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1. Introduction

Traffic volume information has long played an important 
role in various transportation research areas, including 
but not limited to policy making, roadway design, safety 
analysis and air quality control [1-4]. However, collecting 
traffic count data over a large spatial area requires a 
significantly substantial, and potentially prohibitive, amount 

of manpower and financial costs [5]. For these reasons, 
local governments and transportation agencies are not 
able to place enough monitoring equipment for the whole 
road network, resulting in gaps and shortages of available 
data. Considering the irreplaceability of traffic volume 
data in transportation-related studies, the focus must 
advance from just ‘measuring’ to ‘well-estimating’ [6].  
Thus, over many years, transportation researchers and 
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practitioners have made considerable efforts to produce 
reliable estimations of traffic volumes by applying various 
methodologies and tools.

One of the most widely adopted methods to date is 
Ordinary Least Squares (OLS) regression while using 
as many explanatory variables as possible. For example, 
Xia et al. estimated traffic volumes for nonstate roads [7].  
In their study, 450 count-monitoring stations were 
involved in the investigation with up to 12 initial variables 
(accessibility, socioeconomic, and road characteristics) 
included in the multiple regression model. Using a 
similar method, Zhao and Chung [8] predicted the annual 
average daily traffic (AADT) on multiple roadways in an 
urban area through a variety of land-use and accessibility 
measures. Mohamad et al. utilized a multiple regression 
model to incorporate relevant demographic variables such 
as population, state highway mileage, per capita income, 
and the presence of interstate highways [9].

Various methodologies other than regression models 
also have been employed. Tang et al. [10] compared time 
series, neural network, nonparametric regression, and 
Gaussian maximum likelihood (GML) techniques and 
found that GML methods were the most promising. Lam 
et al.’s [11] more recent study used nonparametric models 
and GML methods to forecast Hong Kong’s traffic 
volumes. Davis and Yang proposed empirical Bayesian 
methods that were used to compute quantiles of the 
predictive probability distribution of the total traffic at a 
highway station, given a sample of daily traffic volumes 
from that station [12]. These activities were based on 
expressions for traffic data variability and the American 
Association of State Highway and Transportation Officials 
(AASHTO) reliability concept for pavement design. Goel et 
al. proposed a correlation-based approach to improve AADT 
estimation by exploiting the inherent underlying correlations 
between link flows [13]. These correlations arise partially 
because the inflows and outflows to a node are always 
constrained. In addition, when the network has many 
origin–destination (O-D) zones, and a relatively smaller 
number of links, the correlation between the link flows 
can be large.

With the growing availability of geographic informa-
tion system (GIS) datasets and the evolution of spatial 
analysis techniques, researchers have started to explore 
geostatistical methods [14,15] that exploit the spatial context of 
traffic and other spatial data. Studies that are most closely 
related to this topic include Eom et al.’s [6] use of spatial 
regression methods to predict AADT for nonfreeway 
facilities in Wake County, North Carolina, and Selby B. 
and Kockelman, K.M. [16] compared the AADT estimation 
results between universal kriging and geographically 

weighted regression for Texas. They conclude that the 
overall predictive capability of kriging methods eclipses 
traditional models as well as other spatial methods. 
Kriging presumes spatial dependence in error terms or 
unobserved factors, as a function of distance. Due to its 
capability of accounting for the variable’s interaction over 
space and its ease of implementation for interpolating 
target variables at unmeasured locations, this method 
continues to gain popularity for application in many 
transportation fields in recent years [17-20]. Like all the 
other geostatistical methods, kriging uses Euclidean 
distance to quantify the spatial separation between 
variables during its interpolation procedures. However, 
when this approach is transferred to studies targeting 
traffic specific variables, logically the actual network 
distance should be a more reasonable metric. Some prior 
transportation-related research studies replaced Euclidean 
distance with network distance in their kriging models. 
For instance, Zhang and Wang [21] refined the standard 
kriging model by using subway system network to 
estimate the transit ridership in New York City. Although 
their findings indicate that kriging using subway routes 
outperforms the standard ones, they are based on two 
short subway lines whereby making their assessment less 
is conclusive. Likewise, a road network is much more 
complex than the subway network thus greater scrutiny 
is necessary in order to appreciate the true benefit of 
implementing road network distances for estimating 
traffic volumes. Selby B. and Kockelman, K.M. [16]  
evaluated universal kriging in estimating AADT using 
Euclidean distances and network distances for Texas but 
their dataset was limited to only one-year and may not be 
conclusive due to its limited temporal coverage. Datasets 
with a longer term of traffic volume observations need to 
be used to further validate its estimation performance.

Table 1 summarizes the reviewed literature including 
their corresponding study areas, road types, findings/
contributions, and limitations. In summary, a variety of 
models have been proposed and developed to estimate 
traffic volume information with kriging proving to be 
a promising method for generating reliable estimates. 
Nonetheless, there exist very few studies that incorporate 
local auxiliary information into the kriging method, and 
no studies that utilize city-scale and long-term traffic 
volume datasets. Likewise, due to the limited datasets 
and significantly higher computational costs, kriging with 
network distances has rarely been used in transportation 
studies involving a large urban network. Furthermore, 
the second-order stationarity assumption, which assumes 
the spatial pattern of a target variable is the same across 
the entire study area is the most fundamental assumption 
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behind kriging [15,22]. However, whether or not this holds 
true for traffic volumes across the urbanized network has 
not been investigated in past literature.

