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The study of spatial econometrics has developed rapidly and has found 
wide applications in many different scientific fields, such as demog-
raphy, epidemiology, regional economics, and psychology. With the 
deepening of research, some scholars find that there are some model 
specifications in spatial econometrics, such as spatial autoregressive 
(SAR) model and matrix exponential spatial specification (MESS), 
which cannot be nested within each other. Compared with the common 
SAR models, the MESS models have computational advantages because 
it eliminates the need for logarithmic determinant calculation in maxi-
mum likelihood estimation and Bayesian estimation. Meanwhile, MESS 
models have theoretical advantages. However, the theoretical research 
and application of MESS models have not been promoted vigorously. 
Therefore, the study of MESS model theory has practical significance. 
This paper studies the quasi maximum likelihood estimation for ma-
trix exponential spatial specification (MESS) varying coefficient panel 
data models with fixed effects. It is shown that the estimators of model 
parameters and function coefficients satisfy the consistency and asymp-
totic normality to make a further supplement for the theoretical study of 
MESS model.
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1. Introduction

The matrix exponential space specification (MESS), 
originally proposed by Lesage and Pace [1], has been used 
as an alternative to the spatial autoregressive (SAR) spec-
ification due to its significant advantages. There are few 
studies on MESS models. At present, Debarsy et al. [2] is 
the most representative one to study MESS cross-section 
data model. Relevant studies extending MESS to panel 
data include Figueiredo and Silva [3] and Zhang et al. [4].

Recently, the combination of spatial models and 
non-parametric or semi-parametric models have gradually 

become a research trend. Su and Jin [5] propose the profile 
quasi maximum likelihood (QML) estimation of partially 
linear spatial autoregressive models. On the basis of [5], Su 
[6] proposes a semi-parametric spatial autoregressive mod-
el with heteroscedasticity and spatial correlation of error 
terms, and obtains the semi-parametric GMM estimation 
through the two-step estimation method. For more litera-
ture, see Zhang [7], Sun [8], Koroglu and Sun [9], etc.

Variable coefficient model, as a special semi-paramet-
ric model, has been proposed by Hastie and Tibshirani [10]. 
Fan and Zhang [11] further propose a more general variable 
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coefficient model. For more literature, please refer to Cai 
et al. [12] and Xia et al. [13]. By introducing variable coeffi-
cients to describe the nonlinear effects of the explanatory 
variables on the explained variables, not only can the 
problem of dimension curse in non-parameters be over-
come, but also can avoid the risk of model error. There-
fore, it is inevitable to introduce the variable coefficient 
model into the spatial econometric model. In terms of the 
cross-section data model, Sun [8] studied the variable co-
efficient spatial autoregressor model with non-parametric 
spatial weight matrix. With the increase of the availability 
of panel data, studies on variable coefficient panel data 
model include Cai and Li [14], Chen et al. [15], etc.

MESS can also be extended to the variable coefficient 
panel data model. Based on the existing studies, this paper 
studies the quasi-maximum likelihood estimation of the 
variable coefficient panel data model with fixed effects, 
and derives the large-sample properties of the resulting 
estimator. The rest of the paper is arranged as follows: 
Section 2 introduces the model and estimation method. 
Section 3 presents some assumptions and main results. 
Section 4 gives some related lemmas and proofs.

2. Model and Estimation

We consider the following MESS varying coefficient 
panel data model with fixed effects:

�（1）
where  is the dependent variable,  
is a -dimensional independent variable,  is a scalar 
spatial dependence parameter,  is a known  
spatial weight matrix with diagonal elements are zero, 

 is a -dimensional vector 
of unknown functions, and  is the unobserved indivi-
dual fixed effects. For convenience, we assume that  
is a one-dimensional random variable, then  is an 
unknown function of one variable. We also assume that 
model holds with the restriction , and ’s are 
independent identically distributed (i.i.d.) of sequence of 
random errors with mean zero and variance .

Denoting

then model (1) can be rewritten in a matrix format 
yields

� （1）
where , , 

.  denotes the  identity matrix,  denotes 
the  column vector of ones, and  is the Kronecker 

product.
Let , Let , then model (2) 

can be converted to
� (3)

where  is  matrix.
According to Chiu et al. [16], for any square matrix A, 

. At this moment, suppose that 
, then , and as Wn has 

zero diagonal, the log-likelihood function of the model (3) 
based on the response vector Y is as follows:

� (4)

Take the partial derivative of (4) with respect to , and 
make it be 0, then the maximum likelihood estimate of  
is

Further, by substituting  into (4), we obtain the 
log-likelihood function of 

� (5)

where . Take the partial deriv-
ative of (5) with respect to , and make it be 0, then the 
maximum likelihood estimate of  is

Substituting  into (5), one can show that the follow-
ing concentrated log-likelihood function respect to :

� (6)

Due to the varying coefficient functions  is un-
known, the estimate of  cannot be obtained directly by 
maximizing (6). Hence, we need to apply a local linear 
regression technique to estimate the varying coefficient 
functions .

