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ARTICLE

Offline Trajectory Generation for Bipedal Robot Using Linear 
Inverted Pendulum Model

Navneet Ratre, S.K. Panigrahi*, Shivam Dubey

Department of Mechanical Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra, 411025, India

ABSTRACT
Reduced order model (ROM)-based controllers have proved to be effective to generate stable bipedal locomotion. 

However, it is important to understand the limitations and effectiveness of these models without implementing any 
controllers. This study highlights the versatility of the Linear Inverted Pendulum Model (LIPM) at various walking 
speeds. Firstly, the Centre of Mass (COM) trajectory has been generated using the LIPM model, and the foot motion 
trajectory has been created using a sixth-order polynomial function. The trajectory is generated using a predefined 
step length, speed of locomotion and COM height. Secondly, the task space trajectory has been converted into a joint 
space trajectory through inverse kinematics for a 6-degree-of-freedom leg. To facilitate the proper walking motion the 
contact between the foot sole and the ground is implemented. Finally, a simple bipedal robot in MATLAB/Simulink 
has been modelled and the generated trajectories were implemented.
Keywords: Bipeds; Gait; Inverse kinematics; Joint space; Reduced order model (LIPM); Task space; Trajectory

1. Introduction
The concept of robotics has emerged as a result 

of advancements in automata. In the 18th century, 
a mechanical doll known as “Karakuri ningyo” was 
created to serve tea and act as an archer. Later, in 
1920, Karel Capek introduced the term “robot” in his 

play “Rossum’s Universal Robots (RUR)”. Industri-
al robots were developed as a consequence of these 
early advancements, enabling them to work with 
humans to perform repetitive tasks, such as painting, 
bolting, riveting, and pick-and-place operations. As 
technology advanced throughout the 20th century, 
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robots were integrated with machine learning and 
artificial intelligence, making them more advanced 
and sophisticated. Throughout history, humans have 
exploited the natural environment to further their 
own development. To adapt to the human world, 
robots have been developed to imitate human behav-
iour, leading to the creation of humanoids. Humans 
rely on their upper bodies for manipulation and ob-
servation tasks, while mobility is achieved through 
leg movement. Robotics has long been involved in 
object manipulation and handling, with early robot 
designs relying on wheel motion. The use of wheels 
offers several benefits, such as efficiency, ease of 
control, and fast execution. However, wheel robots 
have many limitations since they cannot reach all ar-
eas on Earth that legged animals can access. Conse-
quently, there has been a shift towards legged robots. 
The first legged robot, the planar hopping machine, 
was capable of traveling at a speed of approximately 
0.8 m/s. Subsequent developments led to the creation 
of robots with prismatic legs, where the legs extend 
during the gait cycle. The prismatic leg mechanisms 
have been used in both two-legged robots that mimic 
human motion and four-legged robots that move like 
dogs. Humans learn to walk at a very early age, tak-
ing about a year or two to achieve a balanced gait. 
This illustrates that even when we are standing, our 
joints are in an active state. Similarly, humanoids 
maintain balance on their foot support, but due to the 
small support area, they are highly unstable. Even 
the slightest disturbance can cause the robot to fall.

We learn from childhood that the human body 
has 206 bones connected by 360 joints. The most 
advanced robots to date have yet to match the com-
plexity of the human body structure. In 2016, the 
University of Tokyo created a humanoid named Ken-
goro, which has 174 degrees of freedom (DOF), the 
highest of any humanoid to date. Other humanoids, 
such as Atlas and Optimus, have 28 joints, while 
NASA’s Robonaut 2 has approximately 42 DOF. The 
humanoid’s configuration is typically decoupled into 
two parts: the upper part for manipulation and the 
lower part, called the Biped, for movement in the 3D 
world.

