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Stress-dilatancy relationship or plastic potential function are crucial com-
ponents of every elastoplastic constitutive model developed for sand or 
cemented sand. This is because the associated flow rule usually does not 
produce acceptable outcomes for sand or cemented sand. Many formulas 
have been introduced based on the experimental observations in conven-
tional and advanced plasticity models in order to capture ratio of plastic 
volumetric strain increment to plastic deviatoric strain increment (i.e. 
dilatancy rate). Lack of an article that gathers these formulas is clear in 
the literature. Thus, this paper is an attempt to summarize plastic poten-
tials and specially stress-dilatancy relations so far proposed for constitu-
tive modelling of cohesionless and cemented sands. Stress-dilatancy rela-
tion is usually not the same under compression and extension conditions. 
Furthermore, it may also be different under loading and unloading con-
ditions. Therefore, the focus in this paper mainly places on the proposed 
stress-dilatancy relations for compressive monotonic loading. Moreover 
because plastic potential function can be calculated by integration of 
stress-dilatancy relationship, more weight is allocated to stress-dilatancy 
relationship in this research. 
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1. Introduction

Variations of soil and rock volume may be caused 
by changes in the stress and deformation (me-
chanical effects) and changes in the water 

content, the temperature and other reasons (non-mechan-
ical effects) [54]. The tendency of soil or rock to change 
volume while shearing is called dilatancy [18]. Dilatancy 
of sand and cemented sand is a crucial phenomenon 
which differentiates their plastic response from that of 
metal. That is, dilatancy is one of features of sand and 
cemented sand that can not be simulated appropriately  
by the traditional plasticity developed initially for metals. 

Usefulness of any elastoplastic constitutive model of sand 
or cemented sand may highly depends on successful im-
plementation of dilatancy response. It is clear that loose 
sands or weakly cemented sands tend to develop positive 
pore pressure under undrained shear or to decrease vol-
ume under drained shear conditions. Conversely, dense 
sands and cemented sands tend to develop negative pore 
pressure in the course of shear or to increase in volume 
under drained shear conditions [7]. That is, dense sands 
dilate as deviator stress increases until failure while loose 
sands decreases in volume with progress of shear loading 
until failure. This is why dilatancy theory is normally 
discussed in the context of dense sands. However there is 
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usually nothing in proposed stress-dilatancy relations that 
limit their application to dense sands [4]. 

Note that in loose sands or weakly cemented sands, 
zero dilatancy takes places at large strains, but in dense 
sands, it happens twice during shearing: once temporary 
at phase transformation when response changes from con-
tractive to dilative, and once at large strains when shearing 
continues at constant volume [16, 30].

The geotechnical literature uses the terms dilation and 
dilatancy interchangeably as we did in the last paragraphs. 
They are usually stated as an angle compared to friction 
angle. However, we can divide these two dilatancy defini-
tions into two categories:  1) absolute definition: dilation 
is the volumetric strain change occurred since the initial 
condition 2) rate definition: dilation is the ratio of volume 
change increment relative to shear strain increment [18]. We 
use the rate definition of dilation in next sections. 

Note that the stress-dilatancy equations and plastic po-
tential functions are used extensively in this article. The 
plastic potential defines the direction of plastic strain in-
crements. The plastic potential is usually expressed using 
a stress-dilatancy equation which relates the dilatancy rate 
to the stress ratio [21].

2. Background

According to the classical plasticity, there exist a plastic 
potential function such that normal to the function shows 
components of plastic strain increment. This is to say [12, 67, 

68]: 

 (1)

where  is plastic strain increment tensor,  is plastic 
potential function, σij is stress tensor and λ is plasticity 
multiplier which is calculated using consistency condition.

This rule is called flow rule. Flow rule implies that the 
derivative of the plastic potential function is important in 
constitutive modelling rather than the function itself. 

Stress-dilatancy relationship in triaxial space also is 
usually expressed as follows [4,9,35]:

 (2)

where d is the dilatancy rate,  and  are volumetric 
and deviatoric plastic strain increments accordingly,  
and q are mean effective stress and deviator stress, respec-

tively. 
Analysis of direct shear box test of sand by Taylor [57] 

implies that input work is entirely dissipated in friction. 
Therefore, we can equal plastic input work to the dissipat-
ed energy in friction for triaxial conditions as follows [6,7,34]: 

 (3)

M denotes the slope of critical state line in  
space.

Arrangement of equation (3) gives rise to a very funda-
mental form of dilatancy equation as follows [6,19,34]:

 (4)

η is stress ratio which is defined as . 
Different values of M are used for triaxial compression 

and triaxial extension as follows:

 (5)

ϕcv is the constant volume (critical state) fiction angle. 
From the above equation, it can be realized that M (the 

critical state stress ratio) for compression is greater than M 
for extension if the critical state friction angle is the same 
for both compression and extension.

In order to arrive in better match for experimental ob-
servations, a constant A is often introduced in equation (4) 
in the following form [15,16,69]:

 (6)

A is a material parameter which may be different for 
triaxial compression and extension loading and η is cur-
rent stress ratio. A should be determined by curve fitting 
of equation (6) against total volume change [15,16].

