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1. Introduction

Control problem of turning the spacecraft into given 
angular position from arbitrary initial attitude in a finite 
time tf with minimization of propellant consumption and 
given accuracy of reorientation was solved. Spacecraft 
motion around the center of mass is described by 
quaternion of attitude [1]. Designing the optimal rotation 
program is based on quaternion models, method of free 
trajectories, and method of iterative guidance as particular 
case of the method of guidance by a required velocity [2].  

Now, spacecrafts are used in many areas of scientific 
occupations and industry. In particular, astrophysical 
researches and other scientific discoveries would be 
impossible without modern spacecrafts [3-5]. Success of 
mission and duration of performance in a working point of 
orbit (orbital position) are provided by successful control 
of motion, by an efficiency of attitude control (an improved 
system of spacecraft attitude is especially important for the 
spacecrafts with instruments and devices for astronomy 
measurements and for satellites of Earth supervision).
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Numerous papers study control problems of rigid bodies in
various statements [6-29]. For spherically symmetric body, time-
optimal spatial rotation is known [1]. Diverse methods are used
for constructing control program of spacecraft orientation, in
particular, algorithm of fuzzy logic [7] or concept of inverse
problem of dynamics [8,9]. Finding the optimal solution of
spacecraft’s motion control is known also [10-24]. Time-optimal
maneuvers are more popular [11-20]. Some solutions are
obtained for axially symmetric spacecraft [19-22]. Terminal
control for orbital orientation of a spacecraft was considered
also [25]; controlling the spacecrafts with control moment
gyroscopes has features [26-28]. Optimization of spacecraft
attitude with minimum fuel consumption is a difficult issue in
mathematical aspect (and difficult engineering problem, also).
This paper describes optimal program of spatial turn of
arbitrary spacecraft realizing the mode of guidance by a
required velocity and method of free trajectories. We give
numerical estimates of fuel expenditure for realization of a
turn taking into account disturbances acting upon the
spacecraft (in particular, gravitational and aerodynamic
torques). Issues of economical control of spacecraft motion are
still relevant and topical today, so the solved problem of a turn
is practically important.

2. Angular Motion’s Equations and Statement
of Control Problem

We consider the case when parameters of a turn (for
example, components of turn quaternion) are known in
advance, even before the beginning of maneuver; any initial
angular differences are possible (from a few degrees up to 180
degrees), angular orientation of right-hand coordinate system
ОXYZ related with a spacecraft (as well as its initial and final
positions) being determined relative to a chosen reference
basis. It is assumed that the reference system coincides with
inertial coordinate system (inertial basis I), as the most popular
case. Spacecraft rotation satisfies dynamical equations [1,6]:

  1322311 MJJJ  ,

  2313122 MJJJ  ,

  3211233 MJJJ  (1)

where Ji are central principal moments of inertia of spacecraft,
Mi are projections of torque M onto principal axes of
spacecraft’s inertia ellipsoid, i are projections of spacecraft’s
absolute angular velocity vector ω onto axes of body basis E
formed by the principal central axes of spacecraft’s inertia
ellipsoid (i= 1, 3 ). Spacecraft attitude is described by known
equation [1].

 2  (2)

where  is vector of absolute angular velocity of spacecraft; 
is quaternion of orientation with respect to basis I (we assume
   (0)   = 1). Equation (2) has the boundary conditions
(0)= in and (Т)= f , where Т is time of termination of a
turn ( in and  f have any a priori given values which satisfy
the condition  in= f= 1 (because quaternion  is
normalized). We assume that initial and final angular
velocities are equal to zero: ω(0)=ω(T)=0. If spacecraft’s
actuators are jet engines which control rotations about three
axes of a spacecraft, general form of index for fuel expenditure
is
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where l1, l2, and l3 >0 are the arms of thrust action of jet
engines (for attitude control) in channels x, y, z. Optimization
problem of spacecraft’s spatial reorientation is a finding a
control rotating the spacecraft from position Λin into position
Λf and minimizing the index (3) under constraint [1,11]:

М12 +М22 +М32  т02 (4)

and requirement T  Tdes , where m0 is maximal possible
magnitude of control torque M which actuators can give (m0
characterizes a power of spacecraft's actuators); Tdes is a
desired duration of turn.

3. Solving the Formulated Problem of Controlled
Turn

We assume that spacecraft is solid (it is rigid body).
Optimal control of three-dimensional turn must rotate
spacecraft from attitude to th  in e required attitude  f

according to the Equations (1), (2) with minimal functional (3).
When finding optimal law of rotation (in sense of minimum
(3)), we assume that angular velocity  (t) is a piecewise
continuous time function. It is known [23], spacecraft’s rotation
optimal in fuel consumption includes two phases with
maximal control torque (segment of acceleration and segment
of braking), and free motion phase when control torque is
absent. This type of controlling reorientation of a spacecraft is
called two-pulse control (first pulse for imparting the required
angular momentum L to spacecraft’s body, and second pulse
suppress angular velocity). Taking into account that
disturbances act slightly (disturbance torque much less control
torque), we suggest that free rotation is optimal for arbitrary
spacecraft in sense of consumption G (since control moment
Mc is absent). Free rotation is described by known system of
equations

3211  k , 3122  k , 2133  k (5)
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where 1321 /)( JJJk  , 2132 /)( JJJk  , and

3213 /)( JJJk  are constant coefficients.

Idea of the proposed principle of control consists in
determining such angular momentum L* under which
spacecraft transfers in given attitude Λf under free motion. In
this case, fuel is expended for spacecraft’s acceleration and
braking (for increasing the angular velocity and damping of
rotation). Reorientation itself is fulfilled without control torque
(Mc = 0), and therefore, regime of fuel economy is made
practically along entire trajectory of motion. For this approach,
basic turn is executed with zero fuel expenditure, and mode of
a controlled turn is optimum. Possibility of designing the
optimal solution in class of two-impulse control is justified by
fact that each segment of attitude trajectory is optimal for
chosen criterion. Expense is G = Gac + Gfm + Gbr, where Gac is
fuel expenditures during acceleration of a spacecraft, Gbr is
expenditures during a braking of a spacecraft, and Gfm is fuel
expenditures within phase of spacecraft’s free rotation
(between acceleration and braking).

For slew maneuver, important characteristic is an integral


Т

dttS
0

)(L (6)

The value S is determined only by rotation conditions in ,

f , and spacecraft’s principal central moments of inertia J1, J2,
J3. The calculated value S is S = Kctex , where Kc is arbitrary
magnitude of angular momentum (Kc > 0); tex is the expected
time of reorientation from position  in into position  f , i.e.
time when equality  = f holds for solution (t) of system of
Equations (2), (5) with initial conditions (0)=Kc*/JSC*,
Λ(0)=Λin (the corresponding theorem can be proven [24]),
where  * is solution of the boundary problem Λ(0)=Λin ,
Λ(tf)=Λf , taking into account the Equations (2), (5); tf is time
of arrival to position Λf obtained by simulation of motion
according to the Equations (2), (5).

The boundary value problem Λ(tj)=Λin , Λ(tf)=Λf , for the
system of Equations (2), (5), has analytical solution (in
elementary functions) only for dynamically symmetric and
dynamically spherical bodies. For spherically symmetric
spacecraft (when J1=J2=J3), solution p(t), ω (t) have
elementary form: p(t)=const and ω(t)=const, or in detail
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where 3210 ,,,  are components of turn quaternion

fint
~

  [1]. Characteristic (6) is equal to

01 arccos2  JS .

For a dynamically symmetric body (when, for example,
J2=J3 ), the optimal control problem is solved completely. We
write optimal solution (t) in the following form:

1 = + cos , 2 = sin sin ( t +  ) , 3 = sin cos
( t +  )

where  = arctg(p20 / p30);  is the angle between the
spacecraft’s longitudinal axis and the vector р (0    ); 
is the angular velocity of its own rotation (around the
longitudinal axis); and  is the angular velocity of the
precession (around the vector р). Characteristic (6) is equal to

S=  222
2

22
1 sin)cos( JJ

where  is angle of turn about longitudinal axis;  is angle
of turn about vector р (note, p10=cos  ). Optimal values of
parameters p0,  ,  , and  are determined by the boundary
angularpositionsΛin andΛf throughthe system ofequations [23]
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concurrently with condition J1(+cos)2 + J 2sin2 min
( , 0 ), where J1 is the moment of inertia about

longitudinal axis of a spacecraft; J is the moment of inertia
about transverse axis of a spacecraft. Optimal values of vector
p0 and values α, β, and , which satisfy the given attitudesΛin
and Λf in initial and final instants, can be determined with use
of known device [30].

It is essential that many known methods are unsuitable for
situations when initial angle of turn between attitudes Λin and
Λf is large. Many researchers use method of combining
synthesis which use predictive model. But such algorithms
give final result and control program that completely depends
from the assumed form of predictive model (the chosen model
of motion forecast completely determines type of controlled
rotation during maneuver). Any author has insuperable
mathematical difficulties if takes predictive model even little
close to reality. Below we consider one method of optimal
reorientation which uses the method of guidance by a required
velocity and method of free trajectories.

4. Application of the Method of Guidance by
a Required Velocity for Controlled Maneuver

Method's essence consists in periodical correction of
spacecraft's attitude trajectory at specified instants of time.
Control is reduced to correction for which onboard computer
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determines angular velocity that is necessary for reaching the
given attitude Λf under free rotation, calculation of the desired
angular momentum, corresponding to the calculated angular
rate, and a transferring a correction impulse ΔL to spacecraft's
body having angular momentum L, if the latter is substantially
different from the desired value. Every time, guidance is
carried out from current attitude Λ(t) to the given position Λf .
Angular rates that are required for next site of attitude
trajectory are calculated by condition of minimum fuel
expenditure for further control of spacecraft rotation. The used
predictive model has specific feature, the form of this model
gives forecast of free rotation in class of spacecraft motion
along conical trajectories where direction of angular
momentum of dynamically symmetric body is constant in
inertial coordinate system. Such approach allows us to solve
problem of constructing the optimal control of arbitrary
spacecraft turn using the iterations method. Free rotation of a
spacecraft is a combination of two motions: precession of
longitudinal axis ОX about angular momentum vector L and
spacecraft's rotation itself about longitudinal axisОX.

For axial-symmetric body (J2=J3) the rates of precession 

and proper rotation  are constant and connected between
themselves by the dependence:  =  (J/J1 - 1)cos, where J
is moment of inertia with respect to transverse axis, J1 is
moment of inertia with respect to longitudinal axis, and  is
angle of nutation (angle between longitudinal axis ОX and
angular momentum L). The desired vector L* runs in the plane
which is perpendicular to plane XsOXf and is deviated from
axis ОX on angle ϑ that guarantees spacecraft's rotation
simultaneously through angles  and  in time Tdes (we note
that Xs and Xf are the directions of spacecraft’s longitudinal
axis before and after reorientation).

Situations when boundary rates  (0)=  (Т )=0 (such
conditions of spacecraft turn are most typical) are of practical
importance. Of course, at times t=0 and t=T angular rate for
nominal rotation program are not zero. Consequently, transfer
phases are necessary: acceleration of rotation as transition
from state of rest (when  = 0) to regime of rotation with
angular momentum of maximum magnitude Lm, and braking,
i.e. reduction of spacecraft’s angular rate to zero (value Lm is
specified by turn duration T). Between acceleration of rotation
and braking, spacecraft carries out free motion.

