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ABSTRACT
This paper extends the previously developed method of optimizing Road Weather Information Systems (RWIS) 

station placement by unveiling a sophisticated multi-variable semivariogram model that concurrently considers multi-
ple vital road weather variables. Previous research primarily centered on single-variable analysis focusing on road sur-
face temperature (RST). The study bridges this oversight by introducing a framework that integrates multiple critical 
weather variables into the RWIS location allocation framework. This novel approach ensures balanced and equitable 
RWIS distribution across zones and aligns the network with areas both prone to traffic accidents and areas of high un-
certainty. To demonstrate the effectiveness of this refinement, the authors applied the framework to Maine’s existing 
RWIS network, conducted a gap analysis through varying planning scenarios and generated optimal solutions using a 
heuristic optimization algorithm. The analysis identified areas that would benefit most from additional RWIS stations 
and guided optimal resource utilization across different road types and priority locations. A sensitivity analysis was 
also performed to evaluate the effect of different weightings for weather and traffic factors on the selection of optimal 
locations. The location solutions generated have been adopted by MaineDOT for future implementations, attesting to 
the model’s practicality and signifying an important advancement for more effective management of road weather con-
ditions.
Keywords: RWIS; Location optimization; Multi-variable semivariogram; Heuristics; Spatial simulated annealing (SSA); 
Collision rate (CR)
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1. Introduction and background
Road Weather Information System (RWIS) is 

one of the most crucial highway Intelligent Trans-
portation Systems (ITS) for gathering, analyzing, 
and distributing road weather and surface condition 
information. The information derived from RWIS 
plays a vital role in enabling maintenance authori-
ties to make informed operational decisions prior to, 
during, and after severe weather events to ensure im-
proved traffic safety, mobility, and operational effi-
ciency, particularly in regions facing adverse weath-
er conditions. By offering real-time road weather 
and condition updates, RWIS data aid the general 
public in making informed choices regarding their 
travel routes and modes of transportation [1,2]. Recog-
nizing the numerous benefits associated with RWIS 
stations, various transportation agencies in the Unit-
ed States, Canada, Europe and Asia, including the 
Maine Department of Transportation (Maine DOT), 
have made significant investments in establishing 
their own RWIS networks [3,4]. These networks aim to 
comprehensively cover their highway infrastructure 
and enhance their existing monitoring capabilities. 
Nevertheless, there are several drawbacks associat-
ed with RWIS. Apart from the significant expenses 
incurred during installation (US $100K per station) 
and maintenance (approximately US $10K yearly), 
RWIS systems only offer point measurements, ne-
cessitating additional processing to accurately depict 
the diverse and expansive road network conditions in 
Maine [5,6]. Consequently, to optimize the effective-
ness of RWIS, it is imperative to strategically and 
systematically install new RWIS stations, ensuring 
their synchronization with the existing ones.

In the past few years, a number of studies have 
attempted to establish a systematic methodological 
framework for RWIS network planning. In 2005, 
the U.S. Federal Highway Administration (FHWA) 
made significant efforts by conducting interviews 
with multiple states’ Department of Transportation 
(DOTs). The study’s findings, which relied heavily 
on personal insights and expertise from field opera-
tors, indicated a recommended spacing of 30 to 50 
km (20 to 30 miles) between RWIS stations [6]. Due 

to the fact that this recommendation was derived 
from subjective experiences, numerous researchers 
have sought to establish a more objective approach 
for quantifying the spatial coverage and determining 
the optimal placement of RWIS stations [7-12]. Kwon 
and Fu (2013) conducted a study using a Geographic 
Information System (GIS) to introduce a framework 
for evaluating the location of RWIS networks. Their 
approach incorporated various factors such as sur-
face temperature variability (VST), mean surface 
temperature (MST), snow water equivalent (SWE), 
and topographical location attributes. The study’s 
findings demonstrated the potential for developing a 
systematic methodology for RWIS installation by in-
tegrating multiple variables into the location alloca-
tion model [13]. Zhao et al. employed a methodology 
centered around cost-benefit analysis to identify the 
most advantageous sites for RWIS placement. Their 
objective was to achieve maximum spatial coverage 
while considering the variability of weather severity [11]. 
Jin et al. took a similar approach to maximize spatial 
coverage, but instead of a cost-benefit analysis, the 
optimization process involved using a metric called 
“safety concern index” derived from weather-related 
crash data [7]. Spatial analysis within GIS platform 
was also incorporated in several different fields of 
study, for example, Valjarević et al. (2021) exam-
ined the Morava city conurbation in Serbia, utiliz-
ing Kriging-based spatial analysis with a particular 
focus on the interaction between rural and urban 
areas, traffic connectivity, geographical positioning, 
and sustainability and profitability [14]. Moreover, 
Timalsina and Subedi explored the growing signifi-
cance of open spaces in urban development planning 
in Nepal. This paper examines the evolution of open 
space integration in recent urban planning practic-
es in Nepal, highlighting the growing emphasis on 
sectoral integration with open space development, 
particularly within Periodic Planning, Integrated Ur-
ban Development Planning (IUDP), and Smart City 
Planning, aiming to create resilient and sustainable 
cities [15]. However, in a recent study, RWIS network 
optimization was conducted using kriging-based 
method, aimed at enhancing monitoring capabilities 
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and minimizing the average kriging variance of haz-
ardous road surface conditions. This study was for-
mulated as a Nonlinear Integer Programming (NIP) 
problem and showcased its applicability through a 
case study in the state of Minnesota, U.S. [16]. 

