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This work aims to examine the functionality of a new  Augmented Iter-
atively Re-weighted and Refined Least Squares algorithm (AIRRLS) to 
generate a 3D model of magnetic susceptibility property from a potential 
field magnetometry survey. Whereby this algorithm ameliorates an lp 
norm Tikhonov regularization cost function through replacing a set of 
weighted linear system of equations. It leads to constructing a magnetic 
susceptibility model that iteratively converges to an optimum solution, 
meanwhile the regularization parameter performs as a stopping criterion 
to finalize the iterations. To tackle and suppress the intrinsic tendency of 
a sought target responsible for generating a magnetic anomaly and to not 
be imaged at shallow depth in inverse modeling, a prior depth weighting 
function is imposed in the principle system of equations. The significance 
of this research lies in improvement of the performance of the inversion, 
where the running time of an lp norm problem after incorporating a 
pre-conditioner conjugate gradient solver (PCCG) in cases of large scale 
geophysical dataset. Forasmuch as this study attempts to image a geolog-
ical target with low magnetic susceptibility property, it is assumed that 
there is no remanent magnetization. The applicability of the algorithm is 
tested for a synthetic multi-source data to demonstrate its performance 
in 3D modeling . Subsequently, a real case study in Semnan province 
of  Iran,  is investigated to image an embedded porphyry copper layer 
in a sequence of sediments.  The sought target  consists  of  a concealed 
arc-shaped  porphyry  andesite  unit that  may  have  potential  of  Cu  
occurrences. Results prove that it extends down at depth, so exploratory 
drilling is highly recommended to get insights about its potential for 
Cu-bearing mineralization.
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1. Introduction

One of the notable problems in the varied fields 
of applied geophysics is the inverse modeling 
of the ill-posed system of equations as a forever 

field of active research. Inverse modeling of geophysics 
data is usually ill-posed/conditioned which means that the 
solution models not only depend on the observations, but 
also require supplementary prior pieces of information 
(e.g., geological characteristics) to be imposed in the cost 
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function to generate unique and stable outputs. From a 
geophysical standpoint, this issue is more sensible when 
modeling physical properties of the magnetic suscepti-
bility or density contrast from potential field geophysical 
data [20,46]. Several studies have been dedicated to acquire 
a reasonable solution in the geophysical inverse modeling, 
in all of which the following conditions are inevitable. 
Non-uniqueness of the generated models which means 
that the geophysical problem has infinitely many solutions 
because of the under determined system of equations. In-
stability of the models which means that the inverse mod-
ling leads to unstable solutions for the sake of low values 
of the eigenvalues in the forward kernel or sensitivity op-
erator. Care must be taken that a noisy observation is also 
another permanent source of model instability [4,19].

Potential field magnetometry data has investigated by 
many geoscientists to model the magnetic property and 
geometry of causative sources. The inversion procedure 
of such a dataset is generally divided into two catego-
ries that are (1) parametric inversion, and (2) physical 
property inversion as a tremendously important part of 
inverse modeling. The parametric methods are usually 
suitable for pre-assumed cases that are easily simulated 
by a simple-shaped causative source. Here, an appropri-
ate geological model is assumed to fit the potential field 
observations by attempting a human-computer interac-
tion (e.g. [1-3,10,15-17]). The later methods with higher fa-
vorability and flexibility are full automatic and iterative, 
where the generated models have a physical contrast 
with the background geological setting of the prospect 
zone [46]. Physical-based inversion methodologies are 
designed on the basis of an appropriate model cost func-
tion, and it is actually rather difficult to implement rather 
than the parametric one. 

Extensive efforts have been dedicated to deal with full 
automatic inversion of potential field geophysical data. 
Among various researchers designed, Last and Kubik [23] 
proposed a compact inversion scheme to correctly con-
struct sharp borders of the sought sources. As the first 
spark for defining a new approach in inverse modeling 
of potential field data,  Li and Oldenburg [28] discussed 
a novel technique for 3D recovering of physical prop-
erties by minimizing a global Tikhonov cost function 
with constituent norms  of a model stabilizer and a data 
misfit simultaneously. It’s worth pointing out that a depth 
weighting function was also proposed to avoid the intrin-
sic decay of the potential field geophysical data at depth, 
where they have assigned higher weights to the deeper 
cells of discretized model domain. Following the same 
line of thought as Li and Oldenburg [28], depth weighting 
has been imposed in the proposed methodologies for cor-

rect recovering of  geophysical models of the magnetic 
susceptibility and the density contrast (e.g., [4,6,8,11,12,14,26,27,30, 

