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1. Introduction

Welding is the most used process of joining metallic 
materials in the world, because of its vast practicality and 
ease, almost all production principles use welding in their 
production processes. Besides the production processes, 
welding is heavily used in equipment maintenance and 
recovery. One of the great advantages of welding is to get 

the union of materials, maintaining not only the external 
appearance but also the continuity of chemical and 
mechanical properties.

Theoretical Foundation

In 1960, Theodore Maiman [1] presented the first 
Laser light emission (Light Amplification by Stimulated 
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With the use of laser welding, it is possible to join different steel, with 
different thicknesses, with or without the action of protective layers. The 
quality of laser radiation makes it possible to get certain characteristics that 
are impossible to get by other processes, such as high welding speeds, less 
metallurgical effects suffered by the heat-affected zone (ZAC), and this 
process also does not require filler metal, therefore it is free from possible 
contamination.
Combined with traditional welding methods, laser welding produces 
narrower weld beads, allowing for better prevention of corrosion and 
thermal distortions.
Although the process already has high industrial knowledge, some random 
defects, such as porosities and inconsistencies, are still found. This work 
presents a systematic study to determine the influence of laser welding 
parameters and how these parameters influence welding defects. For 
this, the experimental part was carried out in the welding laboratory - 
LABSOLDA, of the Federal University of Santa Catarina - UFSC, during 
the laser welding processes, a welding speed of 2.4 m/min was reached. For 
this experiment, argon was used as a shielding gas and 1020 steel was used 
as the base material.
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Emission of Radiation). This was the first emission located 
in the visible range of the electromagnetic spectrum. Since 
then, the development of this technique for application in 
the industry has been continuous and encouraged by the 
good results achieved.

Since then, the development of the potential for 
application in the industry has been continuous and 
encouraged by the results achieved.

The physical principle of laser light, or stimulated 
emission of light came from the theory planned by 
AlbertEinstein, which postulated that the quantization 
of energy from harmonic oscillators could also be given 
as if light comprised “quanta” of energy, and light 
passed to be described as made up by small amounts of 
electromagnetic energy, or by photons with the same 
wavelength, synchronous, and in the same direction and 
direction as an incident photon as a form of stimulus [2].

The laser welding process involves focusing a high-
power beam on a small area, which can generate 
intensities greater than 104 W/mm2. At these power levels, 
the material vaporizes at the laser’s focal point creating 
a cavity called a keyhole. This cavity helps to transmit 
the beam into the material by multiple reflections, which 
increases the coupling between the beam and the material 
(increased absorptivity) [3]. 

This stimulated emission should, however, have higher 
rates than the spontaneous absorption and emission to 
ensure a larger possible amount of atoms in the excited 
state to produce another identical photon (light) with the 
same energy and in phase, in the direction of the incident 
photon that constitutes the laser beam.

Phenomena such as light reflection and absorption, 
heat conduction, enable better adequacy of the production 
process and the choice of material to be worked, influence 
the laser process, which is related to optical and thermal 
properties, and not to the mechanical proprieties [4].

Reflectivity, which is the index indicative of the portion 
of the incident light beam reflected by the workpiece 
material, can vary with the wavelength of laser radiation. 
Materials such as aluminum and copper have high 
reflectivity, which makes laser processing and application 
difficult. However, as the surface temperature increases, 
the reflectivity decreases, which forms a reflectivity-
minimizing feature.

Figure 1 shows the laser welding process. This 
stimulated emission should, however, have higher rates 
than the spontaneous absorption and emission to ensure 
a larger possible amount of atoms in the excited state to 
produce another identical photon (light) with the same 
energy and in phase, in the direction of the incident 
photon that constitutes the laser beam.

Figure 1. Illustration of the laser welding process

Source: Adapted from MIRIM, 2011

As the laser beam moves to create the bead, materials 
continuously fused in front of the beam, flowing around the 
keyhole and solidifying at the back of the weld pool. The 
intrinsic characteristics of penetration welding establish the 
maximum and minimum for the process speed: top speeds 
cause the keyhole to collapse, while very low speeds cause 
burrs and holes due to the liquid flow [5].

An important concept in welding is welding energy (E) 
which is defined as the heat given to the weld joint per unit 
of length (J/mm). The higher the welding energy, the larger 
the grain size of the molten zone and the larger the heat-
affected zone (ZAC). For slower cooling speeds, grains in 
the region close to the melting line grows. In processes where 
low values of welding energy are involved, such as in Laser 
welding, the heat-affected zone (ZAC) is narrow and rarely 
has a defined grain growth region [6].

