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1. Introduction and Objectives

The purpose of this study is to examine correlations, 
volatility spillovers and hedging possibilities with 
nonferrous metals (NFMs) traded on the London 

Metal Exchange (LME) market. The metals studied are 
copper, aluminum, tin, lead, zinc and nickel and cover the 
period from January 6, 2000 to February 29, 2016. The 
LME has been the world center of base metals trading 
since its establishment in 1877. The LME is used world-
wide by manufacturers and buyers of nonferrous metals as 
a hub for spot and futures contracts trading in these ma-
terials (McAleer and Watkins [1]) despite increased com-
petition from the Commodity Exchange (COMEX) in the 
US and the Shanghai Futures Exchange (SHFE) in China, 
the LME remains the most liquid venue for the trading of 
base metals.

This investigation is important for several reasons. 

First, unlike precious metals such as gold and silver, 
which are often purchased for investment rather than 
commercial use, base metals are mostly notable for their 
industrial use. Therefore, the NFM market is among the 
most important world markets today. NFMs present an ad-
vantage compared to ferrous metals such as steel and cast 
iron since they are nonmagnetic and more resilient; many 
NFMs are good electrical conductors. These interesting 
physical properties make NFMs strategic in a variety of 
industrial sectors such as chemical processing, electronics, 
construction, jewelry, lighting, medical equipment, fiber 
optics transmission, solar energy and many more. Second, 
analyzing volatility, correlations and spillovers among 
nonferrous metals can be useful to market regulators con-
cerned with commodity market volatility. Furthermore, 
this study may also be useful to investors and traders in 
developing optimal hedging strategies across these mar-
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kets.  
The rest of the paper is structured as follows: the rele-

vant literature is briefly reviewed in Section 2; Section 3 
presents the econometric approach used in this study; Sec-
tion 4 presents and discusses the empirical estimates and 
Section 5 concludes the study.

2. A Brief Review of the Literature Related to 
Nonferrous Metals Markets

There is a vast empirical literature analyzing microstruc-
ture of spot and futures markets for nonferrous metals. 
The major part of these studies relies on the LME. Non-
ferrous metals markets, including those for aluminum, 
aluminum alloy, copper, lead, nickel, tin and zinc, are 
frequently the subject of empirical analysis. Empirical 
research on spot and futures markets for nonferrous met-
als can be organized into four categories (Watkins and 
McAleer [2]): the theory of storage and cost-of-carry mode; 
price volatility and risk; market efficiency; and aspects of 
international studies on metals markets.

Implications of the theory of storage are tested in em-
pirical studies using models of the cost-of-carry relation-
ship and the convenience yield on holding inventories. 
Fama and French [3] propose a refinement to the Samuel-
son hypothesis. In conditions of scarcity, spot prices will 
increase as purchasers bid whatever is necessary to secure 
supply. The effect will be less pronounced in longer term 
futures, since agents know that higher prices will boost 
supply on the long run and rebuild inventory. Not only 
will spot prices be elevated, but they will also experience 
elevated volatility, so that the Samuelson hypothesis 
holds. Indeed, in a tight market, any news related to short-
term supply, demand or inventory will have an important 
impact on the spot market When inventory is high, spot 
and futures prices have approximately the same variability 
(that is the Samuelson hypothesis does not hold), because 
the marginal convenience yield on inventory declines at 
higher inventory levels (but at a decreasing rate). Their 
empirical analysis supports their refinement of the Samu-
elson hypothesis.

Empirical studies dealing with price volatility and risk 
in NFMs markets include modelling the volatility of spot 
and futures prices using a random walk framework, or 
various GARCH models while the examination of the 
risk/return relationship in futures markets using a Capital 
Asset Pricing Model (CAPM) approach volatility of six 
LME spot markets has been conducted by Brunetti and 
Gilbert [4], and modelled through a FIGARCH process by 
Brunetti and Gilbert [5]. The empirical estimates suggest 
that the NFMs have similar volatility dynamics. 

COMEX copper futures’ price volatility is examined 
by Bracker and Smith [6] using several GARCH specifi-
cations. The authors have documented that GARCH and 
EGARCH models are superior to the GRJ-GARCH, the 
AGARCH and a random walk model. Both AGARCH and 
GRJ-GARCH specifications allow asymmetric effects. 
Negative shocks have a greater effect on the conditional 
variance than positive shocks. 

McMillan and Speight [7] analyze the time-varying 
volatility of daily nonferrous prices over the 1972-1995 
period. Their investigation provides a decomposition of 
volatility into its long-run and short-run components. The 
main conclusions estimates reveal relevant and significant 
of the decomposition of metals price volatility and the 
presence of three separate principal components driving 
underlying metals volatility.

Watkins and McAleer [2] analyze futures contracts for 
several NFMs, including aluminum, aluminum alloy, 
copper, lead, nickel, tin and zinc. Using, various long-run 
models, they find that there is a statistically significant 
long-run relationship among the futures price, spot price, 
stock level and interest rate. 

Cochran et al. [8] examine the returns and the long-mem-
ory properties of the return volatilities for copper, gold, 
platinum and silver. Daily returns for the January 4, 1999 
to March 10, 2009 period are used. Three main issues are 
investigated: 

(1) whether the volatility processes present long-run 
dependence;

(2) whether the returns and conditional volatility of 
returns are affected by the uncertainty caused by the 2008 
global financial crisis;

(3) whether the implied volatility in the equity market, 
as measured by VIX, explains a high share of metal risk 
and return. The results show that VIX makes a significant 
contribution to forecast metal returns and return volatility. 
The empirical estimates also suggest that events during 
the global turmoil contribute to increase return volatility 
for most metals.    

Concerning efficiency, several papers examine metal 
markets for common stochastic trends, equilibrium parity 
relationships between markets and lead-lag relationships 
between markets. Franses and Kofman [9] test for flow 
parity relationships between forward prices for aluminum, 
copper, lead, nickel and zinc on the LME. They find that 
a cointegrating relationship exists between the five indus-
trial metals, so that a long-run relationship exists between 
the forward price series. If efficiency is defined such that 
a random walk is the best forecasting scheme, the LME 
is inefficient. Similarly, Agbeyegbe [10] tests for common 
stochastic trends among copper, lead and zinc spot prices 
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on the LME and finds one relationship between the three 
metals and a bivariate relationship between copper and 
lead. However, in both Franses and Kofman [9] and Ag-
beyegbe [10], the authors do not interpret cointegration as 
evidence of inefficiency.

Todorova et al. [11] employ a multivariate heterogeneous 
autoregressive (HAR) model to examine the volatility 
spillovers among five of the most liquid and important 
nonferrous metals contracts (aluminum, copper, lead, 
nickel and zinc) traded on the LME using intraday data 
over the period of June 2006 to December 2012. Their 
empirical estimates show that the volatility series of other 
base metals comprise valuable information for future price 
volatility. However, their own dynamics are often enough 
for describing most future daily and weekly volatilities, 
with the most pronounced volatility spillovers identified 
in the longer term. 

Studies based on international linkages between mar-
kets are more and more developed. Shyy and Butcher [12] 

examine the dynamic links between the SHME, operating 
under strict Chinese Government controls, and the LME. 
They find that spot and forward prices for copper on the 
SHME are cointegrated with the respective copper spot 
and forward prices on the LME, and it is claimed that the 
SHME prices coincide with those of the world market 
Trading on the SHME starts well before that of the LME, 
and one would expect that, if the SHME is important with 
respect to world metal prices, information from the SHME 
trade would be accommodated by participants in the LME 
exchange.

