.

2.4 Gaps in existing literature

Significant strides have been made in understanding 
and addressing cyberbullying, but notable gaps persist 
in the current literature, creating avenues for further 
exploration and refinement.

While existing works touch on biases and fairness 
in detection models, ethical considerations in the 
preprocessing of cyberbullying data remain underex-
plored. This research will fill this gap by scrutinizing 
the ethical implications of data preprocessing, ensur-
ing the foundation of detection models aligns with 
ethical standards.

Current literature also often adopts a binary 
approach, distinguishing between cyberbullying 
and noncyberbullying instances. However, nuances 
across attributes like ‘religion’, ‘age’, ‘ethnicity’, 
and ‘gender’ call for a more nuanced approach. This 
research addresses this gap by employing attribute-
specific detection, offering a more context-aware 
understanding of cyberbullying.

This research aims to enhance the existing dis-
course by addressing these gaps, contributing to a 
more ethically sound and context-aware cyberbully-
ing detection paradigm.

3. Methodology
3.1 Dataset overview

The dataset utilized in this study originates from 
a comprehensive collection of cyberbullying data 
compiled by Elsafoury (2020) [12]. Primarily sourced 
from various social media platforms, including 
Kaggle, Twitter (X), Wikipedia Talk pages, and 
YouTube, the dataset offers a diverse range of 
cyberbullying instances. For the purposes of this 

research, the focus was narrowed down to extracting 
Twitter data (X), resulting in a dataset exceeding 
47,000 tweets explicitly labeled as cyberbullying.

Composition and Demographic Parameters: The 
dataset exhibits a rich composition, including explic-
it labels for different forms of cyberbullying and de-
mographic parameters such as age, ethnicity, gender, 
and religion. The classes/labels are moderately bal-
anced as shown in Table 1. This multiclass dataset 
enables a nuanced understanding of cyberbullying 
phenomena, capturing the intersectionality of various 
demographic factors with different manifestations of 
cyberbullying.

Table 1. Distribution of instances across cyberbullying classes.

Class Count
Religion 7997
Age 7992
Ethnicity 7959
Gender 7948
Not cyberbullying 7937
Other cyberbullying 7823

3.2 Preprocessing

The preprocessing phase is crucial to ensure the 
integrity and quality of the dataset for cyberbullying 
detection. This section outlines a series of steps 
encompassing data loading, duplicate removal, and 
an intricate set of text-cleaning processes as adhered 
to in the recommendations outlined in the paper 
by Bokolo and Liu (2023) [10]. Particular emphasis 
is placed on avoiding biases and ensuring fairness 
throughout the cleaning procedures.

1) Data Loading and Initial Inspection: The 
initial step involves loading the raw dataset from a 
CSV file (cyberbullying_tweets.csv). The dataset 
is then inspected to comprehend its structure and 
content, showcasing the first few rows and providing 
key information such as column names and data 
types.

2) Duplicate Removal: Duplicate tweets can 
introduce biases and skew the model’s performance. 
This subsection details the identification and removal 
of duplicate tweets, ensuring the dataset’s uniqueness 
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and integrity.
3) Column Renaming: To streamline subsequent 

references, columns are renamed, adopting more 
concise names. Specifically, ‘tweet text’ is renamed 
to ‘text’, and ‘cyberbullying type’ to ‘sentiment’.

4) Text Cleaning Functions: A set of custom-
defined functions is introduced for comprehensive 
text cleaning, with a keen eye on avoiding biases and 
ensuring fairness:

Emoji Removal: Eliminating emojis to prevent 
potential bias associated with certain emoticons with 
the function shown.

Decontraction: Ensuring uniformity in language 
by expanding contractions, avoiding bias introduced by 
different writing styles as shown in the ‘decontract()’ 
function.

Entity Stripping: Removing links, mentions, and 
special characters to prevent biased influence from 
specific entities or symbols.

Hashtag Cleaning: Ensuring fair treatment of 
hashtags, cleaning them at the end of sentences and 
removing the ‘#’ symbol within words to prevent 
unintended biases as shown in the function.

Filtering Specific Characters: Removing char-
acters such as ‘$’ and ‘&’ to avoid biases associated 
with particular symbols.

Removing Multiple Sequential Spaces: Avoid 
bias by maintaining consistent spacing throughout 
the text.

Stemming: Standardizing words to their root 
form to ensure fairness in words.

5) Application of Cleaning Functions: The 
defined cleaning functions are systematically applied 
to each tweet in the dataset, resulting in a new 
column, ‘text clean’, containing the cleaned text.

6) Final Dataset Inspection: Following the 
cleaning procedures, a final inspection of the 
dataset is conducted, revealing changes in size and 
highlighting any potential improvements in data 
quality.

7) Sentiment Labeling: The sentiment labels 
are redefined for clarity, mapping ‘religion’ to 0, 
‘age’ to 1, ‘ethnicity’ to 2, ‘gender’ to 3, and ‘not
cyberbullying’ to 4.

8) Text Length Analysis: The distribution of text 
lengths is analyzed, with visualizations depicting the 
count of tweets based on their word length. Tweets 
with lengths exceeding certain thresholds are filtered 
to ensure data quality and relevance.

3.3 AI techniques

A meticulous split into training and test sets, 
allocating 20% to the latter and further dividing the 
remaining 80% into training and validation data, was 
conducted to monitor model accuracy and mitigate 
overfitting.

In the subsequent phase of model building, two 
distinct models—Naive Bayes and Bidirectional 
Long Short-Term Memory (Bi-LSTM)—were 
selected and compared for their efficacy in 
cyberbullying detection. This choice was guided 
by recommendations from related literature, 
acknowledging the inherent advantages of these 
models within the realm of sentiment analysis. The 
ensuing comparative analysis aims to determine 
the most effective model for accurately classifying 
tweets and detecting instances of cyberbullying 
within the dataset.

Naive Bayes: The Naive Bayes algorithm stands 
out as a swift and straightforward classification 
method, particularly adept at handling extensive 
datasets [21]. Proven effective in various applications, 
including spam filtering, text classification, public 
opinion analysis, and recommendation systems, 
Naive Bayes leverages the Bayes theorem of 
probability for predicting unknown classes.

In the implementation of the Naive Bayes Model, 
the model was instantiated using a Count Vectorizer 
to create a bag of words. Subsequently, TF-IDF 
(Term Frequency-Inverse Document Frequency) 
transformation was applied to assign weights 
to words based on their frequency, enhancing 
the model’s understanding of their contextual 
significance. Pytorch-Bi-LSTM Sentimental 
Analysis: The Bi-LSTM (Bidirectional Long Short-
Term Memory) model plays a pivotal role in the 
cyberbullying detection framework [10]. Below 
is a detailed description of the Bi-LSTM model 
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construction and training.
1) Model Architecture: The LSTM model is 

designed as a subclass of the PyTorch nn.Module 
class, named BiLSTM_Sentiment_Classifier. It 
comprises the following key components also shown 
in Figure 1:

Embedding Layer: Converts input tokens into 
dense vectors of fixed size (embedding).

