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ABSTRACT

Student inattention in classrooms negatively impacts learning outcomes and academic performance, posing a significant

challenge for educators. Traditional methods of monitoring engagement rely on subjective teacher observations, which can

be inconsistent, labor-intensive, and prone to bias. To address these limitations, this paper presents an AI-driven framework

that uses deep learning and behavioral analysis to detect student inattention in real time. The proposed system integrates

computer vision techniques including facial expression recognition, posture analysis, head pose estimation, and eye-gaze

analysis, employing convolutional neural networks (CNNs) to extract spatial features and recurrent neural networks (RNNs)

to model temporal patterns. The framework was evaluated using annotated classroom video data collected from real

teaching sessions, capturing natural student behavior under typical classroom conditions. Experimental results demonstrate

that the proposed approach achieves high accuracy in distinguishing attentive from inattentive states, outperforming

traditional machine learning baselines while maintaining real-time performance. Beyond detection, the system provides

actionable insights for educators by highlighting patterns of disengagement across time and students. By combining

CNN-based spatial analysis with RNN-based temporal modeling, the framework offers an objective, scalable, and practical

solution for monitoring classroom engagement, enabling timely interventions, personalized instruction, and improved

learning outcomes.

Keywords: Deep Learning; Smart Classroom; Active Learning; Intelligent Teacher Assistant

*CORRESPONDINGAUTHOR:

Jamal Raiyn, Computer Science Department, Al-Qasemi Academic College of Education, Baqa-El-Gharbia 30100, Israel; Email: raiyn@qsm.ac.il

ARTICLE INFO

Received: 1 November 2025 | Revised: 23 December 2025 | Accepted: 30 December 2025 | Published Online: 7 January 2026

DOI: https://doi.org/10.30564/jiep.v9i1.12512

CITATION

Zedan, F., Jabali, R.R., Raiyn, J., 2026. Detecting Student Inattention Using Deep Learning and Behavioral Analysis. Journal of International

Education and Practice. 9(1): 1–17. DOI: https://doi.org/10.30564/jiep.v9i1.12512

COPYRIGHT

Copyright © 2026 by the author(s). Published by Bilingual Publishing Group. This is an open access article under the Creative Commons Attribu

tion-NonCommercial 4.0 International (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/).

1

https://orcid.org/0000-0002-8609-3935


Journal of International Education and Practice | Volume 09 | Issue 01 | June 2026

1. Introduction

Student attention is a crucial factor in effective learning,

significantly influencing academic performance, knowledge

acquisition, and overall engagement [1]. However, maintain-

ing consistent attention in classroom environments remains

challenging due to a variety of internal and external distrac-

tions, as well as fluctuating levels of student motivation.

Teachers often struggle to identify inattentive students, es-

pecially in large or diverse classrooms, making it difficult

to provide timely, personalized interventions that address

learning gaps as they arise. Attention and concentration are

distinct yet interrelated cognitive processes critical for suc-

cessful learning. Concentration is a mental state in which

all cognitive resources are directed toward a specific subject,

enhancing the ability to process and retain information [2,3]. It

is an acquired skill that allows individuals to absorb content

fully and apply it meaningfully in new contexts. Attention,

meanwhile, is a cognitive process involving the encoding of

sensory and language inputs, maintaining them in working

memory, and retrieving them from long-term memory [4]. Ef-

fective concentration ensures that incoming information is

well received and integrated, supporting higher-order think-

ing and problem-solving [5]. Multiple factors affect students’

ability to sustain attention in class. Internal factors include

psychological states such as boredom or anxiety, which can

often be mitigated through engaging and varied teaching

strategies. External factors encompass the broader learn-

ing environment, including the school system, classroom

layout, family background, and instructional methods. For

example, research highlights the influence of environmental

variables like lighting, temperature, noise levels, and seating

arrangements on student behavior and focus [6]. Students

seated in the front rows typically demonstrate higher atten-

tion levels due to increased proximity to the teacher and

reduced distractions. Furthermore, classroom attendance is

a vital predictor of attention and academic success; frequent

absences disrupt learning continuity and weaken students’

ability to concentrate during lessons.

Emerging technologies have provided new avenues for

understanding and improving student attention. Studies have

demonstrated that the presence of surveillance systems, such

as security cameras, can subtly influence student behavior

by encouraging self-regulation [7,8]. Advanced techniques

including computer vision and machine learning have been

applied to analyze classroom dynamics, tracking behavioral

cues such as head movements, gaze direction, posture, and

facial expressions to infer attention states. These approaches

offer educators objective, real-time insights into student en-

gagement, helping them tailor instruction to maximize learn-

ing outcomes [9,10].

Recent advances in deep learning present significant

opportunities to automate and enhance the detection of inat-

tention in classrooms [11]. Deep learning models [12,13], partic-

ularly convolutional neural networks (CNNs) and recurrent

neural networks (RNNs), have shown remarkable success

in extracting complex spatial and temporal patterns from

visual and behavioral data [14–16]. For example, gaze estima-

tion techniques based on CNNs can accurately predict where

a student is looking, while head pose analysis can indicate

distraction or disengagement. Some studies have proposed

architectures incorporating data fusion approaches, combin-

ing multiple gaze datasets and augmentations to improve

model robustness and generalization [17].