The Biped consists of a torso and two legs with a 
common configuration. Each leg includes six joints: 
a spherical joint at the hip, a pitch joint at the knee, 
and a pitch-roll joint at the ankle. According to Piper 
et al. [1], if a 6 DOF robot manipulator has a spherical 
joint, its kinematics can be decoupled into two parts. 
The first part determines the position of the end 
effector, while the second part provides its orienta-
tion. Some researchers have also developed iterative 
algorithms that use Jacobeans. However, according 
to De Angulo et al. [2] the Jacobian method is veloc-
ity-based and does not consider the position of the 
end-effector, leading to significant accumulation of 
error in position.

Vukobratovic and Borovac’s [3] research pre-
sented a fundamental idea for the development of 
bipedal dynamic locomotion, stating that the centre 
of pressure must remain within the support polygon 
to maintain balance while walking on a flat surface. 
This concept has become a widely accepted ap-
proach to ensuring stability in bipedal robots. As a 
result, numerous studies have been conducted on the 
development of controllers based on the Zero Mo-
ment Point (ZMP) concept.

Choi, Youngjin et al. [4] proposed a method to 
generate the actual trajectory for stable bipedal lo-
comotion using a desired COM/ZMP trajectory. 
They modified the ZMP trajectory and evaluated the 
response. They also presented a new kinematic res-
olution method that incorporated stability during the 
motion of other body parts, such as moving the arms 
while walking. The authors demonstrated the robust-
ness of this method and showed promising results 
for whole-body coordination. Kajita et al. [5] made 
significant contributions to the development of stable 
locomotion for bipedal robots. They used the con-
cept of the Linear Inverted Pendulum Model (LIPM) 
to generate trajectories for the robot’s center of mass 
(COM) and Zero Moment Point (ZMP). They also 
introduced the concept of “primitives”, which are 
pre-defined motions that can be combined to gener-
ate more complex behaviors. With these techniques, 
they were able to develop controllers for the stable 
locomotion of a 12 DOF bipedal robot, which was 
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able to walk on uneven terrain and even climb stairs.
Bipeds are capable of both static and dynamic 

locomotion. Static locomotion involves slow move-
ment, but provides better stability, while dynamic 
locomotion is faster but less stable. The study of 
dynamic locomotion is a broad field with researchers 
generating trajectories for all joints and dynamics, as 
well as developing simplified models called Reduced 
Order Models (ROMs) for reliable results. These 
task-specific ROMs vary for different scenarios, such 
as the LIPM model for walking and the SLIPM mod-
el for running. The objectives of the present research 
are:

·Trajectory generation for the COM using the 
LIPM model for different locomotion speeds,

·Generation of foot trajectory for foot elevation 
and,

·Conversion of task space trajectory to Joint 
space trajectory using Inverse Kinematics Simula-
tion of the biped in MATLAB/Simulink.

The proceeding section will provide the methods 
developed for trajectory generation. The subsequent 
sections will give the desired trajectory for the clas-
sical LIPM model, provides the contact modelling 
between foot and base, joint trajectories which are 
generated by using the IK and provides the Simulink 
model and simulation results of the work presented.

2. Dynamic modelling of bipedal 
robot 

2.1 Dynamic locomotion

The dynamic motions are identified as the true an-
imal-like walking motion. Much research has taken 
place to capture the gait mechanisms of animals and 
humans. In the case of dynamic locomotion, contra-
ry to static locomotion, the COM could lie outside 
the support polygon. Here a new model proposed 
by Vukobratovich et al. [3] appears the zero moment 
(ZMP) point is the point of the pressure of the whole 
body. The ZMP should not cross the support poly-
gon for dynamically stable locomotion. If the ZMP 
leaves the support polygon, the biped requires more 

power to recover the unbalance motion. In this case, 
the location of the ZMP of a planned biped trajectory 
affects the balance during the dynamic motion.