Therefore, the primary objective of this research is to 
develop a hybrid geostatistical interpolation framework, 
as well as validate its feasibility and robustness through 
a real-world case study. To summarize, the main novelty 
and contributions of this research work include the 

following:
·Utilized local auxiliary variables to detrend the 

data within the interpolation framework, and to explain 
variations in traffic volumes with respect to different 
locations,

·Replaced Euclidean distance with road network 
distance to improve the estimation accuracy and model 
explanation power,

Table 1. Summary of the Selected Relevant Studies of Traffic Volumes Estimation

Author(s) Study Area Road Types Method Findings/Contributions Limitations

Mohamad, 
et al., 1998 Indiana · County roads · Multiple regression

· Data from multiple counties were used 
to validate the accuracy of the developed 
model 

· Regression models are not able to 
spatially map traffic volumes across 
the entire road network without 
adequate auxiliary variables as input.
· Adopted methods lacks the consid-
erations of spatial characteristics of 
road networks.

Xia, et al., 
1999

Broward 
County, 
Florida

· Nonstate roads · Multiple regression · 12 initial variables were involved in 
regression models

Zhao & 
Chung, 2001

Broward 
County, 
Florida

· Interstate highways
· Express ways
· Urban roads
· Rural roads

· Multiple regression
·  More explanatory variables  with 
modified data and road classifications were 
used to extend the previous efforts

Tang, et al., 
2003 Hong Kong · Major road links

· Time series model
· Neural network
· Nonparametric regression 
(NPR)
· Gaussian maximum likelihood 
(GML)

· GML model appeared to generate the 
most accurate predictions among the four 
models.

· Limited data input (road types, 
temporal coverage, etc.).
· Traffic volumes were assumed 
to be normally distributed and time 
dependent.
· Lack of spatial analysis of traffic 
volumes.

Lam, et al., 
2006 Hong Kong · Major road links

· Time series model
· Neural network
· Nonparametric regression
· (NPR)
· Gaussian maximum likelihood 
(GML)

· Extended efforts using more observations 
to predict the hourly traffic flows.
· NPR and GML appeared to be more 
promising.

Davis & 
Yang, 2001 NA · Highways · Empirical bayes method

· Proposed method could estimate the 
probable ranges and associated probability 
distribution. 

· Included road type is highway only.
· Adopted method is only able to 
provide point estimates.

Goel, et al., 
2005 NA · Highways · Correlation-based method · Developed method exploit the correlation 

imposed by O-D path flow.
· Adopted method is sensitive to the 
input data configuration.

Eom, et al., 
2006

Wake 
County, 
North 

Carolina

· Urban
· Suburban
· Rural

· Spatial regression
· Universal kriging (UK)

· Comparisons between spatial regression 
and ordinary regression method proved the 
former one could provide better predictions.

· Euclidean distance was used in 
developing the models; however, it 
is not the true representation of the 
distance in road network.
· Lack of spatial interaction analysis 
of the traffic volumes.

Selby & 
Kockelman, 

2013
Texas · From local roads to 

interstate freeways

· Universal kriging (UK)
· Universal network kriging
·  Geographically weighted 
regression (GWR)

· UK provided better results than GWR in 
the study area.
· UK with network distance showed no 
enhanced performance.

· Input data were lack of long-term 
observations.
· The network distance piece was 
only evaluated in a single network 
setting.

Zhang & 
Wang, 2014

New York 
City · Subway Line · Network universal kriging

· With using network distance in kriging 
model, the standard kriging method using 
Euclidean distance was improved in terms 
of the spatial variability analysis.

· A few subway lines were selected 
for the study, which was a relatively 
simple network.
· Lack of long-term observed data 

for model performance evaluation.
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·Evaluated the applicability of the proposed method 
using a large-scale road network (i.e., city of Edmonton),

·Investigated the second-order stationarity assumption 
of kriging in relation to urban network traffic volume,

·Validated the consistency of the research findings 
using long term traffic volume data (i.e., 10 years)

In particular, this research also aims at answering the 
following questions which represent the main objectives 
of this study.

·What local factors would contribute to enhancing the 
traffic volume estimations? 

·To what extent and in what situations would kriging 
with network distances outperform standard kriging with 
Euclidean distances? 

·How to characterize the spatial dependence (spatial 
variation pattern) of traffic volumes and apply them to 
different network configurations? 

The results of this study can be an important reference 
source for gaining knowledge on network regression 
kriging and network spatial variation pattern of traffic 
volumes. From a practical application perspective, since 
kriging is capable of spatially mapping traffic volume 
for all unmeasured locations across an urban area, our 
proposed framework provides a tool for transportation 
practitioners and engineers to estimate traffic volume 
at locations abstinent of any traffic information. With 
complete and accurate estimations of traffic volumes, city 
planners and transportation agencies will be able to benefit 
from this in various ways [23]. 

2. Methodology

2.1 Regression Kriging – The Idea

As described previously, a variety of techniques have 
been implemented to estimate traffic volumes. Each 
method takes known traffic counts and/or uses auxiliary 
information (e.g., land use, time-steps, road geometry 
attributes, etc.) to make an estimation. These estimates can 
be separated into future-year and present-year predictions. 
Future-year predictions use current and past traffic count 
data to estimate the traffic counts at a future date. On the 
other hand, current-year predictions use the available data 
to estimate traffic counts at unmeasured locations. Kriging 
is typically applied in the latter situation [24,25].

