

Journal of Geriatric Medicine

https://journals.bilpubgroup.com/index.php/jgm

Research Article

Factors influencing nocturia in benign prostatic hyperplasia risk population: Results based on NHANES(2017-2020)

Bo-tao TANG^{1,2} Yu CHEN¹ Ze-sen LIN⁴ Xue-jin YE¹ Shu-ping HUANG¹ Qin-yun YANG¹ Fang HU¹ Chang-jie SHANG ¹ Min ZHU^{1*} Ze-chao ZHANG^{1*}

¹ Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China

² Guangxi Center of Clinical Medicine for Kidney Diseases

³ The first Affiliated Hospital to Guangxi University of Chinese Medicine, Nanning, 530000, China

⁴ The Second People's hospital of Zhaoqing, Zhaoqing, 526000, China

ABSTRACT

Background: To explore the influencing factors of nocturia in benign prostatic hyperplasia (BPH) risk population. Methods: Data from the National Health and Nutrition Examination Survey (NHANES) between the years 2017 and 2020 were analyzed to explore factors influencing nocturia in BPH risk population. After the inclusion of the BPH risk population over 50 years old, the data with incomplete data were excluded, and then univariate logistic regression was used to find the influencing factors for nocturia. Finally, all the influencing factors for nocturia were included for multiple logistic regression. The crucial factors were analyzed by ROC. Results: A total of 15,560 is managed. Among these, 1754 men are classified as BPH risk group. Depression rating level, history of elevated blood pressure, obesity, daytime sleepiness, sleep problems, depression, leaked urine during non-exercise, leaked urine before the toilet, leaked urine during exercise, frequency of urine leakage, age and weekday sleep are found to be associated with nocturia by univariate logistic regression (p < 0.05). Depression rating level, obesity and leak urine before toilet are risk factors for nocturia by multiple logistic regression (p < 0.05). Age (adjusted OR: 1.020, 95% CI 1.006–1.035, p = 0.006). PHQ-9 (adjusted OR: 1.100, 95% CI 1.068–1.133, p = 0.000), and BMI (adjusted OR: 1.029 95% CI 1.007–1.052, p = 0.010) as continuous variables are still risk factors for nocturia (p < 0.05). ROC analysis shows that the highest AUX of PHQ-9 is 0.633, frequency of urine leakage 0.571, BMI 0.553, and Age 0.549. Conclusions: The nocturia symptoms of the BPH risk population are caused by multiple factors. Among the comprehensive effects of various influencing factors, age, PHQ-9, BMI, and frequency of urine leakage play a major role. The most relevant is PHQ-9, that is, the level of depression score.

Keywords: BPH risk population; Real world study; Nocturia; Logistic Models; NHANES

*CORRESPONDING AUTHOR:

Min ZHU, No. 10 Huadong Road, Xingning District, Nanning, 530000, PR China. E-mail address: chao616317728@foxmail.com (Min ZHU); edwardbangong@163.com (Ze-chao ZHANG).

ARTICLE INFO

Recieved: 1 Martch 2024 | Accepted: 21 March 2024 | Published: 30 March 2024 DOI: 10.30564/jgm.v5i1.6276

CITATION

Z. C. Zhang., Y. Chen., B. T. Tang., X. J. Ye., S. P. Huang., et al., 2024. Factors influencing nocturia in benign prostatic hyperplasia risk population: Results based on NHANES(2017-2020). Journal of Geriatric Medicine. 6(1): 7–17. DOI: 10.30564/jgm.v5i1.6276

COPYRIGHT

Copyright © 2023 by the author(s). Published by Bilingual Publishing Group. This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/).

