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As the market competition of steel mills is severe, deoxidization alloying 
is an important link in the metallurgical process. To solve this problem, 
principal component regression analysis is adopted to reduce the dimen-
sion of influencing factors, and a reasonable and reliable prediction model 
of element yield is established. Based on the constraint conditions such 
as target cost function constraint, yield constraint and non-negative con-
straint, linear programming is adopted to design the lowest cost batting 
scheme that meets the national standards and production requirements. 
The research results provide a reliable optimization model for the deox-
idization and alloying process of steel mills, which is of positive signifi-
cance for improving the market competitiveness of steel mills, reducing 
waste discharge and protecting the environment.
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1. Introduction

The deoxidation alloying in the steelmaking process 
is an important process in steel smelting. Deoxida-
tion alloying means that for different steel types, 

different amounts and different types of alloys need to be 
added at the end of smelting to remove oxygen elements 
as much as possible to make the alloy elements contained 
meet the standards, and finally make the finished steel 
have certain physical properties to meet specific require-
ments.

The deoxidation alloying of molten steel mainly con-
cerns the content of five elements of C, Mn, S, P, and Si. 
As basic alloying elements, C, Mn and Si play the role of 
solid solution strengthening, which significantly improves 
the strength and hardness of the steel and improves the 

hardenability of the steel. Thus the content needs to be 
controlled. The presence of P and S in the steel will harm 
the safe use of the steel. The phenomenon of cold brittle-
ness and hot brittleness will appear, reducing the plastic 
toughness of the steel. The content needs to be strictly 
controlled.

The general research direction is to establish a mathe-
matical model for the deoxidation alloying link through 
historical data, online prediction and optimization of the 
type and quantity of the alloy input, while ensuring the 
quality of the molten steel and minimizing the production 
cost of alloy steel.

Scholars have done a lot of research on the deoxidiza-
tion and alloying of molten steel. Hu Jingtao established 
the LF deoxidization and alloying model, studied the 
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feeding amount of aluminum wire in molten steel, and es-
tablished the minimum cost model by simplex method and 
considering the price factor [1]; Chunxia Zhang used the 
artificial neural network BP model to deal with the yield 
parameters of alloy elements, and used the multiple linear 
programming method to calculate the optimal ingredients 
of alloying operation, and obtained the engineering results 
A practical control model for deoxidization and alloying 
[2]. However, BP neural network algorithm requires a large 
amount of data, and will inevitably appear “zigzag phe-
nomenon”, which makes BP algorithm inefficient. Zhe Xu 
used the fuzzy modeling method to study the prediction 
method of the recovery rate of molten steel alloy elements 
and the optimization of ingredients in the ladle refining 
process [3]; Wenle Zhang studied the particle swarm opti-
mization algorithm and simulated annealing algorithm for 
the LF refining furnace alloying, and analyzed the main 
factors affecting the recovery rate of alloy in the ladle re-
fining process [4], and the convergence speed of simulated 
annealing algorithm The performance of the algorithm 
is related to the initial value and parameter sensitivity. 
Ruonan Cheng, et al. Used Pearson correlation coeffi-
cient to get the relationship between different factors and 
element yield, established BP neural network model opti-
mized by multiple linear programming to predict the yield 
of C and Mn, and analyzed the optimal proportioning 
scheme with SPSS [5]. However, Pearson correlation coef-
ficient method does not consider the impact of the number 
of overlapping records on the similarity. Yu Dai, et al. 
Obtained the main factors that affect the rate of C and Mn 
by using the grey correlation model. On this basis, the 
multi-objective optimization model with the lowest price 
and the lowest element content error was established for 
the burden problem. So we can get the best proportioning 
scheme [6]. However, the subjectivity of grey model is too 
strong, and the optimal value of each index needs to be 
determined currently. According to the formula of alloy 
yield, Huiling Zhou, et al. Obtained the historical yield 
of C and Mn elements, and established the model of in-
fluencing factors of yield based on factor analysis. Then, 
the multiple linear regression equations of C and Mn el-
ement yield and influencing factors are established, and 
finally the predicted values of C and Mn element yield 
are obtained [7]. Fangyu Liu, et al. Calculated the yield 
of C and Mn based on the data, screened out the main 
factors influencing the yield by Pearson correlation coef-
ficient, obtained the prediction equation of the yield of C 
and Mn by multiple linear regression analysis, and then 
verified and improved the prediction model by BP neural 
network, finally realized the optimization of the cost of 
deoxidization and alloying of molten steel [8]. Pengmai 