Equation (4) can also be written in the form of equation 
(7) as follows [7]:

 (7)

β is a constant.
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Rowe [47] derived the stress-dilatancy relation for soils 
using minimum energy consideration for particle sliding 
as follows [4,41]:

 (8)

 (9)

where K is a parameter which depends on the failure 
friction angle. 

With presuming a constant failure friction angle and 
neglecting elastic strains, Wood [66] formulated Rowe’s 
stress-dilatancy relation as follows [15, 62, 41]: 

 (10)

where Mc and Me are critical state stress ratio in triaxial 
compression and extension, respectively.

In addition to the constant critical state stress ratio, the 
variable phase transformation stress ratio (i.e. MPT) [for 
example see 16, 42,43] and the failure stress ratio (i.e. Mf) 
have been used in equations (4), (6) and (10) as well. MPT 
is a value corresponding to a temporary zero dilatancy 
which is calculated similar to equation (5) with replace-
ment of the critical state friction angle by the phase trans-
formation friction angle [6,69]. Mf also is not constant and 
evolves towards the critical state stress ratio with plastic 
shearing [4,16]. Replacement of the critical state stress ratio 
with MPT or Mf is performed in order to account for the ef-
fect of pressure and density dependency of the stress-dila-
tancy relationship of sands [15]. 

3. Stress-dilatancy Relationships and Plastic 
Potential Functions

3.1 Cohesionless Sands

Proposed stress-dilatancy relationships and plastic poten-
tial functions are presented in a historical sequence. Most 
of formulas which are presented here are stress-dilatan-
cy relationships. However, some proposed constitutive 
models have used a plastic potential function to define 
the direction of plastic flow as well. A summary of these 

stress-dilatancy relationships and plastic potential func-
tions of uncemented sands with striking highlights is giv-
en in table 3 (see appendix section). 

(1) Nova and Wood [35]:
Nova and Wood [35] used the following equation as their 

stress-dilatancy relationship:

 (11)

where M and μ are positive constants and d is the dila-
tancy rate. At critical state, η=M and hence dilatancy rate 
becomes zero which implies no volume change at the crit-
ical state. (-1/μ) is the slope of the linear relation between  

 and η. 
Cui and Delage [8] applied the same equation as above 

in their constitutive model. 
Plastic potential function associated with this 

stress-dilatancy relationship is as follows:

 (12)

where  is value of the isotropic pressure when 
η=M. Note that when μ=1, the equation reduces to that of 
the Cam Clay model.

(2) Nova and Wood [36]:
One of the oldest and most popular stress-dilatancy 

relationships proposed for cohesionless sands was first 
suggested by Nova and Wood [36]. It was formulated as 
follows:

 (13)

where η=  is stress ratio, M is the critical state 
stress ratio and ag is a material parameter. 

Similar stress-dilatancy relationships were used by Pas-
tor et al. [37], Haeri and Hamidi [13], Hamidi and Yarbakhti [14] 
and Kong et al. [25].

The above relationship results in the following plastic 
potential function:

 (14)

where  is a size parameter which determines size of 
the plastic potential function. 

(3) Jefferies [17]:
Jefferies [17] used the below relationship in his critical 

state constitutive model to represent the stress-dilatancy 
behavior. It appears that the formula was proposed based 
on Nova and Wood [35]’s relation as follows: 
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 (15)

where N is a material parameter and d is the dilatancy 
rate which is defined as plastic volumetric strain incre-
ment to plastic deviatoric strain increment. 

If N=0 then the above equation reduces to the familiar 
Cam Clay model. Note that Andrade [2] used the same flow 
rule in his constitutive model.

Jefferies obtained the plastic potential function by in-
tegration of his stress-dilatancy relationship and then con-
sidered the yield function equals to the plastic potential 
function (associated flow rule). 

Jefferies stated that their stress-dilatancy relationship 
and constitutive model in general capture the influence of 
void ratio and mean effective stress on sand response but 
neglect the influence of fabric (i.e. grain contact arrange-
ment or geometrical packing of particles). He also claimed 
that the bedding direction during sample preparation pro-
nouncedly affects stress-dilatancy relationship. 

Jefferies suggested in his model that an infinite num-
ber of isotropic consolidation lines exist for sands which 
prevents the direct coupling of the yield surface size to the 
void ratio. This was a novelty in his model which resulted 
in change of focus from the normally consolidation line 
to the critical state line in definition of the hardening law. 
That is, he applied a shear hardening law instead of a vol-
umetric hardening law.

(4) Lagioia et al. [27]:
Lagioia et al. [27] proposed their stress-dilatancy rela-

tionship such that the proposed formula fulfills the two 
following requisites:

 (16)

This implies that when a material is sheared isotropi-
cally (η=0), only plastic volumetric strain occurs and also 
when the stress ratio reaches the critical state value of M 
in compressive loading, the critical state condition must 
meet [27]. The following stress-dilatanccy relation satisfies 
the two aforementioned conditions:  

 (17)

α and μg are model constants. η is the current stress 
ratio and M is critical state stress ratio which is deifned 
based on equation (5).