Abbreviations

BPH benign prostatic hyperplasia
NHANES National Health and Nutrition Examination Survey
LUTS Lower urinary tract symptoms
ROC receiver operating characteristic
AUC Area under curves
OR adjusted odds ratio
CI confdence interval
FOUL frequency of urine leakage
BMI body mass index
PHO-9 Patient Health Questionnaire 9

1. Introduction

Benign prostatic hyperplasia (BPH) is a common disease, which mainly occurs in middle-aged and older men. In recent years, with the aggravation of the aging of the population, the incidence of the disease has also increased, which not only affects the physical and mental health of patients but also reduces the quality of life, causing an economic burden on social medical care^[1]. BPH is becoming more and more common among men over the age of 50. This is the fourth most common diagnosis for older men^[2]. One-quarter of men over 50 years old are affected, one third are affected when they are over 60 years old, and one-half of men over 80 years old are affected^[3]. Men over 50 years old are at risk of BPH and become BPH risk population. BPH is a non-malignant enlargement of the prostate. Its clinical manifestations are lower urinary tract symptoms (LUTS) or acute urinary retention (AUR). The management of troublesome LUTS is the main focus of treatment intervention. In some cases, patients with drug treatment failure or worsening symptoms may need minimally invasive or surgical operations^[4], which further increases the economic and psychological burden of patients.

The nocturia \geq two times, which is a common lower urinary tract symptom of BPH, which exceeds the threshold and causes the burden of quality of life^[5]. This definition is adopted in this study. Studies has shown that nocturia has a serious impact on the quality of life of patients in the United States and many European countries^[6]. The study found that nocturia affects not only the overall health and daytime function but also the total mortality of patients with nocturia who urinate three times or more at night is significantly higher than that of the general population. The risk of falls and injuries at night among people with nocturia is twice that of ordinary people, because frequent nocturia reduces the quality of life, productivity, and may disturb their partners' sleep and affect their health. The lack of sleep caused by nocturia leads to fatigue, mood changes, lethargy, impaired productivity, inattention, and cognitive dysfunction, and is also related to decreased physical health, obesity, diabetes, depression, and heart disease. The annual loss to Americans due to productivity losses and sick leave associated with nocturia is estimated at \$62.5 billion^[7,8]. Identifying the main influencing factors of nocturia in the BPH risk population is of great significance for further improving the quality of life of this population and reducing the social medical economic burden. This study incorporates the real-world data of NHANES from 2017 to 2020. Statistical analysis was conducted through logistic regression analysis and ROC. The analysis of the influencing factors of nocturia in the BPH risk population can provide a theoretical basis for formulating health education and intervention measures for the BPH risk population.

2. Materials and methods

2.1 Study subjects

The population survey data from 2017 to 2020 are obtained from NHANES (https://www.cdc.gov/ nchs/nhanes/index.htm), including personnel number SEQN, age, race, country of birth, education level (Education level - Adults 20+), marital status, urine flow rate (mL/min), frequency of urine leakage (How often have urinary leakage?), leak urine during exercise(Leak urine during physical activities?), Leak urine before toilet (Urinated before reaching the toilet?), Leak urine during non-exercise (Leak urine during nonphysical activities), number of nocturia (How many times urinate in night?), Patient Health

Table 1 continued

Questionnaire (Have little interest in doing things. Feeling down, depressed, or hopeless. Trouble sleeping or sleeping too much. Feeling tired or having little energy. Poor appetite or overeating.

Feeling bad about yourself. Trouble concentrating on things. Moving or speaking slowly or too fast. Thoughts you would be better off dead)^[9], sleep problems (Ever told doctor had trouble sleeping?), Daytime sleepiness (How often do you feel overly sleepy during the day?), drinking history (Ever had a drink of any kind of alcohol), height (inches), weight (pounds), history of elevated blood pressure (Ever told you had high blood pressure?), history of elevated blood lipids (Doctor told you - high cholesterol level?).

2.2 Data processing

Height and weight were converted into BMI (kg/m²). The depression scoring items were integrated through the PHQ-9 depression rating scale. At the same time, continuous variables and classified variables were assigned by segments (**Table 1**).