An extensive body of the literature has studied cop-
per futures markets in an international approach.  Li and 
Zhang [13] investigate the time-varying relationship using 
rolling correlations and rolling Granger causality followed 
by co-integration tests. The results of co-integration tests 
show that there is a long-run relationship between the 
Shanghai Futures Exchange (SHFE) and the LME copper 
prices. Li and Zhang [14] also examine the relationship 
between copper traded on the SHFE and the LME using 
co-integration and the Markov Switching VECM model. 
They find a long-run relationship between the two copper 
futures markets. They also find that the influence of the 
LME on the SHFE is stronger than that of the SHFE on 
the LME.

Sinha and Mathur [15] have found strong linkages across 
the price, return and volatility of futures contracts traded 
on both the Indian commodity exchange and the LME 
for aluminum, copper, nickel, lead and zinc using a VAR-
DCC-GARCH model. Yue et al. [16] explore the co-move-
ments between Shanghai Futures Exchange (SHFE) and 
LME contracts. Their results suggest that LME nonferrous 

metals prices have a greater impact on Chinese NFMs 
prices. However, they find that the impact of Chinese non-
ferrous metals prices on LME nonferrous metals prices is 
low except for lead price. They also show that co-move-
ments are time-varying, and the correlation of lead prices 
between LME and China is the more stable than all other 
NFMs prices

3. Econometric Approach

In this paper, the econometric approach employed has 
two components as in Sadorsky [17]. A vector autoregres-
sive (VAR) framework with one lag is used to model the 
returns. A Multivariate GARCH (MGARCH) model is 
used to model the time-varying correlations. Three types 
of MGARCH are employed, namely, the Constant Con-
ditional Correlation (CCC), the Dynamic Conditional 
Correlation (DCC) and the Diagonal (DIAG) models. The 
conditional variance is assumed to be VARMA-GARCH 
(1,1).

Specifically, let r r rt t nt= ( 1 , )'
be a (6×1) vector 

of NFM return at t T=1,..., false. The conditional mean 
equation in the model is specified as a vector autoregres-
sive process of order one. It takes the following form:

r rit ij jt it= +∑
j

6

=1
ϕ ε−1 ; ε it t it| 0,I h−1 ℵ( )     (1)

r1t, r2t, r3t, r4t, r5tand r6t are the copper, aluminum, tin, 
lead, zinc and nickel return series at t, respectively. With 
ε it it it= e h , a (6×1) vector of errors of the mean equa-
tion that are estimated conditional on the available infor-
mation up to t-1 for the copper (ε1t), aluminum(ε2t), tin(ε3t), 
lead(ε4t), zinc(ε5t) and nickel(ε6t) return. ϕij ＜1  and 
{eit}  are independently and identically distributed (i.i.d) 
random variables and hit the conditional variances for the 
copper(h1t), aluminum(h2t), tin(h3t), lead(h4t), zinc(h5t) and 
nickel(h6t) return defined as: 

h h Siit ii ij jt ij jjt i it it= + + +θ α ε β γ ε∑ ∑
j j

2 2

= =1 1

2 2
− − −1 1 1

−

    
(2)

where Sit
−  is an indicator function, in this case, for ε＜0. 

With this formulation, a positive value of γi means negative 
residuals tend to increase the variance more than positive 
ones. Put otherwise, negative shocks increase variance 
more than positive shocks do. 

Equation (2) is specified a GARCH (1,1) process with 
VARMA terms as in Ling and McAleer [18]. This shows 
how volatility is transmitted over time across the metal 
prices. The cross value of the error terms represents short-
run persistence (or the ARCH effect of past shocks), 
which captures the impact of the direct effects of shock 
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transmission. The presence of hjt-1 captures the volatility 
spillovers or interdependencies among the NFMs. They 
define GARCH effects of past volatilities and represent 
the contribution to the long-run persistence.

Next, the multivariate conditional covariance matrix in 
the DCC is expressed as follows:

Ht=DtRtDt    (3)

where Dtis the (n×n) diagonal matrix of time-varying 
standard deviations from univariate GARCH with hiit  
on the i-th diagonal i=1,2,...,n; Rt is the (n×n) conditional 
correlation matrix. The DCC model introduced by Engle 
[19] has a two-stair estimation of the conditional covariance 
matrix Ht. In the first stair, univariate volatility models are 
fitted for each of the metal returns and estimates of hiit  
are obtained. In the second stair, return residuals are trans-
formed by their estimated standard deviations from the 
first stair. That is u hit it iit= ε /  where uit is then used to 
estimate the coefficients of time-varying correlation. The 
evolution of the correlation in the DCC model is given by:

( ) '
1 1 11t t t tQ a b Q au u bQ- - -= - - + +     

(4)

where ( )t ijtQ q=  is the (n×n) time-varying cova-
riance matrix of ut, Q E u u=   t t

'
 is the (n×n) uncon-

ditional variance matrix of ut. a and b are non-negative 
scalar parameters satisfying (a+b)＜ 1. Since Qt does not 
usually have ones on the diagonal, we scale it to obtain a 
proper correlation matrix Rt. Thus, 

R diag Q Q diag Qt t t t= ( ( ))− −
1 1
2 2( ( ))     (5)

Rt in (4) is a correlation matrix with ones on the diago-
nal and an off-diagonal element less than one in absolute 
value, as long as Qt is positively definite. A typical ele-
ment of Rt is of the form:

ρij t ij t ii t jj t, , , ,= = ≠q q q i j n and i j/ , , 1,2,..., ,    (6)

For the CCC model case, Rt=R and Rij=ρij. The condi-
tional covariance between metal returns is as follows:

. .ij it jtt
h h hré ù =ë û     (7)

where ρ is the constant conditional correlation.
In the diagonal MGARCH model, ρij=0 for all i and j. 

The diagonal case is very restrictive because it assumes 
that the dynamic conditional correlations between vari-
ables are all zero hij=0 i j" ? i≠j. The standardized residuals 
from the MGARCH diagonal model can be employed 
to calculate an unconditional covariance matrix. The 
MGARCH models are estimated by Quasi-Maximum 

Likelihood Estimation (QMLE) using the simplex algo-
rithm. 

After obtaining the conditional volatility series from 
the DCC-GARCH model, we examine long-range depen-
dence properties accurately by Hurst exponent H, calcu-
lated by the rescaled range analysis (R/S method) which 
provides interpretation of an empirical law, the Hurst law. 
The R/S method proposed by Hurst [20] originally demon-
strates the long-range dependence via the coefficient H, 
which is often applied to capture the long memory proper-
ty. The R/S statistics has a power-law:

( ) H
T

R S aT=     (8)

where T is the number of observations and a is a con-
stant. (8) can be log-linearized as follows:

( )log log log
T

R S a H T= +     (9)

Several implications can be derived as follows: when 
the series display positive long-run dependence or per-
sistence, we obtain the Hurst exponent H between 0.5 and 
1.0; on the contrary, with negative long-run dependence or 
anti-persistence, the exponent H is between 0 and 0.5; and 
when the Hurst exponent H equal to 0.5, the series then 
conform to the behavior type of random walk. 

4. Sample Data and Preliminary Analysis

We use daily closing prices for copper, aluminum, tin, 
lead, zinc and nickel from January 6, 2000 to February 
29, 2016. These prices are expressed in US dollars and are 
sourced from the Bloomberg terminal. 

Figure 1 shows that NFM prices vary over time. Cop-
per prices reached a low point by the late 2001 and did 
not start to reverse course until 2003, escalating to a 
peak by the first quarter of 2004. After reaching this in-
termediate peak, copper prices displayed a behavior like 
that observed in a typical bullish market environment. 
Multi-quarter copper price increases served to shed ex-
cessive greed, followed by copper prices easing right 
back into their upward trend. However, 2006 ushered in a 
period of high uncertainty. This is because fears of supply 
shortages emerged as China began to systematically rav-
age the supply of copper. And this brought a long season 
of extreme volatility (Figures 2 and 3). 