We find prediction of free rotation in form of regular
precession of dynamically symmetric body. Parameters of
predictive model are computed using the condition of maximal
approximation of the predicted motion to real rotation of a
spacecraft. Let us study system of equations that reflects
motion within uncontrolled phase (Mc = 0). For many
spacecrafts, J2 ≈ J3, but J2 ≠ J3. Further on, for definiteness we
suppose J2 > J3 , and J3 much more than J1 and |J2 - J3| much

less than J1. Then the moment (J3 - J2)ω2ω3 is insignificant,
and we assume it as perturbation (we neglect its influence on
prediction). For complete integrability of equations of rotation
(including kinematic equations for spacecraft attitude) we use
assumption about dynamical symmetry of a spacecraft (for
predicting only). Moment of inertia J around transversal axis
must satisfy the relationship J3<J<J2 . For decreasing the errors
of model, choice of concrete value J must preserve invariable
characteristic equation of the system. Therefore, condition for
finding the value J consists in following:

32
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since ω1 = const = ω10 in simplified system (i.e. system (1)
without the moment (J3 - J2)ω2ω3), and cyclic frequency is

)/())(( 32121310 JJJJJJf  (we know that dynamically

symmetric body has cyclic frequency ω10(J - J1)/J because
ω1 =const).

Dynamics of real spacecraft during free motion is described
by the following system:
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where Mxp , Myp , Mzp are moments of perturbations,
and  1)/1)(/1( 3121
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Torques in right-hand parts of Equations (8) are
small (they can be assumed as perturbations), and
they are neglected in predictive model. Then, we
can write predictive model as the following system:
ω1 =ω10 = const ,

  03112  JJJ 
,   02113  JJJ  (9)

Solving the boundary value problem Λ(tj)=Λj , Λ(tf)=Λf

with (2), (9) taken into account, we will find expressions for
calculating the required angular rates ω10, ω20, and ω30 (at the
beginning of segment of the uncontrolled motion). We remind
that j is number of correction, tj is instant of beginning the
correction; fist segment of free motion starts with initial
angular velocities which satisfy the boundary value problem
Λ(0)=Λin ,Λ(tf)=Λf for dynamic system (2), (9).

Taking into account that distinction between real and the
predicted rotation is insignificant, we apply method of iterative
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where  = arctg(p20 / p30);  is the angle between the
spacecraft’s longitudinal axis and the vector р (0    ); 
is the angular velocity of its own rotation (around the
longitudinal axis); and  is the angular velocity of the
precession (around the vector р). Characteristic (6) is equal to

S=  222
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22
1 sin)cos( JJ

where  is angle of turn about longitudinal axis;  is angle
of turn about vector р (note, p10=cos  ). Optimal values of
parameters p0,  ,  , and  are determined by the boundary
angularpositionsΛin andΛf throughthe system ofequations [23]
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concurrently with condition J1(+cos)2 + J 2sin2 min
( , 0 ), where J1 is the moment of inertia about

longitudinal axis of a spacecraft; J is the moment of inertia
about transverse axis of a spacecraft. Optimal values of vector
p0 and values α, β, and , which satisfy the given attitudesΛin
and Λf in initial and final instants, can be determined with use
of known device [30].

It is essential that many known methods are unsuitable for
situations when initial angle of turn between attitudes Λin and
Λf is large. Many researchers use method of combining
synthesis which use predictive model. But such algorithms
give final result and control program that completely depends
from the assumed form of predictive model (the chosen model
of motion forecast completely determines type of controlled
rotation during maneuver). Any author has insuperable
mathematical difficulties if takes predictive model even little
close to reality. Below we consider one method of optimal
reorientation which uses the method of guidance by a required
velocity and method of free trajectories.

4. Application of the Method of Guidance by
a Required Velocity for Controlled Maneuver

Method's essence consists in periodical correction of
spacecraft's attitude trajectory at specified instants of time.
Control is reduced to correction for which onboard computer
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where 1321 /)( JJJk  , 2132 /)( JJJk  , and

3213 /)( JJJk  are constant coefficients.

Idea of the proposed principle of control consists in
determining such angular momentum L* under which
spacecraft transfers in given attitude Λf under free motion. In
this case, fuel is expended for spacecraft’s acceleration and
braking (for increasing the angular velocity and damping of
rotation). Reorientation itself is fulfilled without control torque
(Mc = 0), and therefore, regime of fuel economy is made
practically along entire trajectory of motion. For this approach,
basic turn is executed with zero fuel expenditure, and mode of
a controlled turn is optimum. Possibility of designing the
optimal solution in class of two-impulse control is justified by
fact that each segment of attitude trajectory is optimal for
chosen criterion. Expense is G = Gac + Gfm + Gbr, where Gac is
fuel expenditures during acceleration of a spacecraft, Gbr is
expenditures during a braking of a spacecraft, and Gfm is fuel
expenditures within phase of spacecraft’s free rotation
(between acceleration and braking).

For slew maneuver, important characteristic is an integral
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The value S is determined only by rotation conditions in ,

f , and spacecraft’s principal central moments of inertia J1, J2,
J3. The calculated value S is S = Kctex , where Kc is arbitrary
magnitude of angular momentum (Kc > 0); tex is the expected
time of reorientation from position  in into position  f , i.e.
time when equality  = f holds for solution (t) of system of
Equations (2), (5) with initial conditions (0)=Kc*/JSC*,
Λ(0)=Λin (the corresponding theorem can be proven [24]),
where  * is solution of the boundary problem Λ(0)=Λin ,
Λ(tf)=Λf , taking into account the Equations (2), (5); tf is time
of arrival to position Λf obtained by simulation of motion
according to the Equations (2), (5).

The boundary value problem Λ(tj)=Λin , Λ(tf)=Λf , for the
system of Equations (2), (5), has analytical solution (in
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about transverse axis of a spacecraft. Optimal values of vector
p0 and values α, β, and , which satisfy the given attitudesΛin
and Λf in initial and final instants, can be determined with use
of known device [30].

It is essential that many known methods are unsuitable for
situations when initial angle of turn between attitudes Λin and
Λf is large. Many researchers use method of combining
synthesis which use predictive model. But such algorithms
give final result and control program that completely depends
from the assumed form of predictive model (the chosen model
of motion forecast completely determines type of controlled
rotation during maneuver). Any author has insuperable
mathematical difficulties if takes predictive model even little
close to reality. Below we consider one method of optimal
reorientation which uses the method of guidance by a required
velocity and method of free trajectories.

4. Application of the Method of Guidance by
a Required Velocity for Controlled Maneuver

Method's essence consists in periodical correction of
spacecraft's attitude trajectory at specified instants of time.
Control is reduced to correction for which onboard computer
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determines angular velocity that is necessary for reaching the
given attitude Λf under free rotation, calculation of the desired
angular momentum, corresponding to the calculated angular
rate, and a transferring a correction impulse ΔL to spacecraft's
body having angular momentum L, if the latter is substantially
different from the desired value. Every time, guidance is
carried out from current attitude Λ(t) to the given position Λf .
Angular rates that are required for next site of attitude
trajectory are calculated by condition of minimum fuel
expenditure for further control of spacecraft rotation. The used
predictive model has specific feature, the form of this model
gives forecast of free rotation in class of spacecraft motion
along conical trajectories where direction of angular
momentum of dynamically symmetric body is constant in
inertial coordinate system. Such approach allows us to solve
problem of constructing the optimal control of arbitrary
spacecraft turn using the iterations method. Free rotation of a
spacecraft is a combination of two motions: precession of
longitudinal axis ОX about angular momentum vector L and
spacecraft's rotation itself about longitudinal axisОX.

For axial-symmetric body (J2=J3) the rates of precession 

and proper rotation  are constant and connected between
themselves by the dependence:  =  (J/J1 - 1)cos, where J
is moment of inertia with respect to transverse axis, J1 is
moment of inertia with respect to longitudinal axis, and  is
angle of nutation (angle between longitudinal axis ОX and
angular momentum L). The desired vector L* runs in the plane
which is perpendicular to plane XsOXf and is deviated from
axis ОX on angle ϑ that guarantees spacecraft's rotation
simultaneously through angles  and  in time Tdes (we note
that Xs and Xf are the directions of spacecraft’s longitudinal
axis before and after reorientation).

Situations when boundary rates  (0)=  (Т )=0 (such
conditions of spacecraft turn are most typical) are of practical
importance. Of course, at times t=0 and t=T angular rate for
nominal rotation program are not zero. Consequently, transfer
phases are necessary: acceleration of rotation as transition
from state of rest (when  = 0) to regime of rotation with
angular momentum of maximum magnitude Lm, and braking,
i.e. reduction of spacecraft’s angular rate to zero (value Lm is
specified by turn duration T). Between acceleration of rotation
and braking, spacecraft carries out free motion.

We find prediction of free rotation in form of regular
precession of dynamically symmetric body. Parameters of
predictive model are computed using the condition of maximal
approximation of the predicted motion to real rotation of a
spacecraft. Let us study system of equations that reflects
motion within uncontrolled phase (Mc = 0). For many
spacecrafts, J2 ≈ J3, but J2 ≠ J3. Further on, for definiteness we
suppose J2 > J3 , and J3 much more than J1 and |J2 - J3| much

less than J1. Then the moment (J3 - J2)ω2ω3 is insignificant,
and we assume it as perturbation (we neglect its influence on
prediction). For complete integrability of equations of rotation
(including kinematic equations for spacecraft attitude) we use
assumption about dynamical symmetry of a spacecraft (for
predicting only). Moment of inertia J around transversal axis
must satisfy the relationship J3<J<J2 . For decreasing the errors
of model, choice of concrete value J must preserve invariable
characteristic equation of the system. Therefore, condition for
finding the value J consists in following:
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since ω1 = const = ω10 in simplified system (i.e. system (1)
without the moment (J3 - J2)ω2ω3), and cyclic frequency is

)/())(( 32121310 JJJJJJf  (we know that dynamically

symmetric body has cyclic frequency ω10(J - J1)/J because
ω1 =const).

Dynamics of real spacecraft during free motion is described
by the following system:
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where Mxp , Myp , Mzp are moments of perturbations,
and  1)/1)(/1( 3121
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Torques in right-hand parts of Equations (8) are
small (they can be assumed as perturbations), and
they are neglected in predictive model. Then, we
can write predictive model as the following system:
ω1 =ω10 = const ,

  03112  JJJ 
,   02113  JJJ  (9)

Solving the boundary value problem Λ(tj)=Λj , Λ(tf)=Λf

with (2), (9) taken into account, we will find expressions for
calculating the required angular rates ω10, ω20, and ω30 (at the
beginning of segment of the uncontrolled motion). We remind
that j is number of correction, tj is instant of beginning the
correction; fist segment of free motion starts with initial
angular velocities which satisfy the boundary value problem
Λ(0)=Λin ,Λ(tf)=Λf for dynamic system (2), (9).

Taking into account that distinction between real and the
predicted rotation is insignificant, we apply method of iterative
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guidance in order to synthesise control program, for impulses
of jet engines, during reorientation. In accordance with this
principle, entire trajectory of attitude is partitioned in a number
of sites within which there is no control (impulses of jet
engines are absent). Transition from one site to another site is
executed by impulses of correction. There is only one
requirement to the sites of uncontrolled rotation: they must
pass through positions  (t) and  f. At instant of correction
impulse, the calculated angular velocity (the programmed
value) is determined

i 0= iimi JpL 0nom  , and

Lm=m0   2/)/(411 2
des0des TmST 

where pi 0 are computed by the system (7) in which
3210 ,,,  are components of quaternion of discrepancy

fd
~

  at beginning of correction impulse. If

correction impulses are carried out continuously then pi0

almost not change practically (because correction moments act
constantly in this case). If corrections are made periodically
and very often, then pi 0 vary very slightly (insignificantly) but
it require the increased expense of fuel also. We offer to
correct motion at discrete separate instants of time tj for
decrease of fuel consumption. For example, we can do
corrections according to the following law: correction impulse
is made at instant when condition f =k0 is satisfied, and

0= ))
~

(al2arccos(sq 0   ; f = ))
~

(al2arccos(sq f   ,
k=const
where tj is instant of start of motion correction (j is number of
correction), 0 is angle of turn from attitude of last previous
correction impulse to the current position , and  f is angle of
turn from current attitude to final position  f. After each
correction Λ0=Λ(tn), where tn is instant of acting the correction
impulse. For fist correction Λ0=Λin (before the beginning of a
turnΛ0=Λin).