 Table 1 - Variable assignment table

Variable	Encode	Classification Description	
<u>C1</u>	0	No	
Sleep problems	1	Yes	
	1	50 - 59	
A ==(2	60 - 69	
Age(years)	3	70 - 79	
	4	≥80	
	1	Mexican American	
	2	Other Hispanic	
	3	Non-Hispanic White	
Race	4	Non-Hispanic Black	
	5	Non-Hispanic Asian	
	6	Other Race - Including Multi- Racial	
Constant Chinth	0	Non-US	
Country of birth	1	USA	
	1	Married/Living with Partner	
Marital status	2	Widowed/Divorced/Separated	
	3	Never married	

	Tuble T contr				
Variable	Encode	Classification Description			
	1	Minimal, 0–4			
D	2	Mild, 5–9			
Depression rating	3	Moderate, 10-14			
	4	Moderately severe, 15-19			
	5	Severe, 20–27			
Drinking history	0	No			
Diffiking history	1	Yes			
Obagity	0	BMI<30			
Obesity	1	BMI≥30 ¹⁰			
History of	0	No			
elevated blood pressure	1	Yes			
History of	0	No			
elevated blood lipids	1	Yes			
N	0	≤2			
Nocturia	1	>2			
	1	0≤Urine flow rate level<1			
	2	1≤Urine flow rate level<2			
Urine flow rate	3	2≤Urine flow rate level<3			
level(ml/min)	4	3≤Urine flow rate level<4			
	5	4≤Urine flow rate level<5			
	6	5≤Urine flow rate level			
	0	Never			
	1	Rarely - 1 time a month			
Doutimo doony	2	Sometimes - 2-4 times a month			
Daytime sleepy	3	Often- 5-15 times a month			
	4	Almost always - 16-30 times a month			
	1	Never			
	2	Less than once a month			
Frequency of	3	A few times a month			
urine leakage	4	A few times a week			
	5	Every day and/or night			
	1	Less than 9th grade			
	2	9-11th grade (Includes 12th grade with no diploma)			
Education level	3	High school graduate/GED or			
		Some college or AA degree			
		College graduate or above			
	0	Normal PHO_0<10			
Depression	1	Doprossion DUO 0~10			
	0	Weekday sleen<8h			
Weekday sleep(h)		West to story 01			
	1	Weekday sleep≥8h			

Tabl	e 1	continued
------	-----	-----------

Variable	Encode	Classification Description
Westernd stern(h)	0	Weekend sleep<8h
weekend sleep(n)	1	Weekend sleep≥8h
Leak urine during	0	No
exercise	1	Yes
Leak urine before	0	No
toilet	1	Yes
Leak urine during	0	No
non-exercise	1	Yes

Data filtering

Data incorporation

Men aged 50 years or older.

Data elimination

Data that do not meet the Data incorporation, incomplete data.

Specific Data filtering process

2017-2020 NHANES data: 15560 persons in total.

7721 males after excluding females.

2465 persons remained after excluding males under 50 years old.

After excluding the following missing items, including the data of urine flow rate, PHQ-9, sleep duration, drinking history, height, weight, history of elevated blood pressure, history of elevated blood lips, and Daytime sleep, there are 1754 people left (**Fig 1**).

Fig 1 - Data filtering

2.3 Statistical analysis

Statistical analysis was performed using SPSS

26.0 (IBM Corp.). Non-normally distributed data were expressed as median (interquartile range) and compared using the Mann-Whitney U test. Categorical variables were expressed as frequencies and compared using the chi-square or Fisher's exact test. Logistic regression analysis was used to determine what was an independent predictor of nocturia in the total study population. Variables with an unadjusted p-value < 0.05 in the univariate analysis were subsequently evaluated using a multivariate logistic regression model. Receiver operating characteristic (ROC) curves were used to determine the best cut-off values for predicting factors in the study population, respectively. DeLong's test was used to compare the area under curves (AUCs) of the three ROC curves. A *p*-value < 0.05 is the criteria for statistical significance in this analysis.

Picture processing

The results of logistic regression are plotted with Graph Pad Prism 8 software.

3 Results

3.1 Data characteristics

The data characteristics of NHANES from 2017 to 2020 are shown in **Table 2**.