Although the previously mentioned studies have 
made valuable contributions to the development 
of RWIS location models, they focused solely on 
investigating the spatial characteristics of a single 
variable, specifically road surface temperature (RST). 
While RST is undoubtedly an essential measure-
ment, it is important to consider many other weather 
variables measured by RWIS in the location optimi-
zation process. 

The primary motivation of this research is to 
break new ground by concurrently incorporating the 
spatial characteristics of multiple weather variables. 
For the first time ever, we are developing an innova-
tive multi-variable semivariogram model that spe-
cifically considers critical weather variables, includ-
ing air temperature (AT), road surface temperature 
(RST), and dew point temperature (DPT). This novel 
approach is directed at optimizing RWIS placement 
by ensuring effective monitoring coverage of the 
region. Additionally, our method takes into account 
areas prone to traffic accidents for improved safety, 
and demonstrates the superiority of the proposed 
method in ensuring an equitable distribution across 
different maintenance zones.

In addition to the primary objective, this research 
encompasses two specific sub-objectives, which are 
outlined below: 

●	 Implementation of the developed model for the 
planning of the regional RWIS network:

	 The RWIS planning tool we developed will 
be utilized for the region-wide prioritization 
of potential RWIS sites. Furthermore, we will 
conduct a comprehensive statewide gap analy-
sis to validate prioritized and potential sites by 
identifying all new optimal locations.

●	 Conducting sensitivity analysis to offer flexi-
bility to decision-makers:

	 Sensitivity analyses will be conducted to ex-
plore the effect different weight schemes have 

on the optimal location. These analyses will 
provide valuable insights into how variations 
in weather and traffic factors can influence the 
selection of additional RWIS locations. The 
analysis results will provide the flexibility to 
choose parameter weights based on the deci-
sion-maker’s needs, considering both weather 
variables and safety implications related to 
traffic. 

Overall, our proposed multi-variable semivari-
ogram model represents a pioneering step in RWIS 
location determination. By concurrently considering 
multiple weather factors and addressing traffic safety 
in accident-prone areas, we enable planners to tailor 
the RWIS network to specific needs. This innovation 
is therefore expected to enhance monitoring capa-
bilities and more effective winter road maintenance 
decisions.

2. Methodology

2.1 Overview of research procedures

The first phase of this project is data collection, 
where information about the study area, stationary 
RWIS data, and traffic data are gathered. In the sec-
ond step, the collected data is processed by removing 
missing and erroneous data as per our predefined 
guidelines [18]. Next, the processed data is merged 
into a GIS-based platform for further analysis. 
Moving on to stage three, a highly effective spatial 
sampling technique called geostatistical analysis is 
utilized to determine the spatial autocorrelation of 
the RWIS variables. This technique is designed to 
enhance the likelihood of capturing spatial variations 
while minimizing potential biases in the input data. 
Specifically, semivariogram analysis is conducted 
here to generate semivariogram clouds for the se-
lected RWIS variables, which are then combined to 
generate a multi-variable semivariogram model. This 
multi-variable semivariogram model is then applied 
in the final stage to optimize the placement of RWIS 
locations by refining our previously developed lo-
cation optimization framework. The overall research 
procedures for this study are summarized in Figure 1. 
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2.2 Data collection, processing and integration

As depicted in Figure 1, the initial step of our 
framework involves the collection of the following 
seven variables: state boundary and road network 
information, stationary RWIS data (AT, RST, and 
DPT), and traffic data (AADT and collision). The 
RWIS measurements obtained from the database un-
dergo several checks to ensure data quality [18]. The 
processed datasets are then consolidated into a uni-
fied GIS database to facilitate spatial analysis. 

2.3 Geostatistical semivariogram modeling

In our previous work, we developed a systematic 
approach for RWIS network planning that utilizes 
kriging-based optimization to determine the optimal 
locations for RWIS stations. A key aspect of this 
framework is the integration of RWIS information 
for spatial inference [18,19]. To incorporate spatial in-
ference, the geostatistical modeling approach known 
as semivariogram analysis is utilized to quantify the 
spatial autocorrelation of RWIS measurements. 

A semivariogram is a graphical representation of 
spatial autocorrelation using a metric called semi-
variance. Semivariance is a statistical measure that 
assesses the similarity between two measurements 
based on their spatial separation distance [20]. It is 
computed by averaging the squared differences be-
tween measurements separated by a designated lag 
distance. A larger autocorrelation range indicates a 

higher level of spatial continuity in RWIS measure-
ments, while a smaller range suggests lower continu-
ity. Equation (1) represents the most commonly used 
method for estimating semivariance:
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In this equation, γ(h) represents the semivariance. It is calculated by comparing two
measurements,   + ℎ and   , taken at locations  and  + ℎ respectively, with a
separation distance of h.

