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This review presented a detailed re-assessment of the hydrogeology and 
hydrochemistry of the Tropical Anambra Basin. It identified and discussed 
the major geological formations and their groundwater potentials. The geo-
logical examination showed that the Ajali Formation is confined in places 
forming an artesian condition; the potentials of this aquifer decline in the 
western basin due to a decrease in thickness. The sandstone associates of 
the Nsukka Formation are aquiferous and have produced high-pressure 
artesian boreholes along the Oji River. The Imo Shale is characterized 
by permeability stability all over much of the intermediate unit. The 
Bende-Ameki aquifer has a lesser amount of groundwater when equated 
to other formations; the geologic characteristics do not produce favorable 
hydrogeological conditions for groundwater occurrence. The stratigraphical 
and structural framework suggested the presence of an efficient through-
flow in the basin. Based on physical and chemical parameters of water 
quality, the basin holds water of acceptable quality. While there are consid-
erable investigations on the hydrogeology and hydrochemistry, studies are 
short of analysis of the hydrogeochemical evolution of groundwater, water 
quality index, heavy metals pollution index as well as total hazard quotient. 
Suitability of groundwater based on agricultural water quality indices (e.g. 
SAR) is also salient. Therefore, future studies should address these owing 
to increasing dependence on groundwater.
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1. Introduction

Groundwater is an indispensable natural resource, 
which supports human life, biodiversity, so-
cio-economic development, and human health 

and security [1-6]. As a result of its inherent natural quality, 

it has become an enormously vital and dependable re-
source for water supply in all climatic regions [7-9], includ-
ing the Tropical areas [10]. Groundwater withdrawal is on 
the rise in both the developed and developing countries 
as a consequence of growing demands by the manufac-
turing sector, urbanization, irrigation farming, and mining 
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processes [11-15]. The origin, occurrence, and movement of 
groundwater are primarily influenced by the geological 
framework [10,16-18], i.e., depths of aquifers, type of lithol-
ogy, structure, and permeability. In hard rock aquifers, 
groundwater is confined to weathered horizons or frac-
tured zones. Consequently, broad hydrogeological studies 
are required to scientifically understand the conditions of 
aquifers. Typical objectives of any hydrogeological and/
or hydrochemical studies are to trace, outline, and assess 
additional sources of groundwater [10], and their suitability 
for different uses. 

Detailed studies of hydrogeology and hydrochemistry 
of basins are carried out in different parts of the world 

[10,19-33]. Results indicated that the cation exchange process 
and dissolution of soluble salts dominate the hydrochem-
istry groundwater and the trend of evolution followed the 
pattern of subsurface water movement projected using a 
calibrated transient groundwater model [31]. The hydro-
chemical variability of groundwater tends to be influenced 
by regional hydrogeological configurations, and exces-
sive evaporation of effluents from irrigated fields that 
led to evaporites precipitation, e.g. dolomite, calcite, and 
gypsum. It particularly affects shallow groundwater [30]. 
Groundwater composition varies with natural geological 
formations, climate, and land use [34-39].

Nigeria is characterized by multiple geologic forma-
tions having different stratigraphy and mineralogy [40-44]. 
Therefore, groundwater in Nigeria is expected to vary 
with the natural geogenic processes and land use. Apart 
from Sokoto and Chad Basins, the Anambra Basin is the 
third most important basin in Nigeria. Its advantage is that 
the basin occurs within Nigeria, so it requires no interna-
tional cooperation. The basin formed a triangular shape 
and covers about 30,000sqkm. It extends from the south 
of the confluence of the River Niger and River Benue 
to areas around Auchi, Okene, Agbo, Asaba, Anyangba, 
Idah, Nsukka, Onitsha, and Awka [45]. Previous hydrogeo-
logical and hydrochemical evaluations of groundwater in 
the basin showed two groundwater potential zones based 
the computed transmissivity. The sulfate mineral showed 
a significant difference in concentration from the Nanka 
Sandy Aquifers [46]. 

Groundwater quality is generally excellent for drink-
ing and irrigation uses. The quality of subsurface water 
is good and satisfied with the World Health Organization 
(WHO) and the Nigerian standard for drinking water [47]. 
Similarly, 90% of groundwater sources are suitable for 
domestic uses in Ngbo and Environs. Groundwater hydro-
chemistry is strongly influenced by mineral dissolution 
within the aquifer media [48]. Based on the water quality 
index (WQI) deep groundwater was categorized as good 

to excellent in Enugu [49]. In Onitsha and Environs, the 
geophysical investigation showed a saturated sandstone 
in the area which is proficient in producing good ground-
water yields [50]. The objective of this review is to identify 
some missing gaps in hydrogeological and hydrochemical 
investigations in the Anambra Basin.

2. The Anambra Basin

2.1 Location and Climate

Anambra Basin is situated in the south-eastern section of 
the provincially broad northeast-southwest trending Benue 
Trough (Figure 1a). It formed a synclinal formation com-
prising of over 5,000 meters thick of Upper Cretaceous to 
Recent Deposits signifying the third stage of marine depo-
sition in the Benue Trough [51]. Studies have indicated that 
the basin was formed as a result of the Late Jurassic to 
Cretaceous basement breakup, block faulting, subsidence, 
rifting and drifting apart of the South American and Afri-
can plates and so symbolizing a part of the West African 
Rift Systems (WARS). The basin shares a boundary with 
the Benue Trough system. The two basins are described 
as a set of pull-apart basins generated by sinistral wrench-
ing along pre-existing Northeast-Southwest transcurrent 
faults [51]. The topography of the basin is marked by the 
Udi, Idah, and Kabba cliffs. The Udi and Idah cliffs rise to 
about 300 meters above sea level [45]. It is drained by the 
Anambra River and its tributaries, notably the Mamu and 
Adada. The Anambra River joined the River Niger at an 
acute angle. Besides, some smaller rivers including Rivers 
Edion and Osara joined the Niger from the west-eastern 
axis. The Ankpa escarpment which comprises Idah and 
Udi cliffs formed a divide that separates the Anambra Ba-
sin from the Cross-river Basin.

(a) (b)

Figure 1. (a) Map of Nigeria Showing Anambra Basin [52] 
and (b) Anambra Basin [51]

2.2 Geological Setting

The stratigraphic sequence of the Anambra Basin encom-
passes of the Campanian to Maastrichtian Enugu/Nkporo/
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Owelli Formations (lateral equivalents). This is succeeded 
by the Maastrichtian Mamu and Ajali Formations [51]. The 
series is covered by the Tertiary Nsukka Formation and 
Imo Shale (Figure 1b). The detailed stratigraphic account 
is presented in several publications [47,51-55]. The paleoen-
vironments, biostratigraphy, and petroleum geology of 
the Anambra Basin have engrossed the consideration of 
numerous writers [51]. The Awgu and Nkporo shales create 
the major source and seal rocks in the basin. The Nkporo 
Shale as an example of a sea source rock comprised of 
type II/III kerogens with minimal but consistent input 
from marine organic material [51]. 