Kriging is one of the most commonly used geostatistical 
interpolation techniques that account for the uncertainty 
of the estimation. It relies on the second order stationarity 
assumption where the mean, variance and dependence 
structure of the target variable do not change over space [22]. 
Kriging predicts the values at unsampled locations from 

the weighted average of nearby measured observations. 
The weights are determined based on their distance from 
the unsampled location and their closeness to each other. 
Commonly used variants of the kriging method include 
Ordinary Kriging (OK) and Regression Kriging (RK). 
The main difference between the two methods is that OK 
assumes the mean of the target variable to be unknown but 
constant locally, whereas RK assumes there to be a trend 
associated with the auxiliary variables (e.g., longitude, 
latitude) [26]. In this study, RK is adopted as it incorporates 
two conceptually different methods to model and map 
spatial variability to strengthen the explanation of the 
target variable. The estimations are made separately for 
the trend (OLS in this study) and residuals (via Kriging), 
and then added back together as shown in Equation (1).

 (1)

where  is the fitted deterministic component 
(i.e., the trend),  is the interpolated residual,  are 
coefficients of the estimated trend model,  represents 
constant term, p is the number of auxiliary variables, 
are kriging weights and  is the regression residual. 
Kriging weights for each sampling location is estimated 
based on the parameters of the semivariogram model, 
introduced in the following paragraphs, and the relative 
distance of the specific point with other sampling points 
and the unknown point. 

2.2 Semivariogram

As previously mentioned, the semivariogram model 
depicts the spatial dependence of the measured sample 
points [14,25,27], and is used for linear interpolation via RK, 
thus constructing a good quality semivariogram is critical 
as it determines the accuracy of estimation results. A 
semivariogram is the plot of the expected value of the 
semivariance of the variable of interest. It is a statistic that 
shows how the level of similarity between two known 
points decreases as their separation distance increases [27]. 
The semivariance value can be calculated by taking the 
average of the squared difference of two measurements 
in a study domain separated by a specific and defined lag 
distance. The equation generally used for semivariogram 
estimation is shown below:

 (2)

Here, γ(h) is the semivariance value.  and z(xi) 
are two measurements taken at the location  and  
which are separated by a lag distance, h. Figure 1 shows a 
typical semivariogram plot [18].
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Figure 1. A Typical Semivariogram with Parameters

Three basic parameters associated with each semivari-
ogram are the nugget, range and sill. According to 
theory, the semivariogram value at the origin should be 
zero, but due to stochastic errors such as measurement 
bias, the value of the semivariogram at the origin could 
differ significantly from zero and this is known as the 
nugget effect. The semivariance value at which the 
semivariogram levels off is known as the sill parameter. 
The lag distance at which the semivariogram reaches the 
sill value is known as the spatial range beyond which 
spatial dependence is considered non-existent. To assess 
the strength of the spatial dependence, the nugget-to-
sill ratio (NSR) is typically utilized as a dimensionless 
measure of the proportion of total observed variation that 
could not be explained by the observed spatial dependence 
of the target variable [28,29]. In other words, a small NSR 
represents a strong spatial dependence while a big NSR 
reflects a weak spatial dependence of the variable. To fit 
an experimental semivariogram based on observations 
made, there are several common theoretical forms [30,27,31] 
can be selected. The selection of fitted model types and 
adjustment of semivariogram parameters typically have 
effect on kriging estimation accuracy. However, these 
detailed selection/comparison processes are not the focus 
of this presented study, so to enforce a fair comparison 
between the different interpolation strategies, the spherical 
model (Equation (3)) was adopted for all.

Spherical model:

 (3)

Here, h = lag distance, a = spatial range of continuity 
and c = sill.

2.3 Hybrid Geostatistical Interpolation Framework

The standard RK method, including the construction 
of the semivariogram model, is all based on the Euclidian 
distance metric; however, this might not be a reasonable 
way of interpolating traffic-related variables (i.e., traffic 

volumes in this study) which may strongly be correlated 
with the road network. Therefore, when constructing the 
semivariogram, Euclidean distances are replaced with road 
network distances thus providing a better representation 
of the spatial dependence between the measured traffic 
count points. This simple change makes the standard 
RK wholly based on the road network distance. Figure 
2 illustrates the key steps of the hybrid geostatistical 
interpolation framework using network regression kriging. 
It is worth noting that the proposed framework as a whole 
is transferrable to other cities. Additionally, the target 
variable (traffic volume in this study) can be replaced 
with other traffic-related variables (e.g., traffic collisions, 
congestions, etc.); however, the detailed parameters (e.g., 
auxiliary variables for detrending data) involved in this 
framework needs to be recalibrated, which will depend on 
the type and availability of the input data.

The first step is to obtain the network distances 
between each point. This includes the distances between 
measured points and also the distances between measured 
points and unmeasured points of interest. This can be 
done by the Network Analyst extension in ArcGIS [32]. The 
second step is to remove the trend (i.e., the deterministic 
component) of the measured data points, to show only 
the true spatial variation of the traffic volumes. The 
detrended traffic volumes (i.e., the residuals) would be 
used as the input into the semivariogram modelling where  
python [33] and scikit-gstat package [34] are utilized. Kriging 
is then used to estimate the residuals for each point based 
on the semivariograms constructed in the previous step, 
and the final traffic volume estimates can be obtained 
by adding the estimated residuals and the deterministic 
components. Olea’s study regarding the steps of constructing 
an appropriate semivariogram model is used as a guideline 
during the whole process [27].

