Journal of International Education and Practice | Volume 09 | Issue 01 | June 2026

D BILINGUAL Journal of International Education and Practice
PUBUISHING

—, GROUP https://journals.bilpubgroup.com/index.php/jiep

ARTICLE

Detecting Student Inattention Using Deep Learning and Behavioral
Analysis
Fatima Zedan, Rana R. Jabali, Jamal Raiyn *

Computer Science Department, Al-Qasemi Academic College of Education, Baqa-EIl-Gharbia 30100, Israel

ABSTRACT

Student inattention in classrooms negatively impacts learning outcomes and academic performance, posing a significant
challenge for educators. Traditional methods of monitoring engagement rely on subjective teacher observations, which can
be inconsistent, labor-intensive, and prone to bias. To address these limitations, this paper presents an Al-driven framework
that uses deep learning and behavioral analysis to detect student inattention in real time. The proposed system integrates
computer vision techniques including facial expression recognition, posture analysis, head pose estimation, and eye-gaze
analysis, employing convolutional neural networks (CNNs) to extract spatial features and recurrent neural networks (RNNs)
to model temporal patterns. The framework was evaluated using annotated classroom video data collected from real
teaching sessions, capturing natural student behavior under typical classroom conditions. Experimental results demonstrate
that the proposed approach achieves high accuracy in distinguishing attentive from inattentive states, outperforming
traditional machine learning baselines while maintaining real-time performance. Beyond detection, the system provides
actionable insights for educators by highlighting patterns of disengagement across time and students. By combining
CNN-based spatial analysis with RNN-based temporal modeling, the framework offers an objective, scalable, and practical
solution for monitoring classroom engagement, enabling timely interventions, personalized instruction, and improved
learning outcomes.
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1. Introduction

Student attention is a crucial factor in effective learning,
significantly influencing academic performance, knowledge
acquisition, and overall engagement!!. However, maintain-
ing consistent attention in classroom environments remains
challenging due to a variety of internal and external distrac-
tions, as well as fluctuating levels of student motivation.
Teachers often struggle to identify inattentive students, es-
pecially in large or diverse classrooms, making it difficult
to provide timely, personalized interventions that address
learning gaps as they arise. Attention and concentration are
distinct yet interrelated cognitive processes critical for suc-
cessful learning. Concentration is a mental state in which
all cognitive resources are directed toward a specific subject,
enhancing the ability to process and retain information 31, It
is an acquired skill that allows individuals to absorb content
fully and apply it meaningfully in new contexts. Attention,
meanwhile, is a cognitive process involving the encoding of
sensory and language inputs, maintaining them in working
memory, and retrieving them from long-term memory 4. Ef-
fective concentration ensures that incoming information is
well received and integrated, supporting higher-order think-
ing and problem-solving[®]. Multiple factors affect students’
ability to sustain attention in class. Internal factors include
psychological states such as boredom or anxiety, which can
often be mitigated through engaging and varied teaching
strategies. External factors encompass the broader learn-
ing environment, including the school system, classroom
layout, family background, and instructional methods. For
example, research highlights the influence of environmental
variables like lighting, temperature, noise levels, and seating
arrangements on student behavior and focus®l. Students
seated in the front rows typically demonstrate higher atten-
tion levels due to increased proximity to the teacher and
reduced distractions. Furthermore, classroom attendance is
a vital predictor of attention and academic success; frequent
absences disrupt learning continuity and weaken students’
ability to concentrate during lessons.

Emerging technologies have provided new avenues for
understanding and improving student attention. Studies have
demonstrated that the presence of surveillance systems, such
as security cameras, can subtly influence student behavior

7.8]

by encouraging self-regulation| Advanced techniques

including computer vision and machine learning have been
applied to analyze classroom dynamics, tracking behavioral
cues such as head movements, gaze direction, posture, and
facial expressions to infer attention states. These approaches
offer educators objective, real-time insights into student en-
gagement, helping them tailor instruction to maximize learn-
ing outcomes 191

Recent advances in deep learning present significant
opportunities to automate and enhance the detection of inat-

12131 partic-

tention in classrooms!'!l. Deep learning models!
ularly convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), have shown remarkable success
in extracting complex spatial and temporal patterns from

visual and behavioral datall4-1¢

1. For example, gaze estima-
tion techniques based on CNNs can accurately predict where
a student is looking, while head pose analysis can indicate
distraction or disengagement. Some studies have proposed
architectures incorporating data fusion approaches, combin-
ing multiple gaze datasets and augmentations to improve
model robustness and generalization!!”].

This paper proposes a deep learning—based approach
that utilizes behavioral analysis to detect student inatten-
tion and improve the learning experience. The framework
integrates computer vision techniques, including facial ex-
pression recognition, posture analysis, and eye-tracking to
identify behavioral indicators of inattention in real time. Our
system employs CNNSs to capture spatial features of student
behavior and RNNSs to model temporal dynamics, enabling
accurate classification of attentive versus inattentive states.
By providing automated, objective, and scalable detection of
student inattention, our approach aims to support educators
in delivering timely interventions, fostering more engaging
and effective learning environments.