This paper proposes a deep learning–based approach

that utilizes behavioral analysis to detect student inatten-

tion and improve the learning experience. The framework

integrates computer vision techniques, including facial ex-

pression recognition, posture analysis, and eye-tracking to

identify behavioral indicators of inattention in real time. Our

system employs CNNs to capture spatial features of student

behavior and RNNs to model temporal dynamics, enabling

accurate classification of attentive versus inattentive states.

By providing automated, objective, and scalable detection of

student inattention, our approach aims to support educators

in delivering timely interventions, fostering more engaging

and effective learning environments.

This paper is organized as follows: Section 2 provides

an overview of deep learning technology and its applications

in education. Section 3 describes the methodology, and Sec-

tion 4 introduces learning behavior in the smart classroom.

Sections 5–7 discuss the results, conclude the discussion,

and point out directions for future research.

2. Related Research

Research on student attention and distraction in class-

rooms has received increasing focus in recent years, reflect-
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ing its critical role in learning outcomes [18]. Numerous stud-

ies have examined behavioral patterns that signal distraction,

particularly among elementary and secondary school stu-

dents. Demographic factors such as age, gender, and peer

interactions have been found to significantly influence dis-

traction levels, with evidence suggesting that older students

often display greater engagement in social activities like

talking, which can detract from instructional focus.

Visual attention research emphasizes the role of eye

gaze, head movements, and cognitive load in evaluating stu-

dent focus and situational awareness. Tracking these cues

enables the detection of attentional lapses and provides in-

sights into how students process instructional content. For

example, head rotation, downward gaze, or eye closure can

indicate disengagement, drowsiness, or confusion [19].

Traditional approaches to assessing student

engagement—including surveys, teacher logs, and direct

observation—often suffer from subjectivity, limited tempo-

ral resolution, and the inability to scale in real time. These

methods typically provide delayed or episodic snapshots of

student behavior that may fail to capture subtle, dynamic

shifts in attention. As a result, recent work has turned into

automated, objective monitoring systems [17] that leverage

machine learning and deep learning to evaluate student focus

more continuously and accurately.

Advanced monitoring systems have integrated facial

expression analysis, eye-tracking, and head pose estimation

to assess attentional states [20,21]. Machine learning meth-

ods have been developed to recognize signs of drowsiness,

distraction, or confusion by analyzing facial landmarks and

behavioral cues. Deep learning has enabled more robust and

precise analysis thanks to its capacity to model complex, non-

linear patterns in high-dimensional data. Wu [22] proposed a

deep learning method using an improved YOLOv3 to detect

students’ abnormal behaviors in smart classrooms, achieving

over 90% accuracy with low false reports and minimal delay.

More recently, newerYOLO versions such asYOLOv4,

YOLOv5, YOLOv7, and YOLOv8 have been increasingly

adopted for gaze-related tasks, including face detection, eye-

region localization, and head pose estimation, due to their im-

proved feature representation, lightweight architecture, and

suitability for real-time deployment. YOLOv-based mod-

els are often employed as the first stage in gaze estimation

pipelines, enabling reliable face and eye detection under vary-

ing lighting conditions, occlusions, and camera viewpoints.

These characteristics make YOLOv particularly suitable for

classroom environments, where multiple students must be

tracked simultaneously.

Several studies combine CNN-based gaze estimation

with temporal modeling. Recent studies have introduced

deep learning models, especially Convolutional Neural Net-

works (CNNs) and Long Short-Term Memory (LSTM) net-

works for real-time attention evaluation [9]. These models

have demonstrated strong performance in recognizing be-

havioral patterns such as gaze direction, facial expressions

of confusion, and inattentive postures. However, challenges

remain regarding generalizability and consistency across di-

verse classroom environments, where variations in lighting,

student demographics, and camera angles can degrade model

performance. Their system follows three main steps: face

detection, yaw and pitch estimation, and gaze zone determi-

nation. For yaw estimation, it identifies the left and right

facial borders and the face center using the ellipsoidal model.

For pitch estimation, it extracts novel histogram-based fea-

tures and applies Support Vector Regression (SVR).

Kanade et al. [23] proposed incorporating head posture

into gaze estimation models, recognizing that users’ heads

move freely in real-world scenarios. Their system uses Euler

angles (pitch, yaw, roll) to determine head orientation and

relies on commercial head trackers to detect facial landmarks,

particularly around the eyes. Tomaintain tracking robustness,

the system minimizes dependency on head sensors by using

historical pupil center coordinates from prior frames. They

designed a hierarchy of small, efficient CNNs to precisely

locate eye regions even when local tracking fails.

Yoo et al. [24] introduced a gaze behavior–based data

processing method for visualizing abstract gaze data. Their

approach categorizes raw gaze information using machine

learning models originally designed for image classification,

including CNNs like AlexNet and LeNet. They evaluated

multiple fixation identification techniques—velocity-based

(I-VT), dispersion-based (I-DT), density-based, and com-

bined velocity-dispersion (I-VDT)—and assessed their out-

puts across visualization formats such as attention maps,

scan paths, and abstract gaze movement representations.