To ensure that the semivariogram model is of good 
quality and to compare the estimation accuracy between 
different estimation strategies, cross-validation is utilized 
to check the estimation performance. In this study, the 
root-mean-square-error (RMSE) was calculated using 
the “leave one out” method that checks the prediction 
error of each point individually to ensure that the overall 
prediction accuracy is acceptable [35,27]. RMSE is an 
indicator of how closely the model estimates matches 
the measured values. For this reason, it is widely used in 
cross validation to evaluate the quality of the constructed 
semivariogram. The equation of RMSE can be found 
below.

 (4)
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Here, n is the total number of measured points.

3. Case Study

3.1 Study Area: Edmonton, Alberta, Canada

As mentioned above, the road network for the city 
of Edmonton is used for the case study. To date, there 
are 233 arterials (1894 km), 699 collectors (886 km) 
and 2,394 local roads (2624 km) in total. Based on the 
function and traffic conditions of the city districts, the 
whole city is divided into two zones. The core zone is the 
dense areas in the centre of the city that have far more 
active transportation mode use like walking, cycling 
and public transportation. It mostly consists of local 
and collector roads and carries the main functions of 
residence and commerce. By contrast, the non-core zone 
is the rest of the city where social vehicles and trucks are 
the main modes of transportation. It is mainly used by 
commuters, intercity travelers, industrial, and agricultural  
industries.

3.2 Data Sources and Processing

Traffic volume data were obtained from the City of 
Edmonton Open Data Portal where the city road network 
shapefile and historical (2008-2018) traffic volume data 
were provided. The traffic volume data were collected 
by loop detectors or by manual counting on weekdays. 
Since not all the measurement locations had year-
round monitoring, average-daily-traffic volume (ADT) 
for each detection site was calculated and used in this 
study. Table 2 summarizes the collected ADT data with 
descriptive statistics, while Figure 3 displays the study 
areas along with the different road types and the boundary 

of the core zone. All detection sites are also shown in 
the same figure. The year 2017 was not included in the 
following analysis due to insufficient data. The road 
network distance between each pair of ADT points 
was obtained using the Network Analyst extension in  
ArcGIS [32], which lets us find the shortest route between 
locations along a network of transportation routes.

3.3 Trend Removal of Traffic Volumes

As previously described, the first step involved in the 
framework is to remove the trend of the target variable 
(i.e., the ADT) as much as possible so that the true spatial 
variation pattern of ADT can be observed. In this study, 
the linear regression with ordinary least squares (OLS) 
was adopted in removing the trend or the deterministic 
part of the kriging model. It is worth noting that linear 
regression is not the only method that can be employed 
here, however, the focus of this study is not on the 
detrending techniques while the linear regression model 
is one of the most widely used and effective methods that 
allows us to gain a deeper understanding of the influence 
that each covariate has in explaining the variations of 
ADT [6,20,16,21,8]. Available local auxiliary information in 
Edmonton for each detection site included the road type 
(eight types in total which were converted into numerical 
variables according to road class level), speed limit (30 
km/h – 110 km/h) and local accessibility factors such 
as the distance to the nearest school and distance to the 
nearest senior residence, all of which were used in the 
stepwise multiple linear regression analysis by fitting a 
first-order polynomial model. The p-value was adopted 
to confirm the statistical significance between ADT and 
the auxiliary variables in a 5% significance level. Table 

Figure 2. Proposed Hybrid Geostatistical Interpolation Framework



58

Journal of Geographical Research | Volume 05 | Issue 02 | April 2022

Table 2. Descriptive Statistics of the Collected Average Daily Traffic (ADT) Volume Data

Year # measured ADT 
points Maximum ADT Minimum ADT Average ADT Standard 

Deviation
Proportions in Arterial/Collector/Other 

roads

2008 415 26196.0 17.5 7478.8 6034.6 84.3%/ 15.0%/ 0.7%

2009 425 33989.0 28.5 5742.3 5961.9 68.7%/ 30.8%/ 0.5%

2010 494 39520.0 38.0 5796.0 5956.6 68.2%/ 31.1%/ 0.6%

2011 581 45142.0 59.0 6070.8 7337.3 62.5%/ 37.1%/ 0.4%

2012 521 52727.0 49.5 8269.6 8965.1 75.0%/ 24.8%/ 0.2%

2013 700 50818.0 16.5 9546.7 9189.5 82.8%/ 15.8%/ 1.3%

2014 905 53171.5 56.5 10016.5 9141.8 84.7%/ 14.5%/ 0.8%

2015 1174 60066.0 78.5 10646.2 9209.0 81.6%/ 17.7%/ 0.6%

2016 1035 47176.0 43.5 9961.5 7896.4 85.3%/ 13.8%/ 0.9%

2017 8 7129.0 561.5 3018.0 2406.9 62.5%/ 37.5%/ 0.0%

2018 238 49487.0 130.5 9105.0 7646.4 89.9%/ 8.0%/ 2.1%

Figure 3. The Study Area – Edmonton, Alberta
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3 summarizes the calibrated parameters, and only those 
variables with p-values less than α = 0.05 are included. 