About the other base metals, Figure 1 indicates that all 
metal prices behave in a similar manner. Zinc's bull also 
started out in orderly fashion. From its 2003 low, zinc 
gradually rose higher, bolstered by multi-year support, 
gaining an impressive increase in the first half of 2005. 
Nickel's uptrend indeed exhibited multi-year support 
leading into 2006, but its swings are much more violent. 

DOI: https://doi.org/10.30564/jesr.v2i2.450



5

Journal of Economic Science Research | Volume 02 | Issue 02 | April 2019

Distributed under creative commons license 4.0

Nickel got out to a much faster start than the other base 
metals. Its late 2003 parabolic surge gave it an early bull 
gain. But the rise was only beginning. From its 2005 low 
nickel took flight in near-linear ascent, driving it to record 
highs. Not deviating from the greater NFMs theme, lead’s 
bull market also started out with an orderly uptrend lead 
by multi-year support. Entering 2006, however, lead fell 
behind the pack and jumped the base metals trend. While 
the other base metals prices continued to rise, lead prices 
were falling hard.

Measured by volume, aluminum has the largest market 
of the nonferrous metals. More aluminum is mined and 
consumed each year than the four metals above combined. 
And it is because of this larger market that volatility is 
not as extreme (Figure 3). In fact, compared to the others, 
aluminum’s price has been less volatile until recently. 
Visually, aluminum paints a similar picture to the other 
base metals. Its strong initial upsurge and the velocity of 
its gains appear to be in line with the other metals. After a 
bit of a pullback in mid-2005, aluminum then set course 
for its version of an impressive upsurge. After aluminum 
achieved its 2006 apex, an all-time high, it then spent the 
next 2 years without a significant change.

Figure 1 also shows that the recession of 2008-2009 had 
a big negative impact on the NFM prices. With the 2008 
global financial crisis, a drastic shift in base metals funda-
mentals has been quick to collapse copper. With demand 
growth quickly slowing and then jumping to declining, sup-
ply rapidly caught up and the supply-deficient imbalance 
all but disappeared. Zinc's decline accelerated into 2008 
as suppliers were able to meet demand and LME stockpile 
levels have impressively risen since the beginning of 2008. 
With the imbalance swinging to supply, surplus zinc was 
already during a healthy correction by the time the stock 
panic hit. But the stock panic was quick to add to the pain, 
driving zinc to levels not seen since 2004. 

Rounding the corner into 2008, nickel settled into a 
sideways consolidation, but a further rise in stockpile 
levels caused nickel to break through support and contin-
ue its decline. The stock markets near collapse lead to a 
significant cut in the price of nickel. In fact, nickel prices 
dropped nearly in half yet again before finally bottoming 
in October at levels not seen since 2004.

It is impossible to use data directly extracted from the 
Bloomberg database as mean, variance and autocorrela-
tion structures change over time. Therefore, in order to 
ensure stationarity, copper, aluminum, tin, lead, zinc and 
nickel returns are defined as continuously compounded or 
log returns (Figure 2) at time t, γt, calculated as follows:

γ t t t= × = ×  − 100 log 100 log log
 
 
 P

P

t−

t

1
 (P P) ( −1 ) (10)

where Pt and Pt-1 are metal prices for days t and t-1, re-
spectively.

Figure 2 depicts the daily movements of metals returns 
from January 6, 2000 to February 29, 2016. Notice that 
volatility clustering can be easily observed. Large changes 
follow large changes of either sign and small changes fol-
low small changes.

Time series graphs of the squared daily returns show 
how volatility has changed across time. There appear to be 
strong linkages in volatility across NFM, as evidenced by 
pronounced volatility clustering between September 2007 
and August 2009. Moreover, Figure 3 shows big spikes in 
volatility in March 2004, October and November 2006.  

Descriptive statistics are reported in Table 1. Only the 
sample mean of aluminum is negative. The characteristics 
of log-returns series used in our data set suggest the exis-
tence of non-normality and fat tails. The Jarque-Bera test 
rejects the null hypothesis that log-returns are normally 
distributed: the p-values for all metal returns above are 
zero. This is also evident from the excess kurtosis coeffi-
cient of the data which indicates that metal returns are lep-
tokurtic relative to normal distribution. All metals report 
negative skewness. Therefore, the dataset deals with met-
als for which returns are skewed to the left. This means 
that the mass of the distribution is located on the right and 
that the mean is lower than the median.

Before we conduct the GARCH tests, we test for the 
existence of ARCH effects in the data sets. The results are 
shown in Panel B, Table 1 and display clear evidence of 
significant ARCH effects in all metal prices. The Ljung-
Box statistic for 22 lags applied on returns indicates that 
significant linear dependencies exist. Furthermore, the 
Engle [21] ARCH-LM test statistics for 8 lags was conduct-
ed in order to test the null hypothesis of no ARCH effects. 
The test statistics are statistically significant at the one per 
cent level, implying that there exist significant ARCH ef-
fects in the data at all frequencies. 

Unconditional correlations suggest that there is pos-
itive correlation between daily returns of NFM traded 
on the LME (Panel A, Table 2). Specifically, copper has 
strong correlation with aluminum, lead and zinc: 0.70488, 
0.63052 and 0.73344, respectively. Zinc also has signif-
icant correlation with aluminum and lead, respectively, 
0.65739 and 0.66165.  

The correlations between the squared daily returns also 
show positive correlation among NFM. The information 
provided in Figure 3 and Panel B, Table 2 shows volatility 
clustering and cross-correlations in volatility, respectively. 
But it is worth noting that cross-correlation   is more accu-
rate between zinc and copper.
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5. Empirical Results and Discussion

This section reports on the empirical results obtained from 
estimating multivariate GARCH models in Tables 3-8. 
The DCC model is used as the benchmark and is then 
compared to other restricted correlations models (DIAG 
and CC), estimated with a student distribution of errors 
and asymmetric shocks justified by Table 1. 

5.1. Regression Results

5.1.1 Past Returns Determine Current Returns

Turning first to the return-generating process, only past 
values of lead returns ( )44j  determine significantly 
their current values in all models (Panel A, Table 6). The 
DCC model provides the most important correlation 
( )44 0.083j = . This influence suggests that past returns 
can be used to forecast future returns for lead, implying 
short-term predictability for lead price changes. 

In terms of information transmission through returns, 
aluminum negatively affects current copper, lead, zinc 
and nickel returns. The estimated coefficient of aluminum 
in the copper ( )12j , lead ( )42j , zinc ( )52j  and nickel 
( )62j  equations are negative, of the same order of mag-
nitude in all the models (on average 0.07 for copper, 0.09 
for lead, 0.04 for zinc and 0.09 for nickel) and statistically 
significant at the 1% level for each of the MGARCH mod-
els (Panel A, Tables 3, 6, 7 and 8). This result is important 
in establishing a negative relationship between aluminum 
and those metals. The highest metal reactions to a price 
change are observed for lead and zinc. As shown in Panel 
A, Table 6, a 1% variation in the price of aluminum caus-
es an 8.2% decrease in the price of Lead, implying that 
information flows mostly from the aluminum market to 
the lead market and not the other way around. At the same 
time, past values of copper and zinc returns ( 21j  and 25j  
respectively) negatively affect current aluminum returns 
(Panel A, Table 4). 

Furthermore, one period lag of nickel and lead positive-
ly affects current tin (Panel A, Table 5) and nickel (Panel 
A, Table 8), respectively in all MGARCH models. This 
result is important in establishing a positive relationship 
between current period tin and nickel returns and last pe-
riod nickel and lead returns, respectively. In other words, 
current period tin and nickel returns are influenced by last 
period nickel and lead returns, respectively.