2.2 Gait 

The gait of any robot defines the manner of walk-
ing or moving on the foot. In simple words, we can 
say that it is the walking pattern of the robot, which 
it follows, and have stable motion. It is assumed 
that the biped Gait is similar to the 3D Pendulum [6].  
The Gait consists of the information on the foot 
placement, the position of the center of mass (COM) 
the velocity of the locomotion, and the location of 
the ZMP for each instance of time. In addition, it 
gives information about the different phases of the 
locomotion, (the single support phase and the double 
support phase). It also determines the information on 
the time of the support exchange. The Gait for the 
robot can be modeled by taking the dynamic equa-
tion or without it. It generally forms the framework 
of the motion of the leg-foot placement. By setting a 
proper constraint plane, a pattern can be generated to 
walk on the stairs and some uneven terrains. While 
in motion, the biped sometimes has its one-foot on 
the ground, and sometimes both feet on the ground. 
These conditions are categorized into two: SSP (sin-
gle support phase) and DSP (double support phase). 
Both phases occur sequentially. Majority of the time 
the biped is in SSP condition.

2.3 LIPM

Linear Inverted Pendulum Model (LIPM) model 
as shown in Figure 1 is the ‘task based motion con-
strained’ form of the inverted pendulum model (IPM). 
The LIPM consists of a point mass at the end of a 
massless leg having variable length. As the model is 
composed of angular motion, it is beneficial to use the 
polar coordinates to generate the equation of motion [7].

It is assumed that the vertical motion of the 
COM is negligible so the vertical acceleration can 
be omitted from the equation of motion. To impose 
the vertical motion, zɡ = const, we need to model the 
equation of motion in Cartesian coordinates:
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Figure 1. Linear inverted pendulum model.

It is assumed that the vertical motion of the COM is negligible so the vertical

acceleration can be omitted from the equation of motion. To impose the vertical motion,  =

, we need to model the equation of motion in Cartesian coordinates:

Mx� g = fssinθ (1)

M z�g + g = fscosθ (2)

Putting zg = const,

Mx� g = fssinθ (3)

Mg = fscosθ (4)

x�g = ωLIP2(xg − px) (5)

y� g = ωLIP2(xg − py) (6)

where,  = Position of mass in the x-axis (x-axis is supposed to be the axis of frontal motion

of biped);

 = Position of mass in the y-axis (y-axis is supposed to be the axis of sagittal motion of

biped);

 = Position of mass in the Z-axis (Z-axis is supposed to be the axis of transverse motion of

biped);

 = Center of pressure (COP) along x-axis;

 = Center of pressure (COP) along y-axis;

 = Natural angular frequency of the pendulum.

 =



(7)

The closed form solution of the above nonlinear equation is given as:

  = 0cosh () +
0


sinh () (8)

  = 0cosh () +
0


sinh () (9)
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As mentioned above that the pressure points are constant and at the support leg during

the single support phase. These pressure points are the required ZMP points at the foot sole [8].
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Initially, we need to give a small trajectory so that it will start to move. The trajectory

for the first step is generated by using fifth order polynomial to have the proper initial and

final conditions of COM.

Trajectory for the first step
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Initially, we need to give a small trajectory so that 
it will start to move. The trajectory for the first step 
is generated by using fifth order polynomial to have 
the proper initial and final conditions of COM. 
Trajectory for the first step
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3.2 Trajectory for the foot elevation for the swing phase

To formulate the proper dynamical stable locomotion the trajectory should be

composed of DSP and SSP, so that there should not be any disruption in the motion, this also

ensures the jerk free motion of the biped. In many articles, it is mentioned that the DSP

should be 20% and the SSP should be 80% of the total time taken for the step (Ts). For this,

we have divided the DSP time period into two halves and put at the start and at the end of the

trajectory.

