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Nowadays, is well established that the benefits induced by exercise train-
ing (ET) affects not only skeletal muscle, but also other non-contractile 
organs over time. One potential mechanism underlying this crosstalk is 
the synthesis and secretion of several biological active factors, such as 
irisin, by muscle contractile activity. This hormone has been described 
to be able to induce a brown adipocyte-like phenotype in white adipose 
(WAT), increase whole-body metabolic rate, and therefore prevent and/or 
treat obesity-related metabolic diseases. Thus, the modulatory impact of 
ET on WAT may also occur through skeletal muscle - adipose organ axis. 
In this review, we summarize the acute and chronic adaptations to ET-in-
duced irisin synthesis and secretion on the development of browning of 
white fat and, thus, providing an overview of the potential preventive and 
therapeutic role of ET on the obesity-related underlying pathways. 
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1. Introduction

Exercise training (ET) represents an important part 
in the increase of energy expenditure in active hu-
mans, stimulates fat mass loss and helps to main-

tain lean mass, besides promoting positive effects on the 
physiological function of hormones [1]. Accumulating evi-
dence show that distinct ET modalities, such as endurance, 
strength and high-intensity interval training (HIIT), have 
a significant effect on reducing visceral fat accumulation 
[2-5] as well as adipocyte disturbances induced by obesity. 
Thus, contributing to systemic metabolic improvements 
through a favorable dynamics changes in white adipose 

tissue (WAT) morphology and metabolism [6-9], including a 
brown adipocyte-like phenotype [10-12]. This phenotype has 
been characterized by a greater capacity for thermogenic 
stimulation, as demonstrated by elevated uncoupled pro-
tein 1 (UCP1) expression and other brown adipocyte-spe-
cific genes [10-11, 13], converting these cells into more meta-
bolically active cells, which in turn, burn more calories[14]. 
The presence of this type of cells opens attractive perspec-
tives to treat obesity and related metabolic disorders. 

Based on current state of knowledge, ET stimulates the 
production and secretion of several biological factors in 
skeletal muscle, such as irisin, whose effects can be local 
and/or far-reaching organs/tissues, like white adipose tis-
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sue (WAT), liver, heart, and brain in distinct animal mod-
els [15-17]. Thus, skeletal muscle has been recognized as 
endocrine organ. The present review highlights the prom-
inent role of skeletal muscle-induced irisin in browning 
of white fat in response to acute and chronic adaptations 
induced by ET to better understand its regulation in skele-
tal muscle and its possible systemic and tissue modulatory 
effects on WAT and its potential application in combating 
metabolic diseases. 

2. Exercise Training-regulated Myokines to 
Induce Browning of White Fat

Mechanistically, muscle contractile activity induces local 
paracrine-mediated actions on several signaling pathways 
involved on its structure and metabolism and also produc-
es and secretes myokines, which act in an endocrine-like 
fashion on distant organs and tissues, including WAT [18]. 
Particularly, some myokines alter the metabolic pheno-
type of WAT by inducing browning, fatty acid oxidation 
and improving insulin sensitivity [10, 12-13, 19-20]. Therefore, 
myokines likely provide a conceptual basis to understand, 
at least in part, the modulatory impact of ET on WAT, 
e.g. the cross-talk between skeletal muscle and adipose 
organ axis, which is of particular interest in the context 
of obesity and metabolic disorders. Evidence have been 
supported that ET stimulates several myokines secretion 
by skeletal muscle, including β-aminoisobutyric acid 
(BAIBA) [21], brain-derived neurotrophic factor (BDNF) 
[22], IL-6 [17], meterion-like [23] or irisin [10]. Once released 
into the bloodstream, they can operate upon distant organs 
in a hormone-like fashion and may drive important stimuli 
ultimately leading to browning of white fat. Roberts and 
colleagues [21] identified BAIBA as a myokine able to in-
crease the expression of brown adipocyte–specific genes 
in white adipocytes in vitro and in vivo by a peroxisome 
proliferator-activated receptor α-dependent mechanism. 
This myokine also improved glucose homeostasis in mice 
and induced a brown adipose–like phenotype in human 
pluripotent stem cells [21]. Meteorin-like is mainly induced 
in response to strength training and peroxisome prolif-
erator-activated receptor gamma coactivator 1α (PGC-
1α)4 overexpression, which promotes activation of M2 
macrophages and catecholamines production from these 
cells to induce browning effects [23] and sustain adaptive 
thermogenesis [24]. An overexpression of the Il6 mediated 
by ET increased the UCP1 gene and protein expression 
in rat brown and white adipose tissue [17, 25]. Moreover, the 
ET-induced increase in skeletal muscle IL-6 levels was 
strongly correlated with brown adipocyte-like phenotype 
markers expression and its regulators in obese rats [26]. 