This paper is organized as follows: Section 2 provides
an overview of deep learning technology and its applications
in education. Section 3 describes the methodology, and Sec-
tion 4 introduces learning behavior in the smart classroom.
Sections 5—7 discuss the results, conclude the discussion,

and point out directions for future research.

2. Related Research

Research on student attention and distraction in class-

rooms has received increasing focus in recent years, reflect-
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ing its critical role in learning outcomes!'8]. Numerous stud-
ies have examined behavioral patterns that signal distraction,
particularly among elementary and secondary school stu-
dents. Demographic factors such as age, gender, and peer
interactions have been found to significantly influence dis-
traction levels, with evidence suggesting that older students
often display greater engagement in social activities like
talking, which can detract from instructional focus.

Visual attention research emphasizes the role of eye
gaze, head movements, and cognitive load in evaluating stu-
dent focus and situational awareness. Tracking these cues
enables the detection of attentional lapses and provides in-
sights into how students process instructional content. For
example, head rotation, downward gaze, or eye closure can
indicate disengagement, drowsiness, or confusion!'*].

Traditional approaches to assessing student
engagement—including surveys, teacher logs, and direct
observation—often suffer from subjectivity, limited tempo-
ral resolution, and the inability to scale in real time. These
methods typically provide delayed or episodic snapshots of
student behavior that may fail to capture subtle, dynamic
shifts in attention. As a result, recent work has turned into
automated, objective monitoring systems!'7! that leverage
machine learning and deep learning to evaluate student focus
more continuously and accurately.

Advanced monitoring systems have integrated facial
expression analysis, eye-tracking, and head pose estimation

to assess attentional states (20211,

Machine learning meth-
ods have been developed to recognize signs of drowsiness,
distraction, or confusion by analyzing facial landmarks and
behavioral cues. Deep learning has enabled more robust and
precise analysis thanks to its capacity to model complex, non-
linear patterns in high-dimensional data. Wul??! proposed a
deep learning method using an improved YOLOV3 to detect
students’ abnormal behaviors in smart classrooms, achieving
over 90% accuracy with low false reports and minimal delay.

More recently, newer YOLO versions such as YOLOv4,
YOLOVS5, YOLOv7, and YOLOVS have been increasingly
adopted for gaze-related tasks, including face detection, eye-
region localization, and head pose estimation, due to their im-
proved feature representation, lightweight architecture, and
suitability for real-time deployment. YOLOv-based mod-
els are often employed as the first stage in gaze estimation
pipelines, enabling reliable face and eye detection under vary-

ing lighting conditions, occlusions, and camera viewpoints.
These characteristics make YOLOV particularly suitable for
classroom environments, where multiple students must be
tracked simultaneously.

Several studies combine CNN-based gaze estimation
with temporal modeling. Recent studies have introduced
deep learning models, especially Convolutional Neural Net-
works (CNNs) and Long Short-Term Memory (LSTM) net-
works for real-time attention evaluation®). These models
have demonstrated strong performance in recognizing be-
havioral patterns such as gaze direction, facial expressions
of confusion, and inattentive postures. However, challenges
remain regarding generalizability and consistency across di-
verse classroom environments, where variations in lighting,
student demographics, and camera angles can degrade model
performance. Their system follows three main steps: face
detection, yaw and pitch estimation, and gaze zone determi-
nation. For yaw estimation, it identifies the left and right
facial borders and the face center using the ellipsoidal model.
For pitch estimation, it extracts novel histogram-based fea-
tures and applies Support Vector Regression (SVR).

Kanade et al.[?] proposed incorporating head posture
into gaze estimation models, recognizing that users’ heads
move freely in real-world scenarios. Their system uses Euler
angles (pitch, yaw, roll) to determine head orientation and
relies on commercial head trackers to detect facial landmarks,
particularly around the eyes. To maintain tracking robustness,
the system minimizes dependency on head sensors by using
historical pupil center coordinates from prior frames. They
designed a hierarchy of small, efficient CNNs to precisely
locate eye regions even when local tracking fails.

Yoo et al.[*!] introduced a gaze behavior-based data
processing method for visualizing abstract gaze data. Their
approach categorizes raw gaze information using machine
learning models originally designed for image classification,
including CNNs like AlexNet and LeNet. They evaluated
multiple fixation identification techniques—velocity-based
(I-VT), dispersion-based (I-DT), density-based, and com-
bined velocity-dispersion (I-VDT)—and assessed their out-
puts across visualization formats such as attention maps,
scan paths, and abstract gaze movement representations.
Their pipeline uses facial landmarks and face mesh detec-
tors to identify regions of interest, extracting features such
as eye aspect ratio, mouth aspect ratio, and head pose. These
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features are fed into classifiers like Random Forests, Sequen-
tial Neural Networks, and Linear SVMs for engagement
prediction.

Vijaypriya and Uma!?"] advanced appearance-based
gaze estimation using CNNs to predict gaze angles from
eye images and landmark coordinates. They emphasized im-
proving learning outcomes by training on synthetic datasets
with highly accurate annotations. These architectures were
adapted by replacing their final layers with fully connected
regression layers outputting yaw and pitch angles, optimized
with mean squared error loss. Integration of head-pose in-
formation at the feature level improved prediction accuracy,
enabling reliable gaze estimation even under varying condi-
tions.