5.1.2 Significant Long-range Dependence in Vola-
tility Exists on the NFM Spot Market  

Turning to the conditional variance equations, the estimat-
ed results of the GARCH coefficients ( )iib are significant 

at conventional levels in all the NFM (Panel B.2, Tables 
3-8). Sensitivity to their past conditional volatility 1( )ith -  
appears to be significant for the NFM prices, implying 
that past variance returns increase current volatility of 
NFM returns. The zinc volatility is the most sensitive in 
the DCC-MGARCH model ( 55 0.938b = , Panel B.2, 
Table 7), followed by the copper ( 11 0.886b = , Panel B.1, 
Table 3), while the aluminum return is at the tail end of 
the volatility ranking ( 22 0.482b = , Panel B.2, Table 4). 
This finding suggests that the former conditional volatility 
values of these returns can be employed to forecast future 
volatility, and a GARCH (1,1) model is adequate for cap-
turing any persistence in the commodity markets’ volatili-
ty. 

Own conditional ARCH effects, which measure 
short-term persistence, are important in explaining the 
conditional volatility (Panel B.1, Tables 3-8). For each 
NFM, the estimated ( )iia  values for ARCH effects are 
smaller than their respective estimated GARCH effects 
values ( )iib , indicating that own volatility long-run 
(GARCH) persistence is larger than short-run (ARCH) 
persistence. The NFM market’s former volatilities are 
more important in predicting future volatility than past 
shocks.

In Figure 4, we illustrate the volatility series of esti-
mated results of Hurst exponents using the R/S method. 
We find that the Hurst exponents by the R/S method are 
on average 0.94, indicating the existence of strong degree 
of long-range dependence in conditional volatilities. All 
NFM display the long memory property and the type of 
the long memory is positive, i.e., persistence in volatility.

5.1.3 Bad and Good News Have Dissymmetric Ef-
fects on Copper Volatilities

Furthermore, return variances for copper exhibit signifi-
cant asymmetry in all multivariate GARCH specifications. 
In the DCC Benchmark model, the coefficient of sensi-
tivity to negative information ( ii ia g+  , cf. (2)) is 0.081 
(Panel B, Table 4); the coefficient of sensitivity to positive 
shocks ( ii ia g- , cf. (2)) is 0.028. This finding suggests 
that copper reacts more actively to negative shocks as 
stocks market. 

5.1.4 Spillover Effects between Nonferrous Metals

Results in Panel B, Tables 3-8 on volatility interdepen-
dence show significant volatility spillovers between metal 
returns. 

For the DCC model there are several instances of sig-
nificant volatility spillovers. For short-term persistence 
there is evidence of negative volatility spillovers be-
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tween tin and aluminum 23( )a  (Panel B.1, Table 4) and 
between aluminum and tin ( )32a  (Panel B.1, Table 5)  
Results in Tables 3 and 8 also show how past news from 
copper affects the volatility behavior of nickel 61( )a  and 
vice versa 16( )a , with estimated coefficients of 0.095 and 
-0.011, respectively. Significant spillovers exist across 
the nickel and copper returns. This result is in line with 
Todorova et al. [11] who find that the short-term realized 
volatilities of nickel are significant for copper. However, 
in our results, it appears that the absolute value of 61a is 
greater than 16a , implying that the spillovers from copper 
to nickel are more significant than the reverse direction, 
which means that the information flow from copper to 
nickel is stronger. Furthermore, there is significant short-
term persistence volatility spillover which is negative 
from aluminum to copper 12( )a  (Panel B.1, Table 3); 
negative from tin to nickel 63( )a  (Panel B.1, Table 8); 
negative from lead to nickel 64( )a (Panel B.1, Table 8); 
and, positive from nickel to aluminum 26( )a  (Panel B.1, 
Table 4). 

There is also evidence of long-term persistence vol-
atility spillovers in the DCC model. There is significant 
inter-sector or volatility spillover effects from copper to 
aluminum 21( )b and lead 41( )b . But the transmission is 
more important to lead 41( 0.303)b = -  than to aluminum 

21( 0.209)b = - . The DCC model also presents evidence 
of a statistically significant long-term persistence volatil-
ity spillover from aluminum to copper ( )12b , tin ( )32b
, lead ( )42b  and nickel ( )62b  (Panel B.1, Tables 3, 5, 
6 and 8). Since copper, aluminum and lead are produced 
in the same geographic area, they are affected by the same 
environmental events. Indeed, the leading 3 producers of 
aluminum (Australia, Brazil and China) account for more 
than 50% of worldwide production; the leading 3 produc-
ers of copper (Chile, the United States and Indonesia) ac-
count for about 50% of world production; and the leading 
2 producers of lead (China and Australia) accounted for 
about 50% of world production.

The spillover emerging from aluminum volatility to the 
long-term price variation of nickel spot may be ascribed, 
for example, to the relevance of both metals for the auto-
mobile industry, which is also the major application area 
for nickel (Todorova et al. [11]). 

The tin conditional volatility also seems to add sig-
nificant information to the forecasts of copper 13( )b
, aluminum 23( )b , lead 43( )b  and nickel 53( )b  (Panel 
B.2, Table 3, 4, 5, and 6). Lead conditional volatility has 
significant effects on aluminum 24( )b and nickel 64( )b  
(Panel B.2, Tables 4 and 8) while there is spillover effect 
between zinc and the other NFM (Panel B, Tables 3-8). 
The construction of infrastructure could be the source of 

the spillover from the zinc to the aluminum and copper 
spot markets, and the demand for copper and lead to pro-
duce electronic and electrical components can explain the 
volatility transmission of copper to lead ( 41b =-0.303).

The results for variance equation of copper, alumi-
num, lead and zinc, with the DCC model, reveal that 
nickel is a significant source of the long-term persistence 
volatility spillovers, with corresponding coefficients 
e s t i m a t e s  16 0.033b = ,  26 0.176b = , 46 0.118b =
and 56 0.055  (Panel B.2, Table 3-8 except 5).

As shown in Panels B.3, Tables 3-8, the estimates for 
constant conditional correlations (CCC) between the met-
al returns are all positive and statistically significant at the 
1% level.  However, the estimates demonstrate that the 
highest CCC is between copper and zinc, suggesting more 
mutual responses to economic factors among these metals 
than the other metals.

Both the AIC and SBC criteria show that the DCC 
model is the best model. The diagnostic Ljung-Box statis-
tics tests for the standardized residuals and standardized 
residuals squared show no evidence of serial correlation 
at the 1% level in the DCC model (Table 9). Based on the 
AIC, SBC and residual diagnostic tests, the DCC model 
is chosen as the best of the models considered. Thus, the 
DCC model will be used to construct dynamic conditional 
correlations, optimal hedge ratios and portfolio weights.

5.2. Dynamic Conditional Correlations 

Figure 4 depicts pair-wise conditional-correlation coef-
ficients between NFM traded on LME namely copper, 
aluminum, lead, tin, zinc and nickel. The dynamic condi-
tional correlations can vary a lot from the constant condi-
tional correlations ( 21 0.71r = , 31 0.45r = , 32 0.42
,  41 0.63r = , 42 0.56r = , 43 0.39r = ,  51 0.71r =
,  52 0.65r = ,  53 0.42r = ,  54 0.68r = ,  61 0.56r =
, 62 0.49r = , 63 0.40r = , 64 0.55r = and 65 0.55r =
) emphasizing the opportunity to compute dynamic condi-
tional correlations. 