Despite de potential role of these myokines mediating the 
beneficial effects of ET, irisin is the one that has received 
more attention in literature due to its physiological func-
tions and potential applications in health and in a variety 
of metabolic diseases. Irisin is derived from fibronectin 
type III domain-containing protein 5 (FNDC5), mem-
brane-spanning protein highly expressed in skeletal mus-
cle, proteolytically cleaved and released into circulation 
as a powerful messenger reaching other distant organs, 
such as WAT [15-16]. Indeed, several studies have been 
supported that irisin induces skeletal muscle hypertrophy 
[27], energy expenditure by stimulating the brown-like phe-
notype in WAT [11-12], and improved glucose homeostasis 
by reducing insulin resistance [28-29]. In the original study, 
Bostrom et al[10] reported that in vivo and in culture brown 
adipocyte-like phenotype were mediated via the activation 
of the main metabolic regulator, PGC-1α, a well-known 
player on skeletal muscle adaptive response to ET [30-32]. 
As an important transcriptional coactivator involved in 
energy metabolism, elevated levels of PGC-1α has been 
associated with an increased mitochondrial content [11], 
fatty acid oxidation as well as brown adipocyte-like phe-
notype development in WAT [12, 33]. Moreover, the Sirtuin 
1 (SIRT1), a NAD+-dependent type III metabolic sensor, 
also seems to be closely involved in the regulation of 
these processes [30]. The SIRT1 binds to PPARγ and re-
presses the transcriptional activation of PPARγ by binding 
to nuclear co-receptor/silencing mediator of retinoid and 
thyroid hormone receptor complex, resulting in the re-
duction of fat accumulation in WAT and higher level of 
non-esterified fatty acids (NEFA) in blood [34]. SIRT1-de-
pendent deacetylation of Lys268 and Lys293 is required 
to recruit the brown adipose tissue (BAT) program activa-
tion and repression of visceral WAT genes associated with 
insulin resistance [35]. In response to 8-wks of ET, higher 
levels of SIRT1 was found associated to a brown-like phe-
notype development in WAT from obese rats [36]. 

