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Plastic debris is an emerging environmental threat all over the world. But 
its effect and distribution in the marine ecosystem is barely known. Micro-
plastics abundance in the marine vegetated area is about 2 to 3 times higher 
than the bare site in the ocean. Although seagrass meadows trap huge 
amount of microplastics over the ocean floor, a considerable amount of 
microplastics are also sink incorporating with the marine aggregates from 
the epipelagic zone of the ocean. Scavenging of microplastics by diatom 
aggregation decreases the sinking rate of them rather than cryptophyte. As 
we know, marine snow is the leading carbon source for zoobenthos, but the 
ubiquitous presence of microplastics damages cell of different microalgae 
which may alter the food webs of marine ecosystems.  Additionally, mi-
croplastics releases immense amount of dissolved organic carbons (DOC) 
in the surrounding seawater that stimulates the growth of heterotrophic 
microorganisms as well as their functional activity. Plastic debris result in 
outbreaks of disease in the marine environment and coral reefs are highly 
affected by it. When coral reef comes in contact with microplastics, the 
disease infestation rate of the reef increases massively. Three major disease 
viz., skeletal eroding band, white syndrome and black band of coral reef 
causes approximately 46% of reef mortality due to microplastics con-
sumption. Due to complex structure and size, the corals accumulates huge 
amount of microplastics that increases growth of pathogens by hampering 
the coral immune system. Existing scientific evidence presents that expo-
sure of microplastics in aquatic environments triggers a wide variety of tox-
ic insult from feeding disruption to reproductive performance, disturbances 
in energy metabolism throughout the ocean. The present review focused on 
the ecotoxicological effect of microplastics on primary producers of ocean, 
its uptake, accumulation, and excretion, and its probable toxicity with risk 
assessment approaches.
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1. Introduction

The invention of plastics has achieved a crucial 
status, with extensive industrial, commercial, 
municipal and medicinal applications in contem-

porary society. Marine ecosystems are subjected to pecu-
liar types of anthropogenic pollutants including plastics, 
nanoparticles, radionuclides, hydrophobic pollutants etc. 
Plastics incorporate with an enormous variety of poly-
mer types, including polyethylene (PE), polypropylene 
(PP), polystyrene (PS), polyvinylchloride (PVC), poly-
amides (PA), polyethylene terephthalate (PET) and so on 
that contaminate both marine and freshwater ecosystems. 
Accumulation of these plastic contaminants for time 
after time creates a risk to the aquatic health and living 
organisms [1,2]. In last sixty years, plastic production has 
grown very rapidly, and globally where more than 288 
million tonnes of plastic production was recorded in 
2012 [3]. Due to its cheap prize, durability and flexibility 
it is used for making several types of fishing gear that are 
responsible for microplastics pollution in ocean in differ-
ent ways [4-6]. Due to indiscriminate waste disposal and 
effluent of wastewater plastic debris are entering into the 
oceanic environment and may remain several centuries 
to mineralize [7]. According to the National Oceanic and 
Atmospheric Administration (NOAA), particles ignored 
portion from any kind of plastic debris and smaller than 
5mm in size are considered as microplastic [8]. These 
are microscopic plastic fibres, fragments and beads that 
comprises 1-5 µm size in diameter [9, 10]. Depending on 
their origin microplastics has been divided into two cat-
egories. Firstly, the primary microplastics that originates 
from textiles, paints, cosmetics, household wastewater 
as well as from different plastic industries; and secondly, 
the secondary microplastics that are departed from the 
macro plastic (bigger in size >5mm) by dint of physical 
abrasion [9]. As plastic debris and microplastics had been 
observed in all over the ocean across the world from 
epipelagic layer to bottom floor of the ocean and also in 
the different levels of the trophic web [10-16]. The low den-
sity microplastics, polystyrene, polyethylene and poly-
propylene are usually found in the surface layer of the 
water column, while the high-density plastics polyam-
ides and polyvinylchloride are tends to sink to the bot-
tom. Sometimes, due to environmental disturbance like 
storms and currents of water of pelagic region creates 
vertical mixing of these particles within the oceanic en-
vironment [17,18]. Several studies revealed that the concen-
tration of microplastics are very high in the urban coastal 
area, oceanic gyres and convergence zone of the ocean 
[19-22]. A study performed by Van-Cauwenberghe et al. [23] 

showed that a total of 10,000 particles m-3 microplastics 
covered the Belgian coast whereas about 102,000 parti-
cles m-3 are found in the Swedish coastal water body [24]. 
Another study on the North Pacific gyre revealed that 
small plastic particles exceed the phytoplankton in mass 
[25]. Moreover, Shim et al. [26] found fibers as the most 
dominant microplastic in the subtidal zone of ocean.