These time-series patterns show that the pair-wise 
conditional correlations clearly increased during the 2008 
global financial crisis. The stock panic brought by the 
2008 crisis wreaked havoc on virtually every securities 
class, and nonferrous metals were not safe to the harm-
ful effects. Already within corrective environments, the 
global panic has bled the NFMs to dangerously unhealthy 
levels. These losses have been devastating for investors 
and agents holding positions in industrial metals related. 
These sharp deteriorations have lopped off not only the 
speculative premiums but many years’ worth of gains 
for each of the major metals. The global stock panic has 
birthed what is turning out to be a nasty recession. And a 
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swift contraction of global economic activity has rapidly 
altered base metals fundamentals. Demand has fallen dras-
tically and suddenly so that many of the base metals have 
supply surpluses. Another explanation can be the fact that 
in the depression period a high share of the world’s metals 
demand came from America's industrial machine. And 
consequently, most of the market makers were American.

Notice that the dynamic conditional correlations be-
tween the NFM are all positive and generally larger than 
0.25. This indicates that there is little scope for portfolio 
between these metals on the LME. This is true especially 
between lead and zinc, aluminum and zinc, copper and 
zinc, and, copper and aluminum. The time series plots in 
Figure 5 show that, for each pair of series, the dynamic 
conditional correlations provide much more useful infor-
mation than do the correlations from the constant condi-
tional correlations model. It is also worth noting that at 
the onset and duration of the recession of 2008 and 2009, 
due to the global financial crisis, the dynamic conditional 
correlations were, for each pair of series, much larger than 
their corresponding values from the constant conditional 
correlations, illustrating that any calculations done with 
the correlations from the CCC model would have been 
very misleading.   

5.3. Dynamic Hedging and Portfolio Diversifica-
tion

As suggested by Kroner and Sultan [22], the conditional 
volatility estimates may be used to construct hedge ratios. 
A long position in one asset i  can be hedged with a short 
position in a second asset j . The hedge ratio between as-
set i  and asset j  is

( ), ijt
t

jjt

h
HEDGES i j h=     (11)

The time-varying volatilities from MGARCH mod-
els can also be employed to construct optimal portfolio 
weights (Kroner and Ng [23]).

 
2

jjt ijt
ijt

iit ijt jjt

h h
w

h h h
-

=
- +

   (12)

0, 0
, 0 1
1, 1

ijt

ijt ijt ijt

ijt

if w
w w if w

if w

ìï <ïïï= £ £íïïï >ïî

By construction, ijtw  is the weight of the first asset in 
a one-dollar portfolio of two assets i  and j  at time t . 

ijth  is the conditional covariance between i  and j  while 
jjth  is the conditional variance of asset j . 
For most of the hedge ratios, computed from the DCC 

model, the graphs show considerable variation after Sep-
tember 2008 (Figure 6). The average value of the hedge 
ratio between copper and aluminum (HEDGES (1, 2)) is 
0.819 while the average value of the hedge ratio between 
nickel and aluminum (HEDGES (6,2)) is 0.862331 (Ta-
ble 9). These results are important in establishing that a 
$1 long position in copper can be hedged for 86.5 cents 
with a short position in the aluminum on the LME. A $1 
long position in nickel can be hedged for 86.23 cents with 
a short position in the aluminum. The cheapest hedge is 
long lead and short nickel (HEDGES (3,6) =0.315438, Ta-
ble 9). The most expensive hedge is long nickel and short 
copper (HEDGES (6,1)= 0.865242, Table 9). Notice that, 
overall, hedging on the LME is expensive, and that many 
of the hedge ratios record maximum values in excess of 
unity.

Summary statistics for portfolio weights computed 
from the DCC model are reported in Table 10. The av-
erage weight for the aluminum/copper portfolio is 0.34, 
indicating that for a $1 portfolio, 34 cents should be in-
vested in aluminum and 64 cents invested in copper (Table 
10). The average weight for the nickel/aluminum port-
folio, which is the highest, indicates that 90 cents should 
be invested in nickel and 10 cents invested in aluminum 
(Table 10). 

6. Summary and Concluding Comments

As the amount of money invested in the NFM on the LME 
sector grows, it is important to have a better understand-
ing of the volatility dynamics of those metals’ prices. This 
paper employs multivariate GARCH models to examine 
correlations, spillover effects and dynamic hedging with 
nonferrous metals traded on the London Metal Exchange 
(LME). The specific nonferrous metals studied are copper, 
aluminum, tin, lead, zinc and nickel. 

For return and volatility spillover, results show signif-
icant transmission among the base metals. Regarding the 
return-generating process, past values of metal returns 
largely determine their current values at different levels. 
As for the conditional variance equations, sensitivity to 
their past conditional volatility appears to be significant 
for the metal prices, implying that past variances of re-
turns increase current volatility of metal returns. Our find-
ings also corroborate previous studies showing significant 
volatility spillovers between base metals (see, for exam-
ple, Cochran et al. [7], and Todorova et al. [11]).

The findings of this study can provide useful informa-
tion to market regulators and governments concerned with 
commodity market volatility. These findings may also be 
helpful to investors, traders, and portfolio managers in 
designing and implementing optimal and profitable hedg-
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ing strategies across the base metal markets. Furthermore, 
firms that use these base metals as inputs may find the re-
sults of our study useful in managing production costs and 
forecasting future metal return volatility. Finally, both im-
porters and importer countries are likely to find the results 

in this study provide useful information in dealing with 
the continuing volatility in these industrially important 
commodity markets.

7. Supplement: Figures and Tables 

Figure 1. Metal prices

Figure 2. Daily metal returns

Figure 3. Squared Daily metal returns
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Table 1. Summary statistics of metals returns

Copper Aluminum Tin Lead Zinc Nickel

Panel A: Descriptive statistics

Mean 0.023079 -0.000818 0.024260 0.032016 0.009220 0.000515

SD 1.741845 1.404174 1.774311 2.119674 1.920127 2.412372

Max 11.725897945 6.0679380631 15.385363542 13.007210880 9.948958270 13.309623854

Min -10.357993718 -8.2551159064 -11.453228948 -13.199197655 -11.471979579 -18.358577947

J-B 2906.736932a 818.841892a 5923.128958a 1890.610441a 1399.617360a 2025.053320a

Kurt 4.129790 a 2.152561a 5.895960a 3.313242a 2.847890a 3.443193a

Skew -0.118187a -0.216068a -0.162198a -0.194839 a -0.179319a -0.127735a

ADF -47.5032a -46.6086a -45.0695a -44.9478a -46.4039a -46.6355a

Panel B: Independence and ARCH Tests

LB (22) 52.4823 26.82984 29.7844 39.6787b 22.8648 36.4168b

LB2 (22) 4111.7064 a 867.98196a 1344.6253a 2081.6170a 2342.6004a 1247.4697a

Arch-LM(8) 660.929a 203.213a 345.775a 442.931a 401.762a 356.861a

Note: c, b and a denote significance levels of 10%, 5% and 1%, respectively. SD denotes standard deviation; J-B is the Jarque-Bera; LB(8) and LB2(8) 
are the Ljung-Box statistics applied on returns and squared returns, respectively. ARCH-LM(8) is a Lagrange multiplier test for ARCH effects up to 
order 8 in the residuals (Engle, 1982); Source: Bloomberg, Authors regressions. 