In laser welding, there are basically two different 
techniques, namely conduction welding and penetration 
welding or Keyhole. The energy density characterizes 
conduction welding being below 106 W/cm², not 
generating significant evaporation of the material, only a 
change in state from solid to liquid [7]. 

In the penetration welding process, higher energy 
densities than conduction welding characterize it (between 
106 W/cm² and 109 W/cm²), and it is possible to carry 
out welding of components with great thickness. The 
difference between the welding techniques can be seen in 
Figure 2.

For welding low carbon steels, they’re characterized 
by low strength and hardness, high tenacity, and ductility. 
They have good machinability, good weldability and 
are not heat-treated, besides requiring attention in the 
generation of discontinuities due to the absence (or low 
percentage) of alloying elements, such as Mn. Besides 
the low metallurgical complexity, low carbon steels have 
a simple chemical composition where they do not cause 
major microstructural changes in the heat-affected zone 
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(ZAC). The fusion and solidification of the material does 
not cause transformations in the crystalline structure that 
harm the characteristics of the welded joint, having a part 
without defects and properties and performance required 
for application [8].

2. Purpose

The objective of this work is to qualify the applicability 
of the 10 kW IPG fiber laser model YLS-10000 as 
a processing tool in the autogenous laser welding of 
thick and low-carbon structural steel joints, varying the 
laser input parameters and evaluating the metallurgical 
properties of the welded joints got.

Measure the output variables of the process by 
analyzing the heat-affected zone (ZAC) and the molten 
zone of the processed material after interaction with the 
laser beam between the power of 10 kW at the speed of 2.4 
m/min and focus -6 mm. These theoretical-experimental 
analyses based on empirical information from [9], 
carried out in the same laboratory, as well as previous 
experimental procedures.

3. Methodology

The experimental ordering consists of carrying out 
controlled tests based on the survey and admissible 
parameters, which result in a good weld quality (without 
cracks and porosity) and with total penetration into the 
welded joint. The controlled tests were carried out from 
the interaction of the Laser light beam with a solid plate 
just forming a bead on a plate. An important point to be 
investigated in this work is keyhole stabilization.

The present work was carried out using a10 kW 
IPG fiber Laser system as a tool for laser welding. The 

methods comprise carrying out controlled tests, to make 
a list of admissible parameters, to have weld quality, 
without cracks and porosity, and with total penetration.

As a base material for welding, SAE 1020 steel was 
used, which is widely used in the industry in general, 
whether automotive, civil, naval, or machinery, and as an 
advantage it has a low cost compared to other steels and 
alloys because it is a steel with low content of carbon, 
meeting the requirements proposed in this work.

In Table 1 the chemical composition of SAE 1020 
steel presented, according to the Brazilian standard that 
establishes the numerical designation used to identify 
carbon and alloy steels, according to their chemical 
composition (ABNT NBR NM 87: 2000) [10], data on the 
percentage of chemical elements present in 1020 steel was 
showed by the manufacturer Gerdal (supplier).

Table 1. Composition of SAE 1020 steel

Element
C 

(Carbon)
Mn 

(Manganese)
P 

(Phosphor)
S 

(Sulfur)

% (Standard) 0,18 - 0,23 0,30 - 0,60 ≤ 0,030 ≤0,050

% (Provider) 0,18 - 0,23 0,30 - 0,60 ≤ 0,040 ≤0,050

Source: SOUZA, 2017.

The 1020 steel plate used in this work has dimensions 
of 400 x 127 mm with a thickness of 3/8” (value with an 
order of magnitude suitable for drawing conclusions about 
the behavior of autogenous high-depth laser welding (thick 
joint) from a fiber laser source with 10 kW power).

In Figure 3, the distribution of the specimens on 
the 3/8” plates is observed so that, after welding, these 
specimens were removed by cutting with a water jet. 
Specimens in the plate’s layout, the samples destined for 

Figure 2. Representation of the conduction welding process (A) and penetration welding (B)

Source: Adapted from ENGEMANN, 1993.
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Charpy tests in the regions of the welded joints, as well 
as the samples used for tensile testing in the same region 
and finally the samples used for tensile testing of the base 
material are notorious. For hardness and metallography 
tests, the same specimens mentioned above will be used.

3.1 Reviews

Evaluating and measuring the output parameters 
carried the verification of the quality of penetration of the 
laser beam into the welded parts out, carried out through 
visual inspection, with the naked eye and the analysis 
of micrographs (optical microscopy). To verify the 
microstructure, metallographic preparation of parts of the 
specimens is necessary.