As can be seen from the linear regression results, 
road type, speed limit, and distance to the nearest senior 
residence are all consistently significant variables that 
can explain the variation of ADTs in each year. In 2011, 
2012 and 2015, the distance to the nearest school is also 
a significant variable in this step. Signs of the calibrated 
coefficients all make sense, as higher classes of roads (e.g., 
primary highway truck route) hold more traffic volumes 
compared with lower classes (e.g., local roads); roads with 
higher speed limits also tend to hold more traffic volumes 
as they are either interstate highways or arterials that serve 
the most commuters. In terms of the local accessibility 
factors that may only be applicable to Edmonton, the 
shorter the distance to a senior residence is, the larger the 
traffic volume tends to be, as most of the senior residences 
in Edmonton are located near major arterial roads. This 
also partially applies to the schools, but it depends on the 
locations of detection sites in specific years, implying that 
changing sampling locations may have an impact on the 
estimation performance of the regression.

Although the regression models were able to moderately 
remove underlying spatial trend, the low R2 values indicate 
the need for performing spatial interpolation via kriging 
using residual values to further improve the estimation 
accuracy. The next is to construct semivariogram models 
based on the residuals of the regression models and 
implement regression kriging under different scenarios 

and road network configurations.

3.4 Semivariogram and Regression Kriging

In this section, the comparison results including the 
spatial dependence and estimation accuracy between 
standard kriging and network kriging are presented. As 
shown in Table 2, ADT values can vary a lot between each 
year, and to understand the network model performance in 
different network settings, as well as assess the stationarity 
assumption of ADT, the study repeated the same analysis 
procedures for three different network configuration 
groupings. The first grouping (Case I) considers the whole 
city-wide network, the second grouping (Case II) is the 
district functions of core and non-core zones, and the 
final grouping (Case III) is a separation between arterial 
and collector road types. As mentioned previously, all 
semivariograms were fitted using the spherical model in 
order to enforce a consistent and fair comparison.

3.4.1 Case I: Whole Network

Following the steps of the standard kriging and 
network kriging (Figure 2), the semivariogram models of 
two distance metrics for each year were first constructed 
based on the same data points. Figure 4 includes all the 
semivariogram models that were developed by carefully 
following the procedures and guidelines from Olea’s 
publication [27].

As can be seen from Figure 4, the general shapes 

Table 3. Linear Regression Results for Traffic Volume Trend Removal

Year Road Type Speed Limit Distance to Nearest 
Senior Residence

Distance to Nearest 
School R2

2008 –5185.387 1687.224 99.019 − 30.6%

2009 –10800.105 1330.000 223.670 − 36.4%

2010 –12610.012 1270.851 256.203 − 39.6%

2011 –17979.301 1308.853 375.761 –1.234 48.0%

2012 –21996.595 1369.502 447.581 –1.278 59.2%

2013 –22324.391 2185.237 389.300 − 51.2%

2014 –22547.419 1991.376 414.489 − 48.3%

2015 –24068.033 2045.341 461.151 –1.224 53.1%

2016 –17932.787 2082.277 327.148 − 42.0%

2018 –30951.479 899.345 647.308 − 52.0%
Note: eight road types are converted into numerical variables.
·Arterial-Class A (Primary Highway Truck Route) = 8;
·Arterial-Class B (Non-Primary Highway Truck Route) = 7;
·Arterial-Class C (Truck Route Low speeds) = 6;
·Arterial-Class D (Non-Truck Route Low speeds) = 5;
·Collector-Commercial (Adjoining lots zoned > 50% Commercial) = 4;
·Collector-Industrial (Adjoining lots zoned > 50% Industrial) = 3;
·Collector-Residential = 2;
·Other (e.g., local roads) = 1.
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and sill values remain similar in each pairing while the 
nugget values of network models are consistently smaller 
compared with the standard ones. This also leads to 
different spatial dependence patterns between the two 
models. Figure 5 vividly shows the comparisons between 
the four parameters of the two types of semivariogram 
models, t-tests were also employed to examine the 
significance of the differences (Note: * represents the 
p-value is significant at 5% significance level).

From the t-test values, it can be concluded that 
the nugget and the nugget-to-sill ratio (NSR) values 
of  network-distance semivariogram models  are 
significantly smaller as compared to their Euclidean 
distance counterpart. This means the stochastic effect 
or the variance of ADT within a very short lag distance 
are reduced dramatically and thus the stronger spatial 
dependence of ADT can be observed. The reason can be 
the use of network distance takes the actual road network 
into account which avoids the situation where one low 
traffic volume road segment is considered adjacent to a 
highway segment even if there is no direct connection 
between them. In addition, the nugget and NSR values 
change dramatically over the 10-year period, which 
implies that the spatial configuration of the ADT detection 
sites has an impact on the representativeness of the ADT 
spatial variation pattern. The travel behavior changes over 
time (i.e., temporal pattern) in the city of Edmonton is 
also one of the possible reasons. This will need further 
investigation in the future, but unfortunately, it will be out 
of scope for this study. Figure 5 suggests that there is no 
significant difference present in the sill values, and this 
is because sill values represent the maximum variance 
between ADT values within the sampling scale, points that 
are far away from each other in Euclidean distances are 
likely to be far away from each other in network distance 
as well, thus the use of network distance does not affect 
sill value much. For the range values of semivariograms, 
it is a parameter that is highly correlated with the ADT 
sampling distribution and thus makes estimating the true 
range complicated hampering its use in comparisons [36]. 
 Thus, for the other two groups, only the nugget and NSR 
values calibrated from their corresponding semivariograms 
were used for comparisons.