However, some reports showed that the organofacies 
of the Nkporo Shale are regional with the Calabar Flank 
having the ultimate oil possibility whereas those in the 
Anambra Basin and Afikpo Syncline are gas prone [56-

62]. Besides, the lower Maastrichtian Coals of the Mamu 
Formation are characterized by moderate to high con-
centrations of huminite and some minor amounts of iner-
tinites and liptinites [51]. Figure 2 shows the steady-state 
groundwater flow net across south-eastern Nigeria, which 
indicates that the escarpments of south-eastern Nigeria are 
both surface and regional groundwater divides. The figure 
also shows the steady-state regional groundwater flow net 
diagram synthesized from hydraulic head values in sever-
al smaller drainage basins of south-eastern Nigeria [63]. 

Figure 2. The steady-state groundwater flow net across 
south-eastern Nigeria [63]

The regions of local, intermediate, and regional sys-
tems of groundwater flow as indicated correspond to three 
distinct hydraulic systems in the basin, viz.: 

An upper system with hydrostatic formation pressures; 
A middle system with pressures moderately higher than 

hydrostatic; and 
A relatively deep system of abnormally high formation 

pressures. 
The regional flow systems discharge into the rivers 

Niger, Anambra, and Cross River, while the intermediate 
flow systems empty into their minor tributaries. Local 
groundwater flow systems are associated with minor and 
usually seasonal streams. Towards the center of the basin 
and coastal areas, local relief is negligible; hence, regional 
flow systems dominate these areas. The distribution of 

fluid potentials in the upper and middle hydrostratigraphic 
units are presented to illustrate that the hydraulic heads 
and fluid energies are highest at the basin edge to the 
east where the major aquifers of the unit are exposed and 
much lower in the basin center to the southwest where the 
aquifer is kerbed [63].

Hydrostratigraphically, the basin is underlain by the 
Nkporo, Mamu, Ajali, and Nsukka Formations as well as 
the Imo and Bende-Ameki Formations (Figure 3). The 
aquifer units are characterized by two distinct ionic re-
gimes: Ca-HCO3 and Na-SO4. The latter is associated with 
the deeper groundwater flow system within the Mamu 
Formation while the former occurs in the upper shallow 
flow system within the Ajali Sandstone [63]. The basin 
seems to represent an inverted triangular depression with 
its base along the River Benue axis, and its summit point-
ing in the direction of Onitsha, along with the River Niger. 
It lies beneath the geological sequence shown in Figure 3. 
The Ajali Formation is the most important aquifer in the 
basin. The aquifer is underlain by Mamu Formation and 
Nkoporo Shale, 585 meters thick [45]. These formations are 
comprised of clay, shale, and coal seams, resulting in very 
poor groundwater potentials. These types of geological 
formations tend to form aquifers which are either aqui-
cludes or aquitard. The formations also edge the outcrops 
of the Anambra Basin and incline gently to the southwest 
beneath the Ajali and the younger formations. 

Figure 3. Stratigraphic outlines and depositional environ-
ment of the sedimentary formations in the Anambra Basin [64]

3. General Hydrogeological Characteristics

3.1 The Ajali Formation

The Ajali formation, which is over 300 meters thick, 
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is comprised of cross-bedded fine-coarse sands, friable, 
and very porous sandstone. The formation outcrops at the 
Idah-Ankpa, and Nsukka Highlands, forming the Enugu 
cliffs which cover most parts of Ankpa, Idah, and Nsukka 
axis [54,64,65]. Around Ezimo and Orokam a thickness of 
about 420 meters was recorded and the older formations 
incline steadily under the younger formations toward the 
southwest axis. It is overlain by the Nsukka, Ameki, and 
Dende Formations as well as the Imo shales, clays, and 
a thin sandstone layer in Awka, Onitsha, and Asaba [45]. 
Like the Ajali Formation, the thickness of the Nsukka 
Formation is over 300 meters. The Nsukka Formation also 
has the effect confining the aquifers of Ajali Formation. 
The sandstone beds of the Ajali Formation are confined 
in places and as a result, formed an artesian condition in 
some places.
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Figure 4. The lithology of the Ajali Formation (a) Bore-
hole No. 3 Ngwo and (b) Umana Ndiuno RCC Borehole, 

Ezeagu LGC

The aquifer is primarily recharged in the outcrop area 
by the abundant rainfall and surface flows. Groundwater 
builds up and moves down under hydrostatic pressure, 
underneath the confining Nsukka and Imo Formations [45]. 
Figure 4 shows a typical lithologic section of boreholes 
penetrating the Ajali Formation. A comparison of the two 
boreholes showed that the lithology of the Ajali Forma-
tion is mainly dominated by fine to coarse-grained sands. 
Table 61 further summarised data on total depth, borehole 
diameter, the yield of borehole, static water level, draw-
down, and specific capacity of boreholes drilled under 
the Ajali Formation. The data presented not only showed 
the groundwater potentials of the Ajali aquifer, but also 
the heterogeneity and the relativity of water table con-
ditions of the formation. Also important is the generally 
very deep-water table levels ranging from 30-170 meters 
across the area of its occurrence [45]. Similar water table 
conditions can be found in other locations including Ank-

pa, Idah, Ukehe, and Okpatu areas. Towards the center 
of the basin, the Ajali aquifer becomes confined resulting 
in artesian conditions. At Umumbo, some 50 km west of 
Enugu, a borehole drilled to about 513 meters deep gave a 
free flow of seven liters per second, with an artesian head 
of about 15 meters below the ground [45].

Table 1. Total depth, borehole diameter, the yield of bore-
hole, static water level, drawdown, and specific capacity 

of boreholes drilled under the Ajali Formation [45]

Pumping 
Station

Date 
complet-

ed

Total 
depth 
(m)

Borehole 
diameter

The 
yield of 

Borehole

Static 
Water 
Table 
(m)

Draw-
down 
(m)

Specific 
capacity 
(m3/hr/

m)
BH No. 3 

Ngwo 29/10/75 96.9 17.5 inch 26.3 lit/
sec 32.1 47.4 -

BH 5 Awgu 22/11/75 96.6 17.5 inch 13.0 lit/
sec 33.5 26.4 -

Umana 
Ndiuno BH 

RCC (Ezeagu 
LGC)

- 234 300mm 48m3/hr 142.5 3.5 13.71

Ibinofia Ndi-
uno (Ezeagu 

LGC)
- 200 347mm 105m3/hr 87.85 25.8 -

Olo Amagu/
Amadin 
(Ezeagu 
LGC)

- 234 - 162m3/hr 9.72 6.0 27.0

Umulumgbe 
(Udi LGC) - 247 - 24m3/hr 181.6 1.89 12.7

Awhum - 330 437.5mm 169m3/hr 159.55 0.38 16.37

Awha Imezi - 270 437.5mm 60m3/hr 136.0 5.1 11.76

Ubelagu 
Umuna 
(Ezeagu 
LGC)