The samples were prepared on the premises of 
the Metallographic Preparation Laboratory.Sample 
preparation was carried out following conventional 
metallography procedures, following the technical 
standards showed. In the sanding, the particle sizes 
80,120,220,400, 600,800, 1200 were used in sequence. 
The samples were polished with 1 µm Alumina until 
reaching the desired surface quality. To allow the 
visualization of the microstructure of the material, a 
chemical attack was carried out with Nital 2% reagent 
(2% HNO3 by volume of ethanol) for 15 seconds on the 
surface to be analyzed [11].

The quality verification of laser beam penetration 
into welded parts was carried out by evaluating and 
measuring the output parameters, carried out through 
visual inspection and the analysis of destructive and non-
destructive tests discussed in the subsequent items.

3.1.1 Destructive Tests

Charpy traction and impact tests (type A) were 

performed at room temperature. The purpose of the first 
test is to evaluate the mechanical strength and ductility 
of the solder joint and the base metal. Normally, for 
thin joints, the specimen is removed transversally to the 
weld bead. For each of the situations, the analysis of the 
resistance to the last and the stretching was performed to 
determine the possibility of use or not.

For tensile tests performed in accordance with the 
Brazilian standard for carrying out tensile tests - ASTM 
A370-10 [12]. They were performed on an Instron 300LX-
C4-J3D instrument. For base metal, a specimen was 
extracted from the rolled profile in the longitudinal 
direction of the rolling direction. The respective 
dimension for this test piece with rectangular cross-
section is specified in Figure 4.

Regarding the tensile tests for welded joints, three 
specimens were extracted for each weld specification 
in the transverse direction to the lamination of the base 
metal. The respective dimensions can be seen in Figure 5.

For approval under the API 1104 [13] standard, which 
standardizes gas and arc welding processes for low-alloy 
steels, welded joints must meet the following criteria for 
rupture outside the welded joint and in the welded joint:

a) Breakage outside the welded joint: the breaking limit 
must meet the minimum strength limit of the base material 
specification;

b) Breakage in the welded joint: the rupture limit must 
meet the minimum strength limit of the pipe material 
specification, as well as in the fracture cross section: no 
pores larger than 1.6 mm (with the sum of the area not 
exceeding 2% of the fracture area) and the slag inclusions 
should not be more than 0.8 mm thick or more than 3 
mm long, with a minimum separation of 13 mm between 
adjacent inclusions.

Figure 3. 3/8” x 400 x 127 mm plates intended for autogenous welding, which will be extracted by water cutting the 
specimens for Charpy A testing and traction on the base metal and welded joint

Source: Prepared by the authors, 2021.
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For the Charpy type A test, with a V-notch, it was 
made on the base metal, and in the welded region with 
the notches in the molten zone and in the heat-affected 
zone (ZAC), at room temperature as a variation of the 
ASTM E370 [14] standard in the dimensions of 10 mm x 
10 mm x 55 mm, with three replicas for each condition 
analyzed. The notch was positioned in the thickness plane 
at positions relative to the center of the weld bead, heat-
affected zone (ZAC).

The tests were carried out on the Wolpert universal 
impact testing machine; with three specimens for each 
welded joint in the longitudinal direction of the weld 
bead in the heat-affected zone (ZAC) and molten zone 
regions and in the transverse direction of the joint. The 
dimensions of the specimens and the representation of the 
welded profiles can be seen in Figure 6.

3.1.2 Non-destructive Testing

For the analysis of the macro and microstructure, the 

metallographic test was carried out by preparing sections 
of the specimens containing the welded regions of interest 
according to conventional procedures according to the 
technical standards indicated.

In the experimental procedure, sanding sectioned 
transversally and prepared the welded joints following the 
particle sizes 80, 120, 220, 400, 600, 800, 1200 respectively, 
with the samples being polished with 1 µm alumina until 
reaching the desired surface quality. The chemical attack was 
carried out with Nital 2% (2% HNO3 by volume of ethanol) 
for 15 seconds on the surface to be analyzed [11].

Vickers hardness tests (HV) were performed using a 
Future-Tech microhardness tester, model FM-800, and 
following the guidance of the ASTM E92-82 [15] standard. 
They were tested for each region of interest, base metal, 
heat-affected zone, and steel melt zone in the plane normal 
to the rolling direction and to the weld bead, as seen in 
Figure 7. In the procedure to get the hardness, a load of 
500 g was used for a time of 15 seconds and a distance 
between impressions of 0.15 mm.

Figure 4. Dimensions of the tensile test specimens for the base metal, with thickness t = 9.54 mm (adapted from API 5L 
standard, 2007).

Source: Prepared by the authors, 2021.