Figure 1. Bi-LSTM architecture.

Bidirectional LSTM Layers: The LSTM layers 
process the embedded tokens, capturing contextual 
information. The number of layers (lstm), hidden 
dimension (hidden_dim), and bidirectional nature are 
configurable.

Fully Connected Layer: A linear layer (fc) 
transforms the output of the LSTM layers into logits 
for each sentiment class.

Softmax Activation: The LogSoftmax activation 
function normalizes the logits to probabilities, 
facilitating class predictions [22].

Initialization of Hidden States: The init_hidden 
method initializes the LSTM hidden and cell states.

The model is equipped to handle a dynamic batch 
size (batch_size), allowing flexibility during training 
and evaluation.

2) Model Training: The model is trained using 
the ‘AdamW’ optimizer with a learning rate of 
3e-4 and a weight decay of 5e-6. The negative log-
likelihood loss (NLLLoss) serves as the criterion 
for training. The training process is conducted over 
multiple epochs (5 EPOCHS), with early stopping 
implemented to prevent overfitting. Training involves 
iterating through the training dataset, computing 
gradients, and updating model parameters.

4. Results and discussion
In this chapter, the intricacies of the results obtained 

during the experimentation phase are delved into. 
The primary objective is to provide a transparent 

and detailed overview of the cyberbullying detection 
framework’s effectiveness across various dimensions. 
This includes an exploration of an in-depth analysis 
of model performance metrics, and a comparative 
assessment of diverse machine learning and deep 
learning models. Furthermore, the chapter addresses 
the ethical considerations embedded in the models, 
reflecting on potential biases and fairness aspects.

4.1 Model performance

In evaluating the models for cyberbullying 
detection, we meticulously examine the performance 
metrics of two distinct approaches: the Naive 
Bayes classifier and the Bi-LSTM neural network. 
These models represent different paradigms, with 
Naive Bayes relying on probabilistic principles 
and Bi-LSTM leveraging the power of recurrent 
neural networks. Performance evaluation metrics 
were applied following the methods detailed in the 
research by Bokolo et al. (2023) [23].

1) Naive Bayes Performance: The Naive Bayes 
classifier exhibits commendable performance with 
precision, recall, and F1 score all hovering around 
0.85. This suggests that the model effectively 
identif ies instances of  cyberbullying while 
minimizing false positives. The accuracy of 0.85 
underscores its overall correctness in predictions. 
The Naive Bayes model demonstrated commendable 
performance across various classes, as illustrated in 
Table 2. Notably, the model excelled in precision 
for the ‘Religion’ and ‘Age’ classes, achieving 85% 
and 80%, respectively. However, the model showed 
some challenges in recall for the ‘Not Bullying’ 
class, achieving 47%.

Table 2. Class-wise performance of the Naive Bayes model.

Precision Recall F1-score Support 
Religion 0.85 0.97 0.91 1579
Age 0.80 0.98 0.88 1566
Ethnicity 0.90 0.92 0.91 1542
Gender 0.89 0.85 0.87 1462
Not bullying 0.84 0.47 0.60 1274

2) Bi-LSTM Performance: Contrastingly, the 
Bi-LSTM neural network demonstrates superior 



17

Journal of Electronic & Information Systems | Volume 06 | Issue 01 | April 2024

performance with precision, recall, and F1 score 
all surpassing 0.93. This signifies the model’s 
robust ability to capture instances of cyberbullying 
with high precision while ensuring comprehensive 
coverage of actual positive instances. The accuracy 
of 0.93 attests to the model’s overall proficiency. The 
Bi-LSTM model exhibited superior performance 
across all classes, as shown in Table 3. Particularly 
noteworthy is the high precision and recall for 
the ‘Age’ and ‘Ethnicity’ classes, showcasing the 
model’s effectiveness in detecting cyberbullying 
related to these attributes.

Table 3. Class-wise performance of the Bi-LSTM model.

Precision Recall F1-score Support

Religion 0.97          0.93 0.95 1572

Age 0.98 0.97 0.97 1560
Ethnicity 0.98 0.98 0.98 1535
Gender 0.96 0.87 0.91 1456
Not bullying 0.77 0.91 0.83 1269

4.2 Comparative analysis of models

The Naive Bayes model, rooted in probabilistic 
principles, showcases a balanced performance, 
effectively distinguishing between cyberbullying 
and non-cyberbullying content. Its reliance on 
statistical independence assumptions doesn’t hinder 
its effectiveness in this context.

On the other hand, the Bi-LSTM, a deep learning 
model, leverages the sequential nature of language, 
capturing intricate patterns within the text. The 
superior performance metrics highlight its adeptness 
in discerning the nuanced language indicative of 
cyberbullying across various attributes.

Both models, while showcasing high accuracy, 
precision, recall, and F1 score, do so through 
distinct mechanisms. The Naive Bayes model excels 
in probabilistic reasoning, while the Bi-LSTM 
harnesses the power of neural networks to capture 
complex patterns. The confusion matrices (Tables 
4 and 5) provide a visual aid in understanding the 
models’ classification outcomes.

These results underscore the potential of diverse 
approaches in cyberbullying detection, each with its 

unique strengths. The choice between these models 
should be guided by the specific requirements 
and nuances of the online environment under 
consideration.

Table 4. Naive Bayes confusion matrix.

Predicted

Religion Age Ethnicity Gender Not 
bullying

Religion 1536 14 10 9 10
Age 11 1541 6 5 3
Ethnicity 58 50 1417 14 3
Gender 30 31 57 1248 96
Not 
bullying 164 295 85 129 601

Table 5. Bi-LSTM confusion matrix.

Predicted

Religion Age Ethnicity Gender Not 
bullying

Religion 1463 3 3 2 31
Age 3 1513 2 2 33
Ethnicity 5 4 1499 5 9
Gender 7 3 26 1263 44
Not 
bullying 96 37 26 180 1152

4.3 Ethical considerations

It is imperative to underscore the ethical 
considerations that guided this research. The 
deployment of AI models in sensitive domains 
such as cyberbullying detection necessitates a 
conscientious approach to address potential ethical 
challenges. Aligning with the ethical considerations 
posited by Bokolo and Liu (2023) [13], our research 
critically examines the potential biases and fairness 
issues in the cyberbullying detection process.

1) Bias Mitigation and Fairness: Ensuring 
fairness in our models is a paramount concern. We 
meticulously examined the training data to identify 
and rectify biases that might lead to disparate 
impacts on different demographic groups. This 
involved scrutinizing the dataset for imbalances in 
class distribution and refining the model’s training to 
mitigate potential biases.
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2) Privacy Concerns: Respecting user privacy is 
central to ethical AI practices. Our study relied on 
anonymized data to minimize the risk of identifying 
individuals involved in social media conversations. 
Additionally, all personally identifiable information 
was rigorously stripped from the dataset during the 
preprocessing phase.