31,33,34,35,36,38]).
An iteratively re-weighted least squares algorithm 

(IRLS) is a possible scenario to strive for high speed 
inversion of geophysical data and other fields of math-
ematical computation for solving the discrete ill-posed 
equations. Incorporating an iterative refinement strategy 
which is known as an iteratively re-weighted and refined 
least squares (IRRLS), has tackled significantly the high 
computational burden of the conventional IRLS  [18]. The 
efficiency of this algorithm has been successfully exam-
ined for synthetic seismic data (i.e., a vertical seismic pro-
filing, a sparse spike deconvolution and a cross-well seis-
mic tomography) for solving linearized inverse problems 
[18]. Herein, this algorithm is augmented by incorporating a 
depth weighting function and a pre-conditioner conjugate 
gradient tool (PCCG) to solve an lp norm problem by a set 
of weighted linearized equations in order to iteratively re-
trieve magnetic susceptibility property from the magnetic 
field anomalies. A synthetic multi-source magnetic data 
along with a real airborne magnetic data are used in later 
sections to investigate its performance in inverse model-
ing of the magnetometry data.

Airborne geophysical survey is a fruitful tool in explo-
ration of various porphyry-type ore mineralization such as 
Cu and Mo deposits, being used worldwide in the recon-
naissance phases of exploration programs. Partitioning of 
iron between oxides and silicates in generic model of por-
phyry-type systems often impacts on magnetic character-
istics of intrusive magmatic units and host rocks [13]. Note 
that hydrothermal alterations in association with such 
reservoirs can fluctuate the magnetic signatures of sought 
targets due to their sulfide contents [21]. Since alteration 
zones are localized on the center of causative source, they 
are usually distinguished through reflecting a desired geo-
physical response of magnetic anomaly.  Regional mag-
netic field intensity amplifies over the potassic alteration, 
but it reduces over the sericitic zone. This magnetic sig-
nature partially intensifies over the propylitic zone which 
usually surrounds the sought target [43]. Such a geophysical 
footprint can facilitate the prospecting of porphyry-type 
resources in airborne magnetometry survey.   

This work aims to investigate the mining potential of a 
geological unit that may be a host of porphyry Cu miner-
alization. Thus, the airborne magnetometry data surveyed 
at the Kalat-e-Reshm area in Semnan province of Iran, 
are taken as a real case study into account to image the 
magnetic susceptibility property of the desired sought 
target. It’s worth pointing out that the analyzed helicopter 
borne electromagnetic data over this area have proved the 
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occurrence of an arc-shaped porphyry andesite rock with 
higher electrical resistivity encircled by a thick sedimenta-
ry setting. The occurrence of this unit has been confirmed 
by ground and airborne surveys of direct current electrical 
resistivity  and  airborne magnetometry data as well [39-

42]. Forasmuch as the sought target has a sharp magnetic 
signature,  its magnetic susceptibility model can provide 
insightful information about  the intensity of hydrothermal 
alterations, intrusive magmatic and porphyry unit (e.g. [32]). 
Therefore,  the aeromagnetic data of this area were revisit-
ed to apply and appraise the functionality of the proposed 
AIRRLS algorithm in 3D inverse modeling of magnetic 
susceptibility property. 

The remainder of this work has been prepared as 
follows. In the second section, the forward and inverse 
modeling of the magnetic field data are mentioned and 
the system of equations for solving an ill-posed problem 
through the proposed AIRRLS algorithm is discussed in 
details. The performance of the algorithm is examined 
for a synthetic data in the section three. In fourth section, 
the geological setting of the sought target is concisely 
explained. Airborne magnetometry data are inverted in 
the section fifth to construct the geometry of the andesite 
unit in the Kalat-e-Reshm prospect zone. Finally, the main 
achievements are summarized in the conclusion.   

2. Methodology

To invert the potential field magnetic data, the desired mod-
el domain can be discretized into a structural regular mesh 
through defining a set of rectangular prisms to cover a com-
plicated geometry. In case of considering a small mesh size, 
each cell is usually assumed with a constant magnetic sus-
ceptibility value. Note that a linear system of equation can 
project the magnetic susceptibility property into a magnetic 
anomaly data domain when low magnetic susceptibility 
amounts exist for the causative magnetic source. It offen 
happens for most porphyry-type sources. Thus, it leads to 
a simplified linear system of equation in inverse modeling 
[31].  In addition to this simplification, the assumption of no 
remanent magnetization of the causative sources in the por-
phyry type deposits works well. A comprehensive and pre-
cise ideas to cope with this issue can be found in the works 
by Lelièvre and Oldenburg [24], and Li et al. [25].