Variable	Encode	Nocturia	Normal	- Vales	
variable	Encode	N=374	N=1380	– p value	
	1	95	440		
4	2	139	521		
Age	3	83	274	- 0.014	
	4	57	145	-	
Race	1	35	114		
	2	36	119	_	
	3	151	598	0 174	
	4	111	345	0.1/4	
	5	26	145	_	
	6	15	59	_	
Country of hirth	0	82	353	0.147	
Country of birth	1	292	1027	- 0.14/	

Table 2. Data characteristics.

Table 2 commute

Variable	Encode	Nocturia	Normal	— p Value	
		N=3/4	N=1380		
	1	35	111	_	
Education level	2	47	142	_	
	3	102	331	0.117	
	4	111	423		
	5	79	373		
	1	240	960	_	
Marital status	2	104	330	0.134	
	3	30	90		
	1	213	953	_	
En man of	2	40	130	_	
urine leakage	3	41	139	0.000	
	4	33	93	_	
	5	47	65		
Leak urine during	0	322	1290	0.000	
exercise	1	52	90	- 0.000	
Leak urine before	0	220	1034	0.000	
toilet	1	154	346	- 0.000	
Leak urine during	0	316	1261	0.000	
non-exercise	1	58	119	- 0.000	
Sleep problems	0	230	997	0.000	
	1	144	384	- 0.000	
	0	64	278		
	1	75	373		
Daytime sleepy	2	121	442	0.001	
	3	81	202		
	4	33	85		
	0	12	71		
Drinking history	1	362	1309	- 0.118	
	0	227	990		
Obesity	1	147	390	- 0.000	
History of	0	144	660		
elevated blood pressure	1	230	720	- 0.001	
History of	0	163	654	0.100	
lipids	1	211	726	- 0.190	
Westerer	0	183	765	0.025	
weekday sleep	0	191	615	- 0.025	
	0	142	580		
Weekend sleep	1	232	800	- 0.157	

			Table 2 c	ontinued	
Variable	Encodo	Nocturia	Normal	n Value	
variable	Encode	N=374	N=1380	- p value	
	1	248	957		
	2	92	30	_	
Urine flow rate	3	20	76		
level	4	9	25	- 0.000	
	5	2	12	_	
	6	3	10	_	
Depression	0	320	1307	0.000	
	1	54	71	- 0.000	
	1	251	1156		
Depression rating level	2	67	153	_	
	3	35	57	0.000	
	4	14	8	_	
	5	5	6	-	

Univariate logistic regression analysis

There are 374 people with nocturia, accounting for 21.32%. Age, Dependence rating level, History of elevated blood pressure, Obesity, Daily sleep, Sleep problems, Dependence, Leak urine during exercise, Leak urine before toilet, Leak urine during non-exercise, Frequency of urine leakage, Weekday sleep are found to be correlated with the presence of nocturia (p < 0.05) (**Table 3, Fig 2**).

Table 3 - Univariate logistic regressio

Variable	Encode	p Value	OR	95% C	I
	NA	0.015	NA	NA	NA
1 50	2	0.153	1.236	0.924	1.652
Age	3	0.045	1.403	1.008	1.953
	4	0.002	1.821	1.247	2.658
	NA	0.179	NA	NA	NA
	2	0.957	0.985	0.579	1.676
Page	3	0.360	0.822	0.541	1.250
	4	0.833	1.048	0.678	1.619
	5	0.061	0.584	0.332	1.026
	6	0.588	0.828	0.419	1.637
Country of birth	NA	0.147	1.224	0.931	1.608
	NA	0.119	NA	NA	NA
D1	2	0.850	1.050	0.635	1.736
Education level	3	0.919	0.977	0.629	1.518
10,01	4	0.406	0.832	0.539	1.284
	5	0.084	0.672	0.428	1.054

Journal of Geriatric Medicine	Volume 06	Issue 01	April	2024
-------------------------------	-----------	----------	-------	------