Figure 5. Representation of the tensile test body for the welded joints with the respective characteristic dimensions, 
being the thickness t = 9.54 mm.

Source: Prepared by the authors, 2021.
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4. Results

This chapter describes the experimental results obtained 
from the techniques seen in item 3 for destructive (tensile 
and Charpy A) and non-destructive (metallographic, 
hardness and Vickers microhardness) tests.

5. Discussion

5.1 Metallographic Test

For the macrograph verification of the welds, (Figure 
8), it is verified that the width of the zone is affected by 
the heat-affected zone (ZAC) varies a lot: it is smaller in 
the root region and larger in the intermediate region (half 
the thickness). It is plausible that this is associated with 
differences in cooling rates across thickness and, as a 
result, differences in microstructure and hardness.

In Figure 9, there is a micrograph of the welded joint at 
a magnification of 50 x, where the appearance of the weld 
in the regions of the base metal, heat-affected zone(ZAC) 
and molten zone is observed. Visual inspection of the 
section shows the presence of porosity.

In the micrograph of Figure 10, the ferrite-pearlite 
microstructure, characteristic of 1020 steel, can be seen. 
The molten zone is also more clearly observed, indicated 
by point (A) and characterized by the presence of larger 
grains, heat-affected zone (ZAC), indicated by (B) and the 
base metal, region indicated by point (C), not affected by 
the high temperature in the welding process.

5.2 Hardness Test

Due to the variation in the width of the welding profile 
verified in Figure 8, three hardness profiles were made, 
parallel to the plate surface and at different depths. As the 
penetration of the welds was around 7 mm, the profiles 
were made at the following distances measured from the 
surface of the sheet: 1 mm; 3.5mm and 6mm.

The hardness profiles included 3 measurement points 
in the molten zone and the other 6 or 7 remaining in the 
heat-affected zone (ZAC), and base metal, as shown in 
Figure 11. The values are presented in Table 2, in which 
the zones in which the hardness are located base metal, 
heat-affected zone, and steel melt zone are identified.

Figure 6. Representation of the specimen for the Charpy type A impact test with their respective dimensions taken from 
the welded material in the laser process and from the joins soldiers.

Source: Prepared by the authors, 2021.

Figure 7. Representation of the planes for obtaining the Vikers hardness in the welded specimen

Source: Prepared by the authors, 2021.
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Figure 8. Macrographs of the cross sections of the welds performed with: a) low energy; b) high energy.

Source: Prepared by the authors, 2021.

Figure 9. Micrograph of the welded joint at 50x magnification

Source: Prepared by the authors, 2021.

Figure 10. Micrograph of the welded joint at 50x magnification

Source: Prepared by the authors, 2021.
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Regarding the verification of a relatively lower 
hardness of MB, the result was already expected because 
it is 1020 steel, but in heat-affected zone (ZAC), there 
was a high increase, due to the possible formation of 
martensite. In other words, even though the material has 
low hardenability, the high cooling rates resulting from 

the use of the laser promoted the formation of martensite.

5.3 Charpy Impact Test

The major result of the Charpy test is the energy 
needed to deform and fracture the specimen, called the 
global energy, which is read directly on the machine’s 

Table 2. Values of microhardness of the welded joint profile in which the hardness zones located base metal, heat-
affected zone, and steel melt zone are identified.

Source: Prepared by the authors, 2021.

Figure 11. Representation of the hardness profiles carried out, with the identification points to determine the Vikers 
microhardness profile with the average of three points at three levels for the base metal, Thermally Affected Zone (ZTA) 

and molten zone.

Source: Prepared by the authors, 2021.
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gauge. This energy corresponds to the difference in 
potential energy of the pendulum hammer before and 
after the impact. The results got from absorbed energy 
as a function of temperature and brittleness index for the 
specimens can be seen in Table 3.

Table 3. Values of energy absorbed in the impact test for 
the 3 samples.

Source: Prepared by the authors, 2021.

First, the surfaces of the samples tested differed 
according to  the fracture mode,  comparing the 
longitudinal fracture specimens and the transversal weld 
fracture specimens (Figure 12). For steel specimens 
with fracture initiated by the melting zone, the fracture 
occurred irregularly, featuring a triaxiality of tensions, 
while those fractured in the heat-affected zone (ZAC), 
transversely to the weld showed a surface with greater 
flatness. The results verified in Table 3 also reveal a very 
strong divergence of values (more than 60%).