It is expedient to select value of coefficient k close to unity.
When k increases (k > 1), size of the uncontrolled sites
increases also, perturbations are accumulated, that leads to
increasing fuel expenditure. When k decreases (k < 1),
corrections are made so frequently that control is almost
continuous. In this situation, necessary direction of angular
momentum is endlessly recomputed (its magnitude remains
constant). By virtue of smallness of sites of rotation this
direction is also almost constant in inertial coordinate system.
This senseless computing expenditure is totally unjustified
because it does not reduce fuel consumption in comparison
with control when spacecraft rotate along conical trajectory (in
form of regular precession with constant angle of nutation).

More best version of strategy for correction of spacecraft
rotation is variant when correction impulse is made at half of a
hitting trajectory (a predicted motion), i.e. when angle between
current position and position preset at ending a controlling
impulse (acceleration or correction) is equal to the angle
between current position and the required final position.
Condition for start of correction is

0sqal ( )   =
fsqal ( )   .

If the controlling moment М is limited, then a boost of
spacecraft angular momentum to the required level L=Lm at
beginning of a turn and damping of available angular
momentum to zero at end of reorientation maneuver occupy
some finite time (distinct from zero). In general case,
conditions of turn  in and  f may be such that one cannot
neglect transition segments (acceleration and braking). Quite
often the vector М obey condition (4). Since initial and final
angular velocities are equal to zero and magnitude of control
moment is constant  M  =const=m0 , duration of stages of
acceleration and braking is identical. Optimal solution  (t)
during segment of nominal motion (between acceleration and
braking) possesses property  L   const (inconstancy of
modulus of angular momentum can be due to a presence of
disturbing moments and inequality of the moments of inertia
J2=J3).

The laws of fastest imparting and reduction of angular
velocity under constraint (4) are known [11]. At segment of
acceleration, optimal control has following form [11]:

М=m0JSC / JSC (10)

where JSC = diag ( J1 , J2 , J3 ) is spacecraft’s
inertia tensor. If differentiate by time last
equation, taking into account the Equation (1),
then we will obtain the following equations

32231 MMM  , 13312 MMM  ,

21123 MMM 

which show that M is constant vector relative to inertial basis I,
and M=const=m0 . At optimal motion, angular momentum
of a spacecraft does not change direction in inertial coordinate
system. Magnitude of angular momentum varies according to
the law L=m0t . At segment of braking, optimal control is

М= m0JSC / JSC (11)

(the controlling moment М makes with angular momentum an
angle of 180 degree) [11]. Angular momentum varies according
to the law L= Lос  m0(t  tbr) , where Lос=JSC(tbr); tbr is
time of beginning of damping. For both acceleration and
braking, optimal control (as fast response) is control under
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guidance in order to synthesise control program, for impulses
of jet engines, during reorientation. In accordance with this
principle, entire trajectory of attitude is partitioned in a number
of sites within which there is no control (impulses of jet
engines are absent). Transition from one site to another site is
executed by impulses of correction. There is only one
requirement to the sites of uncontrolled rotation: they must
pass through positions  (t) and  f. At instant of correction
impulse, the calculated angular velocity (the programmed
value) is determined
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where pi 0 are computed by the system (7) in which
3210 ,,,  are components of quaternion of discrepancy

fd
~

  at beginning of correction impulse. If

correction impulses are carried out continuously then pi0

almost not change practically (because correction moments act
constantly in this case). If corrections are made periodically
and very often, then pi 0 vary very slightly (insignificantly) but
it require the increased expense of fuel also. We offer to
correct motion at discrete separate instants of time tj for
decrease of fuel consumption. For example, we can do
corrections according to the following law: correction impulse
is made at instant when condition f =k0 is satisfied, and

0= ))
~

(al2arccos(sq 0   ; f = ))
~

(al2arccos(sq f   ,
k=const
where tj is instant of start of motion correction (j is number of
correction), 0 is angle of turn from attitude of last previous
correction impulse to the current position , and  f is angle of
turn from current attitude to final position  f. After each
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turnΛ0=Λin).
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When k increases (k > 1), size of the uncontrolled sites
increases also, perturbations are accumulated, that leads to
increasing fuel expenditure. When k decreases (k < 1),
corrections are made so frequently that control is almost
continuous. In this situation, necessary direction of angular
momentum is endlessly recomputed (its magnitude remains
constant). By virtue of smallness of sites of rotation this
direction is also almost constant in inertial coordinate system.
This senseless computing expenditure is totally unjustified
because it does not reduce fuel consumption in comparison
with control when spacecraft rotate along conical trajectory (in
form of regular precession with constant angle of nutation).

More best version of strategy for correction of spacecraft
rotation is variant when correction impulse is made at half of a
hitting trajectory (a predicted motion), i.e. when angle between
current position and position preset at ending a controlling
impulse (acceleration or correction) is equal to the angle
between current position and the required final position.
Condition for start of correction is

0sqal ( )   =
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If the controlling moment М is limited, then a boost of
spacecraft angular momentum to the required level L=Lm at
beginning of a turn and damping of available angular
momentum to zero at end of reorientation maneuver occupy
some finite time (distinct from zero). In general case,
conditions of turn  in and  f may be such that one cannot
neglect transition segments (acceleration and braking). Quite
often the vector М obey condition (4). Since initial and final
angular velocities are equal to zero and magnitude of control
moment is constant  M  =const=m0 , duration of stages of
acceleration and braking is identical. Optimal solution  (t)
during segment of nominal motion (between acceleration and
braking) possesses property  L   const (inconstancy of
modulus of angular momentum can be due to a presence of
disturbing moments and inequality of the moments of inertia
J2=J3).

The laws of fastest imparting and reduction of angular
velocity under constraint (4) are known [11]. At segment of
acceleration, optimal control has following form [11]:

М=m0JSC / JSC (10)

where JSC = diag ( J1 , J2 , J3 ) is spacecraft’s
inertia tensor. If differentiate by time last
equation, taking into account the Equation (1),
then we will obtain the following equations
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which show that M is constant vector relative to inertial basis I,
and M=const=m0 . At optimal motion, angular momentum
of a spacecraft does not change direction in inertial coordinate
system. Magnitude of angular momentum varies according to
the law L=m0t . At segment of braking, optimal control is

М= m0JSC / JSC (11)

(the controlling moment М makes with angular momentum an
angle of 180 degree) [11]. Angular momentum varies according
to the law L= Lос  m0(t  tbr) , where Lос=JSC(tbr); tbr is
time of beginning of damping. For both acceleration and
braking, optimal control (as fast response) is control under
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which the controlling moment is parallel to angular momentum at
any momentof time.

The proposed algorithm performs the control of spacecraft
rotation according to method of free trajectories. It presumes
correction of spacecraft's rotation at certain discrete instant of
time. Entire attitude trajectory consists of alternating the
controlled phases and uncontrolled phases, and it includes
phases of acceleration and braking, phases of free rotation
(when Mc = 0) and short-time phases of correcting the attitude
trajectory. Task of control is to provide such start conditions
for uncontrolled phases that the predicted trajectory of rotation
must pass through final attitude Λf. For synthesis of control
impulses, quaternion of turn fn

)(
t )(

~
 tn , at beginning

of each non-controlled site tn , is calculated. Using it, initial
rates ω10, ω20, ω30 are computed for next site of uncontrolled
rotation. Usually, from one to three or five correcting impulses
(it depends on turn angle) are sufficient for reorientation.
Optimization consists in determining the time of rotation's
acceleration and damping of rotation. Control torque on
segment of acceleration (braking) is specified by conditions:
(10) for acceleration segment, and (11) on the braking segment.
Control moment remains immobile vector in inertial space
during both segments. Duration of acceleration (braking) τ can
be determined as tactbr=τ=

  2/)/(411 2
des0des TmST  , and time of free motion is

tfree= )/(41 2
des0des TmST  (it is assumed that 4S

< 2
des0Tm ). Let us explain it.

For free rotation, integral of modulus of spacecraft’s
angular momentum S does not depend from time of turn T [24].
If durations of transition periods tac and tbr (acceleration and
braking) are small, and the sum tac+tbr much less than Tdes,
then integral of modulus of angular momentum during rotation
time Т barely changes and remains close to S , and the change
of modulus of angular momentum during acceleration and
braking can be considered linear. Then we have the equality
(Tdes ( tac+ tbr)/ 2 )Lm=S , where Lm is modulus of angular
momentum at phase of nominal rotation (when L=const );
 tac and  tbr are durations of acceleration and extinction of
angular momentum. We have  tac+  tтr  2Lm/m0 , since
=Lm/m0 is minimal possible acceleration (braking) time with
restriction  М   m0 . Hence Lm  S/(Tdes   ) and
TdesS/Lm+Lm/m0 (since times of acceleration tac and braking
tbr are equal).

As a result, control for spacecraft’s spatial reorientation
consists in following operations:

(1) The computing the turn quaternion fint
~

  ,

and the determining the required angular velocities ω10, ω20,
andω30 for next uncontrolled phase.

(2) Acceleration of rotation to the calculated angular
momentum L* under control

Mc=m0(L*-L)/ L*-L,

where L* = 
~

in  Lpr in
~
   , and Lpr is preset vector of

angular momentum with components Jiωi 0 ;
(3) Free rotation (Mc= 0) until instant tn , when

0sqal ( ( ))nt   = )
~

)((sqal f nt .

(4) At instant tn one should calculate new quaternion of turn
and compute initial rates ωi n for new site of attitude trajectory
(new hitting trajectory). Then the controlling impulse ΔL:
ΔLi = Ji(ωin - ωi) is calculated. Control torques are computed
Mi = ΔLi/Δt, where Δt is calculated from constraint (4) (Δt is
minimum possible value but such that constraint (4) is valid).

Then one should set t0 = tn and repeat items (3) and (4)
until instant for which 2f > L/m0 .

(5) Damping of spacecraft’s rotation using control torque
(11) for which Mc·L<0,   brc

~
MM , where

Mbr =br  Lbr br
~
 , and Lbr , br are angular momentum and

quaternion of spacecraft attitude at instant of start of braking
(i.e., control torque is directed exactly against angular

momentum, and direction of controlling torque is constant in
inertial basis).

The proposed algorithm of spacecraft’s attitude control was
patented earlier [29]. Angular velocitiesωin required for next site
of uncontrolled trajectory are determined using the condition
of minimum consumption for control of maneuver terminating.
Evidently, in neighborhood of the programmed angular rate
ω* we can assume that ωin = *

in , i.e. direction of angular

rate is immobile (it is known after calculating the vector ω*),
and modulus of angular velocity vector must be optimized:
  → var. Therefore, consumption of fuel for maneuver
terminating is function of single parameter . Spacecraft’s
rotation begins to be damped since the instant when equality
2f =L/m0 becomes satisfied.