- 234 437.5mm 108m3/hr 91.23 24.13 4.48

Umaida (Ig-
boeze LGC) - 190 437.5mm 72m3/hr 102.85 5.52 13.04

Ozalla II - 250 442.5 66.8m3hr 197.9 9.09 7.33

Nguru (Nsu-
ka LGC) - 270 347.5mm 60m3/hr 209 13.48 4.45

Ogurute 
II (Igboeze 

(LGC)
- 241 347.5mm 67.2m3/hr 140.63 4.77 14.08

Imufu (Ig-
boeze (LGC) - 216 437.5mm 792.2m3/

hr 133.4 7.05 11.23

Obimo 
(Nsukka 

LGC)
- 240 347.5mm 120m3/hr 66 15.9 7.55

Iheakpu 
Awka (Ibo-
eze LGC)

- 200 437.5mm 68.4m3hr 129.45 6.9 9.9

Ekwebe (Ibo-
eze LGC) - 234 437.5mm 60m3/hr 163.69 12.02 44.99

Itchi (Ibo-eze 
LGC) - 200 347.5mm 110.3m3/

hr 118.63 7.0 15.7

Ede-Oballa 
(Nsukka 

LGC)
- 275 347.5mm 51.6m3/hr 221 4.05 12.74

Amufie 
Umuitudo 
(Igbo-eze 

LGC)

- 255 437.5mm 162.44/hr 157 4.84 33.5

Ohebe-Dim 
II (Igbo Ekiti 

LGC)
- 256 437.5mm 60m3/hr 169.12 7.49 8.01
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Hydrogeologically, the cross-bedded Ajali Formation 
presents a wider local aquiferous stratigraphic unit. It is 
comprised of the Maastrichtian sand unit, which serves 
as a vital supplier of water in the Anambra Basin [54]. The 
formation conformably covers the Mamu Disposition and 
is partially covered by the Late Maastrichtian Nsukka For-
mation, which is characterized by irregular sandy and sha-
ly units (Tijani and Nton, 2009). The Ajali Formation out-
crops and spreads from Fugar/Agenebode area in the west 
and extends eastward along the Enugu-Udi escarpment 
where groundwater is recharged. It further narrows south-
wards towards the Okigwe area (Figure 1b). The thickness 
of the Ajali Formation ranges from 350 to 450 meters. The 
formation thins southward to a few tens of meters around 
Okigwe. Studies have shown that the higher section of the 
Ajali Formation is ferruginized in some areas [54,64,66-69]. 
This condition, joint with the clay/shale unit of the over-
lying Nsukka Formation and the basal Mamu Formation 
favors the progression of a confined/semi-confined aquifer 
system [54]. The following geological succession as illus-
trated in Figure 5 was reported at the location, some 24 
km north of Umumbo. 
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Figure 5. Geological successions in the Anambra Basin

At Uzouwani, the Ajali Formation halted at 180 meters 
beneath the surface, resulting in a high yield of boreholes 
(7-9 liters per second). At Agba Umuna the yield was very 
high (69 liters per second) and a free-flowing head of 30 
meters. A yield of about 111 liters per second was also 

recorded at Mgbagbuowa [45]. The most important hydro-
geologic feature of the Ajali Formation is the existence of 
a cavernous and thick confined and semi-confined aquifer, 
particularly in places covered by the Nsukka Formation [54]. 
Though unconfined conditions occur mainly in the out-
crop areas of the formation. Also, the existence of a con-
fined floating aquifer network is well pronounced in areas 
where the lateritised Nsukka Formation arises as outliers 
on the Ajali Formation. Most of the wells exploiting this 
profound aquifer have depths ranging from 120 to 200 
meters and saturated width ranging from 42-150 meters. 
However, the yield varies from 10 to 100 m3/hr. Transmis-
sivity values of 1.0 x 10-2 to 1.7 x 10-2 m2/s and storativity 
of about 0.02 suggest the prolific nature of the Ajali aqui-
fer [54]. Summary of the data of some artesian boreholes 
drilled in the area is presented in Figures 6-8.
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Figure 6. Lithology, Pressure Head, and Estimated Yields 
of Artesian Boreholes in (1) Umumba and (2) Abinofafia 
(Ndiagu Local Government Council) in Ajali Formation
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of Artesian Boreholes in (1) Agba Umana Ndiagu (2) 

Agba Umana in Ajali Formation
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Formation

However, the potentials of this aquifer, seem to de-
cline westwards due to a drop in thickness [54]. Even so, it 
should be acknowledged that the friable and porous nature 
of the Ajali Formation is as a result of environmental/
land degradation, notably, gully erosions in some areas. 
This also suggests problems in terms of the occurrence of 
shallow aquifers, as a result of its comparatively high per-
viousness that lets the whole seeping of water to the cav-
ernous unit of the formation [54]. An Exploratory borehole 
drilled by the Federal Department of Water Resources 
at Umulokpa, Uzo Uwani revealed an artesian condition 
in the area. The well passed through 195 meters of blu-
ish-grey shales of the Nsukka Formation into the sands 
and sandstones of the Ajali Formation (Figure 9).

The piezometric surface of the Ajali Formation was de-
rived from a general inclination from a depth of about 100 
meters near the edge of the cliff, to about 50 meters near 
the boundary of the Nsukka Formation, where the sub-ar-
tesian conditions are attained (20-30 meters) to artesian 
(+15 - 50 meters) above the ground level, further west [45]. 
Though within the outcrop sections the aquifer appears 
to be relatively less porous, as a result of ferruginisation 
and lateritisation, westwards the perviousness gradually 
increases as the sands become less cemented, loose, and 
whitish, suggesting minimal induration with it consequent 
high yield. This condition is confirmed by the flow net 
analyses, which indicates a closer cluster of the piezomet-
ric contours closer to the cliff, than westwards in the con-
fined artesian areas of the basin, where the contours are 
spread out, suggesting greater porosity in that direction [45]. 
The groundwater regime appears to separate into two: a 
flow trend towards Umumbo, Ndiagu, Mgbagbuowa; and 
Ndiagu Obinofia, the area that has registered prolific arte-
sian flows.
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Figure 9. Artesian borehole drilled by the Federal Depart-
ment of Water Resources in Umulokpa, Uzo Uwani

3.2 Nsukka Formation

The Nsukka Formation covers a wide area in the eastern 
part of Nigeria, overlying the Ajali Formation. The forma-
tion is made up of dark shale, sandy shale, and carbona-
ceous shales having tinny coal layers [70-72]. Sandstone 15 
meters thick occurred at the basal section in the Nsukka 
area. Along the Oji River, a comparable sandstone layer 
occurred forming the artesian conditions, at the transition 
zone between the Nsukka and Imo Formations. The two 
formations are essentially aquiclude confining the Ajali 
aquifer westward of the Anambra Basin [45]. The sandstone 
associates of the Nsukka Formation are aquiferous and 
have produced high-pressure artesian boreholes along 
the Oji River. These boreholes include the PTF borehole 
along Enugu-Onitsha Express Way and a borehole at Ak-
pugo Eze (south of Oji River). These boreholes give a free 
flow at a depth of 27.8 and 64 meters, respectively. Other 
boreholes having artesian pressure are the Water Board 
and Leprosarium boreholes, and Old Oji River borehole 
constructed in 1913. At Akpgo, flowing layers were run 
into as indicated by Figure 10.
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Figure 10. The borehole at Akpugo containing free-flow-
ing aquifers