Time for DSP = 0.2 Ts

Time for SSP = 0.8 Ts

Polynomial trajectory

The trajectory is generated by using sixth order polynomial as shown in Figure 3 as

the swing height is needed to be added along with the initial and final condition of the foot.
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3.2 Trajectory for the foot elevation for the 
swing phase

To formulate the proper dynamical stable loco-
motion the trajectory should be composed of DSP 
and SSP, so that there should not be any disruption 
in the motion, this also ensures the jerk free motion 
of the biped. In many articles, it is mentioned that 
the DSP should be 20% and the SSP should be 80% 
of the total time taken for the step (Ts). For this, we 
have divided the DSP time period into two halves 
and put at the start and at the end of the trajectory.
Time for DSP = 0.2 Ts
Time for SSP = 0.8 Ts
Polynomial trajectory

The trajectory is generated by using sixth order 
polynomial as shown in Figure 3 as the swing height 
is needed to be added along with the initial and final 
condition of the foot.

  =
0  0 <  ≤ /2
  /2 <  ≤ /2+ 
0  /2+  <  ≤ 

(19)

Figure 3. The trajectory for the foot elevation using sixth order polynomial function.

Initial conditions

0 = 0

1 = Swing Height

 = 0

�0 = 0

� = 0

�0 = 0

� = 0

Equation for the profile:

 = ax0 + ax1 + ax2
2 + ax3

3 + ax4
4 + ax5

5 + ax6
6 (20)

for DSP/2 < t < DSP/2 + SSP

� = ax1 + 2ax2
1 + 3ax3

2 + 4ax4
3 + 5ax5

4 + 6ax6
5 (21)

for DSP/2 < t < DSP/2 + SSP

� = 2ax2 + 6ax3
1 + 12ax4

2 + 20ax5
3 + 30ax6

4 (22)

for DSP/2 < t < DSP/2 + SSP

Both the legs have the same foot trajectory profile, just the other leg has a delay in

motion by Ts period.
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for DSP/2 < t < DSP/2 + SSP
Both the legs have the same foot trajectory pro-

file, just the other leg has a delay in motion by Ts 
period. 

3.3 Leg motion repetition sequence

The left and the right legs work in the synchro-
nized manor, also the trajectory repeats after every 
cycle. The simple algorithm behind the repetition 
of the gait can be understood by the following flow 
chart given in Figure 4:

Figure 4. Repetition of gait sequence algorithm.

4. Contact modeling
As the humanoid robot moves, accurate informa-
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tion about the contact forces is crucial for maintain-
ing stability. The contact model takes into account 
the virtual contact points to determine the position 
of the actual Center of Pressure (COP), called Zero 
Moment Point (ZMP), which validates the stability 
of the bipedal robot [3,9]. This information helps in 
ensuring that the bipedal robot maintains its stability 
during locomotion [10].

In our model, it is assumed that the biped is in 
contact with floor by its foot only. For these several 
virtual contact points are assigned at the sole of the 
foot. The contact can be modeled by using a simple 
spring damper mechanism in 3D which will act as 
friction cone. The Normal forces can be formulated 
by the following formulation:

 =
− ∆ − ∆ � ( < 0)

0 ( ≥ 0) (23)

 =

∆ − � ( < 0, 
2 + 

2
�

≤ 





2 +

2
( < 0, 

2 + 
2

�
> 

0  ≥ 0

(24)

5. Inverse Kinematics for Joint Trajectories

The Transformation Matrix for the Distal Type DH parameter using the values of DH

configuration for the leg as mentioned in Table 1 [11,12] is given as:

Ti
i−1 =

() −()cos () ()sin () ()
() ()cos () −()sin () ()

0 sin () cos () d
0 0 0 1

Table 1. D-H configuration for the leg.

DH (Distal) configuration for the leg

Joint (i)    

1 0 90° 0 0

2 0 –90° 0 –90°

3 ℎℎ 0 0 0

4  0 0 0

5 0 90° 0 0

6  0 0 0

As instructed by Ali et al. [13], we get to know that there are three joints intersecting at

the torso, so the calculation needs to be done in the reverse order, so the torso becomes the

end effector and the foot will act as a base. Now the joints responsible for the positioning of

the end effector are 4, 5, 6.

4 =
(' +5)2+'

2
+'

2
−3

2−4
2

234
(25)
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Table 1. D-H configuration for the leg.