Their pipeline uses facial landmarks and face mesh detec-

tors to identify regions of interest, extracting features such

as eye aspect ratio, mouth aspect ratio, and head pose. These
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features are fed into classifiers like Random Forests, Sequen-

tial Neural Networks, and Linear SVMs for engagement

prediction.

Vijaypriya and Uma [20] advanced appearance-based

gaze estimation using CNNs to predict gaze angles from

eye images and landmark coordinates. They emphasized im-

proving learning outcomes by training on synthetic datasets

with highly accurate annotations. These architectures were

adapted by replacing their final layers with fully connected

regression layers outputting yaw and pitch angles, optimized

with mean squared error loss. Integration of head-pose in-

formation at the feature level improved prediction accuracy,

enabling reliable gaze estimation even under varying condi-

tions.

Finally, Kar (MLGaze) [25] explored the effectiveness

of machine learning in detecting and predicting gaze er-

ror patterns in consumer eye-tracking systems. Their work

aimed to improve the accuracy and reliability of gaze esti-

mation under real-world conditions by modeling systematic

error patterns. They transformed raw gaze coordinates into

frontal gaze angles (yaw, pitch) using ground truth datasets,

which included precise screen locations. By feeding these

gaze angles into predictive models, they provided insights

into how user behavior and hardware limitations influence

tracking accuracy.

Collectively, these studies underscore the growing ma-

turity of gaze estimation and behavioral analysis techniques,

which can be adapted to classroom settings for monitoring

student attention. By leveraging CNNs, RNNs, and hybrid

data fusion approaches, researchers aim to deliver real-time,

scalable solutions for identifying inattention and supporting

educators in creating more responsive, effective learning

environments.

3. Methodology

Our proposed approach employs deep learning tech-

niques to capture, analyze, and classify student behaviors

indicative of attention and inattention in real-time classroom

environments. The system is designed to process live video

data, extract relevant behavioral features, and predict atten-

tional states, thereby supporting educators in identifying

disengaged students for timely interventions. The key com-

ponents of our methodology are detailed below [26].

3.1. Data Collection

The system relies on live video feeds captured from

strategically placed cameras in the classroom. These cameras

are positioned to provide a clear view of students’ faces and

upper body postures while minimizing occlusions. Video

data is continuously recorded during lessons to ensure com-

prehensive coverage of behavioral variations over time. The

primary objective of data collection is to obtain rich, tempo-

rally dense visual information that reflects natural student

behaviors, including eye movements, facial expressions, and

body posture.

3.2. Preprocessing

To improve the quality and consistency of the collected

video data, we implement a preprocessing pipeline with the

following steps:

• Noise Reduction: Frames are filtered to remove back-

ground noise and visual artifacts that may hinder feature

extraction.

• Normalization: Image data is normalized to ensure con-

sistent lighting, contrast, and color balance across dif-

ferent recording sessions and classroom environments.

• Data Augmentation: Augmentation techniques such as

random cropping, rotation, flipping, and brightness ad-

justments are applied to increase the variability of the

training dataset and improve the model’s generalizabil-

ity to unseen classroom settings.

This preprocessing stage ensures that the model is ro-

bust to variations in environmental conditions, camera angles,

and student demographics.

3.3. Feature Extraction

AConvolutional Neural Network (CNN) architecture

is employed to extract high-level visual features from prepro-

cessed video frames. The CNNmodel is trained to detect and

classify specific behavioral cues that are indicative of student

attention or inattention. Key features extracted include:

• Eye Movements: Direction of gaze to determine

whether the student is focused on instructional mate-

rials or looking away.

• Facial Expressions: Indicators such as yawning, smil-

ing, or frowning, which provide cues about engagement,
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fatigue, or emotional state.

• Body Posture: Signs of slouching or leaning, which

may suggest disengagement or drowsiness.

3.4. Facial Landmarks and Mesh Detection

To enhance the precision of feature extraction, the sys-

tem uses facial landmarks and face mesh detectors to identify

regions of interest on each student’s face. These detectors

locate and track key facial points across frames, enabling the

extraction of fine-grained features such as:

• Mouth Aspect Ratio (MAR): Used to detect yawning or

speaking behavior, which can signal fatigue or partici-

pation.

• Eye Aspect Ratio (EAR): Used to assess eye openness

and detect signs of drowsiness or prolonged closure.

• Head Pose Estimation: Head orientation is analyzed

through yaw and pitch angles, providing information

about where the student is looking and whether they are

oriented toward the teacher or elsewhere.

3.5. Head Orientation Analysis

Among the extracted parameters, head orientation—

specifically yaw (left-right rotation) and pitch (up-down

tilt)—plays a critical role in evaluating attention levels as

illustrated in Table 1. For example:

• YawAngle: High deviation from the front-facing direc-

tion indicates the student is looking away from instruc-

tional materials.

• PitchAngle: Downward tilt may suggest disengagement

or note-taking, requiring further contextual analysis to

distinguish between them.

Table 1. Features usage metrics.