Uzoije, Onunkwo [73], assessed the groundwater poten-
tials of Southeastern Nsukka. The study showed that the 
mean annual rainfall of the area is 2.09 x 108 m3, though 
the rainfall intensity gives 0.15/year. Overflow for the area 
was 1.06 x 107 m3/year, amounting to 5.07% of the total 
rainfall. Potential evapotranspiration is 1057.98mm/year 
giving 8.112% of the water available from precipitation. 
Distance to water table ranged from 106.70 to 9.15 meters 
from the recharge area of the watershed to the farmland 
discharge low lying area. Aquifer type ranges from uncon-
fined, semiconfined to confined. The mean transmissivity 
values were 3.25 x 10-2m2/s, whereas hydraulic conduc-
tivity gives 2.3 x 10-3m/hr. Specific discharge is 2.24 x 
10-4 m/yr, mean groundwater linear velocity is 4.98 x 10-4 
m/yr. 

The hydrochemistry of deep and shallow aquifers indi-
cates that iron concentration is high. The deep groundwa-
ter shows no pathogens, whereas the superficial aquifers 
show a severe coliform presence. The water class for deep 
aquifer indicates magnesium and a no dominant anion, 
whereas the shallow aquifer water is magnesium-sulfate 
(hard water). The water meets the drinking and industrial 

standards, though acidic and of elevated iron concentra-
tion. The water is good for irrigation use. The study fur-
ther revealed that the Nsukka aquifer contained water of 
good quality which is best for reference in the course of 
the water resources expansion in the basin.

3.3 The Imo Shale

The Imo Formation, popularly known as the Imo Shale, is 
comprised of blue-grey clays and shales and black shales 
with bands of calcareous sandstone, marl, and limestone 
[74-77]. Ostracode and foraminiferal biostratigraphy, and mi-
crofauna recovered from the basal limestone unit indicate 
a Paleocene age for the formation [78]. The basal sandstone 
unit reflects foreshore and shoreface or, delta front sedi-
mentation (Figure 11). The Imo Formation is the outcrop 
lithofacies equivalent of the Akata Formation in the sub-
surface Niger Delta [78]. The three hydrostratigraphic units 
recognized are divided by thick (>100 meters ) clay-Shale 
units (Imo Shale), which act as confining cots and provide 
efficient perpendicular seals against the discharge of fluid 
load [75]. The middle hydrostratigraphic section is the most 
productive and its surface crag shapes the hydrological 
frontier in the east and north [79]. 

Figure 11. Lithologic section of the studied boreholes [75]

There is a continuous absorbency in much of the mid-
dle unit. On the other hand, there are rapid lateral facès 
changes and interfingering between sandy and Shaley 
units in both the upper and the middle hydrostratigraphic 
units [78]. The Imo shale is essential of the Selandian age. 
This interlude covers 59.4my-56.5my and parallels to 
F3100-F3500 on the Niger Delta chronostratigraphic chart 
as revised by the SPDC Ltd in 1998 [45]. The chronostrati-
graphic table indicates that the interlude comprises of 
2/3-order depositional series connected with the 59.4my, 
57.5my, and 56.5my first-order progression margins and 
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58.1my and 56.3my maximum inundating sides. The 
succession stratigraphic outline of the Imo Formation is 
therefore based on the detection and explanation of these 
series frontiers and sea inundating sides or in crags, and 
their basin-wide relationship. Four core faces assemblies 
(depositional faces) which are recognized in the Imo For-
mation are: (1) tidally-inclined fluvial faces; (2) estuarine 
cove plug delta; (3) estuarine and oceanic shale faces; and 
(4) progradational shoreface-foreshore faces assemblies 
[80]. These faces collections define the reservoir crates, 
flow sections, and caps (Table 2).

Table 2. Major faces assemblies of the Imo Formation [80]

In terms of groundwater potentials, the Imo aquifers 
have mostly less productive capacity than those of the 
Ameki formation [74]. Appraisal of groundwater potentials 
in Okigwe District revealed that the southern region is 
highly productive in terms of groundwater development 
and thus the most favorable for establishing boreholes [81]. 
These findings concurred with Nwankwo, Nwosu [82]’s 
evaluation of groundwater potentials in Imo State. Based 
on the longitudinal conductivity, three aquifer system was 
recognized. The circulation of transverse resistance yield-
ed a comparable result. The results are dependable and co-
herent with the geological configuration. The north-east-
ern and western sections of Imo State are more sustainable 
for establishing productive wells [82].

3.4 Bende-Ameki Formation

Covering the Imo Shale to the west of River Niger, and 
directly south of the Anambra River, lies the Ameki For-
mation [79,83,84]. The formation extends far south reaching 
Okigwe where a large part of its portions was overlain by 
the Benin Formation [45]. The Ameki aquifer is the major 
source of groundwater tapped in Onitsha and Asaba. In 
Onitsha, the aquifer is underlain by a series of sandstones 
interbedded with shales and reedy limestone layers. 
The lateral equivalent of the Ameki Formation to the 
southwest of Anambra Basin is the Nanka sands better 
developed in Nanka and Nnobi areas. Across the Niger 
and in the southwest, the Nanka sands are superimposed 
by lenticular siltstones, clays, and shales with secondary 
sandstones and lignites, grouping into what is labeled as 
the Ogwashi-Asaba Formation [85]. 

The formation grades south-eastward towards the up-
per Orashi valley into some 270 meters of shales. The 
sandstones of the Ameki Formation are generally very 
previous. In Onitsha, a high water table (20-30 meters) 
was encountered. In contrast, the water table is generally 
very low in Nanka, Idimili, and Oko (30-300 meters in 
depths). Therefore, the development of the Nanka sands 
aquifer can only be achieved through deep wells, except 
in low lying areas [46,85]. In Nanka, for instance, springs 
issue profusely at its outcrop points, where the water ta-
ble is traversed by deep erosional valleys, forming scenic 
lakes at the top of the hill [45].