Optimal control problem of three-dimensional reorientation
was solved applying algorithm of joint synthesis based on use
of predictive model. Constructed control law is quasi-optimal
and invariant, and it does not require exact knowledge of
rotation model parameters. Efficiency in sense of energy-
saving control is reached by the mode when control torque is
absent during main part of maneuver (Mc = 0), and high
precision is ensured by the constructing the feedback with use
of data about spacecraft's attitude and angular velocity when
control torques are formed and generated.

DOI: https://doi.org/10.30564/jmer.v4i2.3725



37

Journal of Mechanical Materials and Mechanics Research

36

Journal of Mechanical Engineering Research | Volume 04 | Issue 02 | September 2021

Distributed under creative commons license 4.0

Journal of Mechanical Engineering Research | Volume 04 | Issue 02 | September 2021

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jmer.v4i2.3725
Distributed under creative commons license 4.020

36

guidance in order to synthesise control program, for impulses
of jet engines, during reorientation. In accordance with this
principle, entire trajectory of attitude is partitioned in a number
of sites within which there is no control (impulses of jet
engines are absent). Transition from one site to another site is
executed by impulses of correction. There is only one
requirement to the sites of uncontrolled rotation: they must
pass through positions  (t) and  f. At instant of correction
impulse, the calculated angular velocity (the programmed
value) is determined
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where pi 0 are computed by the system (7) in which
3210 ,,,  are components of quaternion of discrepancy
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  at beginning of correction impulse. If

correction impulses are carried out continuously then pi0

almost not change practically (because correction moments act
constantly in this case). If corrections are made periodically
and very often, then pi 0 vary very slightly (insignificantly) but
it require the increased expense of fuel also. We offer to
correct motion at discrete separate instants of time tj for
decrease of fuel consumption. For example, we can do
corrections according to the following law: correction impulse
is made at instant when condition f =k0 is satisfied, and

0= ))
~

(al2arccos(sq 0   ; f = ))
~

(al2arccos(sq f   ,
k=const
where tj is instant of start of motion correction (j is number of
correction), 0 is angle of turn from attitude of last previous
correction impulse to the current position , and  f is angle of
turn from current attitude to final position  f. After each
correction Λ0=Λ(tn), where tn is instant of acting the correction
impulse. For fist correction Λ0=Λin (before the beginning of a
turnΛ0=Λin).

It is expedient to select value of coefficient k close to unity.
When k increases (k > 1), size of the uncontrolled sites
increases also, perturbations are accumulated, that leads to
increasing fuel expenditure. When k decreases (k < 1),
corrections are made so frequently that control is almost
continuous. In this situation, necessary direction of angular
momentum is endlessly recomputed (its magnitude remains
constant). By virtue of smallness of sites of rotation this
direction is also almost constant in inertial coordinate system.
This senseless computing expenditure is totally unjustified
because it does not reduce fuel consumption in comparison
with control when spacecraft rotate along conical trajectory (in
form of regular precession with constant angle of nutation).

More best version of strategy for correction of spacecraft
rotation is variant when correction impulse is made at half of a
hitting trajectory (a predicted motion), i.e. when angle between
current position and position preset at ending a controlling
impulse (acceleration or correction) is equal to the angle
between current position and the required final position.
Condition for start of correction is

0sqal ( )   =
fsqal ( )   .

If the controlling moment М is limited, then a boost of
spacecraft angular momentum to the required level L=Lm at
beginning of a turn and damping of available angular
momentum to zero at end of reorientation maneuver occupy
some finite time (distinct from zero). In general case,
conditions of turn  in and  f may be such that one cannot
neglect transition segments (acceleration and braking). Quite
often the vector М obey condition (4). Since initial and final
angular velocities are equal to zero and magnitude of control
moment is constant  M  =const=m0 , duration of stages of
acceleration and braking is identical. Optimal solution  (t)
during segment of nominal motion (between acceleration and
braking) possesses property  L   const (inconstancy of
modulus of angular momentum can be due to a presence of
disturbing moments and inequality of the moments of inertia
J2=J3).

The laws of fastest imparting and reduction of angular
velocity under constraint (4) are known [11]. At segment of
acceleration, optimal control has following form [11]:

М=m0JSC / JSC (10)

where JSC = diag ( J1 , J2 , J3 ) is spacecraft’s
inertia tensor. If differentiate by time last
equation, taking into account the Equation (1),
then we will obtain the following equations

32231 MMM  , 13312 MMM  ,

21123 MMM 

which show that M is constant vector relative to inertial basis I,
and M=const=m0 . At optimal motion, angular momentum
of a spacecraft does not change direction in inertial coordinate
system. Magnitude of angular momentum varies according to
the law L=m0t . At segment of braking, optimal control is

М= m0JSC / JSC (11)

(the controlling moment М makes with angular momentum an
angle of 180 degree) [11]. Angular momentum varies according
to the law L= Lос  m0(t  tbr) , where Lос=JSC(tbr); tbr is
time of beginning of damping. For both acceleration and
braking, optimal control (as fast response) is control under
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guidance in order to synthesise control program, for impulses
of jet engines, during reorientation. In accordance with this
principle, entire trajectory of attitude is partitioned in a number
of sites within which there is no control (impulses of jet
engines are absent). Transition from one site to another site is
executed by impulses of correction. There is only one
requirement to the sites of uncontrolled rotation: they must
pass through positions  (t) and  f. At instant of correction
impulse, the calculated angular velocity (the programmed
value) is determined

i 0= iimi JpL 0nom  , and

Lm=m0   2/)/(411 2
des0des TmST 

where pi 0 are computed by the system (7) in which
3210 ,,,  are components of quaternion of discrepancy

fd
~

  at beginning of correction impulse. If

correction impulses are carried out continuously then pi0

almost not change practically (because correction moments act
constantly in this case). If corrections are made periodically
and very often, then pi 0 vary very slightly (insignificantly) but
it require the increased expense of fuel also. We offer to
correct motion at discrete separate instants of time tj for
decrease of fuel consumption. For example, we can do
corrections according to the following law: correction impulse
is made at instant when condition f =k0 is satisfied, and

0= ))
~

(al2arccos(sq 0   ; f = ))
~

(al2arccos(sq f   ,
k=const
where tj is instant of start of motion correction (j is number of
correction), 0 is angle of turn from attitude of last previous
correction impulse to the current position , and  f is angle of
turn from current attitude to final position  f. After each
correction Λ0=Λ(tn), where tn is instant of acting the correction
impulse. For fist correction Λ0=Λin (before the beginning of a
turnΛ0=Λin).

It is expedient to select value of coefficient k close to unity.
When k increases (k > 1), size of the uncontrolled sites
increases also, perturbations are accumulated, that leads to
increasing fuel expenditure. When k decreases (k < 1),
corrections are made so frequently that control is almost
continuous. In this situation, necessary direction of angular
momentum is endlessly recomputed (its magnitude remains
constant). By virtue of smallness of sites of rotation this
direction is also almost constant in inertial coordinate system.
This senseless computing expenditure is totally unjustified
because it does not reduce fuel consumption in comparison
with control when spacecraft rotate along conical trajectory (in
form of regular precession with constant angle of nutation).

More best version of strategy for correction of spacecraft
rotation is variant when correction impulse is made at half of a
hitting trajectory (a predicted motion), i.e. when angle between
current position and position preset at ending a controlling
impulse (acceleration or correction) is equal to the angle
between current position and the required final position.
Condition for start of correction is

0sqal ( )   =
fsqal ( )   .

If the controlling moment М is limited, then a boost of
spacecraft angular momentum to the required level L=Lm at
beginning of a turn and damping of available angular
momentum to zero at end of reorientation maneuver occupy
some finite time (distinct from zero). In general case,
conditions of turn  in and  f may be such that one cannot
neglect transition segments (acceleration and braking). Quite
often the vector М obey condition (4). Since initial and final
angular velocities are equal to zero and magnitude of control
moment is constant  M  =const=m0 , duration of stages of
acceleration and braking is identical. Optimal solution  (t)
during segment of nominal motion (between acceleration and
braking) possesses property  L   const (inconstancy of
modulus of angular momentum can be due to a presence of
disturbing moments and inequality of the moments of inertia
J2=J3).

The laws of fastest imparting and reduction of angular
velocity under constraint (4) are known [11]. At segment of
acceleration, optimal control has following form [11]:

М=m0JSC / JSC (10)

where JSC = diag ( J1 , J2 , J3 ) is spacecraft’s
inertia tensor. If differentiate by time last
equation, taking into account the Equation (1),
then we will obtain the following equations

32231 MMM  , 13312 MMM  ,

21123 MMM 

which show that M is constant vector relative to inertial basis I,
and M=const=m0 . At optimal motion, angular momentum
of a spacecraft does not change direction in inertial coordinate
system. Magnitude of angular momentum varies according to
the law L=m0t . At segment of braking, optimal control is

М= m0JSC / JSC (11)

(the controlling moment М makes with angular momentum an
angle of 180 degree) [11]. Angular momentum varies according
to the law L= Lос  m0(t  tbr) , where Lос=JSC(tbr); tbr is
time of beginning of damping. For both acceleration and
braking, optimal control (as fast response) is control under
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which the controlling moment is parallel to angular momentum at
any momentof time.

The proposed algorithm performs the control of spacecraft
rotation according to method of free trajectories. It presumes
correction of spacecraft's rotation at certain discrete instant of
time. Entire attitude trajectory consists of alternating the
controlled phases and uncontrolled phases, and it includes
phases of acceleration and braking, phases of free rotation
(when Mc = 0) and short-time phases of correcting the attitude
trajectory. Task of control is to provide such start conditions
for uncontrolled phases that the predicted trajectory of rotation
must pass through final attitude Λf. For synthesis of control
impulses, quaternion of turn fn

)(
t )(

~
 tn , at beginning

of each non-controlled site tn , is calculated. Using it, initial
rates ω10, ω20, ω30 are computed for next site of uncontrolled
rotation. Usually, from one to three or five correcting impulses
(it depends on turn angle) are sufficient for reorientation.
Optimization consists in determining the time of rotation's
acceleration and damping of rotation. Control torque on
segment of acceleration (braking) is specified by conditions:
(10) for acceleration segment, and (11) on the braking segment.
Control moment remains immobile vector in inertial space
during both segments. Duration of acceleration (braking) τ can
be determined as tactbr=τ=

  2/)/(411 2
des0des TmST  , and time of free motion is

tfree= )/(41 2
des0des TmST  (it is assumed that 4S

< 2
des0Tm ). Let us explain it.

For free rotation, integral of modulus of spacecraft’s
angular momentum S does not depend from time of turn T [24].
If durations of transition periods tac and tbr (acceleration and
braking) are small, and the sum tac+tbr much less than Tdes,
then integral of modulus of angular momentum during rotation
time Т barely changes and remains close to S , and the change
of modulus of angular momentum during acceleration and
braking can be considered linear. Then we have the equality
(Tdes ( tac+ tbr)/ 2 )Lm=S , where Lm is modulus of angular
momentum at phase of nominal rotation (when L=const );
 tac and  tbr are durations of acceleration and extinction of
angular momentum. We have  tac+  tтr  2Lm/m0 , since
=Lm/m0 is minimal possible acceleration (braking) time with
restriction  М   m0 . Hence Lm  S/(Tdes   ) and
TdesS/Lm+Lm/m0 (since times of acceleration tac and braking
tbr are equal).

As a result, control for spacecraft’s spatial reorientation
consists in following operations:

(1) The computing the turn quaternion fint
~

  ,

and the determining the required angular velocities ω10, ω20,
andω30 for next uncontrolled phase.