Table 3 con	ntinued						
Variable	Encode	p Value	OR	95% (CI	Variable	Encode
	NA	0.135	NA	NA	NA	Obesity	NA
Marital	2	0.083	1.261	0.970	1.638	History of	
status	3	0.197	1.333	0.862	2.064	elevated	NA
	NA	0.000	NA	NA	NA	blood	
Frequency	2	0.103	1.377	0.937	2.022	History of	
of urine	3	0.151	1.320	0.904	1.927	elevated	NA
leakage	4	0.033	1.588	1.039	2.426	blood lipids	
	5	0.000	3.235	2.161	4.844	Weekday sleep	NA
Urine leakage during	NA	0.000	2.315	1.611	3.326	Weekend sleep	NA
sports							NA
Leak urine before toilet	NA	0.000	2.092	1.647	2.657	Depression	2
Leak urine						Rating	3
during non-	NA	0.000	1.945	1.388	2.725	Level	4
exercise							5
Depression	NA	0.000	3.111	2.140	4.524		NA
Sleep	NA	0.000	1.630	1.283	2.070		2
problems						Urine flow	3
	NA	0.001	NA	NA	NA	rate level	4
Davtime	1	0.471	0.873	0.605	1.262		5
sleepy	2	0.315	1.189	0.848	1.667		6
ысеру	3	0.004	1.742	1.198	2.533	ACE	0
	4	0.035	1.686	1.038	2.740	AGE	- continuo
Drinking	NA	0.121	1.636	0.878	3.050	PHQ-9	variables
history						BMI	

	Table 3 continued				
Variable	Encode	p Value	OR	95% C	I
Obesity	NA	0.000	1.644	1.295	2.086
History of elevated blood pressure	NA	0.001	1.464	1.159	1.849
History of elevated blood lipids	NA	0.191	1.166	0.926	1.468
Weekday sleep	NA	0.025	1.298	1.033	1.632
Weekend sleep	NA	0.157	1.185	0.937	1.498
	NA	0.000	NA	NA	NA
Depression	2	0.000	2.077	1.515	2.847
Rating Level	3	0.000	2.828	1.817	4.402
	4	0.000	8.060	3.345	19.418
	5	0.027	3.838	1.162	12.674
	NA	0.785	NA	NA	NA
	2	0.225	1.183	0.901	1.554
Urine flow rate level	3	0.953	1.015	0.609	1.694
	4	0.406	1.389	0.640	3.014
	5	0.565	0.643	0.143	2.892
	6	0.825	1.158	0.316	4.238
AGE		0.002	1.020	1.007	1.033
PHQ-9	continuous	0.000	1.118	1.089	1.148
BMI	. , unuores	0.000	1.037	1.016	1.058

Fig 2 - Univariate logistic regression

(Fig 2) Forest plot of univariate logistic regression. Each variable corresponds to a line parallel to the X-axis. Segment length represents 95% CI. Both ends of the line segment represent the low value and high value of 95% CI respectively. Black blocks with different shapes represent OR.

Collinearity

If the Tolerance is less than 0.1 or the Variance Inflation Factor (VIF) is greater than 10, collinearity exists. The results suggest that there is no collinearity between the factors related to nocturia in uni-variate logistic regression (**Table 4**, **Fig 3**). That is to say, the influence of internal doping is small, so multivariate logistic regression analysis can be conducted.

Table 4 - Collinearity

Variable	Group	Tolerance	VIF
Depression Rating Level	1	0.278	3.597
History of elevated blood pressure	2	0.930	1.075
Obesity	3	0.931	1.074
Daytime sleepy	4	0.892	1.121
Sleep problems	5	0.874	1.144
Depression	6	0.295	3.386
Leak urine during non- exercise	7	0.802	1.247
Leak urine before toilet	8	0.762	1.313
Leak urine during exercise	9	0.893	1.120
Frequency of urine leakage	10	0.659	1.516
Age	11	0.876	1.142
Weekday sleep	12	0.970	1.031

(**Fig 3**) Collinearity. Dark olive green is Tolerance and red is VIF. The left Y axis is the range of VIF. The right Y axis is the range of Tolerance.

Multivariate logistic regression analysis

The results of multivariate logistic regression after collinearity diagnosis suggest that Depression rating level, Obesity, and Leak urine before toilet were related to the occurrence of nocturia (p < 0.05) (**Table 5, Fig 4**).