The Bende-Ameki Formation of Eocene to Oligocene 
age comprises of medium-coarse-grained white sand-
stones. The formations are covered by late Tertiary-Early 
Quaternary Benin Formation with a southwestward dip 

[86]. The Formation is about 200 meters thick. The li-
thology is unconsolidated fine-medium-coarse-grained 
cross-bedded silts irregularly rocky with concentrated 
shale and clay. Hydrogeologically, the two major for-
mations have a relative groundwater regime. They both 
have dependable groundwater that can maintain the lo-
cal borehole system. The Bende-Ameki Formation has 
a lesser amount of groundwater when equated to other 
formations. The various lenticular sand carcasses within 
the Ameki Formation are not large and represent minor 
aquifer with tight zones of the sub-artesian condition. 
Specific capacities are in the range of 3 - 6 m3,m/hr. 
However, the high absorptivity of Benin Formation, the 
overlying lateritic earth, and the weathered top of this 
Formation, as well as the underlying clay shale member 
of the Bende-Ameki series, provide the hydrogeological 
condition favoring the aquifer formation [87]. 
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Figure 12. The geoelectrical section along section AA, 
showing good aquifer (Bende-Ameki) formation [87]

The geological physiognomies of Bende-Ameki For-
mations do not allow permeation of rainwater because of 
thick deposits of the lateritic layer rather the rainwater 
runoff to recharge the aquiferous units that are located 
within Imo Shale [87]. The fundamental stratigraphic lay-
ers underneath the thick surface laterite layer within the 
Bende-Ameki aquifer lack the hydrogeological property 
suitable to retain groundwater and transmit it (Figure 12). 
That is the reason no river drains Ekpoma and no ground-
water in the area where Bende-Ameki Formation underlies 
in Ekpoma and some other pocket places in Irrua. Howev-
er, areas in Ekpoma and Irrua that lie beneath by Ogwashi 
Asaba Formation are drained by rivers/streams and even 
characterized by lakes [87]. The existence of surface water 
in the area underlain by Ogwashi-Asaba Formation is as 
a result of the scarp fault (Figures 13a, b) and scarp fault 
line that is connected with Ogwashi Asaba [88]. The scarp 
fault forms a conduit via which groundwater moves from 
the underlying aquiferous unit to the surface as springs, 
rivers, and streams, while areas where line fault scarp is 
found, lakes, and artisanal wells are predominant. But, 
despite Imo Shale has an aquiferous unit, areas that lie 
beneath by Imo Shale do not have surface water due to 
the scarp fault and line fault scarp that occurs in Ogwashi 
Asaba do not cut across or spread to Imo shale [88].

(a) (b)

Figure 13. (a) Outcrop section of Ogwashi-Asaba Forma-
tion in the boundary line of Ekpoma at Ogidakpe Expos-

ing fault Scarp (b) Faulted portion of Ogwashi-Asaba 
Formation that forms spring by the fault Scarp at AAU 

Dam in Ekpoma [88]

The groundwater and surface water occurrence in the 
study area (Ekpoma and Irrua) is geologically and struc-
turally controlled. Areas in Irrua and the pocket of places 
in Ekpoma that are underlain by Imo Shale and Ogwashi 
Asaba have groundwater since the two formations have 
thin aquiferous units. The aquiferous units in Ogwashi 
Asaba are about 3.7 meters. The aquiferous layer within 
Imo Shale is one. It is located at a depth of 78 meters or 
above depending on topographic location with a thickness 
of fewer than 4 meters [88]. The reedy aquiferous units that 
occur in Imo Shale and Ogwashi-Asaba Formations [76,89] 

is largely responsible for the inability of water pumping 
machine to sustain continuous pumping in a conventional 
borehole. As a result, the borehole is drilled by hands in 
the area to have a larger surface area of exposure to the 
aquifer to avoid water-cut while pumping. Ekpoma is 
mainly lying beneath by Bende-Ameki Formation except 
for some pocket of areas that are located in the extreme 
boundary line where there is formation transition to either 
Imo Shale or Ogwashi-Asaba [88]. 

The geologic characteristics of the Bende-Ameki For-
mation [86,90], do not produce favorable hydrogeological 
conditions for groundwater to occur, as a result, Ekpoma 
town does not have water and parts of Irrua that are un-
derlain by Bende-Ameki Formation. Apart from some 
pockets of areas in Ekpoma that fall within the extreme 
boundary line, deep borehole drilled into the older forma-
tions through Bende-Ameki Formation up to Ajali Sand-
stone to a depth of 297 meters or over and 396 meters 
depending on the topographic location and aquifer depth 
of over 27 meters that can sustain continuous pumping 
[88]. The underlying aquifer can be easily exploited in Ek-
poma town but at such depth, drilling of the borehole is 
very expensive. The water contains iron since the Ajali 
Sandstone that lies beneath Ekpoma is highly ferruginous. 
Hence water at that depth within Ajali Sandstone needs 
treatment for excess iron content [88]. This deep aquiferous 
unit which exists within Ajali Formation that underlies 
Bende-Ameki Formation in Ekpoma in the aquiferous unit 
where GT Bank’s borehole and the State Government’s 
Borehole in the Market Square get their water from. That 
is the reason the boreholes yielded a large amount of wa-
ter without many drawdowns during continuous pumping.

The Ameki Formation is unconformably covered by 
the continental sandstones of the Ogwashi-Asaba and 
Benin Formations [89,91,92]. From the Okitipupa Ridge, this 
formation occurs in a flared crag pattern through Asaba, 
Onitsha, and Uyo to Calabar [93]. The outcrop area is at 
Eke-Mgbalingba in Ogwashi-Asaba. Beds are horizontal 
to near horizontal, as such can be termed as undeformed. 
The area is drained by the Otamiri, Njaba, and Oramiri-
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ukwa, the Nwaorie Stream, and the ephemeral Okitankwo 
Stream. Groundwater recharge is mainly from surface 
runoff and groundwater baseflow [93]. The absorbent and 
pervious sands and interfering sandy clay and gravels 
of the Benin Formation form a multi-aquifer system in 
which aquifer units are divided by semi-permeable sandy 
clay aquitards [93]. Three aquifer units are recognized in 
the area. These are; (1) an upper water-table (unconfined) 
aquifer, (2) a middle semi-confined aquifer, and (3) a low-
er confined aquifer. 

The base of the upper water-table aquifer is at a max-
imum depth of 100 meters. The middle semi-confined 
aquifer has a typical width of 80 meters, and the lower 
confined aquifer has an approximated width of more than 
600 meters. The aquifers have high storativity and trans-
missivity. Borehole yields range from 54.2 to 231.5 m h-1. 
Effective hydraulic conductivity ranges from 5.6 x l0 -9 to 
1.44 x 10-3 ms-1, the higher value being in the coarse sand 
and gravel units. The depth to the water table is about 
60 meters in the north decreasing southward to less than 
20 meters; the hydraulic-head gradient is 9-22% [93]. As 
recharge water meets the Ajalli sandstone unit, the water 
obtains small concentrations of Na and Ca due to the dis-
solution of calcite and feldspar. On running into the shale 
unit, Na would be exchanged for Ca, thus resulting in a 
slight rise in Na concentration, and a decline in Ca. 
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Figure 14. A typical borehole lithological log in Awka 
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However, in Awka, several hand-dug shallow wells 
tap the aquifer [94-97], at a depth between 15 meters in the 
low-lying areas, to 60 meters over the highland. The up-
permost layer is marked in places by a hard-lateritic pan 
which confines it and separates it from the overlying clay-
ey section of the Imo-Clay Shale. The sequence comprises 
of gravelly coarse sands, interbedded towards the base, by 
the very hard lateritic sandstone pans [45]. A typical lithol-
ogy of the borehole in Awka is illustrated in Figure 14 a, 
b, c. The stratigraphical and structural framework, as well 
as the available groundwater chemistry, seem to suggest 
the existence of an effective throughflow across the basin. 