In this research, semivariogram modeling is incorporated to quantify the spatial structure
of critical road weather and surface conditions variables. Numerous GIS software packages and
programming languages are available for semivariogram modeling, such as ArcGIS, QGIS, R,
Python etc. In this research, separate semivariogram clouds are developed primarily for each
selected weather variable (i.e., AT, RST, and DPT) and subsequently combined to form a
comprehensive semivariogram cloud. By binning the cloud points together, a multi-variable
semivariogram model is constructed to capture the spatial autocorrelation of all crucial weather
variables. The parameters obtained from the multi-variable semivariogram model serve as
critical inputs for optimizing the location of RWIS stations, ensuring that the additional RWIS
stations are strategically positioned based on the spatial autocorrelation of the key weather
variables.

2.4 RWIS network optimization
In continuation of the geostatistical semivariogram modeling conducted in the previous

step, this stage builds upon the previously developed RWIS location allocation framework by
incorporating a multi-variable semivariogram model in the location optimization process. The
objective is to determine optimal locations for RWIS stations while minimizing spatial inference
errors or maximizing spatial coverage across the road network, as demonstrated in previous
studies [16-18]. The spatial inference errors are indicative of the requirements for installing RWIS
stations to enhance monitoring capabilities and improve the efficiency of winter road
maintenance operations. By refining the location allocation model, this study takes into account
the spatial impact of multiple road weather variables.

The optimization method employed in this study is Spatial Simulated Annealing (SSA), a
popular heuristic algorithm widely recognized for its effectiveness in solving spatial optimization

� (1)

In this equation, γ(h) represents the semivariance. 
It is calculated by comparing two measurements, z 
(xi + h) and z (xi), taken at locations xi and (xi + h) 
respectively, with a separation distance of h. 

In this research, semivariogram modeling is in-
corporated to quantify the spatial structure of critical 
road weather and surface conditions variables. Nu-
merous GIS software packages and programming 
languages are available for semivariogram modeling, 
such as ArcGIS, QGIS, R, Python etc. In this re-
search, separate semivariogram clouds are developed 
primarily for each selected weather variable (i.e., AT, 
RST, and DPT) and subsequently combined to form 
a comprehensive semivariogram cloud. By binning 
the cloud points together, a multi-variable semivar-
iogram model is constructed to capture the spatial 
autocorrelation of all crucial weather variables. The 
parameters obtained from the multi-variable semi-
variogram model serve as critical inputs for opti-
mizing the location of RWIS stations, ensuring that 
the additional RWIS stations are strategically posi-
tioned based on the spatial autocorrelation of the key 
weather variables.

Figure 1. An overview of the research procedure.
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2.4 RWIS network optimization

In continuation of the geostatistical semivario-
gram modeling conducted in the previous step, this 
stage builds upon the previously developed RWIS 
location allocation framework by incorporating a 
multi-variable semivariogram model in the location 
optimization process. The objective is to determine 
optimal locations for RWIS stations while minimiz-
ing spatial inference errors or maximizing spatial 
coverage across the road network, as demonstrated 
in previous studies [16-18]. The spatial inference er-
rors are indicative of the requirements for installing 
RWIS stations to enhance monitoring capabilities 
and improve the efficiency of winter road mainte-
nance operations. By refining the location allocation 
model, this study takes into account the spatial im-
pact of multiple road weather variables. 

The optimization method employed in this study 
is Spatial Simulated Annealing (SSA), a popular 
heuristic algorithm widely recognized for its effec-
tiveness in solving spatial optimization problems [17]. 
SSA has been extensively used and has a reputation 
for generating more reliable location solutions [21-24]. 

In addition to considering various weather vari-
ables, the modified network optimization model also 
incorporates traffic demand distribution by consider-
ing the collision and AADT data. The accident rate is 
calculated using Equation (2) as follows [25].
Crash rate, CR = (number of accident * 1000000) /  
                            (AADT * 365)� (2)

In this context, the term “number of accidents” 
represents the total count of accidents observed 
during the study period. AADT, on the other hand, 
represents the average daily traffic volume for a spe-
cific road or road section. It serves as a measure of 
the number of vehicles passing through that area on 
a daily basis. Consequently, the resulting value of 
CR obtained from Equation (2) provides an estimate 
of the frequency of accidents. It indicates the number 
of accidents that occur per million entering vehicles.

The methodology described above is exemplified 
through its application in the state of Maine, provid-
ing detailed information in the subsequent section. 

3. Model Application—Maine, United 
States

3.1 Study area and RWIS network

This research is primarily based on the expansion 
plan of the Maine DOT for their RWIS network. 
Currently, the number of existing stations in Maine 
(ME) is limited, resulting in insufficient coverage of 
the road network. To address this, authorities intend 
to gradually expand the RWIS network by installing 
a yearly average of 8-10 additional stations, con-
sidering budgetary limitations. Given the high costs 
associated with installation and maintenance, it be-
comes crucial to determine the precise locations for 
the placement of these new RWIS stations; so that 
the additional stations will work collaboratively with 
existing stations to maximize the value of RWIS 
information. The outcomes of this research will pro-
vide RWIS planners with optimal location solutions 
for expanding the network, ultimately enhancing the 
overall monitoring coverage to the best extent possi-
ble. Located in the northeastern region of the United 
States, Maine is positioned as the easternmost state, 
sharing its border with Canada. Maine exhibits di-
verse geographical features, encompassing distinctive 
regions such as uplands, coastal lowlands, mountains, 
and piedmont areas. Severe winter conditions, includ-
ing heavy snowfall and freezing temperatures, result 
in the formation of slippery road surfaces and reduced 
visibility, consequently rendering winter driving a de-
manding and challenging task [26,27]. 