Similar to Jefferies [17], Lagioia et al. [27] integrated the 
above equation and considered it equals to the yield func-

tion (associated flow rule).
Note that similar stress-dilatancy equation was later 

used by DeSimone and Tamagnini [9].
(5) Yu [71]:
Yu [71] used the well-known Rowe’s stress-dilatancy 

relationship (equation (10)) in his proposed constitutive 
model named CASM to relate stress ratio and dilatancy 
rate. Yu [71] stated that despite immense effort to develop 
a better stress-dilatancy relation for sands compared to 
Rowe’s original or modified relationship, little progress 
appears to have been made in this area. Based on Rowe’s 
stress-dilatancy relation, Yu [71] and Yu et al. [72] obtained 
the following relation for the plastic potential of sands and 
clays:

 (18)

The size parameter βg is a dummy parameter as only 
the derivative of the plastic potential function with respect 
to  and q is important. 

Note that the adopted stress-dilatancy relation in 
CASM is non-associated flow rule as the plastic potential 
function is not the same as the proposed yield function in 
this model. 

(6) Schanz et al. [15]:
Schanz et al.  [15] used the following equations as the 

flow rule:

 (19)

where Ψm is the mobilized dilatancy angle, φm is the 
mobilized friction angle and φcv is the critical state friction 
angle which is a material constant. φm is calculated by be-
low equation:

 (20)

where φp is the failure friction angle. This equation can 
easily be proved by shape of a Mohr-Coulomb failure en-
velope. 

The above equations correspond to the famous Rowe’s 
stress-dilatancy theory [15].

Note that the critical state dilation angle can be calcu-
lated by the failure friction and dilation angles as follows:

 (21)
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The above definition of the flow rule is equivalent to 
the definition of the plastic potential function in the form 
of below equation [15]:

 (22)

(7) Wan and Guo [61]:
Wan and Guo [61] presented a fabric dependent 

stress-dilatancy equation as follows:

 (23)

Depending on magnitude of the characteristic friction 
angle (φf) relative to that of the mobilized friction angle 
(φm), the dilatancy rate changes its sign. This enables the 
model to capture the change in volumetric response from 
contractive to dilative which usually observed in dense 
sands experimentally.

The characteristic and mobilized friction angle in this 
model are defined as follows:

 (24)

where F11 and F33 are fabric tensor components in the 
axial and radial directions, respectively.γP* is the true shear 
strain. X, a and α are material constants. e is the current 
void ratio and ecr is the critical state void ratio.

 (25)

where β1 is a material parameter. 
(8) McDowell [31]:
McDowell [31] proposed the following stress-dilatancy 

relation for sand in his constitutive model:

 (26)

where d is dilatancy ratio, η=  is current stress ratio 
and M is the critical state stress ratio and b is a material 
parameter.

The plastic potential associated with this stress-dilatan-
cy equation is defined as follows:

 (27)

 is the value of  at q=0

McDowell’s stress dilatancy equation fulfills the neces-
sary conditions of zero shear strain under isotropic condi-
tions  and infinite shear 
strain with zero volumetric strain at the critical state . 

 Th i s  ap -
proach is identical to that suggested by Lagioia et al. [27].

(9) Russell and Khalili [48]:
Russell and Kalili [48] used the following equation as 

the streee-dilatancy relation:

 (28)

where kd is a material paramter and ξ is the state param-
eter.

Mf is used in above equation instead of M to capture 
the dependency of d on density and confining pressure 
through kd and ξ. 

Russell and Kalili [48]’s model was developed in a crit-
ical state framework. Certain features of the model are 
linked to the state parameter (ξ), which is a dimensionless 
parameter defined as the vertical distance between the 
current state and the critical state line in the  plane. 
The state parameter is positive on the loose (wet) side of 
the critical state line (CSL) and negative on the dense (dry) 
side of CSL, and expressed as:

 (29)

where e is the void ratio at the current stress state ( ), 
and ecs the void ratio at the critical state corresponding to 

.
(10) Been and Jefferies  [4]:
Been and Jefferies  [4] summarized the existing 

stress-dilatancy relations according to the table 1 and table 
2:

Table 1. Summary of stress-dilatancy relationships [4]

Theory Relationship

Cam Clay d=Mf-η

Modified Cam Clay d=(M2
f -η

2)/2η

Jefferies ([17] d=(Mf -η)/(1-N)

Li and Dafalias [29] d=d0(Mf -η)/M

Rowe [47] d=9(Mf -η)/(9+3Mf -2Mfη)

Table 2. Summary of proposed relationships for Mf
[4]

Authors Relationship Comments

Manzari and Dafalias [33] Mf =M+mξ
ξ is the state parame-

ter.
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Li and Dafalias [29] Mf =Mexp(mξ)
ξ is the state parame-

ter.
Jefferies and Schuttle [19] Mf =M-|ξi| ξi=ξ-λ(1-η/M)

Wang et al. [64] Mf =M0+(M-M0)Ip ξ=λln(Ip)

Note: λ is slope of the critical state line. m and M0 are positive model 
constants.

(11) Dafalias and Manzari [33]:
Dafalias and Manzari [33] proposed their stress-dilatancy 

equation based on difference between the current stress 
ratio η and the dilatancy stress ratio MPT which is known 
as the phase transformation stress ratio. The suggested re-
lationship is as follow:

 (30)

where Ad is material parameter. 
For dense sands under small shear strains, η ＜ MPT 

which leads to d ＞ 0 (compressive behavior). However, 
with progress of loading, η becomes equal to MPT  at a 
point which results in d=0 (temporary steady state re-
sponse). Further shearing leads to η＞ MPT which results 
in d ＜ 0 (dilative behavior). Ultimately, the phase trans-
formation stress ratio becomes equal to the current stress 
ratio at the critical state which leads to zero dilatancy rate 
(permanent steady state response). Note that the phase 
transformation state is never reached during shearing of 
loose sands and η is always smaller than MPT  leading to 
prediction of permanent contraction during shearing. 