Table 5 - Multivariate logistic regression

Variable	Encode	p Value	Adjusted OR	95% CI	
Depression Rating Level	NA	0.002	NA	NA	NA
Depression Rating Level	2	0.002	1.719	1.227	2.408
Depression Rating Level	3	0.795	0.839	0.224	3.143
Depression Rating Level	4	0.241	2.490	0.541	11.448
History of elevated blood pressure	NA	0.379	0.893	0.695	1.148
Obesity		0.005	1.454	1.123	1.882
Daytime sleepy	NA	0.448	NA	NA	NA
Daytime sleepy	1	0.859	1.049	0.617	1.784
Daytime sleepy	2	0.427	0.812	0.486	1.358
Daytime sleepy	3	0.975	1.008	0.620	1.639
Daytime sleepy	4	0.570	1.160	0.695	1.935
Sleep problems	NA	0.149	0.821	0.628	1.073
Leak urine during non- exercise	NA	0.648	1.098	0.735	1.641
Leak urine before toilet	NA	0.007	1.492	1.116	1.994
Leak urine during exercise	NA	0.055	1.488	0.991	2.234
Frequency of urine leakage	NA	0.261	NA	NA	NA
Frequency of urine leakage	2	0.086	0.651	0.399	1.063
Frequency of urine leakage	3	0.152	0.664	0.380	1.162
Frequency of urine leakage	4	0.040	0.565	0.328	0.975

Table 3 continued						
Frequency of urine leakage	5	0.052	0.563	0.315	1.005	
Age	NA	0.082	NA	NA	NA	
Age	2	0.393	1.143	0.841	1.554	
Age	3	0.118	1.326	0.930	1.891	
Age	4	0.014	1.694	1.114	2.576	
Depression		0.172	2.427	0.681	8.657	
Weekday sleep	NA	0.070	1.251	0.982	1.595	

Fig 4 - Multivariate logistic regression

(**Fig 4**) Forest plot of Multivariate logistic regression. Each variable corresponds to a line parallel to the X-axis. Segment length represents 95% CI. Both ends of the line segment represent the low value and high value of 95% CI respectively. Blocks with different shapes represent OR.

Multivariate logistic regression analysis (continuous variables)

Continuous variables of PHQ-9, BMI, Age are used for univariate logistic regression. Age, as a continuous variable, also has an impact on nocturia in the univariate logistic region. Age is also included in this analysis to determine the specific impact of these indicators on nocturia. Age (adjusted OR: 1.020, 95% CI 1.006–1.035, p = 0.006), PHQ-9 (adjusted OR: 1.100, 95% CI 1.068–1.133, p = 0.000), and BMI (adjusted OR: 1.029 95% CI 1.007–1.052, p =

0.010), Frequency of urine leakage (p = 0.025) and weekday sleep (adjusted OR: 1.276, 95% CI 1.002-1.625, p = 0.048) are related to nocturia and are risk factors for nocturia (p < 0.05) (**Table 6**, **Fig 5**).

Table 6 - Multivariate logistic regression(continuous variables)

Variable	Encode	p Value	Adjusted OR	95% CI	
Age	⁻ continuous - variables	0.006	1.020	1.006	1.035
PHQ-9		0.000	1.100	1.068	1.133
BMI		0.010	1.029	1.007	1.052
	NA	0.025	NA	NA	NA
Frequency	2	0.001	0.487	0.315	0.753
of urine	3	0.081	0.616	0.358	1.061
leakage	4	0.014	0.511	0.299	0.874
	5	0.034	0.539	0.305	0.954
History of elevated blood pressure	NA	0.423	0.902	0.701	1.161
	NA	0.431	NA	NA	NA
D. J	1	0.872	1.044	0.616	1.771
Daytime sleepy	2	0.447	0.821	0.494	1.365
	3	0.943	1.018	0.629	1.648
	4	0.515	1.183	0.714	1.962
Sleep problems	NA	0.325	0.873	0.667	1.143
Weekday sleep	NA	0.048	1.276	1.002	1.625

Figure 5 - Multivariate logistic regression (continuous variables)

(Fig 5) Forest plot of multivariate logistic regression (continuous variables). Each variable corresponds to a line parallel to the X-axis. Segment length represents 95% CI. Both ends of the line segment represent the low value and high value of 95% CI respectively. Black blocks with different shapes represent OR.