For ease of notation in this work, the small letters with 
bold font are used to introduce a vector and its compo-
nents xi, i.e., x=(x1,x2,...xm) ∈ Rm. Likewise, the bold and 
capital letter as G defines a matrix. The value of a variable 
at the lth iteration as (.)l, e.g., xl, shows the model solution 
at this iteration. Finally, x* is the converged and optimum 
model solution.  

2.1 Forward Modeling

The forward equations of the potential field magnetic data 
after introducing by Bhattacharyya [9], were casted in a more 
facile form to raise its utilizability in in computer coding [37]. 
Magnetic anomaly arising from an m cells is calculated at a 
coordinate (x, y, z) through the following equation, 

∆ = ∆ +t x y z t x yxz c( , , , ,) ∑m

j=1 j ( )  (1)

where ∆t is the total magnetic data overlaid by c as a 
regional magnetic trend [37]. Assuming that there are n ob-
servations from m cells, Eq. (1) is simplified by the matrix 
notation as the following linearized form, 

t Gx G R x R t R= ∈ ∈ ∈, , ,n m m n×  (2)

where t is the magnetic observation vector after de-
trending a regional c constant, G is the forward sensitivity 
kernel  which projects from the physical model space to 
the magnetic observation space. Here, x is a vector of the 
sought magnetic susceptibilities. 

2.2 Inverse Modeling

For the sake of the intrinsic instability arising from a lin-
ear operator G, a regularized solution must be searched in 
the magnetometry studies [14]. Various inversion methodol-
ogies have been developed to regularize and stabilize the 
inverse problems in all fields of mathematically computa-
tions, where among them geophysical communities have 
had significant impact on this topic [44,45]. 

In potential field geophysical context, a Gaussian noise 
distribution with zero mean and finite variance of σ2 is 
assumed for noise-corrupted magnetic observations. To 
extract a suitable model of  the magnetic susceptibility 
distribution x in Eq. (2), the system of equation can be re-
placed by a well-posed lp norm cost function as,

l x t Gx Lxp ( , minδ δ) = − + +
x R∈ m

λ
2

2
2 ∑

i

m

=1
(( )i

2 )
p /2

 (3)

where δ is a small value and λ works as a regularization 
tool [29]. Since λ is unknown, it is essential to search its op-
timum value through a posterior rule. It leads to multiple 
running of the algorithm for a range of λ's regularization 
values to pick up an optimum constant in association with 
the best constructed model. This kind of processing is time 
consuming and somewhat arbitrary, so the regularization and 
minimization of the above mentioned cost function become a 
tough task in inverse modeling of potential field geophysical 
data. The later section discusses in details how it is searched 
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in the proposed AIRRLS algorithm [18]. The operator L pres-
ents the nth-order derivatives in x, y, and z directions to ad-
just the smoothness and roughness of the sough model. 

An iteratively re-weighted least squares method (IRLS) was 
employed by Lai and Wang [22] to solve Eq. (3) as follows,  

(λG G L S L x G tT T l l T+ =x ) +1  (4)

and with imposing the iteratively updated weights as

S diagx
l =

 
 
 
 
 
 
 
 
 
 
δ + (xi

l

p

)2
1− 
 
 2

p  (5)

The original formulation of the IRLS algorithm needs solu-
tion of a re-weighted system of linear equations several times 
to reach an optimum solution x* . The iteration number is 
equivalent to the multiplied numbers of three terms that are the 
number of λ's (for updating weights), the number of iterations 
for searching , and the CG iterations. In the following section, 
the AIRRLS method proposed by Gholami and Mohammadi 
Gheymasi [18] is adopted to an lp norm problem in the magne-
tometry study on the basis of a refinement strategy by which 
the iteration number decreases to λ's×CG iterations.   