This seems to show that the water in the Mamu aquifer is 
much younger than would be expected based on the veloc-
ity calculations [98]. However, in Awka, several hand-dug 
shallow wells tap the aquifer at a depth between 15 meters 
in the low-lying areas, to 60 meters over the highland. 

Borehole from the Ameyi sandy aquifer and Ugwuoba 
sandstone aquifer is likely to be more productive. The 
Ajali aquifer in the Awka zone is very deep to be econom-
ically viable and cannot be well-thought-of been a ground-
water source in this area. In Agulu, Nanka, and Ekwulobia 
areas (south) the major aquifer is the Nanka sands. The 
water table is generally very low, with about 89 meters in 
Agulu, 137 meters in Nnobi to 230 meters at Igboukkwu, 
the town with the deepest water table. The deep-water 
tables are obtained in boreholes located in the lowland 
areas or valleys usually spreading the mainly mountainous 
region [45].

4. Groundwater Hydrochemistry

4.1 Physical Chemistry 

Anambra Basin is endowed with innumerable abundant 
natural groundwater sources. Quite a lot of isolated studies 
of the water quality of the basin have been undertaken by 
several types of research. This section attempts a review 
of these works and offers a guide to the understanding of 
the physicochemical characteristics of the groundwater 
sources and the aquifer system in the basin for more effec-
tive groundwater quality management. Figure 15 presents 
a summary of the physical chemistry of aquifers in the 
Anambra Basin. It is assumed that groundwater should be 
free of predilections and fragrances that would be unac-
ceptable to the users [99]. In evaluating the quality of drink-
ing water, water users depend mainly on their sensations. 
Physical, chemical, and microbial elements of water can 
affect the odor, taste, or appearance, and the user will con-
sider the acceptability and quality of the water-based on 
these standards. Even if these elements may have no di-
rect health effects, highly turbid water, is exceedingly col-
ored, or has an unpleasant odor or taste might be deemed 
by users as risky and rebuffed [99]. In risky circumstances, 
users might dodge aesthetically objectionable but then 
safe drinking-water in preference of more enjoyable but 
possibly perilous sources. Some physical constituents of 
groundwater are presented in Figure 15. 

Data on pH, temperature, EC, TDS, alkalinity, TSS, 
DO, turbidity, and salinity were synthesized from the lit-
erature and the result showed water of excellent quality 
for drinking and domestic uses. The water of low salinity 
is generally composed of higher proportions of calcium, 
magnesium, and bicarbonate ions [100,101]. Moderately sa-
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Figure 15. Physical parameters of water quality (a) pH, (b) Temperature, (c) Electrical conductivity, (d) TDS, (e) Alka-
linity, (f) TSS, (g) DO, (h) BOD, (i) Turbidity, and (j) Salinity
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line water have varying ionic concentrations. High saline 
waters consist of mostly sodium and chloride ions [102,103]. 
Groundwater containing a high concentration of sodium, 
bicarbonate, and carbonate ions tend to have a high pH 
level [104]. Groundwater classification based on pH showed 
that 54.03 % of groundwater sources in Anambra Basin 
have pH less than 6.5 (acidic), 35.07 % have pH ranging 
from 6.5 to 7.0 (neutral) and 10.90 % have pH greater 
than 7.0 (alkaline), as contained in Table 3d. Based on 
basic physical constituents (pH, TDS, EC, and Hardness), 
groundwater in the Anambra Basin is suitable for drink-
ing.

Table 3. Groundwater classification based on hardness, 
TDS, Conductivity, and pH

(a) Hardness 
(CaCO3) mg/l No. sites Percentage (%) Classification

0 - 75 108 80 Soft

75 - 150 27 20 Moderate Hard

150 - 300 0 0 Hard

>300 0 0 Very Hard

Total 135 100

(b) TDS (mg/l)

Less than 500 182 94.79 Essential for drinking

500-1000 8 4.17 Required for drinking

1000-3000 2 1.04 Suitable for drinking

Greater 3000 0 0.00 Unsuitable for drink-
ing and irrigation

Total 192 100

(c) Conductivity (µS/cm)

250-750 179 98.35 Good for drinking

750-2250 3 1.65 Permissible

Greater than 2250 0 0.00 Doubtful

Total 182 100

(d) pH

Less than 6.5 114 54.03 Acidic

6.5-8.5 74 35.07 Neutral

Greater than 8.5 23 10.90 Alkaline

Total 211 100

Based on total hardness, 80 % of sources of ground-
water in the Anambra Basin are soft and 20 % moderately 
hard as indicated in Table 3. Total hardness in Anambra 
Basin ranged from 0-195.12 mg/l. Hardness less than 75 
mg/l is especially required for drinking. TDS ranged from 
0.001-1200.00 mg/l. Based on TDS 94.79 % of sources 
of groundwater are essential for drinking. Also, 4.17 % 
have TDS ranging from 500-1000 mg/l and 1.04 % have 
TDS ranging from 1000-3000 mg/l as contained in Table 
3. Electrical conductivity ranged from 5.30-1315.00 µS/
cm in the Anambra Basin. Based on conductivity 98.35 % 

have EC varying from 250-750 µS/cm and 1.65 % have 
EC ranging from 750 2250 µS/cm (Table 3c).

4.2 Cation Chemistry

Figures 16 and 17 summarized the cation chemistry of 
groundwater in the Anambra Basin. There are few reports 
on Aluminum (Al). Hydrogeochemical analysis in Nando 
and Environs by Egbunike [53] showed that Al ranged from 
0.58-2.9 mg/l. Arsenic (As) ranged from 0.00025 to 0.80 
mg/l. Low As concentration in drinking water is required 
owing to its adverse effects on human health (cancer). 
Based on WHO [105], provisional guideline 0.01mg/liter 
value was proposed. The guideline value is designated 
as provisional given the scientific uncertainties. Arsenic 
levels in natural waters generally range between 1 and 
2mg/ liter, although concentrations may be elevated (up 
to 12mg/ liter) in areas containing natural sources. There 
remained large ambiguity over the definite risks at low 
intensities and existing data on mode of action do not 
present a biological source for utilizing either linear or 
non-linear extrapolation. Given the significant ambiguities 
bordering the risk estimation for arsenic carcinogenicity, 
the rational quantification limit of 1-10mg/ liter, and the 
practical difficulties in eliminating arsenic from aquifers, 
the guideline value of 10 mg/l is maintained. However, 
given the scientific doubts, the guideline value is defined 
as interim [105].