Dafalias and Manzari made Ad fabric dependent. 
To avoid lengthy discussion, fabric dependency of the 
stress-dilatancy relationship is not discussed here. Inter-
ested reader is referred to Dafalias and Manzari [33].

(12) Khalili et al. [23]:
The stress-dilatancy equation which was proposed by 

Khalili et al. [23] is similar to that of Russell and Khalili [48]. 
The proposed relation is as follows:

 (31)

where kd is a material constant, ξ is the state parameter 
and M is the critical state stress ratio.

The variable Mf is used in place of the constant M to 
account for the dependency of d on void ratio (or density).

Integration of the above stress-dilatancy relation with 
respect to  and q results in the following plastic potential 
function:

 (32)

As mentioned already ξ is a dimensionless parameter 

defined as the vertical distance between the current state 
and the critical state line in the v vs.ln  plane. It is ex-
pressed as:

 (33)

where v=1+e is the specific volume at the current stress 
state ( ), e is the void ratio, and vcs is the specific volume 
at the critical state corresponding to .

(13) Imam et al. [16]:
Imam et al. presented their stress-dilatancy relation 

based on concept of the phase transformation stress ratio 
MPT as follows:

 (34)

A is calculated for triaxial compression and triaxial ex-
tension, respectively, as follows: 

 (35)

where

 (36)

and

 (37)

where kPT and aPT are material parameters, φcs is the 
critical state friction angle, φPT is the phase transformation 
friction angle, MPT is the phase transformation stress ratio 
and ξ is the state parameter.

The plastic potential function associated with the above 
flow rule is obtained by the following relationship:

 (38)

in which  is a measure of the size of the plastic po-
tential function.
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The same stress-dilatancy equation was used by Tasi-
opoulou and Gerolymos [56] in their model. They, however, 
assigned a value of one for A.

(14) Ling and Yang [30]:
Ling and Yang [30] used a combination of work of 

Nova and Wood [36] and Li and Dafalias [29] to define their 
stress-dilatancy relation as follows:

 (39)

 (40)

where αg and m are positive constants and ξ is the state 
parameter. αg and m can be determined using the volumet-
ric strain vs. deviator strain curve. 

The difference between the above equation with that 
of Nova and Wood is that a variable stress ratio Mf (which 
changes with the void ratio and mean effective stress) has 
been used rather than the constant critical state stress ratio 
M. 

The state parameter at the phase transformation for 
dense sands temporary becomes zero which enables the 
constitutive model to capture the phase transformation 
state. However for loose sands, the void ratio is always 
greater than the critical state void ratio which leads to a 
positive state parameter. The net result is that Mf is always 
greater than the current stress ratio which implies that the 
dilatancy rate is always positive for loose sands (i.e. per-
manent contractive behavior) except at the critical state in 
which the dilatancy rate becomes zero. This implies that 
no volume change occurs at the critical state neither for 
loose sands nor dense sands because at the critical state, 
the state parameter is zero which  leads to Mf =M=η.

Liu et al. [32] considered the similar stress-dilatancy 
equation in their model. However, they replaced Mf with 
the phase transformation stress ratio. 

(15) Sasiharan [49]:
Sasiharan [49] suggested the following stress-dilatancy 

equation in his anisotropic sand model:

 (41)

where  is fabric anisotropy parameter which is defined 
according to the following formula:

 (42)

in which e is current void ratio and β is a material pa-

rameter. Thus, the fabric anisotropy parameter evolves 
with the void ratio.

The plastic potential function corresponds to the above 
stress-dilatancy relationship is as follows:

 (43)

where  is the value of  when η=ag.
Similar to Jefferies’s approach and conventional Cam 

Clay model, Sasiharan considered the resulting plastic po-
tential function, obtained by integration of the flow rule, 
identical to the yield function. 

If the fabric anisotropy parameter ag is zero, the yield 
and plastic potential surfaces will be an ellipse that is cen-
tered along the  axis as in modified Cam Clay model.

Sasiharan [49] stated that the above stress-dilatancy rela-
tion is not appropriate for anisotropic sands and suggested 
the following flow rule instead:

 (44)

 for the first flow rule and  
for the second flow rule constitute the phase transforma-
tion line (i.e. zero dilatancy line) on which zero plastic 
strain increment occurs.

Note that similar stress-dilatancy relationships were 
mentioned in Muhunthan and Sasiharan [34].

(16) Tasiopoulou and Gerolymos [55]:
Tasiopoulou and Gerolymos [55] presented their 

stress-dilatancy equation as follows:

 (45)

where MPT is the phase transformation stress ratio, MS 
is ultimate strenght stress ratio in q-  space, and ζ is the 
hardening parameter which evolves with shearing and is 
defined as:

 (46)

where n is an exponential parameter which controls the 
distance of the current stress state from the failure line.