Finally, Kar (MLGaze)!>! explored the effectiveness
of machine learning in detecting and predicting gaze er-
ror patterns in consumer eye-tracking systems. Their work
aimed to improve the accuracy and reliability of gaze esti-
mation under real-world conditions by modeling systematic
error patterns. They transformed raw gaze coordinates into
frontal gaze angles (yaw, pitch) using ground truth datasets,
which included precise screen locations. By feeding these
gaze angles into predictive models, they provided insights
into how user behavior and hardware limitations influence
tracking accuracy.

Collectively, these studies underscore the growing ma-
turity of gaze estimation and behavioral analysis techniques,
which can be adapted to classroom settings for monitoring
student attention. By leveraging CNNs, RNNs, and hybrid
data fusion approaches, researchers aim to deliver real-time,
scalable solutions for identifying inattention and supporting
educators in creating more responsive, effective learning

environments.

3. Methodology

Our proposed approach employs deep learning tech-
niques to capture, analyze, and classify student behaviors
indicative of attention and inattention in real-time classroom
environments. The system is designed to process live video
data, extract relevant behavioral features, and predict atten-
tional states, thereby supporting educators in identifying
disengaged students for timely interventions. The key com-

ponents of our methodology are detailed below [2°],

3.1. Data Collection

The system relies on live video feeds captured from
strategically placed cameras in the classroom. These cameras
are positioned to provide a clear view of students’ faces and
upper body postures while minimizing occlusions. Video
data is continuously recorded during lessons to ensure com-
prehensive coverage of behavioral variations over time. The
primary objective of data collection is to obtain rich, tempo-
rally dense visual information that reflects natural student
behaviors, including eye movements, facial expressions, and

body posture.

3.2. Preprocessing

To improve the quality and consistency of the collected
video data, we implement a preprocessing pipeline with the
following steps:

*  Noise Reduction: Frames are filtered to remove back-
ground noise and visual artifacts that may hinder feature
extraction.

*  Normalization: Image data is normalized to ensure con-
sistent lighting, contrast, and color balance across dif-
ferent recording sessions and classroom environments.

+  Data Augmentation: Augmentation techniques such as
random cropping, rotation, flipping, and brightness ad-
justments are applied to increase the variability of the
training dataset and improve the model’s generalizabil-

ity to unseen classroom settings.

This preprocessing stage ensures that the model is ro-
bust to variations in environmental conditions, camera angles,

and student demographics.

3.3. Feature Extraction

A Convolutional Neural Network (CNN) architecture
is employed to extract high-level visual features from prepro-
cessed video frames. The CNN model is trained to detect and
classify specific behavioral cues that are indicative of student

attention or inattention. Key features extracted include:

*+ Eye Movements: Direction of gaze to determine
whether the student is focused on instructional mate-
rials or looking away.

*  Facial Expressions: Indicators such as yawning, smil-

ing, or frowning, which provide cues about engagement,
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fatigue, or emotional state.
*  Body Posture: Signs of slouching or leaning, which

may suggest disengagement or drowsiness.

3.4. Facial Landmarks and Mesh Detection

To enhance the precision of feature extraction, the sys-
tem uses facial landmarks and face mesh detectors to identify
regions of interest on each student’s face. These detectors
locate and track key facial points across frames, enabling the
extraction of fine-grained features such as:

*  Mouth Aspect Ratio (MAR): Used to detect yawning or
speaking behavior, which can signal fatigue or partici-
pation.

*  Eye Aspect Ratio (EAR): Used to assess eye openness
and detect signs of drowsiness or prolonged closure.

*  Head Pose Estimation: Head orientation is analyzed
through yaw and pitch angles, providing information
about where the student is looking and whether they are

oriented toward the teacher or elsewhere.

3.5. Head Orientation Analysis

Among the extracted parameters, head orientation—
specifically yaw (left-right rotation) and pitch (up-down
tilt)y—plays a critical role in evaluating attention levels as

illustrated in Table 1. For example:

*  Yaw Angle: High deviation from the front-facing direc-
tion indicates the student is looking away from instruc-

tional materials.
*  Pitch Angle: Downward tilt may suggest disengagement
or note-taking, requiring further contextual analysis to

distinguish between them.

Table 1. Features usage metrics.

Parameters Key Facial Features
“$
Head orientation ,.QE;
a
o =
Drowsiness -
Yawns

These orientation parameters are continuously tracked
and fed into the classification model to assess attention lev-
els in real time. The gaze zone definitions categorize driver
visual attention based on head orientation, where the For-
ward zone (heading —10° to 10°, pitch —7° to 6°) represents
looking straight ahead at the road, the Left zone (heading
—90° to —15°, pitch —7° to 7°) and Right zone (heading 15°
to 90°, pitch —7° to 7°) indicate attention directed toward the
left or right sides of the environment, respectively, and the
Rear zone (heading 17° to 39°, pitch 5° to 20°) corresponds
to glances toward the interior rear-view mirror, capturing

backward monitoring behavior as described in Table 2.