DH (Distal) configuration for the leg

Joint (i) ai αi di θi

1 0 90° 0 0

2 0 –90° 0 –90°

3 LThigh 0 0 0

4 LTibia 0 0 0

5 0 90° 0 0

6 LFoot 0 0 0

As instructed by Ali et al. [13], we get to know that 
there are three joints intersecting at the torso, so the 
calculation needs to be done in the reverse order, so 
the torso becomes the end effector and the foot will 
act as a base. Now the joints responsible for the po-
sitioning of the end effector are θ4, θ5, θ6.

 =
− ∆ − ∆ � ( < 0)

0 ( ≥ 0) (23)
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4 = 2( 1 − 4
2,4) (26)

5 = 2 − ' , ± (' + 5)2 + '
2 − µ (27)

µ = 2(43,43 + 4) (28)

6 = 2(' , − ' − 5) (29)

Now as the location of the end effector is known, we can find the orientation by the

remaining joint values 1, 2, 3.

2 = 2 − 1 − (6' + 6' )2, 6' + 6' + 
2

(30)

1 = 2 −6' −6' ,−6' −6' +  (31)

345 = 2(' , 6' − 6' ) (32)

3 = 345 − 4 − 5 −  (33)

6. Simulation model

6.1 Assumptions

In our model, the following assumptions were made before deploying for the

simulation:
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6. Simulation model 

6.1 Assumptions

In our model, the following assumptions were 
made before deploying for the simulation:

·The COM of the model will be at the same 
height throughout the motion.

·The foot will always be parallel to the plane of 
the ground even during the strike to the ground.

·The ZMP will always lie at the primitive points.
·The joints are frictionless.
·The COM of each link is at its center.
·The ground is modeled by the spring and damper 

system.
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6.2 Model configuration

The model used for this simulation is generated 
in Simulink as shown in Figure 5. The model is a 
simplified bipedal robot which compose of center of 
mass at the center of each link and also have inertial 
properties. The model is composed of all revolute 
joints, where 3 joints (Yaw, Roll, and Pitch) at the 
junction of torso and leg, at the knee joint there is a 
Pitch joint and the ankle joint is composed of 2 joints 
(Pitch and Roll). The modal properties of links with 
respect to torso, thigh, tibia and foot are given in Ta-
ble 2.

Figure 5. Simulink model for the simulation.

Position of a right leg with respect to torso center:

  =
−1 0 0
0 −1 0
0 0 1

0.14
0

−0.3
0 0 0 1

Position of Left leg with respect to torso center:

  =
−1 0 0
0 −1 0
0 0 1

−0.14
0

−0.3
0 0 0 1

Table 2.Modal properties.

Link Dimension

(m)

Mass

(kg)

Inertia

(kg.m2)

Torso [0.4, 0.2, 0.6] 48 [1.6, 2.08, 0.8]

Thigh [0.46, 0.08, 0.08] 2.944 [0.00314027, 0.0534827, 0.0534827]

Tibia [0.45, 0.08, 0.08] 2.88 [0.003072, 0.050136, 0.050136]

Foot [0.04, 0.15, 0.2] 1.2 [0.00625, 0.00416, 0.00241]

6.3 Modelling of virtual contact points at the foot sole

The model is composed of total of eight virtual contact points at the edges of each foot.

Figure 6 below shows the location of all the contact points of one foot:

Figure 6. Eight virtual contact points at the foot sole.
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7. Simulation results
The simulation of bipedal was carried out in the 

SIMULINK, and the trajectory was generated using 
the MATLAB script is shown in Figure 7. The Mod-
el used the 6-DOF joint to successfully move in the 
3D world.

The trajectory generated using the reduced order 
model proposed was tested on the multilink human-
oid robot. The foot contact model was implemented 
to have proper reaction and friction forces to make 
the robot move in the virtual world. The sequential 
repeated cycle of the leg locomotion for both legs 
was generated by the gait cycle function. It was as-
sumed that the foot was always parallel to the ground 
throughout the motion. All the links in the Biped 
were assumed to have the same material properties. 
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Figure 7. Simulated result of the walking robot in Simulink.