3) Continuous Monitoring: Ethical considerations 
extend beyond the development phase to the entire 
lifecycle of the models. We advocate for continuous 
monitoring and evaluation of the models’ perfor-
mance in real-world scenarios. Regular assessments 
help identify and rectify any unforeseen biases or 
ethical implications that might arise as the models 
are deployed.

4) Informed Consent: When dealing with user-
generated content on social media, obtaining explicit 
consent for data usage is challenging. However, we 
acknowledge the importance of transparency and 
informed consent. Our study emphasizes the use of 
publicly available, anonymized data to respect user 
privacy while conducting meaningful research.

By addressing biases, ensuring privacy, promoting 
transparency, and advocating for ongoing monitoring, 
we strive to uphold the achievable ethical standards in 
our research and its practical implications.

5. Conclusions
5.1 Summary of research

1) Introduction Recap: This research endeavors 
to tackle the pertinent issue of cyberbullying through 
the lens of artificial intelligence. With a focus on 
Twitter data and utilizing the power of machine 
learning algorithms, the study aims to detect 
instances of cyberbullying about attributes such as 
religion, age, ethnicity, and gender.

2) Methodology Recap: Commencing with an in-
depth methodology, the research encapsulates data 
preprocessing steps, model training employing Naive 
Bayes and Bi-LSTM algorithms, and a meticulous 
evaluation process. Leveraging the sentiment-labeled 
Sentiment140 dataset, the study repurposes it for 
cyberbullying detection while addressing ethical 

considerations in dataset usage.
3) Results Overview: The outcomes of the 

research present a nuanced understanding of the 
model performances. Both Naive Bayes and Bi-
LSTM models exhibit commendable precision, 
recall, and accuracy, offering promising tools for 
cyberbullying detection.

5.2 Achievements and contributions

1) Model Performance: The study’s principal 
achievements lie in the models’ capability to discern 
cyberbullying across various attributes. The Naive 
Bayes algorithm showcases robust performance, and 
the Bi-LSTM model, with its deep learning capabili-
ties, excels in nuanced cyberbullying detection.

2) Ethical Considerations: Ethical considerations 
take center stage in this research, addressing biases 
in the dataset and ensuring fairness. The commitment 
to responsible AI development underscores the 
ethical dimension as an integral part of the study.

5.3 Limitations and challenges

1) Data Limitations: While the Sentiment140 
dataset proves valuable, the study acknowledges its 
limitations, suggesting future research explore more 
specialized datasets for cyberbullying detection.

2) Model Limitations: Despite their effectiveness, 
both models face challenges in handling nuanced 
expressions and contextual intricacies. Acknowl-
edging these limitations provides avenues for future 
research and model refinement.

5.4 Implications for future research

Building on the insights gained from the research 
by Bokolo and Liu (2023) [10], future research 
directions may explore more advanced deep-learning 
architectures for enhanced cyberbullying detection.

1) Further Model Refinement: The models, 
although successful, prompt consideration for 
refinement. Fine-tuning, exploring advanced 
architectures, and addressing model limitations are 
avenues for future exploration.
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2) Exploration of New Data Sources: Diversifying 
da t a  sou rces  beyond  Sen t imen t140  cou ld 
enhance model robustness. Investigating datasets 
explicitly designed for cyberbullying detection is 
recommended.

3) Cross-Domain Applications: Considering 
the models’ adaptability to various platforms and 
domains presents exciting opportunities. Future 
research could explore cross-domain applications for 
a broader societal impact.

5.5 Practical applications

1) Real-world Implementation: With promising 
results, the models hold potential for real-world 
implementation on social media platforms, providing 
timely support for individuals facing cyberbullying.

2) Policy Recommendations: While cautious in 
its suggestions, the research hints at the development 
of policies or interventions based on their outcomes. 
Ethical deployment and user well-being should guide 
any policy considerations.

5.6 Concluding remarks

In conclusion, this research contributes valuable 
insights and tools for combatting cyberbullying. 
The models presented showcase promising results, 
affirming the role of artificial intelligence in 
addressing societal challenges. The commitment to 
ethical considerations position this study within the 
framework of responsible AI development, ensuring 
the tools created serve societal well-being.
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ABSTRACT
In recent decades, there have been significant advancements in medical diagnosis and treatment techniques. However, 

there is still much progress to be made in effectively managing a wide range of diseases, particularly cancer. Timely 
diagnosis of cancer remains a critical step towards successful treatment, as it significantly impacts patients’ chances of 
survival. Among various types of cancer, glioma stands out as the most common primary brain tumor, exhibiting different 
levels of aggressiveness. One of the monitoring techniques is magnetic resonance imaging (MRI) which provides a precise 
visual representation of the tumor and its sub-regions (edema (ED), enhancing tumor (ET), and non-enhancing necrotic 
tumor core (NEC)), enabling monitoring of its location, shape, and sub-regional characteristics. In this study, the authors 
aim to investigate the underlying relationship between the maximum diameters of tumor sub-regions and patients’ overall 
survival (OS) in glioblastoma cases. Using an MRI dataset of glioblastoma patients, the authors categorized them based on 
resection status: gross total resection (GTR) and unknown (NA). By employing the Euclidean distance algorithm, the authors 
estimated the sub-regions’ maximum diameters. Machine learning algorithms were used to explore the correlation between 
sub-regions’ maximum diameters and survival outcomes. The results of the univariate prediction models showed that 
tumor sub-regions’ maximum diameters have a noticeable correlation with the survival rates among patients with unknown 
resection status with the average Spearman correlation of –0.254. Also, the addition of the sub-regions’ maximum diameter 
feature to the radiomics increased the accuracy of ML algorithms in predicting the survival rates with an average of 4.58%.
Keywords: Machine learning; Radiomics; Glioblastoma; Tumor sub-regions; BraTS 2019
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1. Introduction
According to WHO reports, cancer is the second 

cause of death in the world. Cancers have various 
ranges of aggressiveness. Some are more treatable 
and can be diagnosed early, while others have higher 
fatality due to their late symptoms’ indications and 
inadequate response to drugs [1]. The majority of 
brain tumor patients are those with glioma, which is 
an intra-axial tumor. Glioma includes almost 30% of 
all brain tumors beginning in glial cells [2,3]. Based on 
the cancer aggressiveness, glioma can be subdivided 
into low-grade glioma (grade I and II) and high-
grade glioma (grade III and IV). Among all types 
of glioma, glioblastoma (GBM) is less treatable, 
and only 5% of patients diagnosed with GBM 
have a 5-year survival chance [4]. One of the main 
difficulties in the therapeutic intervention of GBM 
is the complex structure of the tumor. It is multiform 
microscopically, with various regions including 
pseudopalisading necrosis, pleomorphic nuclei and 
cells, and microvascular proliferation [5]. 