2.3 The AIRRLS Method

Following the same line of thought as Gholami and Mo-
hammadi Gheymasi [18], the AIRRLS is utilized here to 
solve the defined Tikhonov cost function (Eq. 3) with 
two terms-that are a regularized model norm and a misfit 
norm. A nonstationarity weighting matrix, Q, was defined 
by being iteratively refined to solve the equation via the 
following formulations,

x ax Q t Gxl l l+1 = + −xl ( α )  (6)

Q G G L S L Gxl = +λ λl l T T l T( x )−1
 (7)

where 0≤α≤1. Smaller α values correspond to lower 
impact of refinement. The main advantage of the nonsta-
tionary method is originated from updating the Tikhonov 
regularization parameter λ successively and iteratively as 
λl. A possible scenario to investigate a predefined range of 
regularization parameters  is searching for the following 
increments of λl[λmin, λmax],

λ λ λ λl = min max min( / )l N/  (8)

where N is the iteration number of the AIRRLS algo-
rithm. 

Efficiently running the AIRRLS algorithm for cases of 
large scale magnetic observations requires consideration 
of a fast solver for the central system of Eq. (7). It is a 
tough task to solve it explicitly through direct solvers, so 
iterative methods such as a CG algorithm can be a pan-
acea with high convergence rate when incorporating a 
pre-conditioner. A diagonal pre-conditioner is substituted 
in the center of the AIRRLS algorithm to augment the 
solver by imposing,

M diag G G L S L= +(λ l T T l
x )  (9)

To compensate the lack of sensitivity of the deeper cells 
in the discretized model domain when inverting magnetic 
data, a depth weighting function introduced by Li and 
Oldenburg [28] is inserted in the inversion equation. It has 
a form of (z)=(z+ε)-β/2 , where β is the structural index of 
a magnetic source, and ε constant depends on the altitude 
of observations to prevent singularity for cases with zero 
values of z [12]. This function is casted in the form of a 
matrix Z=diag(W(z)) for the original system of Eq. (3) by 
setting GZ=GZ -1 and k=Zx. After solving the problem for 
k, the final magnetic susceptibility model is obtained from 
x=Z-1k. A pseudo code for running the AIRRLS algorithm 
has been summarized in Table 1. 

Table 1. The summary of the AIRRLS algorithm for in-
verse modeling of the magnetic field data

Initialize;
Input: λmin, λmax, α, δ, p, ε, β, CG iteration, and number of algorithm 
iterations N
Set: λl=λmin,x1=0 ,Sx

1=I , L=I 
Incorporate: Z=diag(W(z))
for l=1:N
Compute the residual rl=t-αGzk

l

Solve reweighted system (λlGZ
TGZ+LTSx

lL)∆kl+1=λlGZ
Trl by iterations of 

CG method
Consider a pre-conditioner as M=diag(λlGz

TGz+LTSχ
lL) 

Refine the solution kl+1=∆kl+1+αkl 

Compute S diagk
l =

 
 
 
 
 
 
  
 

 
 
 
δ + (ki

l )

p

2 1− 
 
 2

p  

Update λl=λmin(λmax/λmin)
l/N

end
Find the optimal solution x* from x*=Z-1k* 
Finish

3. Synthetic Data Modeling

The AIRRLS algorithm is examined here for a synthetic 
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magnetic anomalies from a model domain simulated by 
four rectangular bodies embedded in a non-susceptible en-
vironment. Table 2 has tabulated  the assumed properties 
of each model. A horizontal slice at the center of the mod-
els is shown in Figure 1a. The 3D domain is discretized 
into 40×40×20=32,000 rectangular cells with a uniform 
dimension of 2.5×2.5×2.5 m in x, y and z directions, re-
spectively. The inclination and declination angles of the 
earth’s magnetic field are fixed to I=50°, D=2°,  respec-
tively, assuming a strength of 47,500 nT. Random Gauss-
ian noise with a standard deviation equal to 3% of the 
data amplitude is superimposed on the 1600 observations. 
A regular grid of survey is decorated over a 100m×100m 
region with a sampling space of 2.5 m in both directions. 
Noise-corrupted residual magnetic field data have been 
plotted in Figure 1b.

(a)

(b)

Figure 1. Synthetic magnetic data simulation
Note: (a) a horizontal slice at the center of the multi-source magnetic 
bodies, on which the numbers correspond to the assumed parameters in 
Table 1, and (b) the residual total field magnetic data.