There are, 10 RWIS stations in Maine, with the 
majority of them strategically positioned along the 
interstate highway. Due to the limited number of ex-
isting stations, RWIS data from a neighboring state, 
NH (New Hampshire), is also utilized in this analy-
sis. Additionally, ASOS (Automated Surface Observ-
ing System) data from both states are also included 
after conducting data representativeness tests. In the 
process of assessing the representativeness of NH 
data for the state of ME, an analysis was conducted 
on the variation patterns of selected weather varia-
bles in both states. According to the assessment, it 
can be inferred that NH’s RWIS and ASOS data are 
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reliable for representing Maine’s weather.
The study period selected for this analysis in-

cludes three consecutive winter seasons between 
2019 and 2022. Within these three years, RWIS 
and ASOS data collected over a span of five winter 
months (November to March) are utilized in this 
analysis. The distribution of RWIS and ASOS sta-
tions for the study area is presented in Figure 2. 

3.2 Data description 

This study utilized a comprehensive dataset ob-
tained from the Maine DOT and supplemented with 
data from adjacent NH to compensate for Maine’s 
lack of RWIS data. The dataset includes state bound-
ary information, road network data, stationary RWIS 
data, and traffic data. Furthermore, the study incor-
porated information regarding candidate RWIS sites, 
which serve as potential locations for future installa-
tions of RWIS stations.

RWIS Data
Stationary RWIS data for Maine was collected 

from Maine DOT (https://www.maine.gov/mdot/). 
RWIS data for NH and ASOS data for Maine and 
NH were downloaded from Iowa State University 
(http://mesonet.agron.iastate.edu/RWIS/) and WxDE 
website (Weather Data Environment: https://wxde.
fhwa.dot.gov/). State-wide RWIS data in the form of 
Excel files were downloaded, containing measure-
ments from multiple parameters including air and 
surface temperature, visibility, wind speed, and road 
surface conditions. Likewise, ASOS data encompass-
es similar weather variables, excluding RST. These 
measurements are collected at intervals of approxi-
mately 15 to 20 minutes. In total, 25 RWIS stations 
from NH, 10 RWIS stations from Maine, 33 ASOS 
stations in NH, and 18 ASOS stations in Maine were 
included in the analysis. A total of 10,800 hours of 
data was incorporated into the analysis. 

Figure 2. Distribution of RWIS and ASOS stations for Maine and NH.

https://www.maine.gov/mdot/
http://mesonet.agron.iastate.edu/RWIS/
https://wxde.fhwa.dot.gov/
https://wxde.fhwa.dot.gov/
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The weather data underwent a predefined process-
ing procedure to eliminate missing and erroneous 
data. These steps included a data completeness test, 
a reasonable range test, cross-checking RST data 
with AT and DPT data, and analyzing the pattern of 
weather data [18]. Using this procedure, a total of 60 
sets of data were analyzed. 

The descriptive statistics of the processed data are 
summarized in Table 1, providing insights into the 
minimum, average, maximum, and standard devia-
tion values for the data collected from weather sta-
tions. Upon closer examination of Table 1, it can be 
observed that the AT exhibits a range of –34.0 ºC to 
26.3 ºC throughout the study period, with an average 
value ranging from –1.2 ºC to –2.3 ºC. The RST var-
ies between –25.9 ºC and 32.1 ºC, with an average 
value of 0.12 ºC. Furthermore, the DPT ranges from 
–41.9 ºC to 21.8 ºC, with average values of –6.0 ºC 
to –6.48 ºC. It is noteworthy that the standard devi-
ation is slightly higher for DPT compared to AT and 
RST. These statistics provide a comprehensive over-
view of the temperature variations across the study 
period and highlight the relative variability among 
the different variables.

Traffic data
To calculate the accident/crash rate, AADT and 

collision data were collected for the same 5-year pe-
riod as RWIS and ASOS data. Then, for the purpose 
of evaluating collisions during the winter season, 
only collisions occurring between November and 
March were considered. Furthermore, to identify col-
lisions caused by adverse weather conditions, sev-
eral factors were taken into account. These factors 
included: (i) the contributing factor of the accident, 
such as road surface conditions like wet, icy, snowy, 
slushy, etc., (ii) the surface condition during the acci-

dent, encompassing ice/frost, snow, slush, mud, dirt, 
and gravel, and (iii) the type of roadway, focusing on 
non-intersection collisions. By considering these fac-
tors, the study aimed to determine the collision rate 
(CR) associated with adverse weather conditions. 

To create the CR distribution map, the study 
employed Equation (2) to calculate CR values for 
square polygons of different sizes generated from 
Maine’s road network data. Smaller polygon sizes 
resulted in a significant number of polygons with 
zero CR values, leading to a random CR distribution 
map that made hotspot identification challenging. 
After an extensive search process to select the opti-
mal polygon size, the CR map generated with 20 km 
by 20 km polygons was selected as the most suitable, 
providing a comprehensive representation of CR 
and better visualization of high-crash areas. The CR 
distribution map for Maine with 20 by 20 km square 
polygons is depicted in Figure 3.