2. Plastics and the Marine Ecosystem

Ecological effects of microplastics on marine ecosystem 
are well studied [12,27]. Due to high sorption capabilities 
the microplastics contaminants absorb miscellaneous 
chemical substances of the epipelagic zone of ocean and 
transfer into the food webs or marine ecosystems [28]. In 
many places, microplastics contain high levels of toxic 
substances [29,30]. For example, at Brazil coast heavy met-
als adhere to microplastics was found [31,32]. At present, 
wetland playing an important role to support biodiversity 
and nutrient cycling, but also a microplastic transmission 
center of the global ecosystem [33,34]. Mangrove forests, 
seagrass meadows, saltmarshes and other marine and 
coastal vegetated area makes blue carbon ecosystem, 
which stores a significant amount of carbon in plant 
biomass as well as sediments [35]. The seagrass meadows 
of the wetland and blue carbon ecosystem plays a signif-
icant role in global carbon absorption and mitigate cli-
mate change [36]. Seagrass controls the velocity of water 
flow and enhances particles retention and sedimentation 
[37-39]. Seagrass meadows trap the particulate things rec-
ommend that it may also trap microplastics significantly 
[40].  The Dissolved Organic Carbon (DOC) pool of the 
ocean is one of the Earth’s biggest, old and refractory [41-

44] carbon pool (662Pg C) [45] and almost the same as the 
atmospheric carbon in size (828Pg C) [46]. Mainly phyto-
plankton derives DOC which enters the microbial food 
web and helps micro-heterotrophic organisms to grow 
[45, 47]. In this review, the term DOC used for biologically 
available dissolved organic carbon taken by heterotro-
phic bacteria in the daytime. Plastics release of DOC in 
the ambient seawater, as well as the biodegradation pro-
cesses and its effects, are not much studied [48].

Lower plastic concentration in the sea surface than 
expected [49,50] suggests that majority of the plastics sinks 
to the bottom [51]. A higher density of the particles is not 
always true for their vertical fluxes. Because ocean dy-
namics can mix the bottom and surface particles to the 
water column [52]. But, sinking occurs because of the par-
ticles density most of the time [1] and biofouling (e.g. col-
onization of microorganisms) process could change the 
density and reverse their buoyancy [53] and microalgae 
had found to be attached with microplastics [54]. When 
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algae become stressed (e.g. nutrient and light limitation) 
or get concentrated the release polysaccharides [55-57] 
to form sticky transparent exopolymer particles (TEP) 
[56,58] which helps to form cell aggregation. Microplastics 
incorporates these aggregates [59], which could create a 
vertical sinking of microplastics [60]. Thus phytoplankton 
and the upper trophic level grazers are mostly relying 
on these marine aggregates, this microplastic incorpora-
tion could have a considerable impact on the organisms 
which are ingesting [12,27,61-64]. Occurrence and abundance 
of plastic litters in marine environment are shown in Ta-
ble 1. 

Table 1. Abundance of plastic litters in marine environ-
ment

Saline area Location Abundance of microplastics Methods of detection

North Shore 
Channel [65] USA

1.94 items/m3 at upstream 
– 17.93 items/m3 down-

stream

Scanning Electron
Microscope Analysis

Clyde sea [66]

North 
and

West
Scotland

Average weight of fibers 
from lobster gut 0.28–0.68 

mg
FTIR Spectroscopy

Southern 
Ocean [67]

Freman-
tle to 

Hobart

44 pieces of microplastic, 
excluding fibers and ex-

panded polystyrene, were 
collected over 5 sampling 

stations; Total particle 
counts along the sampling 
stretch is 100,000 pieces 

km−2

Stereoscopic micro-
scope;

visual identification

Goa beaches 
[68] India Total of 3000 pellets

FTIR coupled with 
attenuated

total reflectance 
(ATR) for

polymer composition

Bohai sea [69] China 0.33 ± 0.34 particles/m3
Micro-Fourier trans-

form
infrared spectroscopy

Additionally, the coral reef is one of the most diversi-
fied ecosystems on earth which is threatened by disease [70]. 
The pathogens containing by plastic continuously trigger 
the diseases and increases vulnerability to the coral reef [71]. 
For instance, genus Vibrio colonizes on the polypropylene 
of marine water [54] and this devastating pathogenic bac-
terium creates white syndrome disease on corals [72]. As 
microplastic debris sinks frequently to the bottom and 
the previous studies on microbial rafting [73] suggests that 
plastic colonization level on coral reef ecosystem may 
very high.