2.1 Acute Skeletal Muscle Adaptations 

Animal-based studies reported an increased skeletal 
muscle FNDC5 expression in response to acute bout of 
exercise [10, 37-38] while some found no alterations [39-42].
The study of  Dehghani and colleagues [37], whose ob-
jective was to analyse the distinct types of muscle con-
tractions, demonstrated that one bout of both concentric 
and eccentric exercises increased skeletal muscle PGC-
1α and FNDC5 mRNA expression in skeletal muscle of 
BALB/C mice. Moreover, the eccentric exercised group 
benefited from a greater impact on PGC-1α and FNDC5 
genes than the concentric exercised group, suggesting that 
a single bout of eccentric exercise has a notable impact 
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on myokines secretion and their regulators. This effect 
was attributed to muscular microscopic damage and the 
greater production of reactive oxygen species, in com-
parison with the concentric exercises [43]. After an acute 
exercise session, was reported no changes immediately 
and after 3h from acute submaximal bout of exercise at 
70% maximal running velocity in tibialisanterior muscle 
[39]. While [40] and [42] showed that gastrocnemius FNDC5 
mRNA expression decreased immediately after exercise 
session and remained unchanged 3h after submaximal and 
maximal treadmill running. On the other hand, mice quad-
riceps femoris and triceps surae muscles FNDC5 values 
displayed high levels 24 hours after cessation of ET bout 
[37]. Czarkowska-Paczek and colleagues [40] showed an in-
crease of circulating irisin levels 3h after the end of tread-
mill running session with no alterations on FNDC5 levels. 
Other studies with rodents supported this idea revealing 
that circulating irisin levels were acutely overexpressed 
immediately after one bout of exercise [41, 44]. This acute re-
sponse was possibly attributed to the commonly described 
ET-induced oxidative stress. Oxidative stress is known to 
stimulate p38 MAPK and the extracellular regulated pro-
tein kinase (ERK) [45-46], which in turn activates PGC-1α in 
skeletal muscle, an important regulator of FNDC5.

Evidence from human studies showed that FNDC5 
mRNA expression was increased in endurance-trained ath-
letes males with maximal oxygen consumption (VO2 max) 
higher than 55 mL-1.kg-1.min-1[47]. In response to an acute 
bout of high-intensity exercise [48] and strength exercises 
(5 sets of 10 repetitions until failure) [49], skeletal muscle 
FNDC5 and PGC-1α mRNA levels increased in healthy 
individuals.Although an increased FNDC5 has been de-
tected without any changes in circulating irisin after ET [47, 

49], acute increases in irisin levels have been widely report-
ed in physically inactive individuals[10, 50-56]. In this line, 
Kraemer et al [54] found that plasma irisin levels increased 
during the course of a 90 min (60% of VO2 max) treadmill 
running, reaching the peak values at 54 min while re-
turned to baseline levels immediately post-exercise. More-
over, Norheim et al[56] reported a peak concentration of 
irisin after 45 min cycling without a concomitant increase 
in Fndc5 gene expression, which suggests that increases 
on irisin levels during acute exercise may be associated 
with protein post-translational modifications. Actually, 
the type, duration, and particularly the intensity of the ET 
sessions seems to influence the expression of circulating 
irisin. In fact, high-intensity exercise at 80% VO2max for 
20 min promoted greater irisin response comparatively to  
low-intensity exercise at 40% VO2max for 40 min under 
similar energy consumption conditions [50]. Thus, circu-
lating irisin levels increased when the muscle adenosine 

triphosphate (ATP) levels acutely dropped, but remain un-
changed when muscle ATP content is restored, suggesting 
that irisin may contribute to ATP homeostasis [57]. Based 
on this hypothesis, the lack of irisin changes in some 
studies may be explained by the intensity as short-term 
low-to-moderate intensity ET induces low ATP depletion 
[57]. In this line, plasma irisin levels seem to be progres-
sively elevated in response to increasing ET workloads as 
physically active individuals with higher VO2max showed 
greater concentrations of irisin during maximal workload 
ET [50, 53, 55]. Collectively, data suggest that circulating 
irisin levels seem to be increased in response to acute 
intense ET in humans; however new insights into irisin 
regulation during ET are clearly needed. However, some 
inconsistencies may be related to interactions between 
irisin and other cytokines and hormones, for example IL-
6, BDNF or adiponectin [58-60]. Moreover, other tissues, 
such as cardiomyocytes and purkinje cells of cerebellum 
[13, 59, 61], have been described to interfere with irisin metab-
olism/regulation, and should also be considered in future 
studies.