The ζ parameter is bounded. Its values limit within the 
range of [-1,1]

(17) Kan et al. [21]:
Kan et al. [21] used the following plastic potential function:
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 (47)

in which p0 controls the size of the plastic potential sur-
face, and A is a material parameter.

t  is a scalar whose sign controls the direction of plas-
tic flow. It takes value of 1 or -1 depends on relative posi-
tions of the stress point, σ ′ , on the yield surface and its 
corresponding image point, σ′ , on the bounding surface. 

M ( )θ  is calculated as a function of load angle, θ  , as 
follows:

 (48)

Where load angle θ  is defined as: 

 (49)

in which J2 and J3 are the second and thrid invariants 
of the deviatoric stress tensor. Note that the load angle 
ranges from θ =30 for triaxial compression to θ =-30 for 
triaxial extension. 

a is determined by below relation:

 (50)

M is the value of the critical state stress ratio under 
triaxial compression which is linked to the critical state 
friction angle as:

 (51)

The direction of plastic flow in this model is calculted 
based on the following relations:

 (52)

 is evaluated by applying the chain rule of dif-
ferentiation as follows:

 (53)

(18) Gao et al. [11]:
The following fabric-dependent dilatancy equation was 

proposed by Gao et al. [11]:

 (54)

whrer d1 and m1 are two model constants. ζg is defined 
as follows:

where eA is a model parameter, ξ=e-ecr is the state pa-
rameter, A is a fabric anisotropy variable, R is the sress 
ratio tensor which is defined as:  in 
which , in which σij is 
the stress tensor, p=σij /3 is the mean normal stress, δij is 
the Kronecker delta and Sij is the deviator stress. g(θ) is 
defined based on the load angle θ as:

 (55)

where c=Me/Mc is the ratio between the critical state 
stress ratio in triaxial extension Me and that in triaxial 
compression Mc.

A is defined based on product of the fabric tensor Fij 
and the loading direction tensor nij as:

 (56)

where Fij is a symmetric tensor whose norm  
is named as the degree of fabric.

(19) Qu and Huang [39]:
Similar to Li and Dafalias [29], dilatancy of sand was 

related to state parameter ξ and the current stress ratio 
η=  by Qu and Huang [39] as follows:

 (57)

where d0 and m are material parameters and M is the 
critical state stress ratio under triaxial compression.

g(θ) is defined similar to the definition which was given 
in Gao et al. [11]. θ is the load angle which is defind similar 
to Kan et al. [21].

Mean effective stress  and deviatoric stress q are cal-
culated by  and  in which I1 is the 
first invariant of the effective stress tensor and J2 is the 
second invariant of the deviatoric stress tensor.

The proposed stress-dilatancy relationship gives rise to 
the following plastic potential function:
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 (58)

(20) Jin et al. [20]:
Jin et al. [20] presented the following stress-dilatancy 

equation for cohesionless sands:

 (59)

h2 is a material parameter and da is a positive constant 
which controls the magnitude and evolution of dilatancy 
rate. 

MPT is the current phase transformation stress ratio, η is 
the current stress ratio, e is the current void ratio, and ecr is 
the critical state void ratio. 

The term (e/ecr-1) is used to adjust dilation or contrac-
tion of loose and dense sands. For loose sands e＞ ecr and 
η＜MPT, now if h2＞ 0 then the exponential term increas-
es the rateof contraction as da does. Also if h2 ＜ 0 then 
the exponential term decreases the rate of contraction. 
However as shearing continues towards the critical state, 
the effect of the exponential term on the stress dilatancy 
diminishes because the exponential term approaches zero. 
When stress state reaches the critical state, the exponential 
term totally disappears and MPT=η which guarantees zero 
dilatancy rate at the critical state. 

(21) Sun et al. [53]:
Sun et al. [53] investigated the effect of particle breakage 

on the stress-dilatancy behavior of granular soils and pro-
posed the following plastic flow rule with modification of 
Rowe’s equation:

 (60)

where

 (61)

in which γ is a material parameter which slightly de-
pends on confining pressure. M is the critical state stress 
ration under triaxial compression. Therefore, x is a con-
stant.

(22) Yin et al. [70]:
The following simple non-associated plastic potential 

function was suggested by Yin et al. [70] for very coarse 
granular materials:

 (62)

where  in which 
φPT is the phase transformation or characteristic angle 
which corresponds to transition from the contractive to 
dilative behavior.

(23) Sun and Xiao [52]:
The following plastic potential function was presented 

for granular soils by Sun and Xiao [52]:

 (63)

where  controls the size of the plastic potential sur-
face,  is the mean effective stress, and q is the deviatoric 
stress.

The following stress-dilatancy relation was also sug-
gested for granular soils by Sun and Xiao [52]:

 (64)

where

 (65)

in which βd is a material parameter and ξ is the state 
parameter. 

If the sand is sheared from a dense state where the state 
parameter is negative (ξ ＜ 0), ad would increase with 
shearing until the critical state is ultimately reached when 
ξ=0, ad=1 and d=0. However, if the sand is initially at a 
loose state where the state parameter is positive (ξ ＞ 0), 
ad , would decrease until the critical state is reached when 
ξ=0, ad=1, and d=0.

3.2 Cemented Sands

A summary of the following stress-dilatancy relationships 
and plastic potential functions of cohesive sands with 
important highlights is given in table 4 (see appendix sec-
tion).