Table 2. Correlations between NFM

Copper Aluminum Tin Lead Zinc Nickel

Panel A: Unconditional correlations between daily returns

Copper 1

Aluminum 0.70488 1

Tin 0.50908 0.43745 1

Lead 0.63052 0.54804 0.4436 1

Zinc 0.73344 0.65739 0.46523 0.66165 1

Nickel 0.59586 0.51935 0.43721 0.49233 0.55519 1

Panel B: Unconditional correlations between squared daily returns

Copper 1

Aluminum 0.52155 1

Tin 0.32058 0.22115 1

Lead 0.39979 0.33597 0.23315 1

Zinc 0.57571 0.46517 0.25792 0.46228 1

Nickel 0.48396 0.29203 0.26705 0.28670 0.39323 1

Source: Bloomberg, Authors calculations
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Figure 4. Results of long memory for DCC conditional volatility series

Table 3. MGARCH parameter estimates - Copper -

Coeff
Diagonal CCC DCC

Std. Error P-value Coeff Std. Error P-value Coeff Std. Error P-value

Panel A: Mean equation

Copper(-1) 11 -0.019 0.013 0.132 -0.005 0.013 0.712 0.010 0.007 0.132

Aluminum(-1) 12j -0.077 0.014 0.000 -0.101 0.015 0.000 -0.070 0.009 0.000

Tin(-1) 13j -0.004 0.012 0.755 -0.001 0.012 0.881 -0.002 0.007 0.730

Lead(-1) 14j 0.002 0.010 0.873 0.001 0.010 0.919 0.050 0.006 0.414

Zinc(-1) 15j -0.002 0.011 0.847 -0.006 0.011 0.607 -0.024 0.006 0.000

Nickel(-1) 16j -0.016 0.008 0.047 -0.013 0.009 0.141 -0.011 0.005 0.035
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Panel B: Variance equation

Constant 1q 0.050 0.013 0.000 0.120 0.047 0.011 0.098 0.011 0.000

B.1- ARCH effects

Copper 11a 0.044 0.020 0.029 0.109 0.035 0.0011 0.052 0.014 0.000

Aluminum 12a -0.033 0.022 0.138 -0.071 0.044 0.105 -0.038 0.0150.011 0.011

Tin 13a 0.001 0.015 0.928 -0.052 0.033 0.116 0.012 0.012 0.328

Lead 14a 0.014 0.016 0.386 -0.055 0.030 0.065 0.002 0.009 0.832

Zinc 15a 0.012 0.020 0.545 0.099 0.034 0.04 -0.001 0.012 0.933

Nickel 16a -0.006 0.012 0.601 -0.045 0.019 0.015 -0.011 0.006 0.073

B.2- GARCH effects

Copper 11b 0.938 0.003 0.000 0.156 0.016 0.000 0.886 0.020 0.000

Aluminum 12b -0.095 12.699 0.994 -0.206 0.022 0.000 -0.177 0.015 0.000

Tin 13b -0.104 13.913 0.994 0.224 0.032 0.000 0.032 0.017 0.059

Lead 14b -0.071 9.404 0.993 0.659 0.021 0.000 -0.018 0.015 0.212

Zinc 15b -0.198 27.337 0.994 -2.768 0.096 0.000 0.568 0.048 0.000

Nickel 16b -0.066 8.744 0.994 0.246 0.017 0.000 0.033 0.011 0.002

B.3- Others

Asymmetry 1g 0.0767 0.036 0.032 0.077 0.036 0.032 0.029 0.012 0.012

Unconditional Correlation with

Aluminum 21r 0.706 0.006 0.000

Tin 31r 0.453 0.004 0.000

Lead 41r 0.630 0.005 0.000

Zinc 51r 0.707 0.005 0.000

Nickel 61r 0.564 0.007 0.000

Log Likelihood -45375.37 -40853.87 -40228.84

AIC 22.317 20.241 19.800

SBC 22.505 20.452 19.990

Table 4. MGARCH parameter estimates - Aluminum -

Diagonal CCC DCC

Coeff Std. Error P-value Coeff Std. Error P-value Coeff Std. Error P-value

Panel A: Mean equation

Copper(-1) 21j -0.042 0.010 0.000 -0.023 0.010 0.017 -0.012 0.007 0.093

Aluminum(-1) 22j 0.004 0.012 0.740 -0.017 0.011 0.139 -0.005 0.008 0.512

Tin(-1) 23j -0.007 0.010 0.495 -0.006 0.010 0.498 -0.008 0.007 0.243

Lead(-1) 24j -0.010 0.010 0.312 -0.012 0.009 0.125 -0.015 0.006 0.015

Zinc(-1) 25j -0.031 0.010 0.001 -0.023 0.009 0.007 -0.035 0.007 0.00

Nickel(-1) 26j 0.009 0.007 0.184 0.009 0.007 0.187 0.009 0.005 0.071

Panel B: Variance equation

Constant 2q 0.075 0.038 0.047 0.075 0.038 0.048 0.230 0.017 0.000
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B.1- ARCH effects

Copper 21a -0.007 0.013 0.596 -0.042 0.044 0.337 -0.008 0.011 0.435

Aluminum 22a 0.029 0.015 0.062 0.177 0.034 0.000 0.041 0.012 0.000

Tin 23a 0.004 0.014 0.787 0.022 0.041 0.591 -0.019 0.009 0.036

Lead 24a 0.006 0.013 0.962 -0.017 0..034 0.619 0.009 0.010 0.342

Zinc 26a 0.004 0.012 0.767 0.023 0.038 0.555 -0.003 0.010 0.750

Nickel 27a 0.007 0.012 0.545 -0.000 0.030 0.995 0.016 0.007 0.024

B.2- GARCH effects

Copper 21b 0.070 7.188 0.992 -0.641 0.023 0.000 -0.209 0.023 0.000

Aluminum 22b 0.972 0.005 0.000 0.548 0.009 0.000 0.482 0.021 0.000

Tin 23b 0.111 11.373 0.992 -0.316 0.040 0.000 0.165 0.015 0.000

Lead 24b 0.074 7.598 0.992 0.011 0.027 0.691 -0.054 0.017 0.001

Zinc 25b 0.068 6.992 0.992 0.988 0.028 0.000 0.399 0.024 0.000

Nickel 26b 0.068 7.044 0.992 0.253 0.024 0.000 0.176 0.019 0.000

B.3- Others

Asymmetry 2g -0.016 0.020 0.423 -0.107 0.046 0.020 -0.031 0.011 0.00

Unconditional Correlation with

Aluminum 21r 0.706 0.006 0.000

Tin 32r 0.420 0.004 0.000

Lead 42r 0.567 0.005 0.000

Zinc 52r 0.646 0.006 0.000

Nickel 62r 0.493 0.004 0.000

Log Likelihood -45375.37 -40853.87 -40228.84

AIC 22.317 20.241 19.800

SBC 22.505 20.452 19.990

Table 5. MGARCH parameter estimates - Tin -

Diagonal CCC DCC

Coeff Std. Error P-value Coeff Std. Error P-value Coeff Std. Error P-value

Panel A: Mean equation

Copper(-1) 31j -0.008 0.011 0.487 -0.005 0.012 0.668 -0.004 0.010 0.673

Aluminum(-1) 32j -0.024 0.013 0.066 -0.024 0.015 0.101 -0.012 0.012 0.292

Tin(-1) 33j -0.002 0.011 0.851 -0.006 0.012 0.606 0.008 0.010 0.428

Lead(-1) 34j -0.006 0.010 0.551 -0.012 0.010 0.234 -0.017 0.009 0.040

Zinc(-1) 35j -0.018 0.010 0.084 -0.018 0.011 0.112 -0.015 0.009 0.104

Nickel(-1) 36j 0.035 0.008 0.000 0.037 0.009 0.000 0.036 0.007 0.000

Panel B: Variance equation

Constant 0.244 0.039 0.000 -0.157 0.033 0.000 0.009 0.006 0.114

B.1- ARCH effects

Copper 31a 0.103 0.079 0.189 0.153 0.058 0.0099 0.020 0.018 0.252
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Aluminum 32a -0.119 0.078 0.126 0.011 0.077 0.887 -0.040 0.017 0.021