Liu, et al established the BP neural network model for the 
prediction of the recovery rate of C and Mn elements, and 
further improved the model and algorithm to improve the 
prediction accuracy of the recovery rate of elements [9]. 
Combined with the research of scholars, based on the idea 
of mathematical model, a reliable prediction model and 
optimization model are designed for the recovery rate of 
elements and the proportioning scheme, so as to improve 
the utilization rate of raw materials in the deoxidization 
and alloying process and reduce the production cost.

2. Factors Affecting Yield

The yield of alloying elements is an important indicator 
to be concerned during the deoxidation alloying process. 
The element yield reflects the utilization rate of important 
alloying elements in the alloying batching scheme and 
reflects the feasibility of the scheme. Too low an element 
yield will cause waste of raw materials, reduce production 
efficiency, and cause environmental pollution. Studying 
the yield of alloying elements has a positive effect on es-
tablishing the deoxidation alloying batching scheme.

2.1 Principal Component Analysis
In production, there are many factors that affect the yield 
of the alloy, such as the end temperature of the converter, 
the net weight of the molten steel, and the addition of raw 
materials. For multi-factor high-dimensional problems, 
a mathematical model based on the principal component 
analysis method is established. Subsequent problems are 
solved by evaluating the contribution of the principal 
component and reducing the dimension.

Principal component analysis uses p-dimensional vec-

tors ( ), , ,1 2 px x x x⋅ ⋅ ⋅=


false. Standardize the original 

indicator data ( ), , , , , , ,1 2 1 2
T

i i i ipx x x x i n⋅ ⋅ ⋅= =


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Standardized transformation of sample array elements.
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Through the above changes, a standardized matrix Z is 
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obtained. Then find the correlation coefficient matrix for 
the standardized matrix.

=
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Solve the characteristic equation of the sample correla-
tion matrix. 
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Determining the value of m can satisfy the infor-
mation utilization rate of more than 85%. For each 

( )1,2, ,j j mλ = ⋅⋅⋅ , Solve equations jbRb λ=


, can get the 

unit feature vector o
jb


. Convert standardized index vari-

ables to main components , , , ,Z 1 2T o
ij i jU b j m= = 



. Among them, U1 is called the first principal component, 
U2 is called the second principal component, and Up is 
called the p-th principal component. Finally, comprehen-
sive analysis and weighted sum of the m principal com-
ponents are obtained to obtain the final evaluation value, 
and the weight is the variance contribution rate of each 
principal component. The principal component analysis of 
the factors affecting the yield of C and Mn alloys can be 
achieved.

2.2 Regression Analysis
Based on principal component analysis, a prediction mod-
el of alloy yield can be established. However, the accuracy 
of Principal component analysis prediction model is not 
high, and its accuracy is about 50%. In order to improve 
the accuracy of prediction, the principal component analy-
sis model was optimized by means of multiple regression 
analysis [10].

In principal component analysis, the principal com-
ponents, expressions and variables that satisfy the infor-
mation contribution rate of more than 85% have been 
obtained.

U W x=


� (5)

At the same time, the alloy historical yield is trans-
formed into a column vector and combined with the 
sample matrix into a new sample matrix. The principal 
component analysis is carried out on the new sample ma-
trix, and the new characteristic roots and eigenvectors are 
obtained. The linear coefficients of each principal com-
ponent can be obtained by multiple regression analysis of 

the corresponding eigenvectors and principal component 
matrices.

The yield of the alloy can be predicted according to the 
coefficient matrix when the independent variables (influ-
encing factors) are given.

3. Optimize the Batching Plan

Based on the actual production requirements of cost and 
elements, new constraints can be added to the prediction 
model, and the method of linear programming can be 
adopted to make it more in line with the reality, and the 
mathematical model of cost optimization can be estab-
lished.

3.1 Objective Function
The objective function is set to cost. The constraint condi-
tions are set as yield constraint, element content constraint 
and non-negative quality constraint. 