3.3 Development of multi-variable semivario-
gram model 

To assess the spatial structure of key road weath-
er and surface condition variables, semivariogram 
modeling was integrated into this study. The gstat 
package in R [28,29] was utilized for this purpose. Ini-
tially, semivariogram clouds were generated for each 
weather variable, enabling an examination of the 
spatial autocorrelation among the recorded sample 
points. Each point within the cloud represents the 
variance between a pair of measurements [30,31]. Sub-
sequently, the semivariogram clouds for the weather 
variables were combined to form a unified semivar-
iogram cloud. By binning the cloud points together, 
an empirical semivariogram model was constructed 
that incorporated the spatial autocorrelation of all 

Table 1. Descriptive statistics of weather station data for Maine and NH. 

Station Maine ASOS NH RWIS NH ASOS
Weather variable AT DPT AT RST DPT AT DPT
Minimum temperature –30.61 –41.89 –29.50 –25.90 –33.00 –34.00 –40.00
Average temperature –2.32 –6.46 –1.18 0.12 –6.48 –1.22 –5.97
Maximum temperature 24.39 19.00 26.30 32.10 21.80 25.00 21.00
Standard deviation 7.04 7.77 6.82 6.87 7.58 7.10 7.72
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essential weather variables. Figure 4 represents the 
multi-variable semivariogram model developed in 
this research. Here, the spatial range of autocorrela-
tion was determined to be 145 kilometers, with a sill 
value of 3.55 and a nugget value of 0.01. 

The use of a multi-variable semivariogram model 
was expected to yield a more accurate location solu-
tion by capturing the variability of multiple weather 

variables. To evaluate the validity of this hypothesis, 
single-variable semivariogram models were also 
employed in the location-allocation algorithm to 
compare against multi-variable-based solutions. This 
study utilized R statistical packages to generate sep-
arate semivariogram models for AT, RST, and DPT. 
These models were subsequently employed to deter-
mine location solutions for the state of Maine.

Recall that the location optimization process 
leverages the SSA (Spatial Simulated Annealing) 
algorithm. The primary objective was to maximize 
spatial coverage by minimizing estimation variance, 
represented by a value referred to as ‘criterion’. The 
optimization process involves selecting locations 
that minimize the ‘criterion’ value. The resultant 
solution with the lowest ‘criterion’ value indicates 
maximized monitoring coverage. To demonstrate the 
superiority of the multi-variable model compared to 
single-variable models, optimization outputs from 
both approaches were compared. 

Figure 5 illustrates the location solutions for 
eight stations (selected based on planning approach-
es) and optimization schedules for the three single 
and multi-variable cases. The optimization schedule 
displayed the ‘criterion’ value progression, indicat-
ing that the multi-variable model has a notably lower 
‘criterion’ value compared to the single-variable 
models. This suggests that the multi-variable model 
offers enhanced monitoring coverage. The parame-

Figure 4. Multi-variable semivariogram model with model parameters.

Figure 3. Crash rate (CR) distribution map for the State of 
Maine.
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ters of the multi-variable semivariogram model were 
then used as inputs in the location optimization pro-
cess.

3.4 RWIS network expansion

Using the multi-variable semivariogram model 
developed in the previous step, the study proceeds 
to assess the effects of spatial demarcation on RWIS 
planning by constructing various design scenarios. In 
previous studies, we developed an innovative RWIS 
location modeling framework where the problem 
was formulated as an integer programming problem. 
The objective was to minimize spatial inference er-
ror, in other words, maximize spatial coverage across 
the road network. These spatial inference errors capture 
the necessity of installing RWIS stations to enhance 
monitoring capabilities, ultimately improving the effec-
tiveness of winter road maintenance operations [16,18].  
In this study, we refined the previously developed 
location optimization model by incorporating the in-
fluence of multiple critical weather variables as well 
as the distribution of traffic demand.

This study focused on two specific tasks for ex-
panding the RWIS network. A detailed description of 
the specific tasks is given below.

Task 1: Selection of priority locations out of 
predetermined sites

A total of 18 potential RWIS locations in Maine 
have been identified by Maine’s regional officers. 
Our first task was to select 8 priority locations from 
this pool of predetermined sites. The intent of this 
analysis was to prioritize RWIS locations based on 
the constraint that a limited number of RWIS instal-
lations can be installed per year. Figure 6 illustrates 
the predetermined and existing RWIS stations. The 
state is divided into five maintenance zones by grey 
lines. According to Figure 6, there are two potential 
locations identified in zone-1 and zone-2, three loca-
tions in zone-3, four locations in zone-4, and seven 
locations in zone-5.

Both weather and traffic factors were considered 
to identify priority locations. The aim was to serve a 
wide range of road users while also effectively cap-
turing weather variability. The weather criteria were 
incorporated by utilizing multi-variable semivario-
gram parameters, while the traffic parameters were 
considered by incorporating CR. In the optimization 
algorithm, equal weightage was assigned to both 
weather and traffic factors. This approach aimed to 
maximize the overall benefit by considering both 
weather conditions and traffic demands. This result-

Figure 5. Comparison of single-variable and multi-variable models for network optimization.
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ed in the generation of priority locations, represented 
by green circles in Figure 7. 