Tin 33a 0.248 0.051 0.000 0.214 0.031 0.000 0.072 0.010 0.000

Lead 34a 0.042 0.057 0.461 -0.086 0.041 0.037 0.009 0.011 0.403

Zinc 35a 0.009 0.077 0.907 -0.029 0.054 0.593 -0.013 0.015 0.375

Nickel 36a -0.007 0.043 0.878 -0.040 0.034 0.238 0.007 0.010 0.459

B.2- GARCH effects

Copper 31b -0.071 9.404 0.993 0.659 0.021 0.000 -0.018 0.015 0.996

Aluminum 32b 0.074 7.598 0.992 0.011 0.027 0.691 -0.054 0.017 0.000

Tin 33b 0.722 0.011 0.000 0.237 0.016 0.000 0.880 0.013 0.000

Lead 34b 0.140 6.989 0.983 -0.472 0.060 0.000 0.031 0.020 0.119

Zinc 35b 0.148 7.366 0.983 5.685 0.153 0.00 -0.000 0.021 0.989

Nickel 36b 0.125 6.236 0.983 1.045 0.082 0.000 0.017 0.021 0.426

B.3- Others

Asymmetry 3g 0.0273 0.074 0.713 0.082 0.050 0.101 0.003 0.012 0.767

Unconditional Correlation with

Aluminum 31r 0.453 0.004 0.000

Tin 32r 0.420 0.004 0.000

Lead 43r 0.390 0.003 0.000

Zinc 53r 0.418 0.005 0.000

Nickel 63r 0.402 0.003 0.000

Log Likelihood -45375.37 -40853.87 -40228.84

AIC 22.317 20.241 19.800

SBC 22.505 20.452 19.990

Table 6. MGARCH parameter estimates - Lead -

Diagonal CCC DCC

Coeff Std. Error P-value Coeff Std. Error P-value Coeff Std. Error P-value

Panel A: Mean equation

Copper(-1) 41j -0.030 0.014 0.032 -0.025 0.012 0.046 -0.012 0.012 0.309

Aluminum(-1) 42j -0.091 0.017 0.000 -0.096 0.015 0.000 -0.082 0.014 0.000

Tin(-1) 43j -0.019 0.013 0.149 -0.012 0.012 0.326 -0.017 0.010 0.106

Lead(-1) 44j 0.079 0.012 0.000 0.071 0.011 0.000 0.083 0.009 0.000

Zinc(-1) 45j 0.034 0.013 0.012 0.023 0.011 0.040 0.007 0.010 0.518

Nickel(-1) 46j -0.019 0.010 0.058 -0.014 0.009 0.124 -0.011 0.008 0.160

Panel B: Variance equation

Constant 0.185 0.042 0.000 -0.297 0.0612 0.000 0.546 0.036 0.000

B.1- ARCH effects

Copper 41a 0.004 0.070 0.473 -0.062 0.060 0.3306 0.014 0.032 0.663

Aluminum 42a -0.095 0.063 0.130 -0.127 0.072 0.078 0.001 0.035 0.983

Tin 43a 0.034 0.047 0.461 -0.009 0.053 0.869 -0.024 0.022 0.288
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Lead 44a 0.187 0.043 0.000 0.173 0.032 0.000 0.126 0.021 0.000

Zinc 45a 0.028 0.056 0.614 -0.032 0.053 0.546 -0.062 0.027 0.023

Nickel 46a -0.030 0.048 0.536 0.008 0.056 0.852 0.009 0.018 0.607

B.2- GARCH effects

Copper 41b -0.272 12.804 0.983 0.797 0.054 0.000 -0.303 0.019 0.000

Aluminum 42b -0.387 18.276 0.983 0.488 0.055 0.000 -1.901 0.086 0.000

Tin 43b -0.379 17.848 0.983 -0.007 0.061 0.905 0.517 0.031 0.000

Lead 44b 0.839 0.006 0.000 0.443 0.008 0.000 0.583 0.019 0.000

Zinc 45b -0.235 11.070 0.983 0.014 0.016 0.371 1.356 0.064 0.000

Nickel 46b -0.251 11.839 0.983 -0.057 0.046 0.216 0.118 0.014 0.000

B.3- Others

Asymmetry 4g -0.025 0.051 0.621 0.041 0.049 0.412 -0.020 0.022 0.384

Unconditional Correlation 
with

Aluminum 41r 0.630 0.005 0.000

Tin 42r 0.567 0.005 0.000

Lead 43r 0.390 0.003 0.000

Zinc 54r 0.678 0.009 0.000

Nickel 64r 0.520 0.004 0.000

Log Likelihood -45375.37 -40853.87 -40228.84

AIC 22.317 20.241 19.800

SBC 22.505 20.452 19.990

Table 7. MGARCH parameter estimates - Zinc -

Diagonal CCC DCC

Coeff Std. Error P-value Coeff Std. Error P-value Coeff Std. Error P-value

Panel A: Mean equation

Copper(-1) 51j -0.026 0.013 0.035 -0.007 0.011 0.543 0.002 0.008 0.850

Aluminum(-1) 52j -0.048 0.015 0.001 -0.061 0.014 0.000 -0.029 0.010 0.005

Tin(-1) 53j 0.001 0.012 0.883 0.008 0.011 0.514 -0.005 0.008 0.539

Lead(-1) 54j 0.000 0.010 0.979 0.003 0.010 0.724 0.008 0.006 0.195

Zinc(-1) 55j -0.009 0.011 0.455 -0.022 0.011 0.039 -0.028 0.008 0.000

Nickel(-1) 56j -0.011 0.009 0.227 -0.005 0.008 0.535 -0.008 0.006 0.195

Panel B: Variance equation

Constant 0.014 0.011 0.222 0.193 0.021 0.000 -0.010 0.005 0.062

B.1- ARCH effects

Copper 51a -0.009 0.015 0.576 0.025 0.032 0.431 -0.007 0.008 0.437

Aluminum 52a -0.014 0.024 0.557 0.001 0.028 0.961 -0.001 0.009 0.903

Tin 53a 0.000 0.016 0.973 -0.083 0.025 0.001 0.009 0.007 0.200

Lead 54a 0.005 0.014 0.746 0.038 0.018 0.036 0.003 0.005 0.550

Zinc 55a 0.034 0.020 0.087 0.043 0.021 0.041 0.036 0.010 0.000
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Nickel 56a 0.001 0.013 0.961 0.001 0.016 0.929 -0.014 0.005 0.005