( )
16

1
a a

a
m sω

=

= ⋅∑ � (6)

At the same time, Set the addition amount of various 
alloys. The cost of the alloy batching scheme is the prod-
uct of the amount of raw materials added to the alloy and 
the unit price.The cost constraint is the requirement that 
the cost be as small as possible.

3.2 Yield Constraint
According to formula 4 and decision variable ma, the 

yield prediction formula is

( )1 2 9 1 2 16, , , , , , , TBx B x x x m m mχ = =


 
.

Where B represents the coefficient matrix. It should be 

pointed out, 1 2 9, , ,x x x  indicate the nature of molten 
steel itself, which is set as a constant in the cost optimi-

zation model. 1 2 16, , ,m m m  decision variable. The 
yield constraint requires the alloy yield to meet the basic 
requirements. 

[ ]χ χ≥ � (7)

At the same time, the yield should be no more than 1.                           

[ ] 1χ χ≤ ≤ � (8)

3.3 Elemental Content Constraints
Different types of steel require that the content of each 
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element must conform to the national standard, so the ele-
ment content constraint condition is the requirement of the 
target composition of molten steel.

16

,
1

+a j j a j
i

j j

c m b P
Bl Bu

P P

χ
=≤ ≤

+ ∆

∑ � (9)

In the formula, j represents the element to be al-

loyed, 1, 2, ,j m=  ; ,a jc represents the content of j

falseelement in the i -th alloy; jχ  represents the yield of 

element j . am  represents the amount of alloy added; jb
falserepresents the content of element j  in the original 
molten steel; P  is the weight of the original molten steel 
(kg); P∆  represents the added weight of molten steel 

(kg); jBl  represents the lower limit of the requirement of 

the j -th element in molten steel; jBu  represents the up-

per limit of the requirement of the j -th element in molten 
steel [11].

3.4 Non-negative Constraints
The minimum alloy addition amount is 0, the addition 
amount below 0 has no practical significance and should 
not be considered here.

3.5 Linear Programming
In above constraints, ΔP in the inequality of the require-
ment for the target component of molten steel is related to 
the alloy addition amount ma, that is, the constraint condi-
tion is not a general form of linear programming problem. 
To use the improved simplex method, first need to use ma 
to represent ΔP, and to reduce the constraints to the gener-
al form of the linear programming problem [12]. Assuming 
that all the alloys are put into molten steel, the linear con-
straints are obtained. 
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After adding relaxation variables and residual vari-
ables and combining the cost constraint and non-negative 
condition formula, a general mathematical model for cal-
culating the minimum cost alloy addition in the process 
of deoxyalloying can be obtained. The constraints are as 
follows.
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This model is suitable for the calculation of various 
elements in alloys. In the case that the alloy contains only 
one alloying element and this alloying element exists only 
in the alloy (such as aluminum), the addition amount of 
the alloy is not involved in the model calculation, and the 
formula can be directly applied.

i a j
j j

m b P
Bl Bu

P P
χ +

≤ ≤
+ ∆

� (12)

4. Result Analysis

The data comes from the D question of the MathorCup 
Mathematical Modeling Competition 2019, including his-
torical data of steelmaking and description of various al-
loy materials. In order to solve the problem, the following 
assumptions are proposed: it is assumed that the occur-
rence of abnormal data is due to the reaction of steel slag 
or the special effect of the deoxidizer; it is assumed that 
only the composition of the feed is optimized, and the in-
fluence of the addition of alloy ingredients on the furnace 
temperature and other factors is not considered; Assuming 
that the historical data of steelmaking and various alloy 
materials in the appendix are accurate. Through principal 
component regression analysis and linear analysis, the 
model of C and Mn alloy yield and optimization of the 
batching scheme can be obtained.