Numerous ways have been investigated to estimate 
the malignancy of tumors and patients’ cancer status 
to predict better further clinical strategies and the 
chance of surviving. TNM staging is an acceptable 
way that classifies tumors based on three main 
criteria: primary brain tumor (T), regional lymph 
nodes (N), and distance metastasis (M). Besides, 
some studies have investigated the effect of social [6], 
physical [7], and economic features [8] on patients’ OS.  
Additionally, the utilization of general features like 
age and gender as standalone factors for predicting 
overall survival (OS) in patients has yielded 
discouraging results [9], mainly due to their lack 
of individualization [10]. Although medical images 
contain lots of information that can be detected by 
the naked eye, numerous quantitative features can be 
extracted from images by computer-aided algorithms 
that can describe the disease aggressiveness more 
accurately [11]. Indeed, automatic analysis of images 
would be a respectful replacement for traditional 
approaches and provides more precise results [12].

Radiomics is an emerging method that extracts 
a large number of quantitative medical imaging 
features capable of advanced image-based tumor 
phenotyping, providing valuable clinical information 
for OS prediction [13]. Early radiomics approaches 
were the semantic analysis as the radiologists 
tried to figure out the images only qualitatively. 
Following the rapid developments of computer-aided 
algorithms, the field moved quickly toward high-
throughput analyses, which led to the extraction 
of quantitative features from images [14]. More 
importantly, these features have shown excellent 
potential to improve the prognostic of glioblastoma 
patients when integrated with conventional clinical 
and genetic prognostic models [12].

Hooper [15] reviewed various MRI radiomic fea-
tures of glioblastoma, providing an overview of the 
potential applications of radiomics in this context. 
Zhu [16] developed a non-invasive prediction model 
for overall survival time in glioblastoma patients 
based on multimodal MRI radiomics, highlighting 
the potential of radiomic features in predicting pa-
tient outcomes. Furthermore, Li [17] proposed a mul-
tiparameter radiomic model for accurate prognostic 
prediction of glioma, demonstrating the development 
of novel prognostic radiomic models for predicting 
the prognosis of glioma.

In the field of glioma research, other studies 
have employed different approaches. Weninger [9]  
investigated an age-only regression model, achieving 
an accuracy of 56% and highlighting that the addition 
of radiomics to the age parameter did not necessarily 
improve prediction accuracy for different resection 
statuses. Shboul [18] utilized random forest regres-
sion (RFR) with radiomic features, while Feng [19]  
employed linear models with geometric features, achiev-
ing accuracies of 58% and 62% respectively [20]. Other 
studies have explored the use of deep models integrated 
with radiomics for gliomas [21], full-resolution resid-
ual convolutional neural networks (FRRN) [22], RFR 
with atlas locations and tumor’s relative size using 
a “pseudo-3D” method [23], and RFR method [24]. 
Choi investigated the impact of radiomic features 
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on a random survival forest model, demonstrat-
ing a nearly 7% improvement in performance by 
incorporating radiomics [25]. Similarly, Wankhede [26] 
used a hybrid model integrating deep features from 
MRI using the convolutional neural network (CNN) 
and radiomic features extracted with modified fuzzy 
C-means (MFCM) clustering algorithm and achieved 
approximately 20% higher accuracy in glioblastoma 
survival prediction compared to conventional 
models. Hu [27] combined radiomics, deep features, 
and patient-specific clinical features that indicated 
higher prediction accuracy (0.745) compared to 
using age and tumor region volumes only (0.638).

The BraTS is a widely used dataset entailing 
multimodal MRI scans of glioblastoma patients. 
These scans include T1-weighted MRI (T1), T1-
weighted MRI with contrast enhancement (T1CE), 
T2-weighted MRI (T2), and fluid-attenuated 
inversion recovery (FLAIR). T1-weighted images are 
widely utilized for analyzing brain tumor structures 
due to their ability to facilitate the annotation of 
healthy tissues [28]. In T1CE sequence images, the 
borders of brain tumors appear brighter as a result 
of contrast agent accumulation, allowing for easy 
differentiation of the necrotic core. Additionally, 
in T2-weighted images, the edema region appears 
brighter compared to other areas. The FLAIR scan is 
particularly useful in distinguishing the edema region 
from the cerebrospinal fluid (CSF). By combining 
these distinct MRI sequences, radiomic features can 
be extracted from the images [29].

In recent years, multimodal assessment has 
become increasingly popular for its enhanced 
performance and accuracy. It involves combining 
various factors such as demographic, socioeconomic, 
clinical, and radiographic features to predict OS 
more effectively [30]. However, the influence of tumor 
sub-regions’ maximum diameters on this assessment 
has not been thoroughly examined.

This study aims to explore the influence of the 
maximum diameters of sub-regions (edema (ED), 
enhancing tumor (ET), and non-enhancing necrotic 
tumor core (NEC) in glioblastoma (GBM)) on the 

prediction of OS, in conjunction with radiomic 
features. The training dataset exclusively consists of 
reliable segmentations from the BraTS 2019 database 
provided by multiple experts following a consistent 
annotation protocol, and subsequently validated by 
experienced neuro-radiologists. To account for the 
impact of resection status, the dataset was divided into 
two groups: patients with gross total resection status 
(GTR) and those with unknown resection status (NA), 
enabling separate analysis. The maximum diameters of 
tumor sub-regions were extracted from MRI images, 
and the individual influence of each feature on OS 
was evaluated using different regression algorithms. 
Additionally, the automatic extraction of radiomic 
features was performed, followed by the elimination of 
redundant features and the selection of the most relevant 
ones using feature reduction algorithms. Ultimately, 
these selected features were then used independently 
in multivariate prediction models. Additionally, an 
investigation was conducted to determine if the addition 
of tumor sub-regions’ maximum diameters to these 
features enhances the robustness of OS prediction.

In the “Materials” section, the article provides in-
formation on the dataset and details about the cohort 
study used in the research. The “Methods” section 
encompasses stages including image preprocessing, 
radiomic feature extraction, standardization, and 
preselection of radiomic features. It also covers the 
statistical hypothesis testing of preselected radiomic 
features, the procedure for tumor sub-regions’ feature 
extraction, and the development of prediction mod-
els. The “Results” section outlines radiomic feature 
reduction outputs, hypothesis testing outcomes, as 
well as the results from univariate and multivariate 
prediction models. The “Discussion” section delves 
into the interpretation of findings and explores their 
implications. Lastly, the “Conclusions” section pres-
ents a summary of key findings, suggesting potential 
directions for future research.

2. Materials
The BraTS 2019 training dataset, a well-known 
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resource in the medical field has been used in 
this study. Its key elements, including four MRI 
acquisitions and a comprehensive segmentation map, 
are explored. Patient data, specifically survival days 
and resection status, is considered for the purpose 
of this study. Beyond the dataset, a comprehensive 
cohort analysis is included in the study to examine 
how prediction models are influenced by population 
variations and treatment choices.