It is observed that in the heat-affected zone (ZAC) 
region, compared to the other regions, lower values of 
impact energy were recorded due to microstructural 
changes caused by the thermal cycle in welding. This 
thermal cycle leads to a heat-affected zone (ZAC), with 

the possible presence of martensite in the microstructure, 
resulting in lower fracture toughness. This fact, together 
with the discontinuity and porosities in the welding, 
corroborates the fact that the impact energy is lower in the 
transverse heat-affected zone (ZAC).

Figure 12. Comparative fracture images between a 
Charpy impact steel specimens. for longitudinal steel 

melt zone with pronounced irregularity on the fractured 
surface (A) and transverse heat-affected zone (ZAC), with 

a surface with greater flatness.

Source: Prepared by the authors, 2021.

5.4 Tensile Test

In the tensile test made for the base metal according 
to ASTM A370-10 [10] standard, although the extracted 
specimens are aligned in the rolling direction, the results 
of the values of the yield limit, rupture limit, maximum 
stress, and elongation, can be seen in Table 4.

The test specimens for the weld joints were not 
successful in the test, given the rupture in the weld region. 
This behavior is due to the welding failures found in the 
beads, causing a decrease in area and stress concentration, 
as well as the possible formation of embrittlement micro-
constituents such as martensite arising from the cooling 
process of the bead.

Table 4. Yield limit, rupture limit, maximum stress and elongation values in the tensile test for  
the base metal and welded joint.

Source: Prepared by the authors, 2021.
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5. Conclusions

The “tests made from the parameters chosen in the 
autogenous laser welding of SAE 1020 steel with a 
thickness of 3/8”, using a 10 kW IPG fiber laser model 
YLS-10000 at a speed of 2.4 m/min and focus - 6 mm was 
a priori satisfactory in external aspect. The experimental 
adjustments, compared with the literature of tests carried 
out with the same steel, with the same thickness, and 
with the same equipment, tended to make the process 
repeatable. However, when analyzing the cross-sections of 
the samples, discontinuities, porosities, lack of welding, 
geometric variations in the weald profile along with the 
depth, and significant microstructural changes were also 
verified in the mechanical tests. These deleterious defects 
led to the failure of those welded specimens submitted to 
the tensile test that broke in the joint, disqualifying the 
process, seen in Table 4.

The increase in hardness in the heat-affected zone 
(ZAC) in over 75% in the intermediate part of the weld 
in relation to base metal indicates the possibility of 
martensitic formation in this region, even though it is low 
carbon steel. This possibility is even more emphasized 
when compared to the Charpy impact energy in this region 
with an average of 46.6 J in the transverse heat-affected 
zone (ZAC), seen in Table 3.

One aspect that can be associated with variations 
in hardness and toughness and consequently with 
microstructural modifications is the large geometric 
variation in the weld profile seen in Figure 8, showing a 
variation in cooling rates along with the profile, which 
allows for microstructural change.

The low speed associated with the low power can 
influence the verified porosity and discontinuity (not 
forming the keyhole in the entire thickness of the plate).

This indicates that for a safe welding process with 
repeatable results, there may be other conditions with 
sensitive implications for the last quality. This influence 
can be verified not only in the equipment process 
parameters but also in the dimensional characteristics of 
the parts themselves (joint linearity, thickness) and their 
fastenings (joint alignment), as well as the welded regions 
of the parts given the thermal flow with relation to mass 
and conductivity to the environment.
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The behavior of fluid flow has been studied during the different flow 
media over the past decades. In addition, the behavior of the flow of fluid 
through porous media has garnered much research interest. This paper 
sheds light on fissured rocks of oil reservoir media (as one of the porous 
media domain), and the effect of these fissured on fluid flow. In this 
article, the Finite Volume Method (FVM) has been used to visualize the 
behavior of single-phase fluid flow in an actual core according to the dual-
porosity dual permeability model. The study was conducted in two parts, 
the first was the image processing for one of the real oil reservoir fractured 
rock images, where the image was processed and simulated by ANSYS-
CFX software, and the results showed a complete visualizing of the fluid 
behavior during this domain. As for the other side, a simulation of a real 
reservoir rock belonging to the Al-Nour field in Iraq / Misan was made. The 
X-ray Computed Tomography (CT) scan has been used to convert the real 
fractured core to a dynamic domain. ANSYS-CFX program has been used 
and the results illustrated the pressure counter, the velocity counter, the 
velocity streamline, and the velocity vectors for the studied model in three 
dimensions. A comparison was made between the productivity index for 
fractured and non-fractured rock and the results explained that the presence 
of fracture can improve the productivity index to about 5.74%.