Table 2. Characteristics of the simulated magnetic data 
(similar to the models presented by Abedi et al.[4])

Model Number x×y×z dimensions (m) Depth (m) x (SI)

1 10×30×20 5 0.02

2 10×10×15 2.5 0.03

3 5×20×30 10 0.05

4 30×5×20 7.5 0.06

To run the AIRRLS algorithm for the synthetic data, 
the value of the refinement coefficient α in Eq. (6) was 
chosen equal to 1. The structural index β=3 was fixed 
in the depth weighting function, and as well δ=0.01, 
ε=0.0001, a zeroth-order roughening matrix L=I, and the 
l1-norm for optimization problem were assumed. The reg-
ularization interval [λmin, λmax] was searched at an interval 
of [10−17,10−14] for both the synthetic and real case study. 
The number of algorithm iteration N=500 was chosen to 
define a range of regularization parameter λl according to 
Eq. (8) by small increment steps. The misfit curve versus 
the iteration number for the synthetic magnetic data was 
depicted in Figure 2, indicating gradually converging to 
an optimal solution in iteration 484. Since the regulariza-
tion parameters varies at a large interval (with a difference 
of three order of magnitude), the optimal iteration number 
was quite large for such a multi-source model in the mag-
netic data modeling. Note that the PCCG algorithm with 
20 iterations was assumed. The running time of an itera-
tion to generate a model was about 4s, meanwhile the PC 
specifications have components of 4 GHz processor, 64-
bit operation system, and 16 GB RAM. 

Figure 2. The misfit curve versus the iteration numbers 
for the synthetic magnetic data. The algorithm converges 

to an optimum solution at iteration 484

To present the outputs of constructed magnetic suscep-
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tibility model, 3D rendering for various iterations (100, 
200, 300, 400, 484, and 500) were respectively depicted 
in Figure 3, showing gradually convergence to an opti-
mum model at iteration 484. A threshold of 0.005 SI was 
assumed for the volume rendering of the magnetic suscep-
tibility property in all plots. The relevant predicted mag-
netic anomalies are also plotted for the aforementioned 
successive iterations in Figure 4, subsequently by gradu-
ally reconstruction of the original magnetic observation 
shown in Figure 1b.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. 3D visualization of the inverted synthetic data 
for a magnetic susceptibility threshold of 0.005 SI at suc-
cessive iterations of, (a) 100, (b) 200, (c) 300, (d) 400, (e) 

484, and (f) 500
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. Predicted magnetic data at successive iterations 
of, (a) 100, (b) 200, (c) 300, (d) 400, (e) 484, and (f) 500
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Four depth slices at different depths of the optimal 
sought model (Figure 3e) reveal that the simulated multi-
source anomalies could be appropriately recovered (Figure 
5). The borders of the synthetic sources are superimposed 
on all indicated maps to better compare the efficiency of 
the proposed algorithm for magnetic data modeling. A ver-
tically E-W slice along the route with Y=50m was plotted 
in Figure 6. The magnetic susceptibility property across 
this route is in close consistency with the  two synthetic 
sources. To better visualize the misfit of the predicted 
magnetic data in optimal iteration number, the scatter plot 
of the predicted observations versus the synthetic ones is 
portrayed in Figure 7, where the plotted line is a gauge for 
determining the overestimated and underestimated data. 

(a)

(b)

(c)

(d)

Figure 5. Horizontal depth slices of the synthetic magnet-
ic susceptibility model shown in Figure 3e for an optimum 
iteration number of 484. Note that the rectangular borders 

are the true edges of the synthetic sources

Figure 6. A vertical slice of the magnetic susceptibility 
model shown in Figure 3e for an optimum iteration num-
ber of 484 at Y=50 m. Note that the rectangular borders 

are the true edges of the synthetic sources
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Figure 7. Scatter plot of the predicted data versus the syn-
thetic observations at an optimum iteration number of 484

4. Geological Setting of the Studied Area

The Kalat-e-Reshm district locates in the Semnan prov-
ince at the north of the center domain of Iran, where it has 
high potential for occurrences of the porphyry-type sulfide 
mineralization like Cu. Evidences of the Cu-bearing min-
eralization are getting stronger since two porphyry Cu de-
posits exist at the west and the northeast of the studied area, 
where an airborne geophysical survey has been conducted 
(Figure 8). The Precambrian  metamorphic  units in the  
eastern  portions have outcrops. As the oldest rocks in the 
region,  these units have ingredients of  mica-schist, amphi-
bolite and gneiss. Note that the surface geological studies  
have reported  the occurrence of the volcanic  rocks that are   
basalt,  andesite, rhyolite and dacite units, embedded by a 
thick sequence of siltstone, sandstone, and conglomerate [5,7].