2.1 Dataset

The BraTS challenge, which has been held annually 
since 2012, serves as a platform for comparing 
different segmentation algorithms. Starting in 2017, 
the challenge introduced quantitative image features to 
explore the potential enrichment of clinical insights and 
the improvement in predicting patients’ OS [20,31–34].

In this study, we utilized the BraTS 2019 training 
dataset, which encompasses four MRI acquisitions (T1, 
T1CE, T2, and T2-FLAIR), along with a segmentation 
map that includes edema (ED), enhancing tumor 
(ET), and non-enhancing necrotic tumor core (NEC). 
Each of the sequences represents a specific part of the 
tumor brighter. A tumor segmentation map, which is 
necessary for radiomic feature extraction, is acquired 
by integrating all of the sequences.

Additionally, the dataset provides information 
on the survival days and resection status of 211 
glioblastoma (GBM) patients, whose OS spans a 
range of 3 to 1767 days. Patients were divided into 
two groups based on the resection status: patients 
reported as GTR; and patients whose resection status 
is unavailable (NA).

The BraTS challenge has classified patients’ OS 
into three categories: long-survivors (e.g., > 450 
days), short-survivors (e.g., < 300 days), and mid-
survivors (e.g., between 300 and 450 days). For 
the purpose of this study, 450 days were selected 
as the midpoint to create two distinct groups for 
classification purposes. However, when using 
regression models, the exact survival days were 

considered and fitted to the data.

2.2 Cohort study

The BraTS dataset primarily consists of data from 
the Center for Biomedical Image Computing and 
Analytics (CBICA) at the University of Pennsylvania 
and the Cancer Imaging Archive (TCIA). Although 
variations in population, imaging protocols, and 
treatment can have a noticeable impact on prediction 
models, certain parameters exhibit similarities within 
this dataset.

Initially, it is important to note that all patients 
with gross total resection (GTR) and unknown 
resection (NA) statuses are derived from the CBICA 
institution and TCIA, respectively. Consequently, 
there is no substantial disparity in the distribution 
of each dataset. Additionally, a significant statistical 
measure, known as the p-value, was employed 
to assess whether there were notable differences 
between the groups. Specifically, the p-value was 
obtained through a one-way analysis of variance. 
In this dataset, the calculated p-value exceeds 0.05, 
indicating the absence of significant statistical 
differences in terms of age or survival among 
the groups. To visually depict this similarity and 
facilitate comparison, Figure 1 illustrates the age 
and survival day variations for both the GTR and NA 
groups.

3. Methods
This study employs a set of essential procedures 

outlined by Soltani [35]. These procedures encompass 
image preprocessing, radiomic feature extraction, 
and feature reduction. Additionally, we extracted 
the maximum diameters of tumor sub-regions 
and incorporated them into learning algorithms to 
evaluate their influence on patients’ OS. 

The significance of these steps is visually 
represented in Figure 2. In the following section, a 
more detailed explanation of each step is provided.
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Figure 1. Distribution of age and survival days in patients with 
gross total resection status (GTR) and patients with unknown 
resection status (NA).

Figure 2. Methodology used to evaluate the predictiveness of 
location-based features independently and in combination with 
radiomics for overall survival.

3.1 Image preprocessing

Due to the limited dataset used in this study, it 
is necessary to normalize the images in order to 
reduce diversity and potential imaging errors. To 
achieve this, we followed the approach outlined 
in previous relevant studies and opted for N4 bias 
field correction and z-score normalization [36]. These 
techniques were employed to address differences 
in image intensities and ensure that the images are 
normalized in terms of both variance and zero mean.

• Z-score normalization: Z-score normalization, 
also known as standardization, is a technique used to 
normalize the pixel values of an image. It involves 
subtracting the mean value of the pixel intensities from 
each pixel and then dividing the result by the standard 
deviation of the pixel intensities. Mathematically, the 
z-score formula can be expressed as follows, where µ 
is the population mean, σ is the population standard 
deviation, and x is the individual data point being 
evaluated:

z = x − µ
σ

z-score normalization
• N4 bias field correction: N4 bias field cor-

rection is a commonly used technique in medical 
image preprocessing. It involves employing a multi-
scale optimization approach to estimate and correct 
for a smooth, slowly varying and multiplicative field 
present in the images. This correction helps address 
intensity variations caused by factors such as un-
even illumination or magnetic field inhomogeneities. 
Gaillochet [37] demonstrated the effectiveness of N4 
bias field correction in their research, supporting its 
usefulness as a preprocessing step in medical image 
analysis.

3.2 Radiomic feature extraction

To extract the radiomic features, we utilized the 
Pyradiomics module, as introduced by Griethuysen [38]. 
This module offers a comprehensive set of tools 
and algorithms specifically designed for radiomic 
feature extraction. The extracted features encompass 
various categories, including first-order statistics, 
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shape-based features (both 3D and 2D), gray level 
co-occurrence matrix, gray level run length matrix, 
gray level size zone matrix, neighboring gray-tone 
difference matrix, and gray level dependence matrix. 
These features provide valuable information about 
the texture, shape, and spatial relationships within 
the medical images, enabling a more comprehensive 
characterization of the tumor sub-regions.

A total of 3910 features were extracted from 
the images, while there was a total of 201 patients 
with GTR and NA resection status. In order to 
prevent overfitting and enhance the efficiency of 
the modeling process, feature reduction algorithms, 
as described by Bzdok [39], were applied. These 
algorithms helped in selecting the most important 
features, reducing the dimensionality of the dataset, 
and mitigating the risk of overfitting.

3.3 Standardization and preselection of features

To ensure reliable predictive models and 
address variability, the radiomic features were 
initially standardized using the scikit-learn object 
StandardScaler to have a value between zero and 
one. Reducing the dimensionality of the features 
became necessary due to redundancy. Therefore, 
the correlation matrix was first applied, followed 
by the variance inflation factor (VIF) and principal 
component analysis (PCA) independently.

• Correlation Matrix: In this approach, a 
simple linear regression was performed between 
each individual feature and the others. The pairwise 
correlations were evaluated, and representative 
features were selected based on their correlations [40].  
In the correlation matrix, areas with correlations 
above 95 percent were reduced to retain the most 
variable element.

• Variance Inflation Factor (VIF): The VIF 
preselection method was applied to the remaining 
features after the correlation matrix step to address 
multicollinearity. The commonly recommended 
threshold is 10, and features exhibiting a VIF 
exceeding this value were removed to address 
concerns related to collinearity.

• Principal Component Analysis (PCA): PCA 

was employed to extract essential information from 
the dataset [41] and reduce dimensionality [42]. After 
applying PCA to the features outputted from the 
correlation matrix, only the features capturing 95 
percent of the variance in the data were retained for 
the subsequent learning process.