Parameters Key Facial Features

Head orientation

Drowsiness

Yawns

These orientation parameters are continuously tracked

and fed into the classification model to assess attention lev-

els in real time. The gaze zone definitions categorize driver

visual attention based on head orientation, where the For-

ward zone (heading −10° to 10°, pitch −7° to 6°) represents

looking straight ahead at the road, the Left zone (heading

−90° to −15°, pitch −7° to 7°) and Right zone (heading 15°

to 90°, pitch −7° to 7°) indicate attention directed toward the

left or right sides of the environment, respectively, and the

Rear zone (heading 17° to 39°, pitch 5° to 20°) corresponds

to glances toward the interior rear-view mirror, capturing

backward monitoring behavior as described in Table 2.

Table 2. Interpretation of observations.

Zone Heading (°) Pitch (°) Meaning

Forward −10 to 10 −7 to 6 Straight ahead

Left −90 to −15 −7 to 7 Looking left

Right 15 to 90 −7 to 7 Looking right

Rear 17 to 39 5 to 20 Interior rear-view mirror

3.6. Classification and Attention Prediction

The extracted features are processed by a classifica-

tion module that predicts the attentional state of each student

for every frame or time window. The model is trained on

labeled examples of attentive and inattentive behavior to

distinguish subtle variations in gaze, facial expressions, and

posture. Output predictions can be aggregated over time

to generate attention profiles for individual students or the

entire classroom.

3.7. System Output and Educator Interface

The final component of the system is an educator-

facing interface that visualizes attention metrics in real time.

Teachers can view summary statistics, time series plots, and

heatmaps indicating levels of attention across the classroom.

This feedback enables teachers to adapt their instructional
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strategies, re-engage distracted students, and evaluate the

effectiveness of teaching interventions.

3.8. Concept

The proposed system evaluates student attention levels

in real time by analyzing three key behavioral cues: eye

gaze, head rotation, and yawning. The diagram illustrates

how these cues are processed through a series of decision

steps to classify students as attentive or inattentive.

• Eye Gaze Analysis

The system detects whether the student’s eyes are closed

or diverted away from instructional materials. If eye

closure is detected, the glance duration is measured to

determine whether the student is blinking normally or

exhibiting prolonged eye closure indicative of drowsi-

ness or inattention.

• Head Rotation Monitoring

The system analyzes head pose using rotation param-

eters (yaw and pitch) to track how often students turn

their heads away from the teacher or screen. Frequent

or prolonged deviations may indicate distraction, disen-

gagement, or conversation with peers.

• Yawning Detection

The system detects mouth gaping by measuring the

mouth aspect ratio (MAR). If a yawn is detected, the

yawn duration is computed to distinguish between brief,

normal mouth movements and longer yawns that signal

fatigue or boredom.

Each of these behavioral indicators feeds into a decision

module that evaluates:

• Glance Duration: to capture sustained eye closure or

averted gaze.

• How Often: to quantify the frequency of head pose

deviations.

• Yawns Duration: to assess the severity and impact of

yawning events.

The combined analysis of these metrics enables the

system to classify student behavior as attentive or inatten-

tive. The integration of eye gaze, head rotation, and yawning

ensures a multi-modal approach that improves detection accu-

racy by accounting for different manifestations of inattention.

Figure 1 illustrates the system's conceptual model for

detecting student inattention by analyzing three main cues:

eye gaze, head rotation, and yawning.

Figure 1. Inattentive measurements.
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• Eye Gaze: If the student’s eyes are closed, the system

measures glance duration to identify potential drowsi-

ness.

• Head Rotation: Head pose is tracked to determine how

often the student looks away from instructional materi-

als.

• Yawns: Mouth gaping is detected to measure yawn du-

ration, indicating fatigue or boredom.

These metrics are combined to classify students as at-

tentive or inattentive, supporting real-time monitoring and

intervention.

We propose appearance-based gaze estimation ap-

proaches using convolutional neural networks (CNNs) to

estimate gaze angles directly from eye images and from eye

landmark coordinates. The goal is to improve learning by

utilizing synthetic data with more accurate annotations.

3.9. Model Architecture

In this study, a deep learning model is developed to

predict potential student behavior. The model is trained

on a comprehensive dataset. The system integrates predic-

tive behavioral modeling to anticipate student actions us-

ing machine learning techniques. The dataset is carefully

preprocessed, with features normalized and augmented to

ensure diversity in training. The model is trained using mean

squared error (MSE) as the loss function and the Adam opti-

mizer, with performance evaluated on training and validation

sets based on its ability to predict collisions and recommend

appropriate maneuvers. A typical Convolutional Neural Net-

work (CNN) consists of three primary types of layers: con-

volutional, pooling, and fully connected layers.

• Input Data

The input to a CNN can be in 1D, 2D, or 3D formats,

originating from various sources such as sensors, audio

signals, videos, or 3D images.