3.2 ROC analysis

Age, BMI, Frequency of urine leakage, and PHQ-9 are used for ROC analysis to predict the relationship with nocturia. The larger the AUX in ROC analysis, the more accurate the prediction result of this factor. The analysis results show that the highest AUX of PHQ-9 is 0.633. AUX of Frequency of urine leakage is 0.571. AUX of BMI is 0.553, and AUX of Age is 0.549. It shows that PHQ-9 is the most relevant among the comprehensive factors (**Table 7**, **Fig 6**).

Table 7 - ROC analysis results

Variable	AUC	95%CI	p Value
Frequency of urine leakage(FOUL)	0.571	0.541- 0.600	0.000
Age	0.549	0.516- 0.583	0.004
PHQ-9	0.633	0.601-0.665	0.000
BMI	0.553	0.518- 0.587	0.003

(**Fig 6**) ROC analysis results. Orange is PHQ-9, deep sky blue is Age, green is Frequency of urine leakage, yellow is Reference line. The area size

under different color lines represents the prediction effect on nocturia.

Conclusions

To sum up, nocturia is affected by many factors. In the multiple logistic regression, Depression, BMI, or Obesity are the most important influencing factors, and Age and sleep are the secondary influencing factors. As BPH is an aging disease, the incidence rate and prevalence rate will increase with the growth of men's age^[11]. This may be the reason why age plays a role in nocturia in the BPH risk population. Larger body sizes, especially obesity, may promote BPH/LUTS through several possible mechanisms. Obesity increases the ratio of estrogen to testosterone and its metabolites, so it may promote the natural increase of men with age^[12], which may be the reason why obesity or BMI increases the risk of nocturia in the BPH risk population. BPH mostly occurs in middle-aged and older adults. Because of their own age, this group is also prone to poor sleep quality. In addition, lower urinary tract symptoms induced by glandular hyperplasia, such as frequent nocturia, lead to sleep disorders and form a vicious circle. Through the analysis of this real-world data, among the BPH risk population, the impact on nocturia can be attributed to the gradual growth of age, weight gain caused by various factors, and depression or sleep deprivation caused by various reasons. PHQ-9 is found to play an important role in nocturia by ROC analysis. Therefore, while focusing on nocturia symptoms, we should pay special attention to the mental health problems of the BPH risk population. The comprehensive coordination of the living environment of nocturia patients can achieve the goal of reducing the incidence of the disease.

Data Availability

The datasets generated and analyzed during the current study are available in the "https://wwwn. cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Questionnaire&Cycle=2017-2020"

Authors' contributions

C. Zhang and H. J. Gao conceived and designed the study. B. T. Tang, C. J. Shang, X. J. Ye, M. Zhu conducted data analysis. Q. Y. Yang, Y. S. Zhang, X. B. Rong, Z. S. Lin and Y. X. Chen carried out data collation. Z. C. Zhang, Y. Chen and S. P. Huang wrote the paper. P. Jiang, F. Hu and S. P. Huang reviewed and edited the manuscript. All authors approved the final version of the article. Z. C. Zhang, Y. Chen, B. T. Tang, X. J. Ye, S. P. Huang contributed equally to this work and are co-first authors.

ORCID iD

zechao zhang(https://orcid.org/0000-0002-9112-0643)

Data Availability

The datasets generated and analysed during the current study are available in the "https://wwwn. cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Questionnaire&Cycle=2017-2020"

Conflicts of Interest

The authors declare no conflicts of interest.

Ethics Statement

there were no ethical considerations taken into account during this research.