Figure 7 presents the eight priority locations for 
RWIS installation, including maintenance zone, es-
timation error (EE) map, and CR distribution map. 
The priority locations are evenly distributed through-
out the network. The EE map shows varying shades 
of red, indicating estimation error values computed 

using ordinary kriging. The kriging interpolation 
technique utilizes semivariogram parameters to esti-
mate values at unsampled locations, while also pro-
viding an assessment of the uncertainty in the esti-
mation, also known as estimation error. The presence 
of an RWIS station at a particular location results in 
a lower EE value. As the distance from the station 
increases, the estimation for unknown locations be-
comes associated with higher error. This indicates 
a greater requirement to install a new RWIS station 
in those areas to bridge the spatial gap and reduce 
estimation uncertainty. In the optimization process, 
additional RWIS stations are strategically positioned 
to minimize EE values and improve network effec-
tiveness. The CR distribution map displays lower 
CR values in light-colored squares and higher CR 
values in dark-red squares. The new station locations 
strike a balance between weather variability and 
accident-prone areas, with strategic placement near 
high-traffic and hotspot locations. 

Task 2: Clean-slate optimization
At this step, the candidate locations from Task 1 

were expanded to encompass all non-interstate corri-
dors in Maine. This extended study corridor includes 
interstate, freeway, expressway, major collector, 
principal arterial, and minor arterial roads. The pur-
pose of this analysis was to objectively assess how to 
best utilize available resources by addressing gaps in 

Figure 7. Visualization of priority locations.

Figure 6. Distribution of current and predetermined locations.
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the statewide data collection and road weather fore-
casting network. A constrained optimization process 
was conducted to determine the optimal locations 
for RWIS placement, referred to as clean-slate opti-
mization. Three different scenarios were considered 
during the clean-slate optimization process.

i.	 Generate the first 8 optimal locations 
	 Here, 8 optimal locations were generated 

through clean-slate optimization to compare 
with 8 priority locations that were identified in 
Task 1. 

ii.	 Generate the second 10 optimal locations 
	 To match the 18 predetermined candidate 

sites, 18 optimal locations were generated, 
including 10 new sites and 8 initial locations. 
The aim of this step was to create a direct 
alignment between the optimal locations and 
the predetermined candidate sites, ensuring a 
clear correspondence between the two sets. 

iii.	Generate the third 6 optimal locations 
	 The RWIS network expansion plan of Maine 

DOT aims to install 8 new stations annually 
for three consecutive years. By the end of this 
expansion plan, a total of 24 stations will be 
installed. In this step, an additional 6 optimal 
stations were generated to reach a total of 24 
additional sites (8 + 10 + 6). The outcomes of 
this step will provide the RWIS planners with 
a complete set of optimal locations for extend-
ing their network. 

During the process of determining optimal loca-
tions for the three mentioned scenarios, a series of 
sensitivity analyses were carried out to assess the im-
pact of various weight distributions in kriging-based 
RWIS location optimization. This step yielded mul-
tiple location solutions depending on the weight as-
signed to weather (W) and traffic (T) factors. These 
location solutions offer flexibility to network plan-
ners and decision-makers, allowing them to choose 
installation sites based on their specific requirements. 
For each scenario, a total of 7 sets of weight distri-
butions were considered as follows: Set-1: 0%W, 
100%T; Set-2: 20%W, 80%T; Set-3: 40%W, 60%T; 
Set-4: 50%W, 50%T; Set-5: 60%W, 40%T; Set-6: 

80%W, 20%T; and Set-7: 100%W, 0%T. 
To generate each set of solutions for each scenar-

io, on average three to five trials were conducted to 
find a conclusive outcome. In total, clean-slate opti-
mizations were performed over one hundred times. 
To enhance computational efficiency, a portion of 
the optimizations in this study were executed us-
ing the advanced research computing system called 
the ‘Digital Research Alliance of Canada’ (https://
alliancecan.ca/en) from the University of Alberta. 
This system utilized GPUs from the supercomputers 
“Cedar” and “Graham”, each equipped with 12 to 32 
GB HBM2 memory. The subsequent sections present 
comprehensive explanations of various clean-slate 
optimization scenarios and their outcomes. 