Keywords:
Computed Tomography (CT) scan
Al-Nour field
Fluid flow

1. Introduction

Natural fractures are found in almost all petroleum 
reservoirs. These structures are difficult in their 
characterization and predictor. Representing the fluid flow 
behavior in a naturally fractured reservoir is very complex 
because of the complex nature of these domains. This 
topic took the attention of both engineers and geologists 
[1-3]. Two media could be recognized in this type of 
reservoir; fracture media and matrix media. The fracture 

and matrix are different in their porosity and permeability. 
The effect of the fracture and fracture permeability on 
the flow of fluid has been notarized by many studies, 
where these fissures may act as a barriers system, conduits 
system, or combined (conduit-barrier) systems [4,5]. A 
comprehensive study of the effect of fractures on the fluid 
flow within the subsurface has been given by scientists 
[6-12]. In 1990, Luthi and Souhait, performed 3D finite 
element models to investigate the response to fissures of 
the Formation Micro-Scanner, where a high resolution 
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has been recorded for electrical scans for the borehole 
wall according to fissures. The detected, traced, and 
quantified fissures were the 3-steps that they used in their 
model. In the detection step, they used the Formation 
Micro-Scanner images for the locations that possibly 
had fissures, so when the electric conductivity overrides 
the local conductivity of the matrix by a statistically 
considerable amount the fracture locations are detected. 
After that, they performed an integration around these 
locations over a circular zone to gather all excessive 
currents; then the integral reduced to approximate the line 
integral. The trace step has been done by a line sharpening 
and neighbor connectivity tests then the apertures are 
computed for whole fissure locations. From the obtained 
results, they showed that their method successfully traces 
fractures, and their technique was novel and unique for 
characterizing fissures in wellbores [13]. In 2003, Hirono et. 
al, used the n X-ray computed tomography (CT) imaging 
method to visualize the behavior of fluid during the 
permeability testing. Moreover, along the permeable zone, 
they measured the localized permeabilities [14]. In 2007, 
Karpyn et. al., studied the fissures’ effect on the two-
phase flow of fluid (oil and water), and they used micro-

computed tomography (MCT) to distinguish the internal 
structure of the fracture.

The focus of this research was on visualizing the 
flow inside the fractures differently, as several programs 
were used to obtain a comprehensive visualization of a 
single-phase fluid flow in these media. Moreover, the 
X-ray Computed Tomography (CT) scan has been used 
to convert the real fractured core (the core that was taken 
from the Al-Nour field in Iraq / Misan) to a dynamic 
domain, where several programs have been used to get 
a three-dimensional dynamic domain for the mentioned 
core.

2. Methodology 

The behavior of fluid flow through a fracture profile 
in a permeable rock in an actual reservoir core, shown in 
Figure 1, according to dual-porosity-dual-permeability 
(DPDP) model has been performed numerically in this 
study. The study falls into two domains; the first one 
represents the simulation of a natural fracture picture, as 
shown in Figure 2. While the second one represents the 
simulation of the real fractured core. Where, the X-ray 

Figure 1. Flow in actual fracture

Figure 2. Fractures and Matrices. [16]
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Computed Tomography (CT) scan was used to get a 3D 
picture of the real fractured core, as illustrated in Figure 
3. This image was subjected to a series of software 
operations to be converted from a static model that can’t 
be simulated, into a dynamic model that can be simulated. 
Figure 4 shows the chart for the series of programs used 
in image processing. 

Two media could be recognized in this type of rock; 
fracture media and matrix media. The general form of 

mass balance equations can be given as [17,18];

•	 The mass balance equation for the fluid flow in the 
matrix system is given by the following equation

� (1)

where the phase fluxes in matrix ( ) is given by:

� (2)

•	 The mass balance equation for the fluid flow in the 
fracture system is given by the following equation:

� (3)

where the phase fluxes in fracture ( ) is given by:

� (4)

Where,  is the porosity, s is the phase saturation, q is 
the volumetric flux, is the volumetric source, Kr is a 

relative permeability, and the superscripts; f and m denote 
to the parameters which defined in fracture and matrix 
domains, respectively. 

Moreover,  the  genera l  form of  a  momentum 
conservation equation (Navier-Stokes equation) can be 
given as [19];

� (5)

Where; 

Darcy introduced an equation for the mean filter 
velocity  for the fluid flow through a homogeneous 
porous media field with absolute permeability k, a 
viscosity of the fluid , and pressure gradient across the 
domain : 

� (6)

where
g = The acceleration due to the gravitational forces, 

which can be neglected for a horizontal layer flow (ft/s2).
= The density of the fluid (Ib/ft3).