3.4 Statistical hypothesis testing

To assess the impact of individual features on 
OS prediction and control for false discoveries, 
hypothesis tests were deemed necessary. It is 
important to note that controlling the false discovery 
rate (FDR) on PCA-selected features is not 
required, as this algorithm selects the most relevant 
elements based on their association with OS. On 
the other hand, VIF eliminates features based on 
multicollinearity, with OS having no influence on 
the VIF selection process. Hence, the Benjamini-
Hochberg procedure [43] was applied to the data 
remaining after VIF feature selection, using a 
specific level of α = 0.05, to control the FDR and 
minimize the risk of false discoveries.

3.5 Tumor sub-regions’ feature extraction

The primary objective of this study is to assess 
the predictive value of tumor sub-regions’ maximum 
diameters on overall survival (OS) in patients with 
different resection statuses as it provides valuable 
information about the extent and size of the tumor 
sub-regions, which has significant implications for 
treatment planning and patient prognosis. To achieve 
this, the tumor sub-regions, including the enhancing 
tumor, non-enhancing necrotic tumor core, and 
edema, were segmented for each patient based on the 
labels available in the BraTS dataset. The Euclidean 
distance algorithm was utilized to calculate the 
largest diameter of the enhancing tumor, non-
enhancing necrotic tumor core, and edema regions.

3.6 Prediction models

Regression and classification predictive models 
were utilized to assess the correlation between the 
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maximum diameters of sub-regions and their survival 
outcomes, considering the patient’s resection status. 
For the regression models, the maximum diameters 
of tumor sub-regions were directly fitted to the 
patients’ survival days to predict the exact duration 
of survival. In contrast, the classification models 
aimed to classify patients into two main groups 
based on their survival days: short and medium 
survival (< 450 days) and extended survival (> 450 
days). This approach provided a binary prediction of 
survival duration for the classification models.

Linear regression (LR), random forest regression 
(RFR), and support vector regression (SVR) models 
were employed to examine the univariate impact of 
maximum diameter features. The LR models indicate 
the linear relationship between two variables, with 
one as the explanatory variable and the other as 
the dependent variable. The RFR involves fitting 
multiple decision trees on different subsets of the 
dataset and averaging their predictions. The SVR is 
a nonparametric method that uses kernel functions to 
capture complex relationships between the features 
and the target variable.

For multivariate feature evaluation, the artificial 
neural network (ANN), random forest classifier 
(RFC), and k-nearest neighbors (KNN) models were 
selected. The ANN is designed to capture complex 
relationships between inputs and target values 
through interconnected nodes in different layers. 
The RFC combines the predictions of multiple 
decision trees to determine the final output. In the 
KNN algorithm, the new data point is assigned to the 
category of its closest neighbors based on similarity.

4. Results
In this section, the outcomes of the conducted 

research will be presented. This will include 
the results of the feature reductions applied to 
the extracted radiomic features, followed by the 
hypothesis testing of the VIF selected features. 
Furthermore, the robustness of the maximum 
diameters of tumor sub-regions is presented 
independently in univariate prediction models and in 
combination with the pre-selected radiomic features 

in multivariate prediction models.

4.1 Radiomic feature reduction approaches

First, following the approach described in Soltani [35],  
we employed a correlation matrix as the initial feature 
reduction algorithm, resulting in a reduction of 
radiomic features from 3910 to 1601. Subsequently, 
the VIF and PCA reduction methods were applied 
independently to the dataset selected by the correlation 
matrix. With the VIF selection method, the number of 
radiomic features was further reduced to 153 from the 
initial 1601. The PCA algorithm reduced the number of 
radiomic features from 1601 to 66.

4.2 Hypothesis testing

The Benjamini-Hochberg correction method was 
employed to select VIF features with the strongest 
correlation to patients’ OS. Three features, namely 
T2waveletHLL first order Skewness, T1waveletLHH 
first order Mean, and T2.log-sigma-3-0-mm 3D 
glszm Zone Percentage, were chosen based on 
controlling the false discovery rate. These features 
were utilized in the LR model, and their correlation 
with OS was presented in Table 1. The p-values 
were calculated to determine the significance of the 
correlation between the selected VIF features and 
patients’ OS using the linear correlation model. For 
the NA resection status, the selected features show 
similar values for MSE, RMSE, and Mean AE. 
However, the p-value indicates that T1wavelet-LHH 
first order Mean has the highest correlation, with the 
lowest value of 0.27. On the other hand, within the 
GTR dataset, T2wavelet-HLL first order Skewness 
feature has the lowest p-value of 0.159, indicating a 
strong correlation with OS.

4.3	Univariate	prediction	models

Table 2 presents the results of the regression 
models. The GTR dataset shows lower errors and 
better performance compared to the NA dataset. The 
average mean absolute error (MAE) and root mean 
squared error (RMSE) for the GTR dataset are 210 
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and 297, respectively. In contrast, the average MAE 
and RMSE for NA subjects are 242 and 315.

Spearman’s correlation coefficients were also 
calculated. The majority of the coefficients are negative, 
indicating a strong correlation between higher tumor 
maximum diameters and lower survivals. For the GTR 
dataset, the correlation coefficient is approximately 
–0.08, while for the NA dataset, it is more decisive, 
with an average of –0.25. Comparing these results to 
Table 1, it becomes evident that the tumor sub-regions’ 
maximum diameters have a greater impact on patients’ 
OS than the selected VIF features.

The average p-values for sub-regions maximum 
diameters in the NA dataset are 0.035, significantly 
lower than the selected VIF features (0.436). 
Similarly, in the GTR dataset, the average p-values 
extracted from the linear regression for sub-regions’ 

maximum diameters are 0.425, compared to 0.524 
for VIF features. Similarly, MSE, RMSE, and MAE 
indicate a higher correlation of the newly extracted 
features compared to the nominated VIF features. 
The results of the linear regression model are visually 
depicted in Figure 3. Figures 3a, 3b, and 3c depict 
the Spearman correlation between the survival days 
of GTR patients and their respective non-enhancing 
tumor diameter, enhancing tumor diameter, and 
edema diameter. Similarly, Figures 3d, 3e, and 
3f illustrate the Spearman correlation between the 
survival days of NA patients and their corresponding 
non-enhancing tumor diameter, enhancing tumor 
diameter, and edema diameter. The Spearman 
correlations, as presented in the subplots of Figure 3, 
along with the p-values from the regression models 
in Table 2, reveal that the diameters of tumor sub-

Table 1. Linear correlation analysis of VIF-selected features with overall survival.

Feature Spearman R MSE RMSE Mean AE p value Spearman R MSE RMSE Mean AE p value
NA resection status GTR resection status

T2.wavelet HLL_ 
firstorder_Skewness 0.032 106745 326.71 264.25 0.622 0.129 62771 250.54 187.53 0.159

T1.wavelet-LHH_ 
firstorder_Mean –0.109 103049 321.01 257.18 0.270 –0.005 58429 241.72 180.72 0.483

T2.log-sigma-3-0-
mm-3D _glszm_
ZonePercentage

0.096 99680 315.72 259.00 0.417 0.128 59422 243.76 182.47 0.932

Table 2. Comparing regression model performance for various resection status types: D1 denotes the non-enhancing necrotic tumor 
core’s diameter, D2 represents the enhancing tumor’s diameter, and D3 indicates the edema’s diameter.