Barium (Ba) in the ranged from 0.02-186.9 mg/l. Bar-
ium concentrations in drinking water are generally below 
100 mg/l, though concentrations above 1mg/l have been 
measured in drinking water derived from groundwater [105]. 
The guideline value for Ba is based on an epidemiological 
study in which no adverse effects were reported, though 
the study population was relatively small, and the power 
of the study was limited. As a result, an uncertainty factor 
of 10 was applied to the level of Ba in the drinking water 
of the study population. Nevertheless, the level at which 
effects would be seen maybe significantly greater than this 
concentration, therefore, the guideline value for Ba may 
be highly conservative and the margin of safety is likely 
to be high. 

At a moderate concentration in drinking water Ca is 
beneficial. But high concentrations Ca in conjunction with 
Mg form carbonate hardness [106,107]. Calcium ranged from 
<0.001 to 240 mg/l. High levels of Ca in drinking water 
may be beneficial and aquifers that are rich in calcium are 
very tasty. There is some proof to indicate that the inci-
dence of heart disease is lessened in areas acquiring water 
from aquifers with an elevated level of hardness, the ma-
jor ingredient of which is calcium so that the occurrence 
of the element in a water supply is advantageous to health 
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[108-114]. Magnesium ranged from <0.001-60.2 mg/l. 
Magnesium is copious and a key nutritional prereq-

uisite for a human being - 0.3-0.5 g/day (EPA, 2001). 
It is the second foremost component of hardness and it 
commonly consists of 15-20 percent of the total hardness 
stated as CaCO3. Its intensity is very substantial when 
measured in combination with that of sulfate [115]. Manga-
nese ranged from <0.001-10.8. No specific toxicological 
undertones; the concerns to manganese, like Fe, are aes-
thetic. Toxicity is not a factor, as groundwater with elevat-
ed manganese concentrations will be rebuffed by the user 
long before any risk threshold is attained.

Sodium Ranged from <0.001-224.4 mg/l is regulated 
in drinking water because of the joint effects it exercises 
with sulfate. High consumption is associated with hyper-
tension. Na absorption in the aquifer is dependent on the 
temperature of the solution and the associated anion. No 
firm conclusions can be drawn regarding the probable re-
lationship between Na in drinking water and the incidence 
of hypertension [116-119]. Therefore, no health-based guide-
line value is proposed. However, concentrations above 
200 mg/l may give rise to undesirable taste. Potassium 
ranged from <0.001-312.4 mg/l. Higher K concentration 
in groundwater is associated with toxicity [120,121]. Potassi-

	

Figure 16. Chemical parameters (a) Arsenic, (b) Barium, (c) calcium, (d) Magnesium, (e) manganese, (f) Sodium, (g) 
Potassium, (h) Cadmium, and (i) Lead
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um is most aquifers are found in low concentrations and 
excessive intake is not associated with any health hazard.

Cadmium was derived from 35 locations. Concentra-
tions ranged from <0.001-0.08 mg/l. The 1963 Interna-
tional Standards for drinking water quality recommend-
ed 0.01mg/l, as a maximum permissible concentration 
of Cd established on health fears. This value was held 
in the 1971 International Standards as a tentative higher 
concentration limit, based on the smallest intensity that 
might be appropriately calculated. In the first version 
of the Guidelines for Drinking-water Quality, issued in 
1984, a guideline value of 0.005mg/l was proposed for 
Cd. This value was reduced to 0.003 mg/l in the 1993 
Guidelines [122]. Lead (Pb) ranged from <0.001-0.87 mg/
l. Lead concentrations in drinking water are generally 
below 5mg/l, even though much higher concentrations 
(>100mg/l) have been measured where lead fittings are 
present [122]. Lead is exceptional since Pb in drinking wa-
ter is mainly derived from the plumbing in houses and 
the solution comprises mainly of eliminating plumbing 
and fittings having Pb. This needs ample money and 
time, and it is acknowledged that not all water will meet 
the guideline instantly. Therefore, all other feasible ac-
tions to lessen total exposure to Pb, involving corrosion 
control, should be applied.

Nickel ranged from 0.032-0.047 mg/l. Nickel is one 
more metallic element which is restrained in drinking 
water since probable carcinogenicity as far as people 
are apprehensive; it also has varying toxic consequences 
on aquatic life [123]. Nickel is toxic to plant life and is a 
danger to fish [124-126]. There are few studies on Fluoride, 
Mercury, and Silica in Anambra Basin. Oghenenyoreme 
and Njoku [127] reported a fluoride range of <0.001-2.5 
mg/l from the Orji River. Fluoride exists spontaneously 
in moderately unusual cases; appears virtually entirely 
from fluoridation of municipal water deliveries and in-
dustrial releases [124-126]. Health findings have revealed 
that the accumulation of fluoride into water supplies at 
levels above 0.6 mg/l, can lead to a decrease in tooth 
decay in growing children and that the ideal useful out-
come appears around 1.0 mg/l [115].

Silica analysis in Nando and Udi by Egbunike [53] and 
Aniebone [128], showed that it ranged from <0.001 to 30 
mg/l (Figure 18). Silica is the most plentiful element 
found in rocks and it is constantly present in natural wa-
ters [129-131]. The element is a foremost constituent of the 
structure of diatoms (Bacillariophyta), one of the major 
groups of the algae, and when algal growth takes place 
in a water silica levels drop as the diatom population 
increases. The subsequent renewal of silica is primarily 

Figure 17. Chemical parameters (a) Nickel, (b) Silica, (d) Mercury, (e) Copper, (f) Iron, and (e) Zinc
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from run-off [115]. The concentration of Mercury ranged 
from 0.00035-0.7 mg/l. Mercury is present in the mineral 
form in surface water and groundwater [132-135]. Concen-
trations are usually below 0.5 µg/l, although local min-
eral deposits may produce higher levels in groundwater. 
A guideline value of 0.006 mg/l (0.6 mg/l) for inorganic 
mercury was recommended in drinking water [122].

Copper concentrations ranged from <0.00-11mg/l Cu. 
There is increasing copper contamination in the environ-
ment [136-139]. Current studies have defined the threshold 
for the effects of Cu in drinking water on the gastrointes-
tinal tract [140-142], but there is still some doubt regarding 
the long-term effects of copper on sensitive populations 
such as carriers of the gene for Wilson disease and other 
metabolic disorders of copper homeostasis [122]. Iron (Fe) 

is mainly derived from rock mineral [143,144]. Numerous 
studies evaluated iron (Fe) concentrations in groundwa-
ter across Anambra Basin. Iron is found in natural fresh-
waters at levels ranging from 0.5 to 50mg/l. Anaerobic 
groundwater may contain ferrous iron at concentrations 
up to several milligrams per liter without discoloration 
or turbidity in the water when directly pumped from a 
well. On exposure to the atmosphere, however, the fer-
rous iron oxidizes is converted to ferric iron, giving an 
objectionable reddish-brown color to the water [145]. No 
guideline value for iron in drinking water is proposed. At 
levels above 0.3 mg/l, iron stains laundry, and plumbing 
fixtures. There is usually no obvious taste at iron con-
centrations below 0.3 mg/l, although turbidity and color 
may develop [145].