(2) Acceleration of rotation to the calculated angular
momentum L* under control

Mc=m0(L*-L)/ L*-L,

where L* = 
~

in  Lpr in
~
   , and Lpr is preset vector of

angular momentum with components Jiωi 0 ;
(3) Free rotation (Mc= 0) until instant tn , when

0sqal ( ( ))nt   = )
~

)((sqal f nt .

(4) At instant tn one should calculate new quaternion of turn
and compute initial rates ωi n for new site of attitude trajectory
(new hitting trajectory). Then the controlling impulse ΔL:
ΔLi = Ji(ωin - ωi) is calculated. Control torques are computed
Mi = ΔLi/Δt, where Δt is calculated from constraint (4) (Δt is
minimum possible value but such that constraint (4) is valid).

Then one should set t0 = tn and repeat items (3) and (4)
until instant for which 2f > L/m0 .

(5) Damping of spacecraft’s rotation using control torque
(11) for which Mc·L<0,   brc

~
MM , where

Mbr =br  Lbr br
~
 , and Lbr , br are angular momentum and

quaternion of spacecraft attitude at instant of start of braking
(i.e., control torque is directed exactly against angular

momentum, and direction of controlling torque is constant in
inertial basis).

The proposed algorithm of spacecraft’s attitude control was
patented earlier [29]. Angular velocitiesωin required for next site
of uncontrolled trajectory are determined using the condition
of minimum consumption for control of maneuver terminating.
Evidently, in neighborhood of the programmed angular rate
ω* we can assume that ωin = *

in , i.e. direction of angular

rate is immobile (it is known after calculating the vector ω*),
and modulus of angular velocity vector must be optimized:
  → var. Therefore, consumption of fuel for maneuver
terminating is function of single parameter . Spacecraft’s
rotation begins to be damped since the instant when equality
2f =L/m0 becomes satisfied.

Optimal control problem of three-dimensional reorientation
was solved applying algorithm of joint synthesis based on use
of predictive model. Constructed control law is quasi-optimal
and invariant, and it does not require exact knowledge of
rotation model parameters. Efficiency in sense of energy-
saving control is reached by the mode when control torque is
absent during main part of maneuver (Mc = 0), and high
precision is ensured by the constructing the feedback with use
of data about spacecraft's attitude and angular velocity when
control torques are formed and generated.
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5. Application of the Method of Guidance by
a Required Velocity with Prediction

For improving an accuracy of reorientation and for
decrease of fuel consumption, we can use information about
calculated prognostic position  * at instant of satisfaction of
condition )

~
(sqal in   = )

~
(sqal f , which is obtained for

accurately predicted trajectory passed through current position
 and the required final positionΛf (i.e. *

insqal ( )   =
*

fsqal ( )  . Taking into account that real spacecraft
motion only slightly differs from the predicted one, let us
employ method of iterative guidance in order to form the
control moments in process of a turn. Its essence consists of
regular correction of spacecraft motion trajectory at fixed
moments of time. Correction consists of determining the
angular momentum L*, which is necessary for attaining the
final position  f, and of imparting the correcting impulse L
to angular momentum L of a spacecraft. Entire motion
trajectory will consist of alternating active and passive sections
and include accelerating and decelerating sections, sections of
free motion (Mc = 0), and short-term sections of trajectory
correction. Problem of control consists of providing initial
conditions for such uncontrolled sections, where predicted
motion travels through the required position  pr. At first
correction, the predicted calculated spacecraft position  * is
taken: *

1fpr )(
~

  t , and quaternion of turn for

computation of fist correction impulse  c is c 1( )t   
*

f 1( )t   
. At all other corrections of spacecraft

motion, pr=f and fc
~

 j .

It was assumed in prognostic model that spacecraft is
dynamically symmetric with respect to longitudinal axis and
that disturbing moments are negligibly small. Specificity of
this model is prediction of “free” motion of a spacecraft, in
class of regular precession of rigid body. If we, taking this into
account, solve kinematic problem of attitude with aim of
transferring a spacecraft from position 0 to position pr , we
get the calculated value of vector of angular momentum L*.
Velocities  10 ,  20 ,  30 required for next section of free
motion are determined from condition of fuel consumption
minimum for the following control of spacecraft turn. It is
evident that, in neighborhood of the calculated vector of
angular velocity *, we can consider its direction as fixed. In
this case, fuel consumption G is function of only magnitude of
angular velocity vector, which should be optimized. Sections
of acceleration and deceleration coincide with predicted
trajectories (because disturbance moment Md is much less than
control moment Mc), and their duration is determined by time
of a turn, value of control moment that could be achieved, and

quaternion of a turn. Duration of free motion sections is
determined from condition of minimization of the functional
G. Thus, control of spacecraft turn is reduced to successive
realization of the following operations:

(1) Calculation of turn quaternion fint
~

  and

determination of initial angular velocities for passive section
10 , 20 , 30; prediction of spacecraft angular position * to
instant of first correction )

~
(sqal *

in   = )
~

(sqal f
*   ;

determination of the required angular momentum L* and
control moment M; we set 0 =in;

(2) Acceleration of a spacecraft to the required angular
momentum, and magnitude of control moment is maximal;
accelerating torque is   acc

~
MM ; and Mac is

maximal accelerating torque in inertial coordinate system,
Mc·L>0;

(3) Free motion of a spacecraft (Mc = 0) up to instant when
0sqal ( ( ))jt   = fsqal ( ( ) )jt  , i.e., up to half of turn angle;

(4) At instant of time tj , determination of new turn
quaternion prt )(

~
 jt (moreover (1)

pr f   
*

1( )t   , and f
)(

pr  j if j >1) and determination of

initial angular velocities for new section (new hitting trajectory)
1j , 2j , 3j; determination of the required impulse of angular
momentum L equal L1 =J1(1j - 1) , L2 =J2 (2j - 2) ,
L3 = J3(3j -  3) and transfer of it to body of a spacecraft;
here control moment Mc =L/t (t is such that condition (4)
is satisfied; we assume that tin = tj and repeat points (3) and (4)
up to instant of time t= tf - ;

(5) Slowing down the angular velocities of a spacecraft
with maximum control moment Mc·L<0,   brc

~
MM

(i.e., control moment is directed exactly against the vector
of angular momentum).

Scheme of iterative control that is proposed here allows one
to take into account random factors on previous stages of
spacecraft motion, thus decreasing the fuel consumption
needed for control in further corrections. This is achieved due
to exploiting the information about random and stochastic
factors concerning spacecraft motion before first correction of
angular momentum. Quaternion   = 1

*~
  contains

information concerning stochastic factors, random acts and
perturbations, and factors that were not taken into account in
control law. If we introduce it in sight parameters while
forming the first correcting impulse, trajectory of free motion
will be passed with lesser deviation from the required final
position  f (and with lesser expenditures needed for its
compensation). Subsequent corrections are realized by
guidance at final position (“reaiming” is done every time, from
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5. Application of the Method of Guidance by
a Required Velocity with Prediction

For improving an accuracy of reorientation and for
decrease of fuel consumption, we can use information about
calculated prognostic position  * at instant of satisfaction of
condition )

~
(sqal in   = )

~
(sqal f , which is obtained for

accurately predicted trajectory passed through current position
 and the required final positionΛf (i.e. *

insqal ( )   =
*

fsqal ( )  . Taking into account that real spacecraft
motion only slightly differs from the predicted one, let us
employ method of iterative guidance in order to form the
control moments in process of a turn. Its essence consists of
regular correction of spacecraft motion trajectory at fixed
moments of time. Correction consists of determining the
angular momentum L*, which is necessary for attaining the
final position  f, and of imparting the correcting impulse L
to angular momentum L of a spacecraft. Entire motion
trajectory will consist of alternating active and passive sections
and include accelerating and decelerating sections, sections of
free motion (Mc = 0), and short-term sections of trajectory
correction. Problem of control consists of providing initial
conditions for such uncontrolled sections, where predicted
motion travels through the required position  pr. At first
correction, the predicted calculated spacecraft position  * is
taken: *

1fpr )(
~

  t , and quaternion of turn for

computation of fist correction impulse  c is c 1( )t   
*

f 1( )t   
. At all other corrections of spacecraft

motion, pr=f and fc
~

 j .

It was assumed in prognostic model that spacecraft is
dynamically symmetric with respect to longitudinal axis and
that disturbing moments are negligibly small. Specificity of
this model is prediction of “free” motion of a spacecraft, in
class of regular precession of rigid body. If we, taking this into
account, solve kinematic problem of attitude with aim of
transferring a spacecraft from position 0 to position pr , we
get the calculated value of vector of angular momentum L*.
Velocities  10 ,  20 ,  30 required for next section of free
motion are determined from condition of fuel consumption
minimum for the following control of spacecraft turn. It is
evident that, in neighborhood of the calculated vector of
angular velocity *, we can consider its direction as fixed. In
this case, fuel consumption G is function of only magnitude of
angular velocity vector, which should be optimized. Sections
of acceleration and deceleration coincide with predicted
trajectories (because disturbance moment Md is much less than
control moment Mc), and their duration is determined by time
of a turn, value of control moment that could be achieved, and

quaternion of a turn. Duration of free motion sections is
determined from condition of minimization of the functional
G. Thus, control of spacecraft turn is reduced to successive
realization of the following operations:

(1) Calculation of turn quaternion fint
~

  and

determination of initial angular velocities for passive section
10 , 20 , 30; prediction of spacecraft angular position * to
instant of first correction )

~
(sqal *

in   = )
~

(sqal f
*   ;

determination of the required angular momentum L* and
control moment M; we set 0 =in;

(2) Acceleration of a spacecraft to the required angular
momentum, and magnitude of control moment is maximal;
accelerating torque is   acc

~
MM ; and Mac is

maximal accelerating torque in inertial coordinate system,
Mc·L>0;

(3) Free motion of a spacecraft (Mc = 0) up to instant when
0sqal ( ( ))jt   = fsqal ( ( ) )jt  , i.e., up to half of turn angle;

(4) At instant of time tj , determination of new turn
quaternion prt )(

~
 jt (moreover (1)

pr f   
*

1( )t   , and f
)(

pr  j if j >1) and determination of

initial angular velocities for new section (new hitting trajectory)
1j , 2j , 3j; determination of the required impulse of angular
momentum L equal L1 =J1(1j - 1) , L2 =J2 (2j - 2) ,
L3 = J3(3j -  3) and transfer of it to body of a spacecraft;
here control moment Mc =L/t (t is such that condition (4)
is satisfied; we assume that tin = tj and repeat points (3) and (4)
up to instant of time t= tf - ;

(5) Slowing down the angular velocities of a spacecraft
with maximum control moment Mc·L<0,   brc

~
MM

(i.e., control moment is directed exactly against the vector
of angular momentum).

Scheme of iterative control that is proposed here allows one
to take into account random factors on previous stages of
spacecraft motion, thus decreasing the fuel consumption
needed for control in further corrections. This is achieved due
to exploiting the information about random and stochastic
factors concerning spacecraft motion before first correction of
angular momentum. Quaternion   = 1

*~
  contains

information concerning stochastic factors, random acts and
perturbations, and factors that were not taken into account in
control law. If we introduce it in sight parameters while
forming the first correcting impulse, trajectory of free motion
will be passed with lesser deviation from the required final
position  f (and with lesser expenditures needed for its
compensation). Subsequent corrections are realized by
guidance at final position (“reaiming” is done every time, from
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current position  to final one,  f). The obtained control
law for spacecraft turn is sufficiently close to optimal one and
allows one to decrease significantly the error in reducing the
axes related with the spacecraft to a fixed final position  f, in
relation to other algorithms for realizing the method of
guidance by a required velocity together with method of free
trajectories. If conditions of turn  in , f , and time T are such
that times of acceleration and braking are very small (in
comparison with total time of turn Т) and we may to neglect
them, then one can consider as impulsive processes both
imparting necessary angular momentum Lm to spacecraft and
reducing available angular momentum down to zero, and
almost during all turn (between acceleration and braking)
 L (t)  =const=Lm. These control algorithms can be easily
realized by existing onboard means.