Table 2. Interpretation of observations.

Zone Heading (°) Pitch (°) Meaning
Forward —10to 10 —7to6 Straight ahead

Left —-90to —15 —7to7 Looking left

Right 1510 90 ~Tto7 Looking right

Rear 17 to 39 5t020 Interior rear-view mirror

3.6. Classification and Attention Prediction

The extracted features are processed by a classifica-
tion module that predicts the attentional state of each student
for every frame or time window. The model is trained on
labeled examples of attentive and inattentive behavior to
distinguish subtle variations in gaze, facial expressions, and
posture. Output predictions can be aggregated over time

to generate attention profiles for individual students or the

entire classroom.

3.7. System Output and Educator Interface

The final component of the system is an educator-
facing interface that visualizes attention metrics in real time.
Teachers can view summary statistics, time series plots, and
heatmaps indicating levels of attention across the classroom.
This feedback enables teachers to adapt their instructional
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strategies, re-engage distracted students, and evaluate the

effectiveness of teaching interventions.

3.8. Concept

The proposed system evaluates student attention levels
in real time by analyzing three key behavioral cues: eye
gaze, head rotation, and yawning. The diagram illustrates
how these cues are processed through a series of decision

steps to classify students as atfentive or inattentive.

*  Eye Gaze Analysis
The system detects whether the student’s eyes are closed
or diverted away from instructional materials. If eye
closure is detected, the glance duration is measured to
determine whether the student is blinking normally or
exhibiting prolonged eye closure indicative of drowsi-
ness or inattention.

*  Head Rotation Monitoring
The system analyzes head pose using rotation param-
eters (yaw and pitch) to track how often students turn
their heads away from the teacher or screen. Frequent
or prolonged deviations may indicate distraction, disen-

gagement, or conversation with peers.

4

Eye gaze

A J

Y

Head rotation _‘Q;

\4

Yawns |

*  Yawning Detection
The system detects mouth gaping by measuring the
mouth aspect ratio (MAR). If a yawn is detected, the
yawn duration is computed to distinguish between brief,
normal mouth movements and longer yawns that signal

fatigue or boredom.

Each of these behavioral indicators feeds into a decision

module that evaluates:

*  Glance Duration: to capture sustained eye closure or
averted gaze.

*  How Often: to quantify the frequency of head pose
deviations.

*  Yawns Duration: to assess the severity and impact of

yawning events.

The combined analysis of these metrics enables the
system to classify student behavior as attentive or inatten-
tive. The integration of eye gaze, head rotation, and yawning
ensures a multi-modal approach that improves detection accu-
racy by accounting for different manifestations of inattention.

Figure 1 illustrates the system's conceptual model for
detecting student inattention by analyzing three main cues:

eye gaze, head rotation, and yawning.

|

Mouth gaping?

Glance duration

y

often |

y

Yawns duration l
y

A

Attentive Inattentive

Figure 1. Inattentive measurements.



Journal of International Education and Practice | Volume 09 | Issue 01 | June 2026

*  Eye Gaze: If the student’s eyes are closed, the system
measures glance duration to identify potential drowsi-
ness.

*  Head Rotation: Head pose is tracked to determine how
often the student looks away from instructional materi-
als.

e  Yawns: Mouth gaping is detected to measure yawn du-

ration, indicating fatigue or boredom.

These metrics are combined to classify students as at-
tentive or inattentive, supporting real-time monitoring and
intervention.

We propose appearance-based gaze estimation ap-
proaches using convolutional neural networks (CNNs) to
estimate gaze angles directly from eye images and from eye
landmark coordinates. The goal is to improve learning by

utilizing synthetic data with more accurate annotations.

3.9. Model Architecture

In this study, a deep learning model is developed to
predict potential student behavior. The model is trained
on a comprehensive dataset. The system integrates predic-
tive behavioral modeling to anticipate student actions us-
ing machine learning techniques. The dataset is carefully
preprocessed, with features normalized and augmented to
ensure diversity in training. The model is trained using mean
squared error (MSE) as the loss function and the Adam opti-
mizer, with performance evaluated on training and validation
sets based on its ability to predict collisions and recommend

appropriate maneuvers. A typical Convolutional Neural Net-

work (CNN) consists of three primary types of layers: con-

volutional, pooling, and fully connected layers.

*  Input Data
The input to a CNN can be in 1D, 2D, or 3D formats,
originating from various sources such as sensors, audio
signals, videos, or 3D images.
*  Convolutional Layers

A convolutional layer is a fundamental component of
the CNN architecture, as illustrated in Figure 2. The
weights define a convolutional kernel, which is applied
to the original input. This procedure repeatedly applies
multiple kernels to form an arbitrary number of feature
maps, which represent different characteristics of the
input tensors; different kernels can, thus, be considered
different feature extractors. These layers are tasked with
feature extraction. They achieve this by applying con-
volution operations to the input data. Convolutions use
multiple filters defined by parameters such as kernel
size, padding, and stride, producing feature maps. Acti-
vation functions like ReLU are then applied to enhance
the feature extraction process. The output is passed to
the subsequent layer for further processing. The con-
volutional kernels always have the same width as the
time series, while their length can vary. This way, when
performing a convolution, the kernel moves in one direc-
tion from the beginning of a time series towards its end.
The elements of the kernel are multiplied by the corre-
sponding elements of the time series that they cover at

a given point.