4.1 Principal Component Analysis
Using MATLAB, the main component analysis of the fac-
tors affecting the yield of C and Mn alloys was achieved. 
The results are shown in Table 1 and Table 2.
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Table 1. The contribution of principal components to the 
yield of C element

No Contribution No Contribution No Contribution

1 21.4085 7 5.175471 13 2.772642

2 12.38908 8 4.348705 14 1.887782

3 9.86408 9 4.101478 15 1.815436

4 7.824739 10 3.869279 16 1.592202

5 5.918989 11 3.355877 17 1.355792

6 5.646582 12 2.833679 18 1.254072

Table 2. The contribution of the main components to the 
yield of Mn element

No Contribution No Contribution No Contribution

1 25.9899 6 6.124138 11 3.009176

2 12.78127 7 5.195127 12 2.801144

3 8.351011 8 4.785061 13 2.196297

4 8.048026 9 4.319319 14 1.763164

5 6.761434 10 3.676696 15 1.341023

Draw a histogram of the principal component contribu-
tion.

Figure 1. Cumulative contribution curve of each compo-
nent to C and Mn yield

4.2 Multivariate Linear Analysis
Multiple regression analysis was realized, and the regres-
sion equation parameters as shown in Table 3 and Table 4 
were obtained.

Table 3. Parameters of regression equation of C element

Coefficients Standard Error t-Stat

Intercept 0.001047457 0.038356467 0.02730847
X Variable 1 0.031558432 0.017285959 1.82566858
X Variable 2 -0.090083783 0.022720995 -3.9647817
X Variable 3 -0.044355624 0.025666782 -1.7281334
X Variable 4 0.003899704 0.029307903 0.13305981
X Variable 5 -0.187262273 0.033143873 -5.6499817
X Variable 6 0.172774933 0.034694712 4.97986356
X Variable 7 0.141638615 0.035154676 4.02901213
X Variable 8 -0.008886455 0.038369742 -0.2316006
X Variable 9 0.194959025 0.039497437 4.93599184
X Variable 10 0.064962114 0.040714985 1.5955333

Table 4. Parameters of regression equation of Mn element

Coefficients Standard Error t-Stat

Intercept -0.000360189 0.05966 -0.00604

X Variable 1 -0.125833415 0.026164 -4.80947

X Variable 2 0.060258365 0.036076 1.670331

X Variable 3 -0.04655231 0.044574 -1.04438

X Variable 4 -0.004954195 0.046203 -0.10723

X Variable 5 -0.303739654 0.05332 -5.6965

X Variable 6 0.206682512 0.055104 3.750742

X Variable 7 0.037777314 0.058931 0.641044

X Variable 8 -0.171483094 0.061788 -2.77536

X Variable 9 -0.128368788 0.068568 -1.87214

X Variable 10 -0.052147585 0.070356 -0.74119

Knowing the regression parameters and the number of 
types of ingredients, a regression equation can be estab-
lished to predict the yield of C and Mn elements online.

4.3 Linear Programming Results
For the convenience of calculation, the net weight of mol-
ten steel can be set to 70,000 kg. Establish a linear pro-
gramming model and solve the cost-optimized batching 
plan. Related data is drawn into Table 5.

Table 5. Alloy batching plan (70,000kg molten steel)

Type
Inputs kg

HRB400 HRB500 Q345B

FeV55N11-A 5 6

Low Al ferrosilicon 2 4

Vanadium Nitrogen Alloy 4 2

FeV50-A 40 34

FeV50-B 0 0

Calcium Silicon Aluminum 75 24

FeAl30Si25 0 0

Silicon Aluminum Manganese Alloy Ball 10 6

Silicon Manganese Slag 34 36

FeSi75 2 4

FeSi75-B 3 0

Petroleum Coke Recarburizer 85 40

FeMn64Si27 1550 0

FeMn68Si18 0 1360

SiC(55%) 132 165

Silicon Calcium Carbon Deoxidizer 24 30

5. Conclusion

Based on principal component regression analysis and 
linear programming, optimizing the deoxidation alloying 
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batching plan is of great significance to actual production. 
The optimization model has universal significance and can 
be used in the production of any steel mill. When a large 
amount of process data is known, principal component 
regression analysis is used, and the main factors solved 
are used linear regression to obtain an optimized batching 
plan.

This optimization model is more directional and spe-
cific than regression analysis alone, and more general and 
applicable than linear programming alone. It can not only 
predict the yield of alloy elements online, but also obtain 
the optimization results of batching schemes, reduce costs, 
increase the yield of important elements, and improve the 
market competitiveness of steel mills; reduce the quality 
of scrap materials and play a positive role in ecological 
and environmental protection.
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