• Convolutional Layers

A convolutional layer is a fundamental component of

the CNN architecture, as illustrated in Figure 2. The

weights define a convolutional kernel, which is applied

to the original input. This procedure repeatedly applies

multiple kernels to form an arbitrary number of feature

maps, which represent different characteristics of the

input tensors; different kernels can, thus, be considered

different feature extractors. These layers are tasked with

feature extraction. They achieve this by applying con-

volution operations to the input data. Convolutions use

multiple filters defined by parameters such as kernel

size, padding, and stride, producing feature maps. Acti-

vation functions like ReLU are then applied to enhance

the feature extraction process. The output is passed to

the subsequent layer for further processing. The con-

volutional kernels always have the same width as the

time series, while their length can vary. This way, when

performing a convolution, the kernel moves in one direc-

tion from the beginning of a time series towards its end.

The elements of the kernel are multiplied by the corre-

sponding elements of the time series that they cover at

a given point.

Figure 2. Model Architecture.
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• Pooling Layers

Typically, following a convolutional layer, pooling lay-

ers condense the information from feature maps. For ex-

ample, in image processing, they significantly reduce the

input size, thereby decreasing computational demands and

accelerating training. This also strengthens feature detection.

Common pooling techniques include max pooling and aver-

age pooling. This operation is typically applied only once

before the fully connected layer is engaged.

• Fully Connected Layers

The fully connected layer functions as a traditional

backpropagation neural network and is used in the final

stages of the neural network. It processes the features ex-

tracted by earlier layers to generate the final network output,

which could be a prediction task, such as forecasting a value,

or a classification task, like categorizing images into distinct

classes. The output feature maps of the final convolutional

or pooling layers are typically flattened. The final fully con-

nected layer typically has the same number of output nodes

as the number of classes.

• Last layer activation function

The activation function applied to the last fully con-

nected layer is usually different from the others. An appro-

priate activation function must be selected according to each

task. An activation function applied to the multiclass classi-

fication task is a softmax function, which normalizes output

real values from the last fully connected layer to target class

probabilities, where each value ranges between 0 and 1 and

all values sum to 1.

3.10. Mathematical Description

The lengths of input and output time intervals can be

expressed as F and P, respectively. The model input can be

written as:

xi = [mi,mi+1, ...,mi+P−1], i ∈ [1, N −P −F +1] (1)

Where i is the sample index, N is the length of the time inter-

vals, andmi is a column vector representing the GazeHeading

data.

The CNN is applied to detect an inattentive student,

which is called anomalies in the classroom. In this case, only

the negative values are considered, and at the same time,

present the Gaze data that are smaller than the threshold.

The extraction of features involves a combination of the

convolutional and pooling layers, as illustrated in Figure 3.

Figure 3. Fully connected.

The output of the first convolution and pooling layers

can be written as:

oj1 = pool(σ(W j
1x

j
1 + bj1)), j ∈ [1, c1] (2)

and the output of the last convolutional and pooling layers

can be written as

ojn = pool(σ(W j
nx

j
n + bjn)), j ∈ [1, cn]

Where σ is the activation function. In the prediction, the

features learned and outputted by gaze feature extraction are

concatenated into a dense vector that contains the final and
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the highest-level features of the transportation network input.

The dense vector can be written as

oflattenL = flatten([o1L, o
2
L, ..., o

j
L]), j = cL (3)

where L is the depth of the CNN. Finally, the vector is trans-

formed into output through a fully connected layer. The

output can be written as:

ỹ = Wfo
flatten
L + b (4)

= Wf (flaten(pool(σ(
∑cL−1

k=1 (W j
Lx

k
L + bjL)))))

+bf
(5)

where Wf and bf are the parameters of the fully connected

layer, and ỹ represents the predicted network-wide data

anomalies. The CNN uses convolutional filters on its input

layer and obtains local connections only where local input

neurons are connected to an output neuron (in the convolu-

tional layer). Hundreds of filters are sometimes applied to the

input, and the results are merged in each layer. One filter can

extract one Gaze feature from the input layer; therefore, hun-

dreds of filters can extract hundreds of features, as illustrated

in Figure 3. The fully connected layer expresses the negative

values that represent the anomalies in each road section.

The classification report indicates strong overall per-

formance with an accuracy of 96% across 6928 samples,

as described in Table 3. Class 0 shows very high recall

(1.00), meaning all true class 0 instances were correctly iden-

tified, though its slightly lower precision (0.91) suggests

some class 1 samples were incorrectly predicted as class 0.

Class 1 achieves perfect precision (1.00), so all predictions of

class 1 are correct, but a slightly lower recall (0.93) indicates

a small portion of true class 1 instances were missed. The

F1-scores (0.95 for class 0 and 0.97 for class 1) confirm a

strong balance between precision and recall for both classes.

The macro and weighted averages are closely aligned, sug-

gesting that performance is consistent across classes despite

the moderate class imbalance, and the model generalizes

well without being overly biased toward the larger class. The

CNN model is moderately sized (≈250k parameters, ~979

KB) with almost all parameters trainable, indicating suffi-

cient capacity to learn non-linear patterns in the data without

being excessively large. The confusion matrix shows excel-

lent discriminatory performance, with a very high number

of true positives (3913) and true negatives (2739), and no

false positives, implying perfect precision for the positive

class. This suggests that when the model predicts a positive

gaze state, it is always correct. The presence of 276 false

negatives, however, indicates a tendency to miss some posi-

tive cases, reflecting a conservative prediction behavior that

favors avoiding false alarms at the expense of recall. Over-

all, the model is highly reliable but slightly under-sensitive,

making it suitable for applications where false positives are

costly (e.g., incorrect attention alerts), though recall could

be improved via threshold tuning or cost-sensitive training

if detecting all positive events is critical.