School Level

s~ | Elementary g
Blinking =
i
Yaw Data
_ Widdle
Pitch Data P[Blinking Frame] I |natt entiveness
Gaze .
Duration e High school
Head %
Rotation g
—_— Gender z

Figure 2. Model Architecture.
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*  Pooling Layers

Typically, following a convolutional layer, pooling lay-
ers condense the information from feature maps. For ex-
ample, in image processing, they significantly reduce the
input size, thereby decreasing computational demands and
accelerating training. This also strengthens feature detection.
Common pooling techniques include max pooling and aver-
age pooling. This operation is typically applied only once
before the fully connected layer is engaged.

*  Fully Connected Layers

The fully connected layer functions as a traditional
backpropagation neural network and is used in the final
stages of the neural network. It processes the features ex-
tracted by earlier layers to generate the final network output,
which could be a prediction task, such as forecasting a value,
or a classification task, like categorizing images into distinct
classes. The output feature maps of the final convolutional
or pooling layers are typically flattened. The final fully con-
nected layer typically has the same number of output nodes
as the number of classes.

*  Last layer activation function

The activation function applied to the last fully con-

nected layer is usually different from the others. An appro-

priate activation function must be selected according to each
task. An activation function applied to the multiclass classi-
fication task is a softmax function, which normalizes output
real values from the last fully connected layer to target class
probabilities, where each value ranges between 0 and 1 and

all values sum to 1.

3.10. Mathematical Description

The lengths of input and output time intervals can be
expressed as F' and P, respectively. The model input can be

written as:
zt = [mi, migr1,.ymipp_1],i €[, N—P—F+1] (1)

Where i is the sample index, N is the length of the time inter-
vals, and m; is a column vector representing the GazeHeading
data.

The CNN is applied to detect an inattentive student,
which is called anomalies in the classroom. In this case, only
the negative values are considered, and at the same time,
present the Gaze data that are smaller than the threshold.

The extraction of features involves a combination of the

convolutional and pooling layers, as illustrated in Figure 3.

Forward| Left Right -1 -1
0977 |-633 | 22601 3 X -126.4| 496
1203 |-63.1( 26000 | . [ EET -123 | 5459
1203 | -509| 27677 3 x T T —» (.1186| 56.16
1203 | -58.7 | 28.481 1 3 3 -112.2] 61.25
0628 |-535| 321712 . " — 975 (6733
0.628 | 44 | 34.557 L[ 1] 1

0 1 1

0 1 y ’ r

0 1 ax pooling

o1 - :

0 1

Figure 3. Fully connected.

The output of the first convolution and pooling layers

can be written as:

o] = pool(c(Wiz] +b])),j € [1,c1] )

and the output of the last convolutional and pooling layers

can be written as

o = pool(a(Wizl +bl)),5 €[1,cn)
Where o is the activation function. In the prediction, the
features learned and outputted by gaze feature extraction are

concatenated into a dense vector that contains the final and
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the highest-level features of the transportation network input.

The dense vector can be written as

oilatte" = flatten([o}, 0%, ...,oi]),j =cL

(€))

where L is the depth of the CNN. Finally, the vector is trans-
formed into output through a fully connected layer. The

output can be written as:

27 _ Wfojlilatten +b (4)

= Wy (flaten(pool(s(3" (Wiah + 1)) o)
+by
where Wyand byare the parameters of the fully connected
layer, and y represents the predicted network-wide data
anomalies. The CNN uses convolutional filters on its input
layer and obtains local connections only where local input
neurons are connected to an output neuron (in the convolu-
tional layer). Hundreds of filters are sometimes applied to the
input, and the results are merged in each layer. One filter can
extract one Gaze feature from the input layer; therefore, hun-
dreds of filters can extract hundreds of features, as illustrated
in Figure 3. The fully connected layer expresses the negative
values that represent the anomalies in each road section.
The classification report indicates strong overall per-
formance with an accuracy of 96% across 6928 samples,
as described in Table 3. Class 0 shows very high recall
(1.00), meaning all true class 0 instances were correctly iden-
tified, though its slightly lower precision (0.91) suggests

some class 1 samples were incorrectly predicted as class 0.
Class 1 achieves perfect precision (1.00), so all predictions of
class 1 are correct, but a slightly lower recall (0.93) indicates
a small portion of true class 1 instances were missed. The
F1-scores (0.95 for class 0 and 0.97 for class 1) confirm a
strong balance between precision and recall for both classes.
The macro and weighted averages are closely aligned, sug-
gesting that performance is consistent across classes despite
the moderate class imbalance, and the model generalizes
well without being overly biased toward the larger class. The
CNN model is moderately sized (=250k parameters, ~979
KB) with almost all parameters trainable, indicating suffi-
cient capacity to learn non-linear patterns in the data without
being excessively large. The confusion matrix shows excel-
lent discriminatory performance, with a very high number
of true positives (3913) and true negatives (2739), and no
false positives, implying perfect precision for the positive
class. This suggests that when the model predicts a positive
gaze state, it is always correct. The presence of 276 false
negatives, however, indicates a tendency to miss some posi-
tive cases, reflecting a conservative prediction behavior that
favors avoiding false alarms at the expense of recall. Over-
all, the model is highly reliable but slightly under-sensitive,
making it suitable for applications where false positives are
costly (e.g., incorrect attention alerts), though recall could
be improved via threshold tuning or cost-sensitive training

if detecting all positive events is critical.