(1) Vermeer and De Borst [59]:
Rowe’s stress-dilatancy equation in terms of mobilized 

dilation and friction angle takes the following form [28,59]:

 (66)

where φcv is the constant volume or critical state friction 
angle. ψm is the mobilized dilatancy angle which is a func-
tion of plastic strain as the mobilized friction angle （φm） 
does. Thus, change in ψm can be predicted by change in 
φm.

The above equation was initially proposed by Vermeer 
and De Borst [59] for soils, rocks and concrete. However, 
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this form of Rowe’s equation can not describe the densi-
ty or void ratio dependency during shearing. In order to 
address this shortcoming, a modification of the original 
Rowe’s equation was proposed by Wan and Guo [60] as fol-
lows:

 (67)

where e is the current void ratio, ecr is the critical state 
void ratio, and ωd is a material parameter. Parameter ωd 
can also be linked to fabric tensor, plastic shear strain and 
the effect of intermediate principal stress measured by pa-
rameter  [60].

(2) Kim and Lade [24]:
Based on variety of experimental observations, Kim 

and Lade [24] suggested the following equation for the 
plastic potential function of cohesive and non-cohesive 
frictional materials:

 (68)

where ψ1, ψ2, and μ are the plastic potential parameters, 
pa is the atmospheric pressure and I1, I2, and I3 are the first, 
second, and third invariant of the stress tensor which are 
defined based on the three principal stresses (observed 
during triaxial tests) as follows [24]:

 (69)

 (70)

 (71)

Reddy and Saxena [45], Lade and Kim [26], Kandasami et 
al. [22], Singh et al. [50], and Singh et al. [51] used the above 
plastic potential function in their constitutive model to 
simulate the plastic flow of cemented and uncemented 
geomaterials.

(3) Van den Hoek and Geilikman [58]:
Van den Hoek and Geilikman [58] presented the follow-

ing plastic potential function for sandstone in analysis of 
sand production in petroleum wells:

 (72)

where ψ is the dilation angle, σϑ
' is the tangential effec-

tive stress and σr
' is the radial effective stress. Constant 

value has no impact on the model since only the derivative 
of the plastic potential function is influential in constitu-

tive model. 
(4) Arroyo et al. [3]:
Arroyo et al. [3] proposed the following stress-dilatancy 

equation for cemented sands:

 (73)

where mg, ag, and M are model parameters which con-
trol the shape of the plastic potential surface. 

Note that the above stress-dilatancy relationship is 
similar to that presented by Lagioia et al. [27]. Buscarnera 
and Laverack [5] also used the similar flow rule as above in 
their constitutive model presented for porous rocks.

(5) Yu et al. [73]:
The following stress-dilatancy relationship was pro-

posed by Yu et al. [73] for cemented soils:

 (74)

where coh is the interparticle cohesion. Original 
Rowe’s flow rule can be recovered by setting coh=0. In 
this model, cohesion was assumed to degrade with the to-
tal plastic strain increment as follows: 

 (75)

where ω determines rate of cohesion degradation.
The plastic potential function corresponds to the above 

stress-dilatancy equation is as follows [73]:

 (76)

 (77)

 (78)

Rahimi et al. [41], Rahimi et al. [42] and Rahimi et al. [44] 
used the same stress-dilatancy relationship as that pro-
posed by Yu at al. [73] by replacement of constant critical 
state stress ratio with variable phase transformation stress 
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ratio. 
(6) Wang and Leung [63]:
Wang and Leung [63] presented the following stress-dila-

tancy relationship for cemented sands in triaxial condition 
(i.e. an axisymmetric condition):

 (79)

or

 (80)

where ΔWbond is the total energy which is dissipated due 
to breakage or destruction of the cementing bond. 

Ajorloo et al. [1] also suggested the same stress-dilatan-
cy relation for cemented sands. However, neither Wang 
and Leung [63] nor Ajorloo et al. [1] did not put forward 
any formulas for .ΔWbond Suggestion of any relationship 
for ΔWbond will be considered as a contribution for the 
stress-dilatancy relation of cemented sands.

(7) Zhang and Salgado [74]:
Since original Rowe’s stress-dilatancy relationship does 

not produce correct volumetric response for cemented 
materials [73, 74, 40, 41], a modification of Rowe’s equa-
tion was proposed by Zhang and Salgado [74] as follows to 
address this deficiency:

 (81)

where K is a parameter which depends on the failure 
friction angle, σ1

' and σ3
' are the major and minor principal 

effective stresses, respectively, ε4 V and ε4 1 are the volumet-
ric and major principal strain increment. 

The above equation can be written in terms of the mean 
effective stress , the deviator stress q, and the critical 
state stress ratio under compression M as follows:

 (82)

where mc is related to the cohesion as follows:

 (83)

Where coh is the interparticle cohesion. 
Note that Zhang and Salgado [74] and Yu et al. [72,73]’s 

stress-dilatancy relationships have been mentioned in Por-
cino and Marciano [38] as well. 