Figure 8. The detailed geology map of the Kalat-e-Reshm area

An arc-shaped porphyritic andesite unit has partially 
outcropped at the N and NE portions of the area. Erosion 
phenomenon has removed some parts of this unit at the N 
regions, whereas  the rest part has been covered by uncon-
solidated soil and alluvium sediment (Figure 8). A distinct 
sedimentary unit at the north is evident with ingredients 
of conglomerate, green to buff marl, sandstone, shale and 
tuff. Both of aforementioned structures are belonged to 
the Tertiary era. An alluvium channel originates from at 
the NE and then crosses the meta volcanic structures of 
the Paleozoic. It contains a mixture of sandstone, con-
glomerate, tuff, schist, mica-schist, andesitic-basaltic 
lava,  and ultrabasic  rocks,  accumulated in the shape of 
high  level piedmont and  alluvial  fans. It covers the  arc  
and  continues  to  the south. The majority of regions have 
been covered by a composition of  sandstone,  conglom-
erate,  tuff, shale, marl, and andesitic and  volcanic  rocks.  
The region of interest for this study has been outlined by 
a  trapezoid border on the geological map shown in Figure 
8. An airborne magnetometry and electromagnetic survey  
was run by  the Geological Survey of Iran in 2003 (GSI) 
to investigate its mining potential  [41,42].

5. Real Case Study for Examining the AIR-
RLS Algorithm

The line spacing of the airborne geophysical survey was 
about 200 m apart, and at an altitude between 30 m and 60 
m with respect to the topography. Data were collected at  a 
4-m spacing along the flight lines to measure the total field 
magnetic  intensity  by  a  cesium  magnetometer equipment. 
After detrending the regional magnetic field, a residual mag-
netic map is plotted in Figure 9 for 1720 observations. The 
trace of the sought target, an arc-shaped porphyry andesite 
unit, is conspicuous. The earth’s magnetic field had declina-
tion and inclination angles of 3.6° and 53.5°, respectively. 

Figure 9. The residual magnetic data over the Kalat-e-
Reshm area, where the trace of an arc-shaped porphyry 

andesite unit is evident
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To run the AIRRLS algorithm, all assumptions for the 
synthetic magnetic data modeling were considered here 
again. To perform a 3D magnetic inversion, the  model 
domain was discretized into 34,400 cells (43×40×20) with  
a uniform dimension of 80×70×20m in the x, y and z direc-
tions, respectively. Assuming 500 iterations for running the 
algorithm, the optimal model was retrieved at iteration 43. 
The running time of each iteration for 20 PCG iterations 
was approximately 4.5 s to generate a magnetic suscepti-
bility model. Figure 10 indicates the misfit curve versus the 
iteration numbers for the real case study. The scatter plot 
of the predicted data against the magnetic observations has 
been plotted in Figure 11 with low misfit error..

Figure 10. The data misfit versus the iteration numbers 
for the real magnetic data in the Kalat-e-Reshm area, 

while an optimum solution was generated at iteration 43

Figure 11. Scatter plot of the predicted data versus the 
observed airborne magnetic data at an optimum iteration 

number 43

A 3D rendering of the physical property model at the 
optimum iteration number has been presented in Figure 12 
along eight parallel vertical cross sections that go through 
the desired sought target. Note that the trace  of  the  arc-
shaped  unit  is conspicuous by its extension at depth. Tak-
ing the geological evidences into account accompany with 
the two porphyry Cu-bearing deposits in the adjacency 
to  this andesite unit, exploratory drilling in this target is 
highly recommended  to  investigate  its mining potential 
for Cu occurrences.  

Figure 12. 3D visualization of the magnetic susceptibil-
ity model at the Kalat-e-Reshm area through running the 

AIRRLS algorithm

6. Conclusion

This study has investigated the performance of a fast and 
automatic algorithm for inversion of magnetometry data. 
An Augmented Iteratively Re-weighted and Refined 
Least Squares algorithm (AIRRLS) was run to solve 
an lp norm regularization problem in inverse modeling 
of a magnetic susceptibility property. The algorithm 
could appropriately recover the magnetic susceptibility 
model by successively converging to an optimum solu-
tion. The significance of this study lies in improvement 
of the performance of the regularization parameter as 
a stopping criterion. The applicability of the proposed 
algorithm was examined for a simulated multi-source 
magnetic anomaly, and a real case study pertaining to a 
plausible porphyry copper unit in  the Semnan province 
of  Iran. Imaging of an arc-shaped  porphyry  andesite 
unit through an airborne survey was the main aim of the 
prospect to seek its potential for the porphyry Cu-bear-
ing mineralization.  
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