Table 3. Performance analysis.

Class Metrics Precision Recall F1-Score Support

0 0.91 1.00 0.95 2739
1 1.00 0.93 0.97 4189
Accuracy 0.96 6928
Weighted avg 0.96 0.96 6928

True Positives (TP) 3913

True Negatives (TN) 2739

False Positives (FP) 0
False Negatives (FN) 276

4. Learning Behavior in the Class-
room

In this research, we used artificial intelligence (Al)
technologies to detect and analyze student behavior in the
classroom with the goal of measuring three key categories:
motivation, competition, and challenges. The Al system

processed video data to identify specific behavioral cues as-
sociated with each category, enabling a detailed, objective

assessment of student engagement and learning dynamics.
*  Motivation

To measure motivation, Al tools were trained to rec-
ognize positive emotional and attentional indicators during

lessons, as illustrated in Figure 4.
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Figure 4. Motivation category.

Specific behaviors used as markers of motivation in-
cluded:

o  Smiling, suggesting enjoyment and a positive attitude
toward the lesson content.
o Attentive gaze or intention (focused eye contact with

the teacher or learning materials), indicating sustained

interest and cognitive engagement.

By detecting these features automatically, the Al sys-
tem provided a way to quantify levels of student motiva-
tion across the classroom in real time, complementing self-

reported measures from questionnaires.

Competition

For the category of competition[], the AI system fo-
cused on behaviors that suggest active participation and ri-

valry among students. Key indicators included:

o  Hand-raising frequency, used to signal eagerness to an-
swer questions or contribute before peers.
o Interruptions or overlaps in speech (when available in

audio), hinting at competitive dynamics during discus-

sions.

These measures allowed us to assess the degree of com-
petition present in the classroom, offering insights into both
student enthusiasm and potential social tensions arising from

competitive interactions.

Challenges

To identify the challenges students faced during lessons,
as illustrated in Figure 5, the Al system was designed to de-
tect signs of disengagement, confusion, or negative emotions.

Relevant behavioral cues included:

Inattentiveness, such as looking away from the teacher
or materials for prolonged periods.

Head rotation to the right or left, indicating distraction or
seeking help from peers instead of following the teacher.
Eye droopiness or drowsiness, signaling loss of focus
or fatigue.

Facial expressions of sadness or worry, reflecting emo-
tional distress or difficulty with the lesson content, as
illustrated in Figure 5.

By monitoring these behaviors automatically, the Al
system offered continuous, objective data on which students
might be struggling, and which moments of the lesson pre-
sented the greatest challenges. Through the automated de-
tection of these targeted behaviors, our Al-assisted approach
enabled precise measurement of motivation, competition,
and challenges in the classroom. This data-driven method
supports teachers and researchers in understanding student
needs, tailoring instruction, and improving the overall learn-

ing environment.

10
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Figure 5. Abnormal behavior detection.

4.1. Student Behavior Detection

In a previous study, we have used the traditional way
based on a questionnaire. We distributed a structured ques-
tionnaire designed to capture students’ perceptions and ex-
periences related to these categories. This dual approach,
behavioral detection and self-report, provided a richer, more
reliable understanding of student engagement and learning
obstacles. One of the focuses of our study was to assess
student motivation during lessons. We approached this in

two ways:

4.1.1. Al-Based Behavioral Detection

«  Motivation

Al tools were trained to recognize positive emotional

and attentional indicators that signal motivation, including:

o Smiling, suggesting enjoyment and a positive
attitude toward lesson content.

o Attentive gaze or intention (sustained eye con-
tact with the teacher or learning materials), indi-
cating interest and cognitive engagement.

o Frequency of hand-raising and verbal partici-
pation, reflecting willingness to contribute and

active involvement.

By automatically detecting these features in classroom
video and audio, the Al system quantified motivation levels
in real time.

11

*  Competition

Competition among students was examined as another
important category.

Al-Based Behavioral Detection:

The Al system focused on identifying signs of active
participation and rivalry, such as:

o Hand-raising frequency, indicating eagerness to
answer questions before peers.

o Interruptions or overlaps in speech (when audio
was available), hinting at competitive dynamics.

o Nonverbal cues suggesting tension or eagerness
to “win” in group activities.

Questionnaire-Based Assessment:

Students were asked about:

o Their feelings of rivalry with classmates.
o Willingness to outperform peers.
o Perceived pressure to compete in classroom ac-
tivities.
The integration of these data sources allowed us to ex-
plore how competition influenced participation, classroom

atmosphere, and social dynamics among students.
*  Challenges

Finally, the study aimed to identify the challenges stu-
dents faced during lessons.