The mean filter velocity in Equation (3.7), is also 
called Darcy velocity, which is related to the average pore 
velocity  by the relation [20]:

� (7)

Where  is the effective porosity of the porous media.

Figure 3. Actual Fractured core.
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� (8)

Where  is an average value for which can be 
calculated from the following:

� (9)

For the single-phase flow conditions, the productivity 
index (J) defined as the relationship between flow rate and 
the pressure drawdown, the difference between a given 
average reservoir pressure and the bottom-hole flowing 
pressure:

� (10)

Where;  is the oil flow rate, the average reservoir 
pressure, and  is the bottomhole pressure.

The parameters boundary conditions are; Fluid density 
= 49.94 Ib/ft3 (0.8 g/cm3), Fluid viscosity = 0.00010443 
lbf s ft-2 (5 cp), The total pressure inlet = 3000 psi (2.068E7 
Pa), No- slip wall conditions, and homogenous domain 
have been assumed.

Figure 4. The CT-scan image transition.

3. Results and Discussion

The single-phase fluid flow is presupposed to be 
laminar and follow Darcy’s Law. Moreover, the EbFV 
approach has been used in the analysis and the results 
in detail have been explained. The X-ray Computed 
Tomography (CT) scan was used to convert the actual 

rock domain to a dynamic picture domain, to make it 
suitable for simulating by the ANSYS-CFX program.

Figure 5-A represents the real image from which the 
measurements of the fracture were taken. While Figure 
5-B represents the computational domain that corresponds 
to this image that was executed in the ANSYS program, 
CFX package. The average fracture apertures have 
been calculated in this model, where it is approximately 
(1.42 cm), which in turn can be used to calculate the 
permeability of fracture by using Equation 8.

Figure 6 shows the pressure contour throughout the 
computational domain where pressure gradient can be 
observed through the domain as a whole, in addition, to 
illustrate the pressure distribution through the fractured 
area.

Figure 7 illustrates the velocity contour throughout the 
computational domain. A rapid velocity increase in the 
fractured zone can be observed, which is attributed to its 
high permeability when compared to the permeability of 
the surrounding rock. Where the average velocity in the 
fracture is (0.007151 m/s, Re = 16.13), while the average 
velocity in the matrix is (0.00008143 m/s). 

Figure 8 and Figure 9, visualize the velocity streamline 
and the velocity vectors throughout the computational 
domain, respectively, under (1000 psi) pressure drop 
and with fracture permeability equal to (0.0000168 
m2). Where the velocity streamline can be followed 
throughout the domain to move from the areas of high 
pressure to low pressure, in addition to the distribution 
within the fractured zone. The incoming velocity vectors 
to the fractured zone have been enlarged to give further 
indication of intensified fluid movement in this area.

On the other hand, the simulation of a real rock model 
(with 10.5 cm in diameter and 5.5 cm in length) obtained 
from the Misan Field, Bin Umar formation, at a depth 
(3688 m) was done. The tomography scan has been taken 
to the rock by using a CT scan device belonging to Al-
Fayhaa Hospital, where a total of CT scan pictures have 
been obtained and several programs were treated so that 
the geometry could be converted into a 3D dynamic 
domain that could be simulated by ANSYS. These 
processes would convert the geometrical form of a static 
model into a dynamic model that can be manipulated 
with engineering programs and undergone the boundary 
conditions that are related to a special issue, as shown in 
Figure 10. The average fracture aperture is about (1.9054 
cm). Here also the Equation (8) could be used to calculate 
the permeability of the fracture.

Figure 11 displays the pressure contour and the velocity 
contour if it is presumed that the rock without any 
fracture. Where the pressure drop during the rock is 1000 
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psi, while the average velocity on the outlet approximately 
(0.0001538 m/s). The velocity streamlines and the 
velocity vectors of the fluid during the non-fractured rock 
are depicted in Figure 12.

The pressure contour and the velocity contour of 
fractured rock illustrate in Figure 13. Obviously, the 

presence of a small fracture can contribute to raising 
the rate of fluid velocity where the average velocity 
of the outflow fluid reaches about (0.000162467 m/s). 
The difference in the pressure contour lines in both the 
fractured and non-cracked rock is illustrated in Figure 
15, where the pressure lines are distributed clearly in 

Figure 5. (A) Real fractured rock image, (B) The domain that has been designed by ANSYS program

Figure 6. The Global pressure contour throughout the domain
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Figure 7. The velocity contour throughout the domain.

Figure 8. The velocity streamline throughout the domain.