Feature Model Spearman 
R MSE RMSE Mean AE p value  Model Spearman 

R MSE RMSE Mean 
AE p value

NA resection status GTR resection status

D1

LR –0.276 80414 283.57 232.37 0.012 LR –0.076 63023 251.04 191.36 0.130

RFR –0.037 79671 282.26 221.38 0.278 RFR 0.302 71840 268.03 219.74 0.270

SVR 0.050 93365 305.55 227.26 0.024 SVR –0.210 65031 255.01 186.74 0.280

D2

LR –0.239 83991 289.81 233.59 0.085 LR –0.085 73858 271.76 199.17 0.644

RFR –0.153 96529 310.69 260.66 0.517 RFR –0.143 177719 421.568 267.20 0.545

SVR 0.467 93155 305.21 227.24 0.037 SVR –0.038 65190 255.32 186.88 0.870

D3

LR –0.248 98139 313.27 268.40 0.010 LR –0.09 77189 277.83 200.31 0.502

RFR –0.056 127703 357.35 290.26 0.813 RFR –0.157 182101 426.73 263.07 0.507

SVR 0.416 153822 392.20 221.67 0.068 SVR –0.20 65289 255.51 186.96 0.390
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Table 3. Performance comparison of classification models for patients reported as gross total resection status (GTR).

Model Accuracy Precision Sensitivity Specificity AUC Model Accuracy Precision Sensitivity Specificity AUC

VIF-based feature subset VIF-based feature subset and tumor sub-regions 
diameter

ANN 0.70 0.44 0.81 0.55 0.67 ANN 0.70 0.55 0.81 0.55 0.70
KNN 0.70 0.68 0.70 0.67 0.60 KNN 0.80 0.75 0.82 0.67 0.67
RFC 0.64 0.57 0.81 0.50 0.59 RFC 0.68 0.63 0.87 0.67 0.68

PCA-based feature subset PCA-based feature subset and tumor sub-regions 
diameter

ANN 0.65 0.76 0.71 0.50 0.60 ANN 0.69 0.69 0.75 0.50 0.63
KNN 0.60 0.44 0.66 0.71 0.60 KNN 0.75 0.78 0.72 0.78 0.62
RFC 0.64 0.55 0.70 0.40 0.54 RFC 0.64 0.82 0.61 0.42 0.56

Table 4. Performance comparison of classification models for patients reported as unknown resection status (NA).

Model Accuracy Precision Sensitivity Specificity AUC Model Accuracy Precision Sensitivity Specificity AUC

VIF-based feature subset VIF-based feature subset and tumor sub-regions 
diameter

ANN 0.60 0.71 0.714 0.33 0.56 ANN 0.65 0.40 0.733 0.40 0.58
KNN 0.70 0.63 0.722 1.00 0.55 KNN 0.75 0.82 0.705 1.00 0.69
RFC 0.72 0.63 0.833 0.43 0.64 RFC 0.68 0.72 0.650 0.80 0.65

PCA-based feature subset PCA-based feature subset and tumor sub-regions 
diameter

ANN 0.60 0.89 0.533 0.80 0.61 ANN 0.65 0.71 0.769 0.43 0.63
KNN 0.65 0.82 0.631 0.79 0.56 KNN 0.80 0.86 0.737 0.86 0.60
RFC 0.68 0.60 0.695 0.50 0.53 RFC 0.68 0.62 0.714 0.50 0.57

regions for NA patients exhibit a stronger correlation 
with survival days (average Spearman correlation 
of –0.3 and average p-value of 0.035) compared 
to GTR patients (average Spearman correlation of 
–0.12 and average p-value of 0.425).

4.4 Multivariate prediction models

To transform the survival outcomes into binary 
categories, a midpoint of 450 days was selected based 
on the suggestion from the BraTs challenge (considering 
long-survivors as those with survival times greater 
than 450 days and short-survivors as those with 
survival times less than 450 days). This choice offers 
an additional advantage since the dataset is already 
balanced, eliminating the need to address any potential 
issues related to imbalanced data.

The regression models highlight the effectiveness 
of tumor sub-regions’ maximum diameters. In the 
classification methods (ANN, RFC, and KNN), the 

aim was to assess the robustness of the new features 
when combined with radiomics. The dataset was 
split into training, validation, and test sets (60% for 
training, 20% for validation, and 20% for testing). 
The results of the test set can be found in Table 3 
and Table 4.

Across most algorithms, the presence of tumor 
sub-regions’ maximum diameters shows a positive 
impact on the prediction of OS. The inclusion of the 
features improved the accuracy and precision of the 
classification methods by approximately 5%. The 
highest performance is observed in PCA-selected 
features for GTR patients, achieving an accuracy of 
80%. Furthermore, integrating radiomics with tumor 
sub-regions’ maximum diameters noticeably improved 
the area under the curve (AUC) values. In the GTR 
dataset, the combination of VIF-selected features 
and the maximum diameters of tumor sub-regions 
achieved the highest AUC of 70%. When the sub-
regions’ maximum diameters were added to radiomics, 
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the AUC values for ANN, KNN, and RFC methods 
increased with an average of 4.42%. Additionally, 
incorporating the new features led to a nearly 7% 
increase in AUC for VIF-based features in RFC and 
KNN methods specifically for the GTR dataset.

It is worth noting that certain algorithms in 

the study did not show significant improvements 
when incorporating the newly extracted features. 
Furthermore, the results did not emphasize the 
impact of resection status on enhancing survival 
prediction. These observations can be attributed to 
the limited dataset size utilized in the study.

5. Discussion
In recent years, the use of machine learning 

in medical image analysis has been extensively 
explored in various studies. Many of these studies 
have focused on cancer datasets and utilized 
computer-aided learning algorithms. However, the 
resection status, which refers to the extent of surgical 
removal of the tumor, has often been overlooked [9]. 

In several previous research works, all types 
of resection status have been combined and used 
together in the learning algorithms [44–48]. Similarly, 
radiomics has been employed for quantitative 
analysis of MRI [49] and 3D deep feature learning [50] 
without specifically considering the resection status.

In our study, we examined the influence of 
resection status on regression and classification 
models. While certain learning algorithms exhibited 
improved performance when trained on specific 

resection statuses, the difference was not statistically 
significant in some cases. These findings suggest 
that resection status is a potentially important 
factor in learning algorithms, but a larger and more 
diverse dataset is required for a more comprehensive 
evaluation of its impact on survival prediction.