Table 3. Performance analysis.

Metrics
Precision Recall F1-Score Support

Class

0 0.91 1.00 0.95 2739

1 1.00 0.93 0.97 4189

Accuracy 0.96 6928

Weighted avg 0.96 0.96 6928

True Positives (TP) 3913

True Negatives (TN) 2739

False Positives (FP) 0

False Negatives (FN) 276

4. Learning Behavior in the Class-

room

In this research, we used artificial intelligence (AI)

technologies to detect and analyze student behavior in the

classroom with the goal of measuring three key categories:

motivation, competition, and challenges. The AI system

processed video data to identify specific behavioral cues as-

sociated with each category, enabling a detailed, objective

assessment of student engagement and learning dynamics.

• Motivation

To measure motivation, AI tools were trained to rec-

ognize positive emotional and attentional indicators during

lessons, as illustrated in Figure 4.
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Figure 4. Motivation category.

Specific behaviors used as markers of motivation in-

cluded:

◦ Smiling, suggesting enjoyment and a positive attitude

toward the lesson content.

◦ Attentive gaze or intention (focused eye contact with

the teacher or learning materials), indicating sustained

interest and cognitive engagement.

By detecting these features automatically, the AI sys-

tem provided a way to quantify levels of student motiva-

tion across the classroom in real time, complementing self-

reported measures from questionnaires.

• Competition

For the category of competition [2], the AI system fo-

cused on behaviors that suggest active participation and ri-

valry among students. Key indicators included:

◦ Hand-raising frequency, used to signal eagerness to an-

swer questions or contribute before peers.

◦ Interruptions or overlaps in speech (when available in

audio), hinting at competitive dynamics during discus-

sions.

These measures allowed us to assess the degree of com-

petition present in the classroom, offering insights into both

student enthusiasm and potential social tensions arising from

competitive interactions.

• Challenges

To identify the challenges students faced during lessons,

as illustrated in Figure 5, the AI system was designed to de-

tect signs of disengagement, confusion, or negative emotions.

Relevant behavioral cues included:

◦ Inattentiveness, such as looking away from the teacher

or materials for prolonged periods.

◦ Head rotation to the right or left, indicating distraction or

seeking help from peers instead of following the teacher.

◦ Eye droopiness or drowsiness, signaling loss of focus

or fatigue.

◦ Facial expressions of sadness or worry, reflecting emo-

tional distress or difficulty with the lesson content, as

illustrated in Figure 5.

By monitoring these behaviors automatically, the AI

system offered continuous, objective data on which students

might be struggling, and which moments of the lesson pre-

sented the greatest challenges. Through the automated de-

tection of these targeted behaviors, our AI-assisted approach

enabled precise measurement of motivation, competition,

and challenges in the classroom. This data-driven method

supports teachers and researchers in understanding student

needs, tailoring instruction, and improving the overall learn-

ing environment.
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Figure 5. Abnormal behavior detection.

4.1. Student Behavior Detection

In a previous study, we have used the traditional way

based on a questionnaire. We distributed a structured ques-

tionnaire designed to capture students’ perceptions and ex-

periences related to these categories. This dual approach,

behavioral detection and self-report, provided a richer, more

reliable understanding of student engagement and learning

obstacles. One of the focuses of our study was to assess

student motivation during lessons. We approached this in

two ways:

4.1.1. AI-Based Behavioral Detection

• Motivation

AI tools were trained to recognize positive emotional

and attentional indicators that signal motivation, including:

◦ Smiling, suggesting enjoyment and a positive

attitude toward lesson content.

◦ Attentive gaze or intention (sustained eye con-

tact with the teacher or learning materials), indi-

cating interest and cognitive engagement.

◦ Frequency of hand-raising and verbal partici-

pation, reflecting willingness to contribute and

active involvement.

By automatically detecting these features in classroom

video and audio, the AI system quantified motivation levels

in real time.

• Competition

Competition among students was examined as another

important category.

AI-Based Behavioral Detection:

The AI system focused on identifying signs of active

participation and rivalry, such as:

◦ Hand-raising frequency, indicating eagerness to

answer questions before peers.

◦ Interruptions or overlaps in speech (when audio

was available), hinting at competitive dynamics.

◦ Nonverbal cues suggesting tension or eagerness

to “win” in group activities.

Questionnaire-Based Assessment:

Students were asked about:

◦ Their feelings of rivalry with classmates.

◦ Willingness to outperform peers.

◦ Perceived pressure to compete in classroom ac-

tivities.

The integration of these data sources allowed us to ex-

plore how competition influenced participation, classroom

atmosphere, and social dynamics among students.

• Challenges

Finally, the study aimed to identify the challenges stu-

dents faced during lessons.

AI-Based Behavioral Detection:

The AI system was designed to recognize signs of dis-
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engagement, confusion, or emotional distress, including:

◦ Inattentiveness, such as looking away from the

teacher or materials for prolonged periods.