Funding Statement

The authors received funding, staff, and equipment support for the following research projects: Guangxi Science and Technology Base and Talent Project, Agreement No. AD22035869. Fundamental Research Ability Improvement Project for Young and Middle aged Teachers in Guangxi Universities (Natural Science), Agreement No. 2022KY0300. Administration of Traditional Chinese Medicine of Guangxi Zhuang Autonomous Region Self-funded Scientific Research Project (Natural Science), Agreement No. GXZYZ20210346. Health Commission of Guangxi Zhuang Autonomous Region self-funded scientific research project (Youth Fund), Agreement No. Z20211659. Natural Science Research Project of Guangxi University of Traditional Chinese Medicine (Youth Fund), Agreement No. 2021QN029. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

References

- Sayegh N, Gross K. Benign prostatic hyperplasia: a global challenge of the ageing population. Lancet Healthy Longev. 2022 Nov;3(11):e725-e726. doi: 10.1016/S2666-7568(22)00243-4.
- [2] Sausville J, Naslund M. Benign prostatic hyperplasia and prostate cancer: an overview for primary care physicians. Int J Clin Pract. 2010 Dec;64(13):1740-5. doi: 10.1111/j.1742-1241.2010.02534.x. PMID: 21070524.
- [3] Kramer G, Mitteregger D, Marberger M. Is benign prostatic hyperplasia (BPH) an immune inflammatory disease? Eur Urol. 2007 May;51(5):1202-16. doi: 10.1016/j.eururo.2006.12.011.
- [4] Salvatore D'Agate, Chandrashekhar Chavan, Michael Manyak, Juan Manuel Palacios-Moreno, Matthias Oelke, Martin C Michel, et al. Impact of early vs. delayed initiation of dutasteride/tamsulosin combination therapy on the risk of acute urinary retention or BPH-related surgery in LUTS/BPH patients with moderate-to-severe symptoms at risk of disease progression. World J Urol. 2021 Jul;39(7):2635-2643. doi: 10.1007/s00345-020-03517-0.
- [5] Kari A O Tikkinen, Theodore M Johnson 2nd, Teuvo L J Tammela, Harri Sintonen, Jari Hauk-

ka, Heini Huhtala, et al. Nocturia frequency, bother, and quality of life: how often is too often? A population-based study in Finland. Eur Urol. 2010;57(3):488-498. doi: 10.1016/j.eururo.2009.03.080

- [6] Veronica Y Zeng, Gary Milligan, James Piercy, Peter Anderson, Fredrik L Andersson. Impact of nocturia on patients' health-related quality of life and healthcare resource utilisation compared with OAB and BPH: Results from an observational survey in European and American patients. Int J Clin Pract. 2019 Aug 27;73(12):e13408. doi: 10.1111/ijcp.13408.
- [7] Akhavizadegan H, Locke JA, Stothers L, Kavanagh A. A comprehensive review of adult enuresis. Can Urol Assoc J. 2019 Aug;13(8):282-287. doi: 10.5489/cuaj.5485.
- [8] Laura N Nguyen, Harkanwal Randhawa, Geneviève Nadeau, Ashley Cox, Duane Hickling, Lysanne Campeau, et al. Canadian Urological Association best practice report: Diagnosis

and management of nocturia. Can Urol Assoc J. 2022 Jul;16(7):E336-E349. doi: 10.5489/ cuaj.7970.

- [9] Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001 Sep;16(9):606-13. doi: 10.1046/j.1525-1497.2001.016009606.x.
- [10] Caballero B. Humans against Obesity: Who Will Win? Adv Nutr. 2019 Jan 1;10(suppl_1):S4-S9. doi: 10.1093/advances/nmy055.
- [11] Devlin CM, Simms MS, Maitland NJ. Benign prostatic hyperplasia - what do we know? BJU Int. 2021 Apr;127(4):389-399. doi: 10.1111/ bju.15229.
- [12] Saira Khan, K Y Wolin, R Pakpahan, R L Grubb, G A Colditz, L Ragard, et al. Body size throughout the life-course and incident benign prostatic hyperplasia-related outcomes and nocturia. BMC Urol. 2021 Mar 27;21(1):47. doi: 10.1186/s12894-021-00816-5.