(8) Gao and Zhao [10]:

Gao and Zhao [10] presented the following flow rule for 
cemented sands:

 (84)

where d1 is a positive model parameter, MPT is the phase 
transformation stress ratio, H is hardening parameter, DL 
is a loading index and x  denotes the Macauley bracket 
with x =0 when x ≤ 0 and x x=  when x > 0. The role 
of the denominator in above equation is to control the vol-
ume change, especially when the strain level is high. As 
the sample is sheared to the critical state, the increment of 
the plastic deviatoric strain is unlimited. At this state, the 
denominator term will reach infinity making the value of 
the dilatancy rate d zero. The two parameters dC and dF are 
used to characterize the bonding and anisotropic effects, 
respectively, as follows:

 (85)

 (86)

where C0 and k are positive model constants, σ0 denotes 
the current triaxial tensile strengthof the material, pr is a 
reference pressure and A is an anisotropic variable depen-
dent on fabric tensor whose definition has given in Gao 
and Zhao [10].

Above equations imply that as the value of tensile 
strength increases, dC decreases which leads to reduction 
in value of the dilatancy rate d. The material response 
is less contractive and hence the liquefaction resistant 
increases. Also dF increases with A (the major principal 
stress direction becomes closer to the direction of deposi-
tion) which in turn results in larger value of the dilatancy 
rate d and hence more contractive response and less resis-
tant to the liquefaction [10].

(9) Weng [65]:
In his generalized plasticity model for sandstone, Weng 

[65] used Nova and Wood [36]’s stress-dilatancy relationship 
which has been proposed for cohesionless sands. This, 
however, is a questionable choice because cemented sands 
show more dilative behavior than uncemented sands [40, 41]. 
This can not be reproduced simply by using the flow rule 
developed for cohesionless sands.

(10) Rios et al. [46]:
Rios et al. [46] applied Rowe’s stress-dilatancy relation 

(equation 10) in their constitutive model developed for 
modelling bonded soils. This is controversial. As men-
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tioned already, the stress-dilatancy relationships proposed 
for cohesionless sands do not work for cemented or bond-
ed sands because volumetric behavior of uncemented 
sands is different than that of cemented sands [40, 41].

4. Conclusion

Some important stress-dilatancy relationships and plastic 
potential functions proposed for uncemented and cement-
ed sands were reviewed in this article. The paper suggests 
that unlike uncemented sands for which intensive research 
has been performed by different researchers, there are 
a few researches on the stress-dilatancy relationships 
of cemented sands. To fill this gap, considerable effort 
is needed. Therefore, it is recommended that this area 
(stress-dilatancy relationship of cemented sands) is chosen 
as a potential research title for future studies. Modification 
of Rowe’s equation can be a step forward to account for 
deficiencies of the previous stress-dilatancy relationships 
proposed for cemented sands.
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Appendix

Summary of aforementioned flow rule and plastic po-
tential equations for uncemented and cemented sands

Table 3. Summary of proposed stress-dilatancy and plas-
tic potential relationships for uncemented sands

Proposed stress-dila-
tancy relationship or 
plastic potential func-

tion

Methodology/Application/Validation (Calibration)

Nova and Wood [35]

-proposed on the basis of experimental works on 
sand in plane strain & triaxial conditions.

-when μ=1, the equation reduces to that of the 
Cam Clay model.

-verified against constant p' and constant q labo-
ratory tests with great matches.

Nova and Wood [36]

-One of the oldest and most popular stress-dila-
tancy relationships.

-This relationship has been employed by many 
researchers like Pastor et al. [37], Haeri and Hami-
di [13], Hamidi and Yarbakhti [14] and Kong et al. 

[25].

Jefferies [17]

-proposed in his critical state constitutive model.
-when N=0, the equation reduces to the familiar 

Cam Clay model.
-the influence of void ratio and mean effective 
stress on sand response is captured well but the 

influence of fabric is neglected.

Lagioia et al.[27]

-proposed such that it predicts zero dilatancy 
rate in the critical state and infinite dilatancy rate 

in zero stress ratio.
-verified against drained triaxial tests with excel-

lent matches.

Yu [71]

-proposed for both sand & clay based on Rowe’s 
stress-dilatancy relationship.

-verified against drained & undrained triaxial 
compression tests of sand & clay with very good 

agreements.

Schanz et al.  [15]

-proposed based on concept of mobilized dila-
tancy angle, mobilized friction angle and critical 

state friction angle.
-the mobilized friction angle is estimated by 
shape of a Mohr-Coulomb failure envelope.

-calibrated for drained & undrained behavior of 
Hostun loos sand under oedometer & triaxial 

tests.

Wan and Guo [61]
-a fabric dependent stress-dilatancy equation.
-successfully calibrated against undrained & 
drained behavior of Ottawa & Toyoura sands.

McDowell [31]

-the flow rule is non-associated. Hence, the 
critical state point does not happen at the top of 

yield surface.
-fulfills the necessary conditions of zero shear 
strain under isotropic conditions and infinite 
shear strain with zero volumetric strain at the 
critical state. This approach is identical to that 

suggested by Lagioia et al. [27]

-performance of the model was discussed, how-
ever, it was not verified against experimental 

observations.

Russell and Khalili [48]

-A state parameter dependent stress-dilatancy 
equation within critical state framework.

-Comparison of predicted volumetric behavior 
with experimental results (under isotropic & oe-
dometric compression, and drained & undrained 

triaxial tests) suggests a great credit for the 
proposed equation.

Dafalias and Manzari 
[33]

-a fabric dependent stress-dilatancy equation 
based on difference between the current stress 
ratio and the phase transformation stress ratio.