◦ Head rotation to the right or left, suggesting dis-

traction or seeking help from peers instead of

focusing on instruction.

◦ Eye droopiness or drowsiness, indicating fatigue

or loss of focus.

◦ Facial expressions of sadness or worry, reflect-

ing emotional discomfort or difficulty with the

lesson content.

4.1.2. Questionnaire-Based Assessment

The questionnaire asked students about:

• Difficulties understanding lesson material.

• Challenges maintaining focus.

• Issues interacting with peers or the teacher.

The statements in the questionnaire were divided into

three categories: motivation, competition, and challenge.

The questions were closed questions to be answered on a

five-point Likert scale ranging from “strongly disagree” to

“Strongly agree”. Table 4 presents some items from different

categories.

Table 4. Questionnaire categories.

Motivation Category

• I feel more excited when they asked me to write a difficult program.

• When I write difficult computer programs, I do not feel fun and entertained.

Competition Category

• I am willing to try hard to be the best in programming among my colleagues.

• I try hard to write programs and solve difficult issues before the rest of my colleagues.

Challenge Category

• I like to write computer programs that are challenging and need deep thinking

• If I am required to write a difficult computer program, I feel challenged and keep working on it until I finish it.

Through the combined use of AI-assisted behavioral

analysis and targeted questionnaires, this research enabled a

thorough investigation into student motivation, competition,

and challenges within the classroom. The dual approach

provided richer, more reliable insights that can inform in-

structional design, support strategies, and classroom man-

agement, ultimately helping teachers tailor their methods to

better meet student needs and improve learning outcomes.

5. Results Analysis and Discussion

The proposed deep learning-based inattention detection

framework was evaluated using a dataset of recorded class-

room video sessions containing annotated attention labels.

The system was tested for its ability to recognize inattentive

behaviors, including prolonged eye closure, frequent head

turning, and yawning, using the described CNN-based fea-

ture extraction and behavioral classification pipeline. The

analysis results are based on eye gaze detection. Figure

6 illustrates a gaze heading degree measures the horizon-

tal angle of a student's head orientation relative to facing

forward (0°), which signals direct, on-task attention. The

range of −100 to 75 degrees captures deviations left (nega-

tive) and right (positive), where small angles near 0° (−10

to +10) indicate focused attention, while larger deviations

(beyond ±30–40°) suggest distraction or peer interaction.

Extreme values (e.g., −80 or +75) often reflect significant

disengagement. By analyzing the frequency and duration of

these off-center headings, the model classifies attentive vs.

inattentive states, enabling real-time monitoring to support

improved classroom engagement.

Figure 7 illustrates gaze pitch degree measures the ver-

tical angle of a student’s head or eye orientation relative to

looking straight ahead (0°), which indicates typical atten-

tive posture. Negative values (−30 to 0) reflect downward

gaze, with mild angles (e.g., −10°) suggesting reading or

writing, while steeper angles (e.g., −25° or −30°) may in-

dicate sleepiness or disengagement. Positive values (0 to

+30) capture upward gaze, where small angles can mean

thinking or observing a higher display, but larger angles may

suggest daydreaming. Pitch values near 0° indicate focused

behavior, while extreme angles signal potential inattention.

Tracking these patterns helps the system classify attentive

vs. inattentive states for real-time classroom monitoring.
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Figure 6. Distribution of Gaze Heading.

Figure 7. Distribution of Gaze Pitch.

Figure 8 illustrates student gaze direction was divided

into Forward (−10° to +10°), Left (angles <−10°), and Right

(angles >+10°) zones to assess attentiveness. The system

calculates the percentage of time each student spends in

these zones, with high Forward Zone proportions indicating

strong focus on the teacher or materials. Elevated time in

Left or Right Zones suggests possible distractions, like peer

conversations or looking away. For example, 80% forward

gaze implies high attentiveness, while distributions like 50%

forward, 30% left, 20% right may indicate the need for in-

tervention. This approach provides objective, continuous

metrics to help teachers identify distracted students and adapt

strategies to improve classroom engagement.

Figure 9 illustrates A histogram of eyelid opening val-

ues illustrates how frequently different levels of eyelid open-

ness occur, grouping them into bins (e.g., 0.0–0.1, 0.1–0.2,

etc.). This distribution helps assess whether students tend to

have eyelids mostly open (values near 1, suggesting alert-
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ness), mostly closed (values near 0, indicating drowsiness),

or if openness is evenly spread across states. For thresh-

old analysis, eyelid opening is categorized into three states:

Closed (0 to 0.1), Slightly Open (0.1 to 0.5), and Mostly

Open (0.5 to 1.0). The system counts the number of samples

in each category, enabling objective monitoring of alertness

levels. Frequent occurrences of closed or slightly open states

can signal fatigue or inattention, while a predominance of

mostly open values suggests sustained attentiveness in the

classroom.

Figure 8. Proportion of Attention to different zones.