After the semivariogram models were constructed, 
the cross-validation was implemented to compare the 
estimation accuracy between the two-distance metrics. 
RMSE values suggest that using network distance led to 
an average improvement of 4.0% for all of the years. The 
t-statistic between them is 5.473 with the p-value being 
equal to 0.000, which means network kriging is able to 
consistently provide significantly more accurate estimates 

compared to the standard one for the whole city road 
network. 

It is worth noting that the percentages of the improvement 
vary for each year (i.e., 1% to 9%). The reason for the 
variation can be attributed to the sampling distribution 
of the measured ADT points, as the city keeps expanding 
its scale during these 10 years thus changing most of the 
locations of the ADT detection sites every year. 

Since the computational costs of the network model are 
exponentially higher than the standard one, it is important 
to distinguish the situations under which applying network 
kriging is worth the increased effort. In other words, there 
is a need to identify the situations where the network 
semivariogram model and RK method can significantly 
outperform the standard ones.

3.4.2 Case II: Core Zone and Non-core Zone

The same comparison procedures are repeated between 
core zone (downtown) and non-core (suburb) zone of 
the city to see if the model would perform differently 
under varying network configurations. Calibrated nugget 
and NSR values are compared in Table 4. Years with 
insufficient data for both zones are excluded from this 
analysis.

Although results show that the network kriging model 
is able to reduce the nugget effect, better represent 
spatially dependence, and generate more accurate results 
in both core and non-core zones, the t-test values indicate 
that the differences were seen in the RMSE values 
between standard and network models are not statistically 
significant in the core zone (t-statistic: 0.919; p-value: 
0.194) while they do differ significantly in the non-core 
zone (t-statistic: 2.057; p-value: 0.039). The reason for this 
can be attributed to the density and scale of the networks. 
For example, the core zone has a smaller spatial scale than 
that of the non-core zone and that varying distance metrics 
do not play a significant role due to having higher network 
density. Additionally, the shape of the road segments within 
the core-zone is mostly straight thus making the differences 
between Euclidean and network distance kriging less 
dramatic.

Therefore, it can be concluded that the marginal benefits 
gained by using network kriging on a small and dense 
network with straight road segments is not worth the 
extra effort. By contrast, a widely spread-out network, 
or a network with a considerable number of curvy roads, 
can benefit significantly more from the network model. 
Additionally, calibrated nugget and NSR values in Table 
4 also imply the same conclusion as discussed in Case 
I, regardless of the zone area, ADT detections sites’ 
configuration affects the semivariogram model. The 
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temporal pattern of travel behavior also needs future 
investigation. Another point worth mentioning here is 
that the semivariogram models for each year were very 
different between the core and non-core zones, which 
infers that the stationarity assumption (i.e., translation 
invariance) of ADT may not hold true across large urban 

area. In other words, one single semivariogram model 
may not be able to represent the spatial pattern of all 
ADTs in the network as a whole thereby warranting a need 
to develop separate semivariogram models by taking into 
account the underlying characteristics of road networks 
under investigation.

Figure 4. Constructed Semivariogram Models
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Figure 5. Comparisons of the Semivariogram Parameters

Table 4. Calibrated Semivariogram Parameters for Core vs Non-core Zones

Year

Core Zone 
(Euclidean)

Core Zone 
(Network) Non-core Zone (Euclidean) Non-core Zone (Network)

Nugget NSR Nugget NSR Nugget NSR Nugget NSR

2008 6.3E+06 3.4E-01 7.3E+06 4.0E-01 3.1E+07 7.6E-01 2.2E+07 5.7E-01

2009 - - - - 1.3E+07 3.7E-01 1.1E+07 2.9E-01

2010 1.2E+07 6.0E-01 1.1E+07 5.5E-01 1.6E+07 4.1E-01 1.6E+07 3.9E-01

2011 2.3E-06 9.1E-14 5.2E+05 2.0E-02 2.5E+07 4.2E-01 1.7E+07 2.8E-01

2012 2.2E+07 9.9E-01 1.9E+07 8.4E-01 6.0E+07 6.5E-01 3.0E-10 3.3E-18

2013 2.1E+07 7.6E-01 1.7E+07 6.2E-01 2.9E+06 2.9E-02 7.9E+06 7.9E-02

2014 2.1E+07 6.1E-01 5.3E+06 1.7E-01 7.4E-09 7.6E-17 1.1E-06 1.1E-14

2015 3.8E+07 9.9E-01 3.0E+07 1.0E+00 8.1E+07 8.0E-01 7.4E+07 7.2E-01

2016 2.2E+07 6.6E-01 2.2E+07 6.6E-01 3.6E+07 5.2E-01 3.5E+07 5.1E-01

2018 - - - - 1.0E+07 1.4E-01 6.0E+06 8.3E-02
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3.4.3 Case III: Arterial and Collector

To further examine whether the stationarity assumption 
is true or not for the study area, this section investigates 
the differences between semivariogram models tailored 
for different road types, namely, arterial and collector 
roads. The model development procedures remain the 
same as described in the previous sections, and the 
years with insufficient data for both road types are again 
excluded from this analysis. All models were fitted using 
the same spherical form. Their calibrated semivariogram 
parameters are shown in Table 5.