Figure 18. (a) Carbonate, (b) Bicarbonate, (c) Chloride, (d) Phosphate, (e) Nitrate, (f) Nitrite, and (g) Sulphate

DOI: https://doi.org/10.30564/jgr.v2i3.2141



16

Journal of Geological Research | Volume 02 | Issue 03 | July 2020

Distributed under creative commons license 4.0

Zinc is also derived from rock materials [146,147]. Zinc 
concentrations ranged from <0.001-8 mg/l. Water con-
taining Zn at concentrations above 3-5 mg/l may appear 
opalescent and develop a greasy film on boiling. Natural 
waters rarely contain Zn at concentrations above 0.1 mg/
l [145]. Chloride (Cl) ranged from <0.001-450 mg/l. High 
concentrations of Cl in groundwater sources give a salty 
taste to water and beverages [99]. Taste thresholds for the 
Cl anion hinge on the accompanying cation and are in 
the range of 200-300 mg/l for Na, K, and calcium chlo-
ride. Intensities above 250 mg/l are increasingly expect-
ed to be noticed by taste. Chloride is increasingly added 
to groundwater from anthropogenic activities [148-151].

4.3 Anion Chemistry

Figure 18 summarized the anionic characteristics of 
groundwater. Bicarbonate ranged from <0.01-377.8. 
Carbonate, on the other hand, ranged from 9.6-200 mg/
l. Aquifers having a high concentration of sodium, bicar-
bonate, and carbonate ions tend to have a high pH level 
[152]. Nitrate ranged from <0.001-86.96 mg/l. Nitrate 
(NO3) occurs naturally in the environment and is an es-
sential plant nutrient. It is available in varying intensities 
in all plants and is a component of the nitrogen cycle [122]. 
Nitrate pollution is on the rise as NO3 is added into aqui-
fers from human sources [153-156]. However, nitrite (NO2) 
is not usually present in significant concentrations except 
in a reducing environment since nitrate is the most stable 
oxidation state. It can be formed by the microbial reduc-
tion of NO3. 

The most important source of human exposure to NO3 
and NO2 is through vegetables and meat in the diet [157-159]. 
However, groundwater can make a significant contribu-
tion to NO3 and, sporadically, NO2 consumption [160,161]. 
In the case of bottle-fed infants, drinking water can be 
the major external source of exposure to these elements. 
Guideline value for 50 mg/l NO3 is recommended to 
protect against methemoglobinemia in bottle-fed infants 
[122]. Nitrite ranged from 0.01-0.15 mg/l. This is especial-
ly required for drinking. Guidelines values of 0.2 mg/
l (provisional) (long-term exposure) was proposed [122]. 
The guideline value for chronic consequences of nitrite 
is considered temporary due to ambiguity bordering the 
propensity of individuals compared with animals. Sulfate 
ranged from <0.001- 8542.8 mg/l. The existing data do 
not identify a level of SO4 in the Anambra Basin that is 
likely to cause adverse human health effects. No health-
based guideline is recommended for SO4. Owing to the 
gastrointestinal impacts stemming from the consumption 
of drinking-water comprising elevated SO4 levels, it is 
suggested that sources of drinking water should not con-

tain sulfate concentrations of more than 500 mg/l [122]. 
Sulfate in added into aquifers from different sources [162-

164].

5. Conclusion

This paper presents a thorough description of the hy-
drogeological and hydrochemical configurations of the 
Tropical Anambra Basin. It identified the major geolog-
ical formations and groundwater aquifers, notably Ajali, 
Nsukka, and Mamu formations. The hydrochemistry of 
the aquifers was also discussed, to provide a full picture 
of the general physicochemical characteristics of aqui-
fers. However, based on the identified hydrogeological 
and hydrochemical data, the following remarks can be 
made: 

(1) The Ajali formation, which is over 300 meters 
thick, is confined in places and as a result, formed an 
artesian condition. The potentials of this aquifer, seem to 
decline in the western basin due to drop in thickness;

(2) The Nsukka Formation overlain the Ajali Forma-
tion. The sandstone associates are aquiferous and have 
produced high-pressure artesian boreholes along the Oji 
River;

(3) The Imo Formation is comprised of blue-grey 
clays and shales and black shales with bands of calcare-
ous sandstone, marl, and limestone. There is a permea-
bility continuity throughout much of the middle unit;

(4) The sandstones of the Ameki Formation are gener-
ally very previous. The Bende-Ameki Formation has less 
groundwater when compared to other formations;

(5) The geological faces of Bende-Ameki Formations 
do not allow permeation of rainwater because of thick 
deposits of the lateritic layer rather the rainwater runoff 
to recharge the aquiferous units that are located within 
Imo Shale;

(6) The geologic characteristics of Bende-Ameki For-
mation do not produce favorable hydrogeological condi-
tion for groundwater to occur;

(7) The stratigraphical and structural framework, as 
well as the available groundwater chemistry, seem to 
suggest the existence of an effective throughflow across 
the basin;

(8) Based on physical parameters the basin holds wa-
ter of acceptable quality. Hardness ranged from 0-195.12 
mg/l. TDS ranged from 0.001-1200.00 mg/l. Electrical 
conductivity varied between 5.30-1315.00 µS/cm. 54.03 
% of groundwater sources have pH less than 6.5 indica-
tive of slight acidity;

(9) Ammonia ranged from 0.19-0.52 mg/l. Arsenic 
ranged from 0.00025 to 0.80 mg/l. Bicarbonate ranged 
from <0.01-377.8 mg/l. Calcium ranged from <0.001 to 
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240 mg/l. Sodium ranged from <0.001-224.4 mg/l. Also 
lead ranged from <0.001-0.87 mg/l. Zinc ranged from 
<0.001-8 mg/l. 

(10) Chloride ranged from <0.001-450 mg/l. NO3 
ranged from <0.001-86.96 mg/l. SO4 ranged of <0.001- 
8542.8 mg/l.

(11) Based on anionic and cationic chemistry, aquifers 
of Anambra Basin contained water of acceptable quality 
for different uses.

Thus, this study presented a comprehensive review of 
the hydrochemistry and hydrogeology of the Anambra 
Basin. While there was a considerable investigation on 
the hydrogeology and hydrochemistry of groundwater, 
studies are short of analysis of the hydrogeochemical 
evolution of groundwater. Besides, reports on water 
quality index and heavy metals pollution index as well 
as total hazard quotient are lacking. Therefore, the suit-
ability of groundwater for drinking remained unestab-
lished. Also, modeling of pollutant flow from surface to 
groundwater is lacking despite the established hydraulic 
conductivity between streams and aquifers. Suitability 
of groundwater based on agricultural water quality in-
dices (e.g. SAR) is required. Therefore, future studies 
should address these owing to increasing dependence on 
groundwater under changing climate and land uses.
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