Al-Based Behavioral Detection:
The Al system was designed to recognize signs of dis-
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engagement, confusion, or emotional distress, including:

o Inattentiveness, such as looking away from the
teacher or materials for prolonged periods.

o Head rotation to the right or left, suggesting dis-
traction or seeking help from peers instead of
focusing on instruction.

o Eye droopiness or drowsiness, indicating fatigue
or loss of focus.

o Facial expressions of sadness or worry, reflect-
ing emotional discomfort or difficulty with the

lesson content.

4.1.2. Questionnaire-Based Assessment

The questionnaire asked students about:

» Difficulties understanding lesson material.

Challenges maintaining focus.

Issues interacting with peers or the teacher.

The statements in the questionnaire were divided into
three categories: motivation, competition, and challenge.
The questions were closed questions to be answered on a
five-point Likert scale ranging from “strongly disagree” to
“Strongly agree”. Table 4 presents some items from different

categories.

Table 4. Questionnaire categories.

Motivation Category

* I feel more excited when they asked me to write a difficult program.
*  When I write difficult computer programs, I do not feel fun and entertained.

Competition Category

* I am willing to try hard to be the best in programming among my colleagues.
*  Itry hard to write programs and solve difficult issues before the rest of my colleagues.

Challenge Category

«  Ilike to write computer programs that are challenging and need deep thinking
e IfI am required to write a difficult computer program, I feel challenged and keep working on it until I finish it.

Through the combined use of Al-assisted behavioral
analysis and targeted questionnaires, this research enabled a
thorough investigation into student motivation, competition,
and challenges within the classroom. The dual approach
provided richer, more reliable insights that can inform in-
structional design, support strategies, and classroom man-
agement, ultimately helping teachers tailor their methods to

better meet student needs and improve learning outcomes.

5. Results Analysis and Discussion

The proposed deep learning-based inattention detection
framework was evaluated using a dataset of recorded class-
room video sessions containing annotated attention labels.
The system was tested for its ability to recognize inattentive
behaviors, including prolonged eye closure, frequent head
turning, and yawning, using the described CNN-based fea-
ture extraction and behavioral classification pipeline. The
analysis results are based on eye gaze detection. Figure
6 illustrates a gaze heading degree measures the horizon-
tal angle of a student's head orientation relative to facing

forward (0°), which signals direct, on-task attention. The

range of —100 to 75 degrees captures deviations left (nega-
tive) and right (positive), where small angles near 0° (—10
to +10) indicate focused attention, while larger deviations
(beyond £30-40°) suggest distraction or peer interaction.
Extreme values (e.g., —80 or +75) often reflect significant
disengagement. By analyzing the frequency and duration of
these off-center headings, the model classifies attentive vs.
inattentive states, enabling real-time monitoring to support
improved classroom engagement.

Figure 7 illustrates gaze pitch degree measures the ver-
tical angle of a student’s head or eye orientation relative to
looking straight ahead (0°), which indicates typical atten-
tive posture. Negative values (=30 to 0) reflect downward
gaze, with mild angles (e.g., —10°) suggesting reading or
writing, while steeper angles (e.g., —25° or —30°) may in-
dicate sleepiness or disengagement. Positive values (0 to
+30) capture upward gaze, where small angles can mean
thinking or observing a higher display, but larger angles may
suggest daydreaming. Pitch values near 0° indicate focused
behavior, while extreme angles signal potential inattention.
Tracking these patterns helps the system classify attentive

vs. inattentive states for real-time classroom monitoring.

12
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Figure 8 illustrates student gaze direction was divided
into Forward (—10° to +10°), Left (angles <—10°), and Right
(angles >+10°) zones to assess attentiveness. The system
calculates the percentage of time each student spends in
these zones, with high Forward Zone proportions indicating
strong focus on the teacher or materials. Elevated time in
Left or Right Zones suggests possible distractions, like peer
conversations or looking away. For example, 80% forward
gaze implies high attentiveness, while distributions like 50%
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forward, 30% left, 20% right may indicate the need for in-
tervention. This approach provides objective, continuous
metrics to help teachers identify distracted students and adapt
strategies to improve classroom engagement.

Figure 9 illustrates A histogram of eyelid opening val-
ues illustrates how frequently different levels of eyelid open-
ness occur, grouping them into bins (e.g., 0.0-0.1, 0.1-0.2,
etc.). This distribution helps assess whether students tend to
have eyelids mostly open (values near 1, suggesting alert-
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ness), mostly closed (values near 0, indicating drowsiness), in each category, enabling objective monitoring of alertness
or if openness is evenly spread across states. For thresh- levels. Frequent occurrences of closed or slightly open states
old analysis, eyelid opening is categorized into three states: can signal fatigue or inattention, while a predominance of
Closed (0 to 0.1), Slightly Open (0.1 to 0.5), and Mostly mostly open values suggests sustained attentiveness in the
Open (0.5 to 1.0). The system counts the number of samples classroom.
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6. Discussion