It is implied that the spatial dependence pattern can 
be very different between the two road types, as the 
calibrated parameters differ from each other significantly. 
For example, the nugget values in arterials are drama-
tically bigger than those in collectors, this is because 
arterial roads tend to carry most of the traffic flows of 
the city especially for intercity trips, and industrial and 
agricultural travels, thus the magnitude of the variances 
can be also higher for this road type. In addition, the 
calibrated semivariogram parameters vary over time 
regardless of the road type. This implies that the impact 
of ADT detection sites’ configuration and the temporal 
pattern of travel behavior in the city of Edmonton will 
require further investigation in future work.

The ultimate goal of this research is to provide more 

accurate estimates of traffic volumes, cross-validation 
was conducted to assess the estimation accuracy for 
the separate estimations for arterial and collector roads. 
RMSE values were used to compare and contrast the 
ADT estimates from the various semivariogram models 
developed using separate road types, keeping all roads 
together, and network distances. Results show that 
compared to using Euclidean distance in kriging without 
separating the road types, network distance kriging while 
considering semivariograms separately can, once again, 
improve the ADT estimation accuracy by 4.12% on 
average for the entire urban network while the t-test also 
validates that it is a statistically significant improvement 
(t-statistic: 5.828; p-value: 0.000).

3.5 Spatial Mapping of Traffic Volumes

With the semivariogram models calibrated and 
validated for each year, the proposed hybrid geostatistical 
approach was used to interpolate the missing ADTs for the 
entire city network. This method utilized the midpoints of 
each road segment that are split by intersections as shown 
in Figure 6. 

As described previously, the major difference in im-
plementing network kriging compared with the standard 
one is to replace the Euclidean distance with the network 
distance. Therefore, the network distance matrix based 
on the shortest path for all measured and unmeasured 

Table 5. Calibrated Semivariogram Parameters for Arterial vs Collector

Year

Arterial 
(Euclidean)

Arterial 
(Network)

Collector 
(Euclidean)

Collector 
(Network)

Nugget NSR Nugget NSR Nugget NSR Nugget NSR

2008 2.4E+07 8.1E-01 1.9E+07 6.7E-01 2.6E+06 6.8E-01 2.3E+06 5.7E-01

2009 3.8E+05 1.3E-02 9.7E-10 3.2E-17 1.8E-13 5.0E-20 6.5E-09 1.9E-15

2010 1.7E+07 5.4E-01 1.4E+07 4.8E-01 1.7E+06 4.3E-01 1.6E+06 4.0E-01

2011 2.6E-02 6.3E-10 6.4E-11 1.6E-18 4.1E+05 6.8E-02 2.8E-09 4.7E-16

2012 2.9E+07 6.6E-01 2.3E+07 5.6E-01 3.0E-07 5.0E-14 4.3E-10 7.1E-17

2013 3.0E+07 6.1E-01 2.4E+07 4.8E-01 - - - -

2014 3.5E+07 6.8E-01 2.6E+07 5.4E-01 1.6E-11 1.0E-18 1.3E+07 1.0E+00

2015 4.3E+07 9.3E-01 4.2E+07 9.0E-01 4.3E-05 2.1E-12 6.8E-13 3.4E-20

2016 2.8E+07 6.8E-01 2.5E+07 6.2E-01 1.1E-09 1.5E-16 3.4E+05 4.6E-02

2018 8.7E-08 2.8E-15 6.7E-07 2.2E-14 - - - -
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locations were generated firstly via ArcGIS [32] and then 
input into kriging along with the corresponding best-fitted 
spherical semivariogram models. As a result, 2008, 2009, 
2010, 2011, 2012, 2013, 2014, 2015, 2016 utilized the 
separated-road type network semivariograms while 2013, 
2018 utilized their citywide network semivariograms. 
These interpolated ADT values reflect the true spatial 
distribution pattern as the ring road and the areas within 
it is shown to have higher traffic volumes as compared 
to the areas outside the ring road (i.e., the far northern 
and far southern parts of the city where people rarely go). 
Furthermore, years with interpolation using separated 
semivariogram models (with * marked in title) tend 
to distinguish the traffic volume differences more 
prominently between road types.

Although more case studies using different network 
sizes and traffic related variables (e.g., collision frequency) 
are required to further attest to the conclusiveness of the 
results generated herein, the findings of this study provide 
significant contributions to areas in need of utilizing 

accurate traffic volume information with limited traffic 
detectors.

3.6 Summary of Research Findings

With the adoption of the proposed hybrid interpolation 
framework to estimate and spatially map ADT across the 
city of Edmonton, several findings were made from the 
three case studies (i.e., Case I, II, III). These findings are 
summarized below:

·Network semivariogram was able to better represent 
the spatial variation pattern of ADT within the road 
network. When compared with semivariogram models 
using Euclidean distance (Case I, II, III), network 
semivariogram has lower nugget and NSR values [37].

·Estimating ADT using network kriging was 
consistently more accurate than standard kriging with 
Euclidean distance [21]. This finding was supported by 
cross-validation results using the 10 years of data (Case I).

·Small and dense networks where roads are fairly 
straight were not worth performing network kriging due 

Figure 6. Interpolated ADT maps via Network Regression Kriging
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to its low return and substantial computational cost. In 
Case II, estimated ADT values using two distance metrics 
have no significant difference in the non-core zone, which 
supports this finding. 