Scenario i: Generate first 8 optimal locations

In order to determine the first eight optimal lo-
cations, multiple solutions were generated for seven 
sets of weight distributions, as mentioned earlier. 
For the sake of simplicity, we will focus on discuss-
ing the three most significant cases: (a) traffic only, 
(b) equal weightage for weather and traffic, and (c) 
weather only, as presented in Figure 8. For set-1, 
the selection of locations was based on the ranking 
of CR values. Figure 8(a) illustrates the distribution 
map of CR, highlighting eight square polygons with 
higher CR values. It is evident that most of these 
locations are in close proximity to the interstate and 
downtown area. Figure 8(c) displays the optimal 
locations along with the EE map (set-7). In this case, 
the objective was to fill the spatial gap in order to ef-
fectively capture weather phenomena. The resultant 
solution exhibits a uniform distribution of locations, 
effectively capturing the weather patterns. Lastly, 
for set-4, optimal locations were determined by con-
sidering dual criteria, as depicted in Figure 8(b). 
Here, the selected locations aimed to strike a balance 
between capturing weather variability and address-
ing accident-prone areas. Consequently, we observe 
some stations located in proximity to hotspot areas, 
while the overall distribution also captures weather 
variability by placing stations in areas with higher 
EE (or areas with high uncertainty).
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A comprehensive sensitivity analysis was con-
ducted to assess the sensitivity associated with the 
optimal locations generated for the seven sets of 
weight distributions. This analysis aimed to capture 
how the optimal locations are influenced by different 
weightage assigned to the weather and traffic factors. 
To conduct the sensitivity analysis, the EE and CR 
values for all seven sets of solutions were extracted 
from the EE map and CR map, respectively, using 
ArcGIS. Figure 9 displays the results of the sen-
sitivity analysis. The analysis reveals that higher 
percentages of the weather factor prioritize locations 
with higher EE values, while higher percentages of 
the traffic factor prioritize accident-prone locations 
with higher CR values. These findings validate the 
effectiveness of the optimization process and offer 

insights into the influence of factor weightage on lo-
cation selection.

Scenario ii: Generate the second 10 optimal loca-
tions

In the case of determining the second set of ten 
optimal locations, the initial eight optimal locations 
for the dual criteria were treated as existing stations, 
along with the current RWIS stations. Similar to 
scenario-i, solutions were generated for seven sets of 
weight distributions, and the three most significant 
cases are presented in Figure 10. Figure 10(a) high-
lights the top ten square polygons with higher CR 
values, while the weather-only criterion strategically 
places RWIS stations in locations with higher EE 
values to accurately capture weather phenomena. In 

Figure 8. Distribution of first 8 optimal locations for (a) traffic only criterion, (b) dual criteria, and (c) weather only criterion.

Figure 9. Sensitivity analysis result for first 8 locations: Normalized EE and CR values for 7 sets of optimal location.
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the case of the dual scenario, the location solution 
achieves a balance between capturing weather varia-
bility and addressing hotspot areas. 

Figure 11 presents the sensitivity analysis results 
for Scenario-ii, showing near identical pattern to the 
previous case, demonstrating the clear influence of 
factor weightage on optimal location selection. 

Scenario iii: Generate the third 6 optimal locations
To determine the third set of optimal locations, 

the first eight and second ten optimal locations for 
the dual criteria were considered as existing stations, 
along with the current RWIS stations. Following the 
methodology employed in previous scenarios, solu-
tions were generated for seven sets of weight distri-
butions. The findings of the three most significant 

cases are presented in Figure 12. Here, in Figure 
12(a), the top six square polygons with higher CR 
values are emphasized, and the weather-only criterion 
strategically positions RWIS stations in locations with 
higher EE values to increase interpolation accuracy. 
The location solution in the dual scenario strikes a 
balance by effectively capturing weather variability 
while also addressing accident-prone areas.

Figure 13 displays the sensitivity analysis results 
for Scenario-iii, which is the same as the two previ-
ous cases. This highlights the significant dependency 
of the optimal locations on the weightage assigned to 
the weather and traffic factors. 

Overall, the sensitivity analysis provides valuable 
insights into the impact of varying weightage on the 
selection of optimal locations. These findings under-

Figure 10. Distribution of the second 10 optimal locations for (a) traffic only criterion, (b) dual criteria, and (c) weather only criterion.

Figure 11. Sensitivity analysis result for the second 10 locations: Normalized EE and CR values for 7 sets of optimal locations.
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score the importance of carefully considering and 
adjusting the weightage assigned to different factors 
when determining optimal RWIS locations.

3.5 RWIS density, equity and performance 
analysis

After identifying the optimal locations through 
clean-slate optimization, the study embarked on 
a comparative analysis with the 8 priority and 18 
predetermined locations within Maine’s five mainte-
nance zones. Within this framework, the density of 
RWIS stations was determined based on the length 
of roads in each zone and the number of existing and 
new RWIS stations. The analysis was also aimed not 
just at validating the predetermined locations but 
also delved into an equity assessment to ensure that 

the RWIS stations are distributed fairly across the 
five distinct zones. 

The results, presented in Table 2, indicate that the 
RWIS densities for both the priority and optimal lo-
cations remain consistent across eight stations. This 
consistency provides evidence supporting the valid-
ity of the selected priority locations. When compar-
ing the 18 predetermined and 18 optimal locations, 
similar numbers of stations are observed in most 
regions, with minor differences between Zone 1 and 
5. The evaluation of standard deviation values un-
veils that the predetermined case is characterized by 
a slightly higher variability (1.29), contrasting with 
the more streamlined standard deviation found in the 
optimal case (0.979). From an equity perspective, 
this numerical difference underscores a more refined 
alignment of the RWIS stations within the optimal 

Figure 12. Distribution of the third 6 optimal locations for (a) traffic-only criterion, (b) dual criteria, and (c) weather-only criterion.

Figure 13. Sensitivity analysis result for third 6 locations: Normalized EE and CR values for 7 sets of optimal location.
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solution, reflecting a concerted effort to evenly bal-
ance the distribution across different zones.  Conse-
quently, the optimal case not only illustrates the effi-
cacy of the selected locations but also emphasizes a 
more harmonized and equitable distribution of RWIS 
stations across the maintenance zones. 