B.2- GARCH effects

Copper 51b -0.102 7.896 0.989 0.794 0.023 0.000 0.012 0.016 0.442

Aluminum 52b -0.140 10.929 0.989 0.417 0.023 0.000 0.014 0.018 0.422

Tin 53b -0.156 12.223 0.989 0.479 0.030 0.000 -0.016 0.016 0.284

Lead 54b -0.092 7.193 0.989 0.192 0.012 0.000 -0.006 0.011 0.581

Zinc 55b 0.975 0.006 0.000 0.142 0.014 0.000 0.938 0.0123 0.000

Nickel 56b -0.097 7.532 0.989 -0.284 0.001 0.000 0.055 0.013 0.000

B.3- Others

Asymmetry 5g 0.003 0.020 0.873 -0.027 0.020 0.176 -0.005 0.007 0.487

Unconditional Correlation with

Aluminum 51r 0.707 0.005 0.000

Tin 52r 0.646 0.006 0.000

Lead 53r 0.418 0.005 0.000

Zinc 54r 0.678 0.009 0.000

Nickel 65r 0.551 0.004 0.000

Log Likelihood -45375.37 -40853.87 -40228.84

AIC 22.317 20.241 19.800

SBC 22.505 20.452 19.990

Table 8. MGARCH parameter estimates - Nickel -

Diagonal CCC DCC

Coeff Std. Error P-value Coeff Std. Error P-value Coeff Std. Error P-value

Panel A: Mean equation

Copper(-1) 61j 0.023 0.018 0.209 0.051 0.017 0.002 0.040 0.014 0.005

Aluminum(-1) 62j -0.093 0.024 0.000 -0.111 0.019 0.000 -0.076 0.017 0.000

Tin(-1) 63j 0.005 0.017 0.747 0.021 0.016 0.218 0.015 0.013 0.256

Lead(-1) 64j -0.047 0.014 0.000 -0.063 0.013 0.000 -0.049 0.011 0.000

Zinc(-1) 65j 0.012 0.017 0.467 -0.001 0.015 0.946 -0.016 0.013 0.235

Nickel(-1) 66j -0.007 00.012 0.537 0.007 0.012 0.534 0.018 0.009 0.060

Panel B: Variance equation

Constant 6q 0.074 0.022 0.000 0.594 0.101 0.000 0.673 0.04 0.000

B.1- ARCH effects

Copper 61a 0.037 0.023 0.115 0.056 0.083 0.502 0.095 0.032 0.003

Aluminum 62a -0.079 0.029 0.008 -0.064 0.098 0.512 -0.046 0.033 0.160

Tin 63a -0.017 0.016 0.267 -0.095 0.073 0.194 -0.047 0.020 0.019

Lead 64a -0.000 0.0162 0.982 -0.009 0.054 0.869 -0.039 0.020 0.055

Zinc 65a 0.027 0.018 0.126 -0.026 0.071 0.712 -0.008 0.026 0.755

Nickel 66a 0.028 0.010 0.008 0.134 0.027 0.002 0.064 0.014 0.000

B.2- GARCH effects
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Copper 61b -0.202 0.994 2.821 0.071 0.000 -0.070 0.058 0.224

Aluminum 62b -0.288 39.961 0.994 1.077 0.071 0.000 -1.140 0.086 0.00

Tin 63b -0.272 37.560 0.994 0.486 0.061 0.000 0.120 0.037 0.001

Lead 64b -0.195 27.923 0.994 0.102 0.040 0.011 0.092 0.030 0.002

Zinc 65b -0.198 27.337 0.994 -2.768 0.096 0.000 0.568 0.048 0.000

Nickel 66b 0.969 0.002 0.000 0.532 0.009 0.000 0.871 0.014 0.000

B.3- Others

Asymmetry 6g 0.003 0.014 0.823 2.886 0.026 0.000 8.424 0.253 0.000

Unconditional Correlation with

Aluminum 61r 0.563 0.007 0.000

Tin 62r 0.493 0.004 0.000

Lead 63r 0.402 0.003 0.000

Zinc 64r 0.520 0.004 0.000

Nickel 65r 0.551 0.004 0.000

Log Likelihood -45375.37 -40853.87 -40228.84

AIC 22.317 20.241 19.800

SBC 22.505 20.452 19.990

Table 9. Diagnostic tests for standardized residuals

( )20LB p value- ( )2 20LB p value-

Diagonal

Copper 29.140 0.085 15.570 0.743

Aluminum 12.952 0.879 25.482 0.184

Tin 25.878 0.170 17.977 0.589

Lead 27.581 0.120 25.005 0.201

Zinc 14.736 0.791 22.675 0.305

Nickel 36.716 0.012 46.666 6.52e-004

CC

Copper 25.885 0.170 207.149 4.31e-033

Aluminum 13.398 0.860 75.233 2.49e-008

Tin 23.398 0.270 19.540 0.487

Lead 34.031 0.026 59.264 9.25 e-006

Zinc 15.176 0.766 65.070 1.14 e-006

Nickel 38.924 0.007 199.654 1.32 e-031

DCC

Copper 21.414 0.373 47.343 5.25 e-004

Aluminum 11.415 0.935 74.082 3.87 e-008

Tin 20.549 0.424 20.159 0.448

Lead 29.257 0.083 50.596 1.82 e-004

Zinc 13.101 0.873 45.788 8.62 e-004

Nickel 30.732 0.059 43.039 0.002
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Figure 5. Conditional Correlations
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Table 9. Hedge ratio (long/short) - summary statistics -

Series              Observation     Mean        Std Error      Minimum      Maximum

HEDGES(1,1)            0
HEDGES(2,1)         4076      0.630566      0.115727      0.264615      0.967199
HEDGES(3,1)         4076      0.507234      0.173376      0.215623      1.191813
HEDGES(4,1)         4076      0.768566      0.174380      0.333055      1.838848
HEDGES(5,1)         4076      0.814677      0.159220      0.409076      1.335781
HEDGES(6,1)         4076      0.865242      0.148360      0.507566      2.132039
HEDGES(1,2)         4076      0.819414      0.168956      0.505849      1.893161

HEDGES(2,2)            0
HEDGES(3,2)         4076      0.498855      0.183644      0.193556      1.508843
HEDGES(4,2)         4076      0.770248      0.176571      0.353550      1.848327
HEDGES(5,2)         4076      0.838703      0.171274      0.401294      1.378859
HEDGES(6,2)         4076      0.862331      0.133327      0.500126      1.866763
HEDGES(1,3)         4076      0.523248      0.137742      0.180561      1.000348
HEDGES(2,3)         4076      0.396628      0.115784      0.140882      0.790594

HEDGES(3,3)            0
HEDGES(4,3)         4076      0.551568      0.151396      0.139391      1.621557
HEDGES(5,3)         4076      0.535774      0.163569      0.157625      1.218470
HEDGES(6,3)         4076      0.662150      0.193625      0.192879      1.972066
HEDGES(1,4)         4076      0.515784      0.121522      0.137081      1.015252
HEDGES(2,4)         4076      0.402483      0.112965      0.128196      0.744349
HEDGES(3,4)         4076      0.360531      0.133324      0.075685      0.933866

HEDGES(4,4)            0
HEDGES(5,4)         4076      0.605880      0.135031      0.192560      1.162611
HEDGES(6,4)         4076      0.582650      0.124375      0.157975      1.259634
HEDGES(1,5)         4076      0.656984      0.104306      0.357751      1.164959
HEDGES(2,5)         4076      0.521217      0.091080      0.313512      0.865244
HEDGES(3,5)         4076      0.419854      0.153007      0.164343      1.082035
HEDGES(4,5)         4076      0.730093      0.141572      0.350861      1.615435

HEDGES(5,5)            0
HEDGES(6,5)         4076      0.730801      0.145162      0.353114      2.223810
HEDGES(1,6)         4076      0.413421      0.111868      0.146432      0.815846
HEDGES(2,6)         4076      0.320094      0.095422      0.126423      0.647588
HEDGES(3,6)         4076      0.315438      0.152992      0.068006      0.927964
HEDGES(4,6)         4076      0.425182      0.158420      0.108793      1.225799
HEDGES(5,6)         4076      0.437466      0.146951      0.104247      0.905048

Note: 1= Copper, 2= Aluminum, 3= Tin, 4= Lead, 5= Zinc, 6=Nickel.
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Figure 6. Time-varying hedge ratios computed from DCC model
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Table 10. portfolio weights -summary statistics-.

Mean Std. dev Minimum Maximum

Aluminum/Copper 0.34 0.25 0.00 0.96
Tin/Copper 0.49 0.23 0.00 1.00

Tin/Aluminum 0.58 0.21 0.07 1.00
Lead/Copper 0.73 0.21 0.00 1.00

Lead/Aluminum 0.79 0.17 0.23 1.00
Lead/Tin 0.67 0.18 0.04 1.00

Zinc/Copper 0.67 0.25 0.00 1.00
Zinc/Aluminum 0.77 0.20 0.10 1.00

Zinc/Tin 0.59 0.23 0.00 1.00
Zinc/Lead 0.37 0.22 0.00 1.00

Nickel/Copper 0.87 0.13 0.31 1.00
Nickel/Aluminum 0.90 0.10 0.43 1.00

Nickel/Tin 0.76 0.20 0.03 1.00
Nickel/Lead 0.64 0.20 0.00 1.00
Nickel/Zinc 0.74 0.20 0.09 1.00
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