The experimental evaluation was conducted using anno-
tated video data collected from real classroom environments
during regular teaching sessions, capturing students seated in
typical classroom layouts under natural instructional condi-
tions. Cameras were positioned to record frontal and upper-
body views while minimizing occlusion, and the recordings
reflect realistic variations in student behavior, lighting condi-
tions, seating arrangements, and interaction dynamics rather
than controlled laboratory settings. Students were observed
during standard instructional activities such as lectures and
guided discussions, allowing attentional behaviors, including
gaze shifts, head movements, posture changes, eye closure,
and yawning to occur organically. Attentive and inattentive
states were annotated based on observable behavioral cues
(e.g., prolonged gaze diversion, repeated head rotation, sus-
tained eye closure, and yawning duration), providing ground
truth labels for supervised learning. This real-world class-
room context supports the ecological validity of the proposed
framework and demonstrates its applicability to dynamic, di-
verse smart classroom environments where student attention
is influenced by instructional and environmental factors.

Within this context, the study makes several important
contributions to the field of smart classrooms and educational
technology. First, it introduces a multi-modal, deep learning—
based framework for real-time detection of student inattention
that integrates eye gaze, head rotation, facial expressions, and
posture analysis. By combining CNN-based spatial feature
extraction with RNN-based temporal modeling, the system
captures both instantaneous behavioral cues and their tempo-
ral evolution, enabling more reliable attention classification
than frame-based or single-cue approaches. Second, the pro-
posed method moves beyond subjective and episodic engage-
ment assessment by providing an objective, continuous, and
scalable monitoring solution, addressing key limitations of
traditional teacher observations and survey-based methods,
particularly in large or heterogeneous classrooms. Third, the
system is designed with practical deployment in mind, em-
phasizing real-time performance, robustness to environmen-
tal variability, and interpretability of outputs. The educator-
facing interface translates model predictions into actionable
insights, supporting timely instructional adaptation and tar-
geted intervention. More broadly, this work contributes to

the growing body of research applying computer vision and
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deep learning in education by demonstrating how behavioral
analysis techniques originally developed for domains such as
driver monitoring and human—computer interaction can be
effectively adapted to learning environments.

Despite these strengths, several limitations should be
acknowledged. The framework relies primarily on visual
cues, which may not fully capture cognitive engagement;
for instance, students taking notes or reading materials may
be misclassified as inattentive without additional contextual
information. Variations in classroom layout, camera place-
ment, lighting conditions, and student demographics may
also affect generalizability, and although data augmentation
and normalization were applied, performance may degrade
under extreme occlusions or non-frontal viewpoints. Further-
more, annotating attention remains inherently challenging,
as attention is a latent cognitive process inferred from ob-
servable behavior; while indicators such as gaze diversion
and yawning are informative, they cannot perfectly represent
mental engagement. Ethical and privacy considerations re-
lated to continuous video-based monitoring were beyond the
primary scope of this study and must be carefully addressed
prior to large-scale deployment.

Future research can extend this work in several direc-
tions. Incorporating additional multi-modal data sources,
such as audio signals, interaction logs, physiological mea-
surements, or learning performance indicators, could improve
robustness and help distinguish productive from unproductive
behaviors. Adaptive and personalized models that account
for individual differences in attention patterns and learning
styles may further reduce false positives and enhance usabil-
ity. Longitudinal studies are also needed to evaluate how
real-time attention feedback influences teaching strategies,
student behavior, and learning outcomes over extended peri-
ods. Finally, future systems should adopt ethical-by-design
principles, including privacy-preserving techniques, explain-
able Al mechanisms, and transparent consent frameworks, to
ensure responsible and trustworthy deployment of Al-driven

attention monitoring in educational settings.

7. Conclusions

This paper introduced a deep learning-based framework
for detecting student inattention by analyzing behavioral cues

such as eye gaze direction, head rotation, and yawning. By
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combining convolutional neural networks (CNNs) for fea-
ture extraction with recurrent neural networks (RNNs) for
temporal analysis, the system delivers real-time, objective
assessments of student engagement. The results demonstrate
the potential of Al to complement traditional teacher observa-
tions, offering continuous monitoring that can help identify
distracted students early and support targeted interventions
to improve learning outcomes. Our findings show that gaze
heading and pitch analysis, along with features like eyelid
closure and yawning frequency, can effectively distinguish
attentive from inattentive states. The use of unsupervised
clustering (e.g., KMeans) further highlights interpretable pat-
terns in student gaze behavior, providing actionable insights
for educators.

For future work, the model should be refined by in-
corporating richer, multi-modal data sources such as speech
analysis, physiological signals (e.g., heart rate or galvanic
skin response), and environmental factors (e.g., classroom
layout). Expanding the dataset to include diverse classrooms,
age groups, and cultural contexts will improve generalizabil-
ity and robustness. Additionally, research should focus on
optimizing the system for real-time deployment in live class-
rooms, ensuring low latency and user-friendly interfaces for
teachers.

Critically, any deployment must address ethical con-
siderations, including data privacy, student consent, trans-
parency in monitoring practices, and strategies to avoid bias
or unfair targeting. By advancing these technical and ethical
dimensions, Al-powered inattention detection can become a
practical, responsible tool for enhancing student engagement

and learning in real-world educational settings.
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