·The imposed stationarity assumption of ADT did not 
hold true for the entire study area. This was evident from 
the different semivariogram parameters calibrated with 
respect to different city zones and road types (Case II, III).

·Estimating ADT using network kriging with multiple 
road types and semivariograms (Case III) was significantly 
more accurate than estimating using Euclidean distance 
with a single semivariogram.

·Semivariogram parameters (e.g., nugget, range, 
NSR) changed dramatically over time regardless of zone 
and road types, which implies that the configuration of 
ADT detection sites has an impact on the spatial variation 
pattern representativeness, and thus will potentially affect 
the overall estimation accuracy. The temporal pattern of 
travel behavior in the city of Edmonton also needs further 
investigation.

·Interpolated ADT (Figure 6) using our proposed 
method was able to successfully reflect the true spatial 
distributions of the traffic volumes in the city.

Since the data employed in this case study covers 10 
years of ADT observations, and our findings regarding 
the network regression kriging performance are consistent 
with previous relevant studies [11,38,16,7,21], it can be said that 
our proposed hybrid geostatistical interpolation framework 
and research findings are transferrable and applicable 
to other cities as well as other traffic related variables. 
One thing to note is, some of the detailed parameters or 
settings (e.g., variables in detrending step, semivariogram 
type, etc.) may differ depending on the data of interest and 
availability. 

4. Conclusions and Future Research

In this research, a hybrid geostatistical interpolation 
framework for estimating city-wide traffic volumes was 
developed by applying linear regression models to remove 
trends within ADT and performed kriging with network 
distances using semivariogram models constructed for 
each estimation year. A case study in Edmonton was 
conducted to compare the estimation accuracy between 
the standard and network models. Linear regression 
models consistently show that road types, speed limits 
and accessibility to senior residences are significant 
explanatory variables over the 10 years, and accessibility 
to schools may also be a significant variable depending 
on the distribution of sample sites. Overall, the network 
semivariogram model better represents the spatial 
interaction pattern of the traffic volumes. It significantly 

reduces the nugget effect while also forming a stronger 
spatial dependence by generating a lower NSR. For a 
large road network (e.g., the whole city network, non-
core zone), network kriging consistently and significantly 
outperforms standard kriging by providing more accurate 
traffic volume estimates. By contrast, on a small scale and 
dense road network with road segments that are not very 
curvy (e.g., core-zone), the standard kriging method based 
on Euclidean distance is still able to provide reliable 
estimates, and the semivariogram model is also able 
to adequately represent the spatial interaction of traffic 
volumes. Furthermore, it is also found that the stationarity 
assumption for traffic volumes does not hold true thereby 
indicating that the semivariogram model constructed 
over a particular zone/network configuration may not be 
representative of the actual spatial interaction for all zones 
or different road types in the city. This also suggests that 
separate estimates for different road types using their 
corresponding semivariogram models can produce more 
accurate estimates overall.

In conclusion, within the area of traffic estimation, our 
research provides several contributions. First, a hybrid 
geostatistical interpolation framework was developed, 
which involves the use of local auxiliary variables and 
road network metrics. This interpolation framework is 
a powerful tool that transportation agencies can employ 
when their traffic information is limited. In addition, 
this is also the first time that long-term and large urban 
datasets are used to prove the feasibility and robustness of 
our proposed framework. And lastly, it was demonstrated 
that with semivariogram models, using network distances 
can allow us to better understand the spatial variation 
patterns of traffic volume. Furthermore, this research also 
contributes to identifying situations where the application 
of network kriging is not necessary considering the 
substantially high computational costs required of 
it. Furthermore, the imposed stationarity assumption 
placed on the whole network did not hold true since 
semivariogram models developed for different zones 
and road types led to improved estimation performance. 
It is expected that with more accurate ADT estimation/
mapping results (as shown in Figure 6) and a better 
understanding of the ADT spatial pattern, transportation 
authorities can make more robust and accurate decisions 
on transportation-related activities.

This research can be extended in several directions. 
First, the same approach proposed in this study can be 
directly implemented in any other traffic-related cases 
where the use of network distance is more reasonable. 
Given the studies done in the past using Euclidean 
distances, there are lots of studies that can be re-done 
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using network distances such as traffic congestion, 
collisions, emissions and so on [38-40]. Secondly, the 
distribution of the sampling sites is suspected to affect 
the modeling and estimation performance as can be seen 
from the 10-year RMSE values and calibrated nugget 
values. Therefore, additional efforts into developing 
optimal traffic-count sampling strategies will be required 
to optimize the traffic monitoring capabilities and to 
further improve estimation performance. It would be also 
beneficial to use the data collected over same geographic 
locations but over different years in an attempt to further 
validate the conclusiveness and transferability of our 
findings. Thirdly, instead of converting road types into 
numerical values, they can also be hot-coded or binary-
coded (e.g., major roads vs other roads) to quantify the 
effect of different road types have on ADT and their 
contributions to improving the accuracy of interpolating 
citywide traffic volumes. Lastly, the calibrated parameters 
of our linear regression models (i.e., coefficients of the 
auxiliary variables) and semivariograms (e.g., range) 
tend to vary drastically, which implies that people’s travel 
behavior within the city of Edmonton is changing over 
time. Further investigation of this temporal pattern can be 
a potential future research topic.
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