If durations of acceleration and braking are much smaller
than duration of turn T, then the torque М is directed strictly
against angular momentum L at spacecraft braking, and
instant when braking begins can be predicted with high
accuracy. Duration of rotation damping is  =  L  /m0 [11].
Instant of beginning of braking segment is determined by the
condition [26]:

2
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where 1 , 2 , 3 are components of vector part of mismatch
quaternion f)(

~
 t ; К= J is magnitude of spacecraft’s

angular momentum. At braking segment, cancellation of
angular momentum is carried out according to linear law:
 L(t)  = Lm-т0(t- tbr) , where tbr is instant of beginning of
braking.

Thus, we solved the problem of control for a programmed
turn optimal with respect to fuel consumption on basis of
algorithm with prognostic model. We investigated case when
spacecraft’s inertial characteristics are not exactly known in
advance. Optimal solution to this problem is obtained in class
of controls realized by method of free trajectories. Numerical
realization of algorithm for coincident synthesis of optimal
control in process of spacecraft turn is affected. Effective
methods of control of terminal reorientation of a spacecraft is
presented, one of which additionally has adaptive qualities - it
is invariant with respect to external perturbations and
substantially insensitive with respect to parametric errors.
Indices of quality (economy and accuracy) of obtained laws
are sufficiently high. Relatively low level of fuel consumption
for a turn is achieved due to the transfer from permanent
control of spacecraft attitude to formation of control moments
only at certain definite instants of time. High accuracy of
attitude is achieved by correcting angular momentum of a

spacecraft by varying its angular momentum up to its
calculated value during reorientation process, at stage of free
rotation, at discrete instants of time. Determination of time
instant tbr according to actual (the measured values) kinematic
parameters of motion (angular mismatch and angular velocity)
improve accuracy of bringing the spacecraft into the required
state =f , =0.

6. Example of Numerical Solving the Control
Problem and Results of Mathematical Modeling

Let us provide numerical solution of spacecraft’s optimal
control problem with respect to a programmed rotation. We
consider maneuver from initial attitude Λin, when body axes
coincide with axes of the supporting basis I, into the given
final positionΛf with the following elements:

λ0 = 0, λ1 = 0.8, λ2 = 0.6, λ3 = 0

Spacecraft rotates from state of rest to state of rest, therefore
initial and final angular velocities are zero: ω(0)=ω(T)=0. We
assume that maximum possible magnitude of the controlling
moment m0 and spacecraft’s principal central inertia moments
have values:

m0=75 Nm, J1 = 63559.2 kgm2, J2 = 192218.5 kgm2, and J3

= 176808.9 kgm2

Also, we assume that duration of reorientation maneuver
should be 360 seconds, approximately. As result of solving
kinematic reorientation problem on transition from position
Λ(0)=Λin into position Λ(Т)=Λf (optimal rotation problem in
impulse statement), we obtained value of ort of spacecraft’s
angular momentum for end of acceleration segment
p0={0.600828; 0.451445; 0.659699}, if assume that spacecraft
is dynamically symmetric body.

Optimal motion of a spacecraft consists of segments on
which control moment maximum in magnitude acts (segments
of acceleration and braking), of segments of free rotation, and
of several corrections of angular motion within stage between
acceleration and braking. On segment of maximal control
moment, angular momentum vector L has permanent direction in
inertial space, but it is variable in magnitude (increase up to preset
value on acceleration segment, and decrease to zero on braking
segment), while moment М is immovable with respect to
reference basis I (the vectors М and L are parallel). During
spacecraft rotation with maximum angular momentum
modulus, parameters of motion are supported maximum
nearby to the programmed values by impulses of the control-

ling moment. In this case, angular momentum vector L has
approximately constant magnitude Lm between acceleration and
braking.Duringcorrection impulses direction ofangularmom
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5. Application of the Method of Guidance by
a Required Velocity with Prediction

For improving an accuracy of reorientation and for
decrease of fuel consumption, we can use information about
calculated prognostic position  * at instant of satisfaction of
condition )

~
(sqal in   = )

~
(sqal f , which is obtained for

accurately predicted trajectory passed through current position
 and the required final positionΛf (i.e. *

insqal ( )   =
*

fsqal ( )  . Taking into account that real spacecraft
motion only slightly differs from the predicted one, let us
employ method of iterative guidance in order to form the
control moments in process of a turn. Its essence consists of
regular correction of spacecraft motion trajectory at fixed
moments of time. Correction consists of determining the
angular momentum L*, which is necessary for attaining the
final position  f, and of imparting the correcting impulse L
to angular momentum L of a spacecraft. Entire motion
trajectory will consist of alternating active and passive sections
and include accelerating and decelerating sections, sections of
free motion (Mc = 0), and short-term sections of trajectory
correction. Problem of control consists of providing initial
conditions for such uncontrolled sections, where predicted
motion travels through the required position  pr. At first
correction, the predicted calculated spacecraft position  * is
taken: *

1fpr )(
~

  t , and quaternion of turn for

computation of fist correction impulse  c is c 1( )t   
*

f 1( )t   
. At all other corrections of spacecraft

motion, pr=f and fc
~

 j .

It was assumed in prognostic model that spacecraft is
dynamically symmetric with respect to longitudinal axis and
that disturbing moments are negligibly small. Specificity of
this model is prediction of “free” motion of a spacecraft, in
class of regular precession of rigid body. If we, taking this into
account, solve kinematic problem of attitude with aim of
transferring a spacecraft from position 0 to position pr , we
get the calculated value of vector of angular momentum L*.
Velocities  10 ,  20 ,  30 required for next section of free
motion are determined from condition of fuel consumption
minimum for the following control of spacecraft turn. It is
evident that, in neighborhood of the calculated vector of
angular velocity *, we can consider its direction as fixed. In
this case, fuel consumption G is function of only magnitude of
angular velocity vector, which should be optimized. Sections
of acceleration and deceleration coincide with predicted
trajectories (because disturbance moment Md is much less than
control moment Mc), and their duration is determined by time
of a turn, value of control moment that could be achieved, and

quaternion of a turn. Duration of free motion sections is
determined from condition of minimization of the functional
G. Thus, control of spacecraft turn is reduced to successive
realization of the following operations:

(1) Calculation of turn quaternion fint
~

  and

determination of initial angular velocities for passive section
10 , 20 , 30; prediction of spacecraft angular position * to
instant of first correction )

~
(sqal *

in   = )
~

(sqal f
*   ;

determination of the required angular momentum L* and
control moment M; we set 0 =in;

(2) Acceleration of a spacecraft to the required angular
momentum, and magnitude of control moment is maximal;
accelerating torque is   acc

~
MM ; and Mac is

maximal accelerating torque in inertial coordinate system,
Mc·L>0;

(3) Free motion of a spacecraft (Mc = 0) up to instant when
0sqal ( ( ))jt   = fsqal ( ( ) )jt  , i.e., up to half of turn angle;

(4) At instant of time tj , determination of new turn
quaternion prt )(

~
 jt (moreover (1)

pr f   
*

1( )t   , and f
)(

pr  j if j >1) and determination of

initial angular velocities for new section (new hitting trajectory)
1j , 2j , 3j; determination of the required impulse of angular
momentum L equal L1 =J1(1j - 1) , L2 =J2 (2j - 2) ,
L3 = J3(3j -  3) and transfer of it to body of a spacecraft;
here control moment Mc =L/t (t is such that condition (4)
is satisfied; we assume that tin = tj and repeat points (3) and (4)
up to instant of time t= tf - ;

(5) Slowing down the angular velocities of a spacecraft
with maximum control moment Mc·L<0,   brc

~
MM

(i.e., control moment is directed exactly against the vector
of angular momentum).

Scheme of iterative control that is proposed here allows one
to take into account random factors on previous stages of
spacecraft motion, thus decreasing the fuel consumption
needed for control in further corrections. This is achieved due
to exploiting the information about random and stochastic
factors concerning spacecraft motion before first correction of
angular momentum. Quaternion   = 1

*~
  contains

information concerning stochastic factors, random acts and
perturbations, and factors that were not taken into account in
control law. If we introduce it in sight parameters while
forming the first correcting impulse, trajectory of free motion
will be passed with lesser deviation from the required final
position  f (and with lesser expenditures needed for its
compensation). Subsequent corrections are realized by
guidance at final position (“reaiming” is done every time, from
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forming the first correcting impulse, trajectory of free motion
will be passed with lesser deviation from the required final
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current position  to final one,  f). The obtained control
law for spacecraft turn is sufficiently close to optimal one and
allows one to decrease significantly the error in reducing the
axes related with the spacecraft to a fixed final position  f, in
relation to other algorithms for realizing the method of
guidance by a required velocity together with method of free
trajectories. If conditions of turn  in , f , and time T are such
that times of acceleration and braking are very small (in
comparison with total time of turn Т) and we may to neglect
them, then one can consider as impulsive processes both
imparting necessary angular momentum Lm to spacecraft and
reducing available angular momentum down to zero, and
almost during all turn (between acceleration and braking)
 L (t)  =const=Lm. These control algorithms can be easily
realized by existing onboard means.

If durations of acceleration and braking are much smaller
than duration of turn T, then the torque М is directed strictly
against angular momentum L at spacecraft braking, and
instant when braking begins can be predicted with high
accuracy. Duration of rotation damping is  =  L  /m0 [11].
Instant of beginning of braking segment is determined by the
condition [26]:
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where 1 , 2 , 3 are components of vector part of mismatch
quaternion f)(

~
 t ; К= J is magnitude of spacecraft’s

angular momentum. At braking segment, cancellation of
angular momentum is carried out according to linear law:
 L(t)  = Lm-т0(t- tbr) , where tbr is instant of beginning of
braking.

Thus, we solved the problem of control for a programmed
turn optimal with respect to fuel consumption on basis of
algorithm with prognostic model. We investigated case when
spacecraft’s inertial characteristics are not exactly known in
advance. Optimal solution to this problem is obtained in class
of controls realized by method of free trajectories. Numerical
realization of algorithm for coincident synthesis of optimal
control in process of spacecraft turn is affected. Effective
methods of control of terminal reorientation of a spacecraft is
presented, one of which additionally has adaptive qualities - it
is invariant with respect to external perturbations and
substantially insensitive with respect to parametric errors.
Indices of quality (economy and accuracy) of obtained laws
are sufficiently high. Relatively low level of fuel consumption
for a turn is achieved due to the transfer from permanent
control of spacecraft attitude to formation of control moments
only at certain definite instants of time. High accuracy of
attitude is achieved by correcting angular momentum of a

spacecraft by varying its angular momentum up to its
calculated value during reorientation process, at stage of free
rotation, at discrete instants of time. Determination of time
instant tbr according to actual (the measured values) kinematic
parameters of motion (angular mismatch and angular velocity)
improve accuracy of bringing the spacecraft into the required
state =f , =0.