As the Bipedal moves in the direction of motion 
the COM have both lateral and frontal motion for 
dynamic stability. Figure 8 shows the variation of 
the COM trajectory as the velocity of the locomotion 
varies also the vertices of the ZMP curve show the 
position of the foot placement. Foot trajectory pro-
files as shown in Figure 9 for both legs are the same 
but have a delay of step period.

Figure 8. Variation of the COM trajectory with varying locomo-
tion speed.

Figure 9. Foot elevation trajectory for both legs.

The desired trajectories for the ZMP and COM 
are generated using the LIPM model as discussed 
earlier in section 3. Figure 10 shows the variation 
along the lateral as well as frontal direction of mo-

tion for both ZMP and COM.

Figure 10. COM and ZMP trajectories in both axis with respect 
to time.

In the previous section, the trajectories for COM 
and foot were generated separately. The trajectory 
for the foot was generated considering the foot as the 
end effector and the torso as the base, but in the case 
of COM trajectory, the torso acts as the end effector, 
and the foot was the base frame. To have a single tra-
jectory for both COM and foot, a new foot trajectory 
is generated for the motion in the lateral direction. 
This trajectory will give the same result but in the 
opposite direction. The resultant trajectory for both 
the foot from the given COM trajectory is shown in 
Figure 11.

Figure 11. COM trajectory and the equivalent foot trajectories.

The reduced order models give the desired posi-
tion and the desired orientation of the end effector in 
the task space. The trajectories are then converted into 
joint space trajectories as the robot takes the angular 
values for all the joints. In the Simulink model, we 
assumed that the joints are frictionless and the biped 
was able to move by joint values generated by IK ex-
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actly. Figures 12-13 below shows the trajectories of 
each joint for the left and right leg respectively. 

Figure 12. Joint trajectories for the right leg.

Figure 13. Joint trajectories for the left leg.

The Simulink model is provided with the Desired 
ZMP trajectory. Figures 14-15 show the resultant of 
the actual trajectory followed by the bipedal robot 
for the locomotion at the speed of 0.9 kmph and 1.2 
kmph respectively.

Figure 14. Actual and Desired ZMP trajectory at the speed of 0.9 
kmph.

7.1 Outcomes

The simulation shows that the trajectory generat-

ed by the reduced order model is stable for dynamic 
locomotion. The LIPM was able to generate trajecto-
ries for a maximum step length 0.4 m with a walking 
speed of 1.2 kmph.

The biped becomes unstable at higher speeds and 
at low speeds (0.9 kmph).

Figure 15. Actual and Desired ZMP trajectory at the speed of 1.2 
kmph.

8. Conclusions
The foot trajectory formulated in this model 

would not be effective for too slow motion (static 
motion) as the trajectory for the foot and COM was 
generated simultaneously. To reduce the speed of 
motion to static motion, it would fall because the 
COM will no longer be at the support polygon, and 
for the static motion, the COM must be in the sup-
port polygon throughout the motion.

The trajectory of the foot plays a great role in 
the stability of the locomotion. In the present biped 
model, the trajectories were generated by using the 
sixth-order polynomial function. The function pro-
vides zero velocity at the time of contact of the foot 
with the ground. The actual ZMP of the simulation 
robot closely followed the desired trajectory, and the 
implementation of the controller will further improve 
the motion of the biped motion.

9. Future scope
The model could be tested for other Reduced Or-

der Models listed above. It needs to ensure that the 
solution provided by these models is approximate, 
therefore it needs to be coupled with controllers so 
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that it won’t lose its track. As we can see in the simu-
lation results, the simple model was not able to walk 
perfectly, this is because of ground reaction forces 
and the coupling forces due to the dynamic motion 
of the links. The actual robot composes of much 
more components like motors, batteries, system inte-
grators, wires, and sensors etc., for this, the design of 
controllers is required.
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