2.2 Chronic Skeletal Muscle Adaptations 

In animal models, several studies have confirmed that 
chronic ET programs induced FNDC5 synthesis and sub-
sequently release irisin into circulation that have impact 
on browning of white fat [10-13, 62]. Whereas some studies 
have not been able to recognize a consistent increase in 
the expression of FNDC5 mRNA [63] or plasma irisin lev-
els [49, 64] after long-term ET program. Tiano et al 2015 [12] 
studied the contribution of distinct models of exercise, 
such as running, countercurrent swimming and voluntary 
running wheel, on irisin secretion and browning of white 
fat. For the treadmill and swimming models, mice showed 
a ~35% increase in serum irisin levels at 2nd week along 
with an increase in the area under the curve (AUC) over 
the 3rd week; however a voluntary running wheel model 
had no impact on irisin concentration. In the same study, 
only the treadmill-exercised mice showed an increased 
FNDC5 mRNA and protein expression in skeletal muscle. 
In response to 2-wks of treadmill running [12], the brown-
ing-related markers, such as PGC-1α; its downstream 
target UCP1, the major protein responsible for nonshiv-
ering thermogenesis; and PR domain containing 16, the 
transcriptional regulator of BAT differentiation [65] were 
increased in both subcutaneous and visceral fat depots. 
Moreover, a strength exercise program increased serum 
irisin and soleus FNDC5 levels in mice performed ladder 
climbing with tail weight 3 days per week for 12 weeks 
[66]. Xiong and colleagues [67] created a mouse model of 
Fndc5 mutation through transcription activator-like effec-
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tor nuclease-mediated DNA targeting. In response to 8-wks 
of treadmill running (60min.day-1, 10% slope at constant 
18min.m-1 velocity), the Fndc5 mutant mice exhibit lower 
VO2max and attenuate ET-induced browning of white fat 
when compared with exercised wild-type mice, providing 
genetic evidence that Fndc5 is required for exercise-in-
duced browning of WAT in mice.

Several studies reported that irisin remained stable after 
an ET program, but the duration of high levels after exer-
cise remains unresolved [38, 40, 68]. Another aspects that need 
further investigation are the effects of different types and 
intensities of exercise on muscle metabolism and disrup-
tion at distinct ways, and in turn, on irisin concentrations 
[69-70]. Nevertheless, data from studies performed with 
humans are not so consistent. Some studies showed that 
chronic ET, strength or the combination of both models 
did not affect skeletal muscle FNDC5 [48-49] or circulat-
ing irisin [49, 63, 71] levels in sedentary healthy individuals 
or in children with obesity [72]. In contrast, other studies 
revealed an increased FNDC5 and PGC1α expression in 
response to 12-wks of combined endurance and strenght 
exercises [56]. A study using Gene Set Enrichment Analysis 
method showed that ET promoted several alterations on 
genes involved in metabolism, mitochondrial biogenesis, 
oxidative stress and signaling, membrane transport, cell 
stress, proteolysis, apoptosis, and replication [33], underlin-
ing the degree of plasticity of WAT and its prominent role 
in physiological whole-body adaptions to ET. Moreover, 
ET-induced browning of white fat is possibly associated 
with other myokines synthesis and secretion, including 
IL-6, BAIBA, BDNF, meteorin-like and others. Altogeth-
er, data suggest that irisin levels seem to be increased 
acutely and chronically in response to ET; however new 
understandings into irisin regulation during ET are clearly 
needed. 

3. Conclusions 

In summary, acute and chronic response to ET seems to 
have a crucial role in the synthesis and secretion of irisin 
from skeletal muscle to stimulate the browning of white 
fat and its main regulators (figure 1), which are determi-
nant for improving metabolic function and energy expen-
diture, and, thus, preventing and/or counteracting obesi-
ty-related metabolic disorders.

Figure 1: Summary of acute and chronic adaptations 
to ET-induced irisin secretion in browning of white fat.
Legend: FNDC5, fibronectin type III domain-containing protein 5; 
UPC1, uncoupled protein 1; © increase  
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