6. Example of Numerical Solving the Control
Problem and Results of Mathematical Modeling

Let us provide numerical solution of spacecraft’s optimal
control problem with respect to a programmed rotation. We
consider maneuver from initial attitude Λin, when body axes
coincide with axes of the supporting basis I, into the given
final positionΛf with the following elements:

λ0 = 0, λ1 = 0.8, λ2 = 0.6, λ3 = 0

Spacecraft rotates from state of rest to state of rest, therefore
initial and final angular velocities are zero: ω(0)=ω(T)=0. We
assume that maximum possible magnitude of the controlling
moment m0 and spacecraft’s principal central inertia moments
have values:

m0=75 Nm, J1 = 63559.2 kgm2, J2 = 192218.5 kgm2, and J3

= 176808.9 kgm2

Also, we assume that duration of reorientation maneuver
should be 360 seconds, approximately. As result of solving
kinematic reorientation problem on transition from position
Λ(0)=Λin into position Λ(Т)=Λf (optimal rotation problem in
impulse statement), we obtained value of ort of spacecraft’s
angular momentum for end of acceleration segment
p0={0.600828; 0.451445; 0.659699}, if assume that spacecraft
is dynamically symmetric body.

Optimal motion of a spacecraft consists of segments on
which control moment maximum in magnitude acts (segments
of acceleration and braking), of segments of free rotation, and
of several corrections of angular motion within stage between
acceleration and braking. On segment of maximal control
moment, angular momentum vector L has permanent direction in
inertial space, but it is variable in magnitude (increase up to preset
value on acceleration segment, and decrease to zero on braking
segment), while moment М is immovable with respect to
reference basis I (the vectors М and L are parallel). During
spacecraft rotation with maximum angular momentum
modulus, parameters of motion are supported maximum
nearby to the programmed values by impulses of the control-

ling moment. In this case, angular momentum vector L has
approximately constant magnitude Lm between acceleration and
braking.Duringcorrection impulses direction ofangularmom
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entum L varies from preset position to direction required for a
hitting to final Λf. The calculated duration of acceleration
(braking) is τ = 12 s. Maximal magnitude of angular
momentum (the programmed level) is Lm =900 Nms.

Results of mathematical modeling of rotation process under
optimal control in accordance with the method of guidance by
a required velocity are demonstrated in Figures 1-4. Turn’s
duration was Т=360.24 s. It means that perturbations
(including asymmetry of the spacecraft) complicate rotation
into required position. Visual illustration of rotation dynamics
is given in Figure 1, where we present graphs of the changing
angular velocities  1(t),  2(t), and  3(t) in time. In Figure 2
we present graphs of the changing components of quaternion
Λ(t), determining spacecraft’s current attitude during rotation:
λ0(t), λ1(t), λ2(t), and λ3(t). Figure 3 shows dynamics of the
changing the components р1(t), р2(t), and р3(t) of ort р of
angular momentum. The following rule is observed for
functions 1(t) and p1(t): these functions are sign functions of
time for any combinations of boundary values Λin and Λf .
From Figure 1 and Figure 3, we see that number of motion
corrections is five. Figure 4 shows character of changing the
controlling moment, where we see all phases of controllable
turn: acceleration of a spacecraft up to the programmed
angular momentum, free motion, braking of spacecraft
rotation, and short-term impulses of correction. Corrections of
spatial motion are formed by the law that is described in
section 4. In Figure 5, we see variations of angles f and 0 ;
f is smooth monotonically decreasing function of time, 0 is
piecewise continuous function of time, which is monotonically
increasing function of time within intervals of continuity
(between corrections). Instants of corrections are as follows:

t1=179.2 s , t2=267.8 s , t3 =312.72 s , t4 =335.12 s , t5 =346.4 s

Figure 1. Optimal variation of angular rates during spatial
reorientation

Figure 2. Variation of parameters of attitude during
rotary maneuver

Figure 3. Elements of unit vector p as functions of time

Figure 4. Changing the magnitude of control torque
during optimal maneuver

Figure 5. Angles f and 0 and instants of corrections
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Magnitudes of impulses of angular momentum for rotation
correction are:

L1 = 30 Nms , L2 = 24 Nms , L3 = 30 Nms , L4 = 36 N
ms , and L5 = 33 Nms

Respectively, durations of correction impulses are as
follows:

t1 = 0.40 s, t2 = 0.32 s , t3 = 0.40 s , t4 = 0.48 s ,
t5 = 0.44 s

Since  tn are small, the controlling moment for correction
of motion can be calculated as follows:
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where ωin are the programmed values of angular velocities
for next segment of free motion (for new hitting
trajectory); tn is instant of n-th correction;  tn is duration
of n-th correction impulse.

Braking of a spacecraft requires some time and spacecraft
rotates around angular momentum L; the remaining angle rem

(for a turn around angular momentum from current position Λ
into position Λf) and angle of spacecraft’s rotation around
vector L of angular momentum for time of braking  br have
the following values (because modulus of angular momentum
is changed linearly):
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The remaining angle  rem is determined by relative
orientation of current attitude Λ and the required final position
Λf (for this purpose, we calculate quaternion of mismatch

f)(
~

 t ). Angle  br required for damping of angular
momentum is determined by spacecraft’s angular velocity.
Variation of angles  rem and  br is shown in Figure 6. We
begin a braking of a spacecraft when angles  rem and  br is
identical (and difference  = rem br is zero). If braking
begin earlier, then spacecraft will not be moved to the required
angular position Λf (spacecraft will stop before the required
position Λf and not reach position Λf when rotation will end).
If braking begin later, then spacecraft's angular velocity will be
distinct from zero at the moment of achievement of angular
orientation Λf. Deviation  is changed in accordance with
Figure 7. At segment of braking,  rem  br . It means that, at
any instant within phase of braking, spacecraft can be turned
through angle  rem during the remaining time of suppressing
angular velocity up to zero; on the other hand, at any instant
within phase of braking, spacecraft can be stopped to ω=0

during a turn through the angle rem (i.e. final position Λf will
be achieved when ω=0). Error of reorientation is  = 0.11
degrees (accuracy depends on the acting disturbance moments
- gravitational and aerodynamic moments - and due to
inequality of transverse moments of inertia J2 and J3). Notice,
angles f and sub = ωL/(2m0) is changed in accordance
with the Figure 8.

Figure 6. Variation of angles rem and br in ending of
optimal turn

Figure 7. Character of deviation  before instant of
beginning of braking and after it

Figure 8. Angles f and sub before instant of beginning
of braking and after it
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entum L varies from preset position to direction required for a
hitting to final Λf. The calculated duration of acceleration
(braking) is τ = 12 s. Maximal magnitude of angular
momentum (the programmed level) is Lm =900 Nms.

Results of mathematical modeling of rotation process under
optimal control in accordance with the method of guidance by
a required velocity are demonstrated in Figures 1-4. Turn’s
duration was Т=360.24 s. It means that perturbations
(including asymmetry of the spacecraft) complicate rotation
into required position. Visual illustration of rotation dynamics
is given in Figure 1, where we present graphs of the changing
angular velocities  1(t),  2(t), and  3(t) in time. In Figure 2
we present graphs of the changing components of quaternion
Λ(t), determining spacecraft’s current attitude during rotation:
λ0(t), λ1(t), λ2(t), and λ3(t). Figure 3 shows dynamics of the
changing the components р1(t), р2(t), and р3(t) of ort р of
angular momentum. The following rule is observed for
functions 1(t) and p1(t): these functions are sign functions of
time for any combinations of boundary values Λin and Λf .
From Figure 1 and Figure 3, we see that number of motion
corrections is five. Figure 4 shows character of changing the
controlling moment, where we see all phases of controllable
turn: acceleration of a spacecraft up to the programmed
angular momentum, free motion, braking of spacecraft
rotation, and short-term impulses of correction. Corrections of
spatial motion are formed by the law that is described in
section 4. In Figure 5, we see variations of angles f and 0 ;
f is smooth monotonically decreasing function of time, 0 is
piecewise continuous function of time, which is monotonically
increasing function of time within intervals of continuity
(between corrections). Instants of corrections are as follows:

t1=179.2 s , t2=267.8 s , t3 =312.72 s , t4 =335.12 s , t5 =346.4 s

Figure 1. Optimal variation of angular rates during spatial
reorientation

Figure 2. Variation of parameters of attitude during
rotary maneuver

Figure 3. Elements of unit vector p as functions of time

Figure 4. Changing the magnitude of control torque
during optimal maneuver

Figure 5. Angles f and 0 and instants of corrections
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Magnitudes of impulses of angular momentum for rotation
correction are:

L1 = 30 Nms , L2 = 24 Nms , L3 = 30 Nms , L4 = 36 N
ms , and L5 = 33 Nms

Respectively, durations of correction impulses are as
follows:

t1 = 0.40 s, t2 = 0.32 s , t3 = 0.40 s , t4 = 0.48 s ,
t5 = 0.44 s

Since  tn are small, the controlling moment for correction
of motion can be calculated as follows:
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where ωin are the programmed values of angular velocities
for next segment of free motion (for new hitting
trajectory); tn is instant of n-th correction;  tn is duration
of n-th correction impulse.

Braking of a spacecraft requires some time and spacecraft
rotates around angular momentum L; the remaining angle rem

(for a turn around angular momentum from current position Λ
into position Λf) and angle of spacecraft’s rotation around
vector L of angular momentum for time of braking  br have
the following values (because modulus of angular momentum
is changed linearly):
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The remaining angle  rem is determined by relative
orientation of current attitude Λ and the required final position
Λf (for this purpose, we calculate quaternion of mismatch

f)(
~

 t ). Angle  br required for damping of angular
momentum is determined by spacecraft’s angular velocity.
Variation of angles  rem and  br is shown in Figure 6. We
begin a braking of a spacecraft when angles  rem and  br is
identical (and difference  = rem br is zero). If braking
begin earlier, then spacecraft will not be moved to the required
angular position Λf (spacecraft will stop before the required
position Λf and not reach position Λf when rotation will end).
If braking begin later, then spacecraft's angular velocity will be
distinct from zero at the moment of achievement of angular
orientation Λf. Deviation  is changed in accordance with
Figure 7. At segment of braking,  rem  br . It means that, at
any instant within phase of braking, spacecraft can be turned
through angle  rem during the remaining time of suppressing
angular velocity up to zero; on the other hand, at any instant
within phase of braking, spacecraft can be stopped to ω=0

during a turn through the angle rem (i.e. final position Λf will
be achieved when ω=0). Error of reorientation is  = 0.11
degrees (accuracy depends on the acting disturbance moments
- gravitational and aerodynamic moments - and due to
inequality of transverse moments of inertia J2 and J3). Notice,
angles f and sub = ωL/(2m0) is changed in accordance
with the Figure 8.

Figure 6. Variation of angles rem and br in ending of
optimal turn

Figure 7. Character of deviation  before instant of
beginning of braking and after it

Figure 8. Angles f and sub before instant of beginning
of braking and after it
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Important characteristics of control are value of 
index (3) and accuracy of reorientation into the given 
final position. They were computed by mathematical 
simulation. Set of numerical experiments with modeling 
of spacecraft’s rotation process was made. Ratings of 
control laws and estimates of efficiency of the designed 
control algorithms (precision of reorientation, and energy-
saving efficiency) were calculated for each rotation 
maneuver in this series. Input data (original parameters of 
maneuvers - initial and final attitudes, spacecraft’s inertial 
characteristics, and duration of rotation) were identical. 
Average modulus of angular rate during the rotary 
maneuvers is 0.5 deg/s. Estimates of fuel expenditure G 
and error of final attitude σ determined as result of the 
numerical simulations were: G = 5.60 kg with attitude 
accuracy σ ≈ 0.1° correspond to iterative control by the 
method of guidance by a required velocity (without 
prediction of position at instant of first correction), and 
G = 5.55 kg with attitude accuracy σ < 0.08° correspond 
to mode of iterative guidance with prediction of position 
at instant of first correction. Also, for comparison, we 
cite values of same indicators of efficiency for same 
spacecraft which were specified after realizations of rotary 
maneuvers carried out according to mode of extensive 
rotation and rotation in form of regular precession 
(simultaneous rotation about longitudinal axis and about 
fixed transversal axis): Gex = 7.02 kg and Greg = 6.13 kg.