3. Seagrass Meadows Traps Microplastics

Vegetated area microplastic abundance is much higher in 

than that in the bare site in both study area [40] (Figure 1). 
This was the first documentation of seagrass meadows 
traps and have high particle retention [39]. Seagrass beds 
create high roughness in the bottom layer and increase 
boundary friction which reduces the water flow [74]. The 
water flow is 2-10 times less in the vegetated area, sedi-
ments do not resuspend much and results in high sediment 
and organic particles accumulation [39,75-80]. 

Figure 1. Microplastic abundance in the vegetated and 
bare site of the study area [40]  

Seagrass canopy loss the particle’s momentum by 
trapping particles through leaves and sinks them under 
the bed [74,81]. In a similar way, the microplastic could 
be trapped in the vegetated area due to less flow in the 
bottom and caught by leaves. There could be more accu-
mulation of stacked sediments when leaves are buried [40]. 
The intertidal mudflats have lower physical turbulence 
where microplastic abundance is higher than from the 
exposed area [82] which is the similar findings by Huang 
et al. [40]. Another fact that the microplastic trapping by 
blue carbon ecosystem can explain their accumulation, 
like the mangrove of the Arabian Gulf and Red Sea [83]. 
Hence, seagrass meadows may be considered as the stor-
age of microplastic of the marine environment [40], the 
anthropogenic contaminants can affect the living organ-
isms of that ecosystem.

4. Microbial Activity

High- and low-density polyethylene (HDPE and LDPE), 
polypropylene (PP) and packaging polyethylene (PE) had 
been used for the experiment shows that these types of 
plastics leaches major part DOC when first contact with the 
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seawater. During the experiment within first 200h almost 
half of the leached DOC has lost [48] (Figure 2). 

Figure 2. Loss of DOC over time using LDPF [48] 

Karapanagioti and Klontza [84], documented the plas-
tics sorption and desorption capacity, thus plastics could 
reabsorbed the leached DOC until it gets equilibrium [48]. 

Organic compounds sorption by plastics can be very fast. 
Because, Bakir et al. [85] found that floating polyethylene 
reabsorbs organic pollutants and gets equilibrium within 
24 to 48 hours. However, other experiments documented 
more than 20 days [84]. In Romera-Castillo et al.[48] study it 
reached after 200 hours and may be with including DOC 
already been in the water. In nature, there could be a com-
petition between bacteria and plastics to absorb natural 
DOC as bacterial abundance increased over time in the 
experiment (Figure 3) which may disrupt the other trophic 
level process [48].

Figure 3. Bacterial abundance during the incubation with 
plastic leachates (cell mL-1) during the incubation of 

DOC leached from the plastics [48]

Carbon cycle and microbial activity influences by DOC 
leaching from plastics. The bioavailable DOC was higher 
in the dark than in the light (artificial solar radiation). Bac-
terial community stimulates in the dark condition (Figure 
3), indicates they utilizes DOC than in the light condition 
[48]. Because, the radicles produce by plastics photo deg-
radation [86] which could inhibit the growth of bacteria [87]. 
But, in the higher plastic concentrated area leaching DOC 

and their microbial activity could be significant in the near 
shore area or subtropical gyres [48].

5. Distribution and Impact on Microalgae

The Cryptophyte Rhodomonus salina and the diatom 
Chaetoceros neogracile aggregates were exposed to mi-
croplastic. R. salina aggregates showed eighteen times 
more affinity for microplastic beads than C. neogracile [60]. 
One reason could be R. salina aggregates are more perme-
able and small particles get more encountered through the 
aggreagtes [88]. Again, extracellular polymeric substance 
(EPS) of algae establishes hydrogen bond with the parti-
cles to facilitate hetero aggregation [89,90] with the interac-
tion of the algal cells [91] (Figure 4). This kind of hetero 
aggregation may cause physical damage, membrane 
structure may alter [92], even cause damage of cell wall 
[29]. Besides, micro particles could cause light attenuation 
and reduce the nutrient uptake and gas exchange ability of 
algae which may consequent adverse impact on algal pho-
tosynthesis and respiration [89].