Figure 9. Distribution of eyelid opening.
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6. Discussion

The experimental evaluationwas conducted using anno-

tated video data collected from real classroom environments

during regular teaching sessions, capturing students seated in

typical classroom layouts under natural instructional condi-

tions. Cameras were positioned to record frontal and upper-

body views while minimizing occlusion, and the recordings

reflect realistic variations in student behavior, lighting condi-

tions, seating arrangements, and interaction dynamics rather

than controlled laboratory settings. Students were observed

during standard instructional activities such as lectures and

guided discussions, allowing attentional behaviors, including

gaze shifts, head movements, posture changes, eye closure,

and yawning to occur organically. Attentive and inattentive

states were annotated based on observable behavioral cues

(e.g., prolonged gaze diversion, repeated head rotation, sus-

tained eye closure, and yawning duration), providing ground

truth labels for supervised learning. This real-world class-

room context supports the ecological validity of the proposed

framework and demonstrates its applicability to dynamic, di-

verse smart classroom environments where student attention

is influenced by instructional and environmental factors.

Within this context, the study makes several important

contributions to the field of smart classrooms and educational

technology. First, it introduces a multi-modal, deep learning–

based framework for real-time detection of student inattention

that integrates eye gaze, head rotation, facial expressions, and

posture analysis. By combining CNN-based spatial feature

extraction with RNN-based temporal modeling, the system

captures both instantaneous behavioral cues and their tempo-

ral evolution, enabling more reliable attention classification

than frame-based or single-cue approaches. Second, the pro-

posed method moves beyond subjective and episodic engage-

ment assessment by providing an objective, continuous, and

scalable monitoring solution, addressing key limitations of

traditional teacher observations and survey-based methods,

particularly in large or heterogeneous classrooms. Third, the

system is designed with practical deployment in mind, em-

phasizing real-time performance, robustness to environmen-

tal variability, and interpretability of outputs. The educator-

facing interface translates model predictions into actionable

insights, supporting timely instructional adaptation and tar-

geted intervention. More broadly, this work contributes to

the growing body of research applying computer vision and

deep learning in education by demonstrating how behavioral

analysis techniques originally developed for domains such as

driver monitoring and human–computer interaction can be

effectively adapted to learning environments.

Despite these strengths, several limitations should be

acknowledged. The framework relies primarily on visual

cues, which may not fully capture cognitive engagement;

for instance, students taking notes or reading materials may

be misclassified as inattentive without additional contextual

information. Variations in classroom layout, camera place-

ment, lighting conditions, and student demographics may

also affect generalizability, and although data augmentation

and normalization were applied, performance may degrade

under extreme occlusions or non-frontal viewpoints. Further-

more, annotating attention remains inherently challenging,

as attention is a latent cognitive process inferred from ob-

servable behavior; while indicators such as gaze diversion

and yawning are informative, they cannot perfectly represent

mental engagement. Ethical and privacy considerations re-

lated to continuous video-based monitoring were beyond the

primary scope of this study and must be carefully addressed

prior to large-scale deployment.

Future research can extend this work in several direc-

tions. Incorporating additional multi-modal data sources,

such as audio signals, interaction logs, physiological mea-

surements, or learning performance indicators, could improve

robustness and help distinguish productive from unproductive

behaviors. Adaptive and personalized models that account

for individual differences in attention patterns and learning

styles may further reduce false positives and enhance usabil-

ity. Longitudinal studies are also needed to evaluate how

real-time attention feedback influences teaching strategies,

student behavior, and learning outcomes over extended peri-

ods. Finally, future systems should adopt ethical-by-design

principles, including privacy-preserving techniques, explain-

able AI mechanisms, and transparent consent frameworks, to

ensure responsible and trustworthy deployment of AI-driven

attention monitoring in educational settings.

7. Conclusions

This paper introduced a deep learning-based framework

for detecting student inattention by analyzing behavioral cues

such as eye gaze direction, head rotation, and yawning. By
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combining convolutional neural networks (CNNs) for fea-

ture extraction with recurrent neural networks (RNNs) for

temporal analysis, the system delivers real-time, objective

assessments of student engagement. The results demonstrate

the potential ofAI to complement traditional teacher observa-

tions, offering continuous monitoring that can help identify

distracted students early and support targeted interventions

to improve learning outcomes. Our findings show that gaze

heading and pitch analysis, along with features like eyelid

closure and yawning frequency, can effectively distinguish

attentive from inattentive states. The use of unsupervised

clustering (e.g., KMeans) further highlights interpretable pat-

terns in student gaze behavior, providing actionable insights

for educators.

For future work, the model should be refined by in-

corporating richer, multi-modal data sources such as speech

analysis, physiological signals (e.g., heart rate or galvanic

skin response), and environmental factors (e.g., classroom

layout). Expanding the dataset to include diverse classrooms,

age groups, and cultural contexts will improve generalizabil-

ity and robustness. Additionally, research should focus on

optimizing the system for real-time deployment in live class-

rooms, ensuring low latency and user-friendly interfaces for

teachers.

Critically, any deployment must address ethical con-

siderations, including data privacy, student consent, trans-

parency in monitoring practices, and strategies to avoid bias

or unfair targeting. By advancing these technical and ethical

dimensions, AI-powered inattention detection can become a

practical, responsible tool for enhancing student engagement

and learning in real-world educational settings.
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