With help of mathematical modeling, for each method, 
we obtain statistical estimates of fuel consumption for one 
turn. They confirmed optimality of the designed control, 
which takes into account action of external moments 
of disturbance. Results of mathematical modeling 
demonstrate that the suggested methods of execution of 
the programmed turns improve accuracy of reorientation, 
given relatively large parametric undeterminacies and 
external perturbations. Moreover, “price” paid for 
absence of exact a priori information concerning dynamic 
characteristics of a spacecraft (some degradation of 
quality’s index) is not too large. Let us note that traditional 
methods of optimal control not only require much more 
computational expenditure, but lead to greater fuel 
consumption with respect to control as well.

7. Conclusions

In this research, new control method of spacecraft 
attitude is presented. Example and results of mathematical 
simulation for spacecraft rotation under optimal control 
are given. The obtained results demonstrate that the 
designed control method of spacecraft’s three-dimensional 
reorientation is feasible in practice.

Rotary maneuver is one of basic dynamic regimes of 

motion control system. It was topical problem to design 
optimal algorithm of attitude control and to calculate nu-
merical index of control efficiency. It seems impossible 
to solve the problem of slew maneuver of asymmetric 
spacecraft with minimal expense of fuel, taking into 
account disturbances (gravitational and aerodynamic 
torques). Algorithm of numerical constructing the control 
that satisfies all necessary requirements is suggested. It 
is limited in magnitude, ensures minimal consumption of 
fuel, and satisfies the given accuracy of attitude. Available 
mathematical model of spacecraft motion with respect to 
center of mass allowed us to use mode of guidance by a 
required velocity with prognostic model to form optimal 
control of attitude and to get its implementation. We know 
two-impulse control which rotate spacecraft along attitude 
trajectory consisting of three phases: fast imparting the re-
quired angular momentum to spacecraft’s body with max-
imal control torque, free rotation without control torque, 
and quickest damping of rotation with maximal modulus 
of control torque. Each phase satisfies conditions of opti-
mality: phase of free rotation fits condition of optimality, 
because there is no expenditure of fuel during it; phases 
of acceleration and braking also fit criterion of optimality, 
because minimal expenditure of fuel for acceleration and 
damping of rotation is determined only by the imparted 
angular momentum (which in turn is determined by in-
ertial characteristics of a spacecraft, by initial and final 
conditions, and by duration of maneuver Т). But error of 
reorientation can be unacceptable if external disturbing 
moments act long time (or angle of turn is large).

For improving the precision of attitude in the required 
position, one needs to control spacecraft’s angular 
momentum in process of maneuver, using actual parameters 
of attitude. We present effective algorithms of controlling 
the reorientation, which are invariant under external 
disturbances and parametric discrepancy of model. Very 
effective mode is iteration control at which correction of 
rotation is carried out impulsively, at discrete instants of 
time. This mode ensures the required precision of attitude 
without refusal of control by method of free trajectories. 
Control commands are formed such that attitude 
actuators change angular momentum of a spacecraft not 
continuously, as at known methods, but impulsively at 
discrete instants of time. Since exact values of parameters 
of model of spacecraft rotation (e.g., moments of inertia) 
a priori are not known (they are known only roughly), 
to simplify onboard algorithms when angular rates 
are computed for points of beginning the uncontrolled 
phases, spacecraft is assumed dynamically symmetric 
body. The developed control laws are free from following 
typical simplifications: field of possible values of control 
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torques is not closed; the minimized index is quadratic 
function; there is constraint on angle of turn; spacecraft 
is dynamically symmetric about longitudinal axis; and 
finally, perturbation torques are neglected.

We give numerical estimates of fuel expense for 
implementation of rotary maneuver according to control 
modes which are presented above. Mathematical 
simulation allowed us to find values of fuel saving in 
performance of the described control laws for spacecraft’s 
rotary maneuvers (in particular, for module of orbital 
station). Numerical modeling has shown that control 
which realize method of free trajectory with accounting 
for aerodynamic and gravitational models is sufficiently 
efficient and close to optimal solution. New control 
modes allow one to achieve considerable economy of 
fuel expense as compared to the known methods of 
control that is important for practice of spaceflight. In 
addition, these algorithms can be applied using modern 
onboard systems. The designed control methods of 
three-dimensional attitude allow expense of fuel for turn 
of existing spacecraft to be decreased by 20% - 30%. 
Estimates of fuel-saving efficiency of the presented 
modes of spacecraft attitude were calculated by statistical 
methods using numerical simulation in computer. Specific 
peculiarity of mathematical model of spacecraft rotation 
accepted in this paper for calculating the estimates of 
accuracy and fuel consumption is assumption about 
presence of significant aerodynamic and gravitational 
torques acting upon body of a spacecraft.

Notice, recent solutions [19-22] are not applicable for 
general case of three-dimensional turn of arbitrary 
spacecraft; the work [25] describes synthesis of terminal 
reorientation control only for spacecraft which moves 
along circular orbit. But method designed in present 
article is universal control, it does not depend on a ratio 
(proportion) of moments of inertia or final position of a 
spacecraft.
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Important characteristics of control are value of 
index (3) and accuracy of reorientation into the given 
final position. They were computed by mathematical 
simulation. Set of numerical experiments with modeling 
of spacecraft’s rotation process was made. Ratings of 
control laws and estimates of efficiency of the designed 
control algorithms (precision of reorientation, and energy-
saving efficiency) were calculated for each rotation 
maneuver in this series. Input data (original parameters of 
maneuvers - initial and final attitudes, spacecraft’s inertial 
characteristics, and duration of rotation) were identical. 
Average modulus of angular rate during the rotary 
maneuvers is 0.5 deg/s. Estimates of fuel expenditure G 
and error of final attitude σ determined as result of the 
numerical simulations were: G = 5.60 kg with attitude 
accuracy σ ≈ 0.1° correspond to iterative control by the 
method of guidance by a required velocity (without 
prediction of position at instant of first correction), and 
G = 5.55 kg with attitude accuracy σ < 0.08° correspond 
to mode of iterative guidance with prediction of position 
at instant of first correction. Also, for comparison, we 
cite values of same indicators of efficiency for same 
spacecraft which were specified after realizations of rotary 
maneuvers carried out according to mode of extensive 
rotation and rotation in form of regular precession 
(simultaneous rotation about longitudinal axis and about 
fixed transversal axis): Gex = 7.02 kg and Greg = 6.13 kg.

With help of mathematical modeling, for each method, 
we obtain statistical estimates of fuel consumption for one 
turn. They confirmed optimality of the designed control, 
which takes into account action of external moments 
of disturbance. Results of mathematical modeling 
demonstrate that the suggested methods of execution of 
the programmed turns improve accuracy of reorientation, 
given relatively large parametric undeterminacies and 
external perturbations. Moreover, “price” paid for 
absence of exact a priori information concerning dynamic 
characteristics of a spacecraft (some degradation of 
quality’s index) is not too large. Let us note that traditional 
methods of optimal control not only require much more 
computational expenditure, but lead to greater fuel 
consumption with respect to control as well.

7. Conclusions

In this research, new control method of spacecraft 
attitude is presented. Example and results of mathematical 
simulation for spacecraft rotation under optimal control 
are given. The obtained results demonstrate that the 
designed control method of spacecraft’s three-dimensional 
reorientation is feasible in practice.

Rotary maneuver is one of basic dynamic regimes of 

motion control system. It was topical problem to design 
optimal algorithm of attitude control and to calculate nu-
merical index of control efficiency. It seems impossible 
to solve the problem of slew maneuver of asymmetric 
spacecraft with minimal expense of fuel, taking into 
account disturbances (gravitational and aerodynamic 
torques). Algorithm of numerical constructing the control 
that satisfies all necessary requirements is suggested. It 
is limited in magnitude, ensures minimal consumption of 
fuel, and satisfies the given accuracy of attitude. Available 
mathematical model of spacecraft motion with respect to 
center of mass allowed us to use mode of guidance by a 
required velocity with prognostic model to form optimal 
control of attitude and to get its implementation. We know 
two-impulse control which rotate spacecraft along attitude 
trajectory consisting of three phases: fast imparting the re-
quired angular momentum to spacecraft’s body with max-
imal control torque, free rotation without control torque, 
and quickest damping of rotation with maximal modulus 
of control torque. Each phase satisfies conditions of opti-
mality: phase of free rotation fits condition of optimality, 
because there is no expenditure of fuel during it; phases 
of acceleration and braking also fit criterion of optimality, 
because minimal expenditure of fuel for acceleration and 
damping of rotation is determined only by the imparted 
angular momentum (which in turn is determined by in-
ertial characteristics of a spacecraft, by initial and final 
conditions, and by duration of maneuver Т). But error of 
reorientation can be unacceptable if external disturbing 
moments act long time (or angle of turn is large).

For improving the precision of attitude in the required 
position, one needs to control spacecraft’s angular 
momentum in process of maneuver, using actual parameters 
of attitude. We present effective algorithms of controlling 
the reorientation, which are invariant under external 
disturbances and parametric discrepancy of model. Very 
effective mode is iteration control at which correction of 
rotation is carried out impulsively, at discrete instants of 
time. This mode ensures the required precision of attitude 
without refusal of control by method of free trajectories. 
Control commands are formed such that attitude 
actuators change angular momentum of a spacecraft not 
continuously, as at known methods, but impulsively at 
discrete instants of time. Since exact values of parameters 
of model of spacecraft rotation (e.g., moments of inertia) 
a priori are not known (they are known only roughly), 
to simplify onboard algorithms when angular rates 
are computed for points of beginning the uncontrolled 
phases, spacecraft is assumed dynamically symmetric 
body. The developed control laws are free from following 
typical simplifications: field of possible values of control 
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torques is not closed; the minimized index is quadratic 
function; there is constraint on angle of turn; spacecraft 
is dynamically symmetric about longitudinal axis; and 
finally, perturbation torques are neglected.

We give numerical estimates of fuel expense for 
implementation of rotary maneuver according to control 
modes which are presented above. Mathematical 
simulation allowed us to find values of fuel saving in 
performance of the described control laws for spacecraft’s 
rotary maneuvers (in particular, for module of orbital 
station). Numerical modeling has shown that control 
which realize method of free trajectory with accounting 
for aerodynamic and gravitational models is sufficiently 
efficient and close to optimal solution. New control 
modes allow one to achieve considerable economy of 
fuel expense as compared to the known methods of 
control that is important for practice of spaceflight. In 
addition, these algorithms can be applied using modern 
onboard systems. The designed control methods of 
three-dimensional attitude allow expense of fuel for turn 
of existing spacecraft to be decreased by 20% - 30%. 
Estimates of fuel-saving efficiency of the presented 
modes of spacecraft attitude were calculated by statistical 
methods using numerical simulation in computer. Specific 
peculiarity of mathematical model of spacecraft rotation 
accepted in this paper for calculating the estimates of 
accuracy and fuel consumption is assumption about 
presence of significant aerodynamic and gravitational 
torques acting upon body of a spacecraft.

Notice, recent solutions [19-22] are not applicable for 
general case of three-dimensional turn of arbitrary 
spacecraft; the work [25] describes synthesis of terminal 
reorientation control only for spacecraft which moves 
along circular orbit. But method designed in present 
article is universal control, it does not depend on a ratio 
(proportion) of moments of inertia or final position of a 
spacecraft.
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