Figure 4. Algae and microplastic aggregation (Hete-
ro aggregation). Chlorella pyrenoidosa (A) exposed to 

0.1 μm PS microplastics (100 mg/L) and (B) exposed to 
1.0 μm PS microplastics (100 mg/L) [91]

Incorporation with the microbeads the density of R. sali-
na aggregates get higher and sinking rate increased than C. 
neogracile aggregates. In contrast, C. neogracile incorpo-
rates with low density microplastics and the overall density 
of the aggregates reduced [60]. The microbeads incorporating 
with the phytoplankton aggregates suggests that these ag-
gregates potentially act as microplastic sinking and respon-
sible for distribution [60]. Lack of plastic in the surface ocean 
[49, 50] and particles higher concentration in the bottom [51] 
can be explained by this. Phytoplankton aggregates contain 
microplastics and it may have a significant impact on the 
marine organisms [60]. Because, microplastics could be more 
approachable and ingested by the zoobenthos associated 
with the phytoplankton aggregates [27] as the filter feeders 
rely mostly on marine snow as carbon source [60]. And this 
may result in more microplastics access to the food chain 
[93]. Thus, it poses a serious threat to the biota and eventual 
ecological niche imbalance. Impacts of microplastics on 
different marine biota are shown in Table 2.
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Table 2. Observed ecotoxicity of microplastics in marine 
algal community

Algae
Microplastics 

size/concentra-
tion

Duration 
of Expo-

sure

End 
points Observations

Tetraselmis 
chuii

(Microal-
gae) [94]

fluorescent red 
polyethylene
microspheres 

(1–5 μm - 0.046 
to 1.472 mg/l),
Copper conc. 

Ranging
from 0.02 to 
0.64 mg/l,

96h
Growth 
inhibi-

tion

no significant growth 
rate inhibition

Skeletone-
ma

costatum 
(Diatom) 

[69]

polyvinyl 
chloride (PVC) 
microplastics 
of 1 μm and 1 

mmsize

96h
Growth 
inhibi-

tion

39.7% growth inhibi-
tion in 1 μm particle 
exposure; no effects 

on
algal growth in 1 

mm size. Significant 
adsorption and

aggregation
Rhodomo-
nas baltica
(Microal-
gae) [95]

fluorescent 
polystyrene

particles (1–5 
μm)

60 min
Uptake 

and 
motility

Increased uptake; 
bio-fouling forma-

tion

6. Coral Disease

About 17 genera of reef forming corals were found in 
contact with the plastics in different Asia-pacific regions 
[96]. Intensity of causing disease increases from about 4% 
to about 89% in presence of plastic debris [96] (Figure 5). 
Altizer et al. [97] demonstrate that terrestrial pollutants out-
break diseases in the marine environment and about 80% 
of the marine plastic waste comes from land [92]. It is also 
in consideration that disease effect differs in the different 
reef building corals in presence of plastic debris (Figure 5). 

Figure 5. Coral morphological complexity influences the 
risk of plastic debris and disease. Tabular type corals are 
more likely to contact with plastic debris and affected by 

disease [96]

Because, corals with more structural complexity are 
the microhabitats for the organisms associated with coral 
reefs forming disease [96]. Lamb et al. [96] found three ma-
jor diseases which cause rapid coral reef mortality: white 
syndromes (17% mortality), skeletal eroding band (24% 
mortality) and black band disease (5% mortality).  Plas-
tics not only cause physical damage of the corals, one of 
the major reasons could be abundance of pathogens and 
microbial activity in the high plastic concentrated area [48]. 

Plastic also inhibits light penetration into the water which 
is essential for some coral forming organisms could be 
another reason of global coral reef decreasing.

7. Conclusion

The distribution of plastic debris is higher in the vegetated 
bottom area that at the sea surface in the ocean. Seagrass 
and other plants act as filters for trapping the plastics. 
Plastic debris creates shading and triggers a favourable 
environment for microbial growth in the plastic concen-
trated area. Additionally, microplastics incorporate with 
marine snow sinks down and threating the overall biodi-
versity as it can cause damage of microalgal cell and dis-
ease to heterotrophic organisms. At present coral reefs are 
in very vulnerable to plastic contamination. But, how and 
what types of diseases causing to the other marine living 
organisms is not studied at all. It could be very important 
to do further research on that specific area (e.g. effects of 
microplastic on marine heterotrophic organisms). Most 
of the scientists believe that only the proper plastic waste 
management with strict law can stop this devastating ma-
rine pollution.
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