Firstly, for given , replace  with , then the weight-
ed least-squares estimation method is used to obtain the 
feasible initial estimation  of . For  in a small 
neighborhood of , one can approximate  locally 
by a linear function

where  is the derivative of  at . This leads 
to the following weighted local least-squares problem: 
find  to minimize

�(7)

Where K is a kernel function, h is a bandwidth and 
.

Denote  diagonal matrix 
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, 
, and

then the matrix form of (7) is

The solution to (7) is given by

Then the feasible initial estimation of  is
�（8）

w h e r e  ,  
. Thus, the estimator for  is

where the matrix M is a smoothing matrix and depends 
only on the observations 

.
Secondly, taking  in to (5), we get the approx-

imation of :

� （9）

Maximizing  with respect to , we have the esti-
mate of , i.e.,

In solving maximum (9) with respect to , we obtain 
the following initial estimate:

� (10)
Replace  in the (9 ) with , then the concentrated 

log-likelihood function respect to  is:

� (11)

Further,  is estimated to be

The above nonlinear optimization problems can be 
solved by iterative method.

Next, according to (8) and (9) and , we obtain the fi-
nal estimates of  and , respectively:

Finally,  is estimated to be

3. Assumptions and Main Results

Denote  .  Le t 
 be the true valve of the parameter . To 

obtain the consistency and asymptotic normality of the 
resulted estimators of  and function coefficient , we 
need following assumptions:

A1  are i.i.d. 
random sequences. They satisfy the following conditions: 
(i) The random variable  has a bound support , and 
the edge density function  is continuous differentia-
ble and bound away from 0 on its support. (ii) The matrix 

 is non-singular 
and every element is second-order continuous differentia-
ble. The matrix  is a non-singular constant that 
satisfies  and . (iii) 
There exists  such that 
,  and for some  

such that .
A2  have continuous second deriv-

ative in  and for any ,  is a positive 
constant.

A3 The kernel  is a symmetric density function 
with a continuous derivative on its compact support [-1,1].

A4 (i) The row and column sums of  and  are 
uniformly bounded in absolute value. (ii)  are uni-
formly in  in a compact convex parameter space . The 
true  is an interior point in .

A5  as  and .
A6 There is a unique  that makes model (2) true.
A7 Either (i)  

exists and is non-singular, where 
; or (ii)  

.
Remark 1. A1 to A3 and are the basic assumptions 

for nonparametric models, which can be used in Fan and 
Huang [17]. A4 concerns the essential features of spatial 
weights matrix, which can be found in the Assumptions 4, 
5 and 7 in Lee [18]. A5 is easily satisfied. A6 is the unique 
identification condition of the parameter. A7 guarantees 
the asymptotic normality of parameter estimation (see e.g., 
Chen et al.[15]).

Denote  , 
where  is a given positive constant. We now sate the main 
results.

Theorem 1. Suppose that Assumptions A1-A6 are sat-
isfied. , then (i)  and (ii) 

https://doi.org/10.30564/jesr.v4i3.3331
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Theorem 2. Suppose that Assumptions A1-A7(i) or 

A1-A6 and A7(ii) are satisfied. Then 

where .
Theorem 3. Suppose Assumptions A1-A6 hold, for any 

,

where , , 

 is the second derivative of , 
 and . 

Further, as , then

4. Lemmas and Proofs

Lemma 1. Suppose that Assumptions A1-A5 hold true, 
then

where 

Proof. See Lemma 1 in Chen et al. (2019). 
Lemma 2. Suppose that Assumptions A1 - A5 hold 

true, then 
Proof. Note that

and from Lemma 1, one can show that . 
Then the Lemma 2 is proved. 

Proof of Theorem 1 to 3. Using Lemma 1, Lemma 2 
and following the proof of Theorem 1 to 5 in Chen et al. [15], 
one can easily show that Theorem 1 to 3 hold true.

5. Conclusions

This paper combines the advantages of MESS mod-
els and the characteristics of fixed effects and variable 
coefficient models to change the spatial correlation from 
geometric decay to exponential decay, which makes the 
theoretical modeling simpler. We study matrix exponential 
spatial specification varying coefficient panel data models 
with fixed effects. Firstly, the dummy variable method is 
used to deal with the fixed effect, then the weighted least 
square estimation method is used to estimate the variable 
coefficient function, and the quasi-maximum likelihood 
estimation method is used to estimate the model parame-
ters. Finally, the consistency and asymptotic normality of 
model parameter estimation and function coefficient esti-
mation are deduced.
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