The impact of incorporating additional RWIS 

stations into Maine’s network was also evaluated by 
analyzing the ‘objective function’ values associated 
with each set of solutions during the optimization 
process. The findings, depicted in Figure 14, quanti-
fy the percentage improvement in monitoring cover-
age. The infusion of the first 8 and second 10 stations 
show substantial improvement, while the improve-

Figure 14. Enhanced network monitoring: The impact of additional RWIS stations.

Table 2. RWIS density comparison between priority and predetermined locations with optimal locations.

Maintenance zone 1 2 3 4 5

Road length (1000 km) 2.245 1.725 1.623 2.049 1.63

8 priority locations
Number of priority and existing RWIS 4 3 2 6 3

Density per 1000 km of road 1.782 1.739 1.232 2.928 1.84

First 8 optimal locations
Number of optimal and existing RWIS 4 3 2 6 3

Density per 1000 km of road 1.782 1.739 1.232 2.928 1.84

18 predetermined locations
Number of predetermined and existing RWIS 4 4 4 8 8

Density per 1000 km of road 1.782 2.319 2.465 3.904 4.908

First 8 + Second 10 
optimal locations

Number of optimal and existing RWIS 5 4 4 8 7

Density per 1000 km of road 2.227 2.319 2.465 3.904 4.294
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ment for the third set of 6 stations is relatively lower, 
indicating that the network is nearing saturation. The 
monitoring improvement for optimal locations sur-
passes that of the proposed locations. This is because 
the entire road network of Maine was utilized as a 
study corridor for the optimal case, leading to more 
favorable outcomes. While the improvement for 8 
priority locations is slightly lower than the optimal 
case, the second set of 10 locations demonstrates 
similar improvements. These findings confirm the 
effectiveness and validity of the predetermined lo-
cations proposed by Maine DOT in optimizing the 
RWIS network.

4. Conclusions and recommendations
This paper demonstrates the importance of incor-

porating the effect of multiple weather variables in 
optimizing the placement of RWIS. By refining the 
location-allocation algorithms and utilizing a mul-
ti-variable semivariogram model, we have developed 
a novel optimization framework for determining op-
timal solutions for RWIS network expansion, a val-
uable contribution to the field. The refined location 
allocation framework was applied in regional RWIS 
network planning for the state of Maine, where we 
carried out a comprehensive state-wide gap analysis 
to determine the most suitable locations. To further 
assess the selection of optimal locations, a sensitiv-
ity analysis was conducted to examine the effects of 
assigning different weightings to weather variability 
and traffic factors. 

The key contribution of this research is listed be-
low.

●	 This research has made significant strides in 
the optimization of RWIS station placement 
by introducing an innovative multi-variable 
semivariogram model that considers essential 
road weather variables. The comparative study 
between single and multi-variable semivario-
gram models demonstrates that employing the 
multi-variable approach leads to more precise 
location solutions by effectively capturing the 
variability of multiple weather variables, re-

sulting in significantly improved monitoring 
coverage compared to single-variable models.

●	 Through the application of this refined frame-
work to Maine’s existing RWIS network, we 
model prioritized strategic locations for in-
stalling RWIS stations, ensuring equitable and 
balanced distribution across various zones, 
and statewide coverage. The location solu-
tions generated are currently being adopted 
by MaineDOT for future implementations, 
demonstrating the practicality and robustness 
of our approach.

●	 A total of 24 locations were generated using 
the optimization model for the annual instal-
lation of RWIS stations, aligning with the 
requirements of Maine DOT. These generated 
locations serve as evidence of the validity 
and effectiveness of the proposed locations. 
Additionally, the sensitivity analysis allowed 
us to assess the impact of different weightings 
for weather and traffic factors on the selection 
of optimal station locations. This information 
empowers decision-makers to tailor the model 
according to specific monitoring requirements.

●	 Overall, the utilization of the multi-variable 
semivariogram model marks a crucial step 
forward in the optimization of RWIS station 
placement, providing a reliable and adaptable 
tool for decision-makers in the field of road 
weather management. As the model continues 
to be embraced and applied, it holds promise 
for contributing to safer, more efficient road 
systems in Maine and beyond.

Recommendations for further research are given 
below:

This research opens up several promising direc-
tions for future investigations, outlined below:

●	 Development of an empirical optimal density 
model: 

	 This extension aims to determine the optimal 
number of RWIS stations needed for sufficient 
monitoring coverage in Maine. Factors like 
geographical distribution, road network char-
acteristics, and desired monitoring accuracy 
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will be considered.
●	 Designing a bi-level sequential optimization 

model: 
	 Another advancement involves creating a novel 

bi-level sequential optimization model to deter-
mine both locations and types of RWIS stations 
(regular and mini-RWIS). This comprehensive 
approach will enhance the efficiency and effec-
tiveness of the RWIS network deployment.

●	 Lastly, incorporating a larger and more diverse 
sample size in this research could enhance the 
methodology’s robustness and reliability.

In conclusion, this research serves as a funda-
mental guide and critical foundation for devising a 
long-term RWIS deployment strategy in the state of 
Maine. The outcomes of this study will greatly bene-
fit winter travelers by enhancing safety, mobility, and 
environmental sustainability through an optimized 
RWIS network.
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