Radiomic features have been extensively em-
ployed in quantitative image analysis studies, and 
numerous research works have investigated their 
effectiveness. However, the reported accuracies in 
these studies have been limited. For instance, Sun [51] 
and Wijethilake [52] utilized radiomics in their image 
analysis studies but achieved learning accuracies be-
low 70%. Similarly, Baid [53] employed a multi-layer 
perceptron (MLP) on radiomic features, resulting in 
an accuracy of 57.1% and a p-value of 0.427. In an-
other study by Shaheen [54], region-specific radiomic 
features were the focus of their classification models, 

a: Non-Enhancing Tumor Diameter vs.
Survival Days in GTR Patients.

b: Enhancing Tumor Diameter vs. Survival
Days in GTR Patients.

c: Edema Diameter vs. Survival Days in
GTR Patients.

Figure 3.d: Non-Enhancing Tumor Diameter vs.
Survival Days in NA Patients.

Figure 3.e: Enhancing Tumor Diameter vs.
Survival Days in NA Patients.

Figure 3.f: Edema Diameter vs. Survival
Days in NA Patients.

Figure 3. Scatter plot with linear regression line showing correlation between maximum diameter values (D1: non- enhancing tumor 
diameter, D2: enhancing tumor diameter, D3: edema diameter) and survival days, stratified by resection status. Graphs a, b, and c 
represent patients with GTR resection status, while graphs d, e, and f represent patients with NA resection status.
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and they attained training and test set accuracies 
of 47.1% and 55.2%, respectively. In a study by 
Ammari [55], the entire BraTS dataset was used, 
incorporating all resection statuses in their predictive 
models. The AUC results for 9, 12, and 15 months 
were reported as 85%, 74%, and 58%, respectively. 
Furthermore, Calabrese [56] demonstrated that 
combining radiomics and deep learning features 
improves the accuracy of radiogenomic prediction 
for common glioblastoma genetic biomarkers 
compared to using either feature alone. In a recent 
study by Manjunath [57], radiomic features extracted 
from postcontrast T1-weighted (T1) images using 
3D Slicer were employed for machine learning 
training. Among their evaluated models, the 
weighted subspace random forest exhibited the 
highest values for both the AUC and the concordance 
index (C-index), indicating its superior predictive 
performance for glioma patient survival. Chiesa [58] 
conducted a multicentric project, the GLIFA project, 
to investigate the role of radiomic analysis in guiding 
radiation target volume delineation for glioblastoma 
patients who have undergone total or near-total 
resection. This study aimed to personalize radiation 
treatment based on radiomic features extracted from 
the tissue around the resection cavity. The developed 
radiomic model was able to discriminate between 
patients with low-risk and high-risk relapse at 6 
months with an AUC of 78.5%. Tran [59] focused 
on the prediction of survival of glioblastoma 
patients using local spatial relationships and global 
structure awareness in FLAIR MRI brain images, 
highlighting the utilization of radiomic features and 
machine learning models for survival prediction. The 
accuracy of the model is reported to be 0.621, and 
the Spearman’s Rho is 0.576 in the validation set. 
Considering these findings, as well as our own study, 
it becomes evident that radiomic features alone may 
not be accurate enough for independent clinical 
applications especially for glioblastoma [60]. The 
tumor volumes and shape have shown great potential 
for the patients’ OS cancer staging status. Here, 
we focused on the maximum diameters of tumor 
sub-regions. In binary OS classification models, 

the incorporation of additional features alongside 
radiomics yielded visible effects, suggesting that 
tumor sub-regions’ maximum diameters can enhance 
the accuracy and improve the performance of the 
models. The regression models clearly showed the 
correlation between the maximum diameters of 
tumor sub-regions and patients’ OS. The Benjamini-
Hochberg algorithm identified three VIF-selected 
features that are highly relevant to OS. Notably, 
the correlation between the maximum diameters of 
tumor sub-regions and patients’ OS is stronger than 
the correlation observed with the most correlated 
radiomic features selected using the VIF method. 
In contrast to Weninger’s [9] research, where OS was 
categorized into three groups, we opted for a binary 
output in the classification algorithms due to its higher 
learning rates and accuracies. Adding tumor sub-
regions’ maximum diameters to radiomics improved 
the performance of the machine learning algorithms 
used in this study. This improvement has significant 
implications for developing better clinical treatment 
strategies and predicting cancer aggressiveness. To 
enhance the effectiveness of this approach, utilizing 
a broader and more diverse dataset is recommended. 
Therefore, radiomics should be considered an additional 
quantitative feature for improving the prediction of 
patients’ OS.

Efforts have been made to utilize machine learn-
ing and imaging for the diagnosis and classification 
of cancer [61]. Quantitative imaging offers the poten-
tial to extract valuable features that may not be per-
ceptible to clinicians. Therefore, combining essential 
medical imaging features identified by radiologists 
with quantitative medical imaging data can enhance 
the accuracy of evaluating the type and severity of 
cancer in patients.

Similar to previous studies, the achieved 
accuracies in both regression and classification 
models are not notably high, which can be attributed 
to the limitations of the dataset used. To overcome 
this issue, it is necessary to employ a larger and more 
comprehensive dataset, which would help address 
overfitting problems during training and validation. 
Moreover, the exploration and identification of novel 
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imaging features, alongside radiomics, have the 
potential to enhance the predictive capabilities of OS 
and improve the precision and accuracy of learning 
algorithms. This, in turn, can facilitate their practical 
use in medical treatments.

6. Conclusions
In this study, we utilized the BraTS 2019 train-

ing dataset to investigate the relationship between 
the maximum diameters of tumor sub-regions and 
patients’ OS. The regression models employed in 
our analysis revealed a clear correlation between 
the maximum diameters of tumor sub-regions and 
patients’ OS. Additionally, we explored the effective-
ness of integrating the newly extracted features with 
radiomics using classification models. Our findings 
demonstrated that the inclusion of tumor sub-re-
gions’ maximum diameters in the classification mod-
els yielded positive responses. This was observed 
in both the GTR and NA datasets, with an average 
increase of 4.58% in accuracy. The differences in 
results between the GTR and NA datasets in some of 
the machine learning algorithms further highlighted 
the resection status as a potentially important factor 
in the prediction models.

This study considered 450 days as the midpoint 
for survival days, leading to binary classification. 
However, utilizing a more extensive and diverse 
dataset with a broader class distribution would 
enable multiple classifications, providing a more 
accurate estimation of patients’ survival rates 
and enhancing generalizability. Additionally, 
assessing additional features related to the medical 
characteristics of tumor regions would improve the 
interpretability of machine learning models, ensuring 
that these features hold tangible medical and clinical 
significance for validation. The models employed 
in this study exhibit computational efficiency, 
underscoring their inherent advantages. As we 
consider future directions, exploring alternative deep 
learning models, particularly transformer-based ones, 
and incorporating additional clinical and genetic data 
may demand increased computational resources. 
However, the potential for achieving superior results 

justifies the computational costs for advancing our 
understanding and applications in this domain. Also, 
a deeper investigation into the NA characteristics 
of resection status is recommended to enhance 
understanding and enable a robust comparison with 
GTA resection status.
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