-The model predicts a phase transformation 
stress ratio equal to the current stress ratio at the 
critical state which results in zero dilatancy rate 

(permanent steady state response).
-calibrated against drained & undrained mono-

tonic & cyclic compression tests. Predicted volu-
metric responses were in very good harmony 

with experimentally measured behaviors.

Khalili et al. [23]

-similar to equation of Russell and Khalili [48].
-validated excellently against drained & 

undrained compression monotonic & cyclic tests 
on loose & dense samples of Hostun sand.

Imam et al. [16]

-similar to equation of Dafalias and Manzari [33], 
however, it is not fabric dependent.

-proposed for both triaxial compression and 
triaxial extension.

-volumetric response was validated against many 
drained & undrained triaxial compression & ex-
tension tests on Ottawa and Toyoura sands under 

monotonic loading with appreciable matches.

Ling and Yang [30]

-a combination of relationships proposed by 
Nova and Wood [36] and Li and Dafalias [29].

-a variable stress ratio (Mf) is used in this equa-
tion rather than the constant critical state stress 

ratio (M).
-wondeful performance of the equation was 

proved by calibration of
drained & undrained volumetric behavior of 
Toyoura & Nevada & Fuji River sands under 

monotonic & cyclic loading.
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Sasiharan [49]

-a fabric dependent equation.
-Similar to Jefferies’s approach, Sasiharan con-
sidered the resulting plastic potential function, 

obtained by integration of the flow rule, identical 
to the yield function.

-calibrated against drained & undrained triaxial 
compression tests under monotonic & cyclic 

loading with good matches.

Tasiopoulou and 
Gerolymos [55]

-a hardening parameter & phase transformation 
stress ratio dependent equation.

-performance of the model was examined but it 
was not validated against experimental observa-

tions.

Kan et al. [21]

-a relatively complex equation for plastic poten-
tial function.

-calibrated successfully against drained & 
undrained cyclic tests on loose & dense samples 

of Toyoura & Fuji River sands.

Gao et al. [11]

-a relatively complex fabric-dependent dilatancy 
equation.

-calibrated against drained & undrained behavior 
of Toyoura & Fraser River sands under different 

loading conditions.

Qu and Huang [39]
-a state parameter dependent dilatancy equation.
-was not verified based on experimental obser-

vations.

Jin et al. [20]

-a void ratio & phase transformation stress ratio 
dependent equation.

-calibrated based on drained & undrained triaxial 
compression tests of Nevada & Toyoura sands 

under monotonic & cyclic loading.

Sun et al. [53]

-a modified version of Rowe’s equation which 
considers the effect of particle breakage.

-was calibrated against plastic flow of Yixing 
rockfill, Kish Island & Cambria sands

Yin et al. [70]

-a simple non-associated plastic potential func-
tion suggested for very coarse granular materi-

als.
-calibrated based on drained triaxial tests on 
rockfill materials with different grain sizes.

Sun and Xiao [52]

-a state parameter dependent dilatancy equation 
for granular soils subjected to monotonic triaxial 

compression.
-calibrated successfully against drained & 

undrained triaxial compression tests on various 
granular soils.

Table 4. Summary of proposed stress-dilatancy and plas-
tic potential relationships for cemented sands

Proposed stress-dilatan-
cy relationship or plas-
tic potential function

Methodology/Application/Validation (Calibration)

Vermeer and De Borst 
[59]

-Rowe’s stress-dilatancy equation in terms of 
mobilized dilation and friction angles.
-proposed for soils, rocks and concrete.

-a modified version that takes into account the 
density or void ratio dependency during shear-

ing was proposed by Wan and Guo [60].

Kim and Lade [24]
-a plastic potential function for cohesive and 

non-cohesive frictional materials proposed based 
on many experimental observations.

Van den Hoek and 
Geilikman [58]

-a plastic potential function proposed for analy-
sis of sand production in petroleum wells.

-sand production analysis was performed, how-
ever, volumetric behavior of sandstone was not 

calibrated against physical tests.

Arroyo et al. [3] -flow rule similar to that of Lagioia et al. [27].
-no strong validation against physical tests.

Yu et al. [73]

-a modified version of Rowe’s flow rule pro-
posed for modelling bonded geomaterials.

-satisfactory agreement of volumetric behavior 
for numerical and physical tests. Also no valida-

tion was performed for undrained tests.

Wang and Leung [63]

-proposed for cemented sands under triaxial 
condition (i.e. an axisymmetric condition):

-no calibration was done to validate the pro-
posed flow rule.

Zhang and Salgado 
(2010)

- a modification of Rowe’s equation
-no verification against experimental observa-

tions.

Gao and Zhao [10]

-a fabric anisotropy dependent stress-dilatancy 
relationship.

-successful calibration of volumetric behavior of 
cemented Ottawa sand in drained triaxial com-
pression & Toyoura sand in drained true triaxial 

tests.
-no validation against undrained tests.

Weng [65]

-identical to Nova and Wood [36]’s stress-dilatan-
cy equation.

-arguable choice because cohesive sands show 
more dilative response than uncemented sands.

Rios et al. [46]

-identical to Rowe’s stress-dilatancy equation.
-controversial since volumetric behavior of un-

cemented sands is different than that of cohesive 
sands.
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