Figure 9. The velocity vectors throughout the domain.
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both cases. In the absence of a fracture, the pressure 
distribution will be uniform to all layers of the rock from 
the high-pressure area to the low-pressure zone. In the 
case of fractured rock, the pressure will decrease at all 
sides of the fracture faster than adjacent layers. This is due 
to the high permeability of the fracture when compared 
with the matrix.

The velocity streamlines and the velocity vectors of 

the fluid over the fractured rock are depicted in Figure 14, 
where an increase in fluid velocity can be observed in the 
fracture zone, this is a reasonable behavior as the fluid 
would be attracted to the areas with high permeability. A 
comparison was made between the productivity index for 
fractured and non-fractured rock and the results explained 
that the presence of fracture can improve the productivity 
index to about 5.74%.

Figure 10. Converting static geometry to dynamic geometry.

Figure 11. The pressure contour and velocity contour throughout the non-fractured rock

Figure 12. The velocity streamlines and the velocity vector throughout the non-fractured rock.
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Figure 13. The pressure contour and velocity contour throughout the fractured rock.

Figure 14. The velocity streamlines and the velocity vector throughout the fractured rock.

A) Non-Fractured Rock

B) Fractured Rock
Figure 15. The pressure contour of the rock.
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4. Conclusions

The numerical simulation for single-phase and laminar 
flow of fluid within fractured rock has been conducted 
in this study. The X-ray Computed Tomography (CT) 
imaging was successfully applied. However, the resulting 
images from the CT scan have been treated with several 
programs to get a three-dimensional dynamic domain. 
The three-dimension for fluid behavior in a rock has been 
illustrated. Moreover, the X-ray Computed Tomography 
(CT) imaging helped to diagnosis the fracture within the 
rock with high resolution and the behavior of fluid within 
the fracture has been visualized in detail. The results of 
this study explained that the presence of fracture can 
improve the productivity index to about 5.74%.
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NOMENCLATURE

Permeability [Darcy] k

The phase saturation s

Average reservoir pressure [psi]

Bottom hole pressure [psi] Pwf

Pressure gradient [psi]

Relative permeability kr

Gravity acceleration vector [m/s2] g

Phase flux [m/s] u

Volumetric flux from the matrix domain to the fracture domain [m/s] qm-f

Volumetric flux from the fracture domain to the matrix domain [m/s] qf-m

Velocity [m/s] v

Time [s] t

Productivity index [BBl/psi Day] J

Oil flow rate [BBl/Day] qo

Greek Letters

Volumetric source term [m/s]

Porosity [-]

The density of fluid [kg/m3]

Dynamic viscosity [Pa. s]

Superscripts

Fracture f

Matrix	 m
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1. Introduction

In the class of discrete deterministic dynamical systems, 
finite deterministic automatons form the simplest, but 
rather studied subclass. Advanced methods of analysis, 
synthesis, recognition, etc. of finite state machines are 
effectively used in solving applied problems for real 
systems, the automaton models of which are explicitly 
specified by tables, matrices, graphs, logical equations, 
etc. After the introduction by McCulloch and Pitts (1943 
[1]) of the basic provisions on which the concept of an 
automaton is built, the theory of automata was developed 
in [2-9] and many others etc. The research results presented 
in the works of these authors constitute the fundamental 
basis of the symbolic theory of automata, ie. theory, in 

which automata, as a rule, are not associated with classical 
numerical structures, which limits the application of the 
methods of classical mathematics in the automata theory.

In connection with the development of areas of 
application of the theory of automata, it turned out that 
for real systems of large dimension, the assignment of 
automata models with tables, matrices, graphs, and logical 
equations is practically ineffective. One of the ways to 
expand the field of application of the theory of automata 
was the research of Academician of the Russian Academy 
of Natural Sciences V.A. Tverdokhlebov, in which, 
since 1993, is considered the representation of the laws 
of functioning of automata, given by discrete symbolic 
next state and output functions, by continuous numerical 
structures.
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For this, the automata mapping is assumed to be a 
set of points with numerical coordinates and the laws of 
functioning are represented by broken lines, the vertices 
of which are located on analytically specified curves. This 
approach to defining of automata as well as some methods 
of analysis, synthesis and recognition of automata by their 
geometric images are used and developed.

The geometric approach used in this work to define 
the laws of the functioning of automata ideologically 
intersects with the research of other scientists [16-21], but 
has fundamental differences. For example, in [16] Benjamin 
Steinberg also considers a geometric approach to automata 
theory, but in the context of its use in combinatorial group 
theory, to solve various problems on the overlap between 
group theory and monoid theory. In [17] finite automatons 
are used in problems of encoding and compressing 
images, as well as in considering regular ω-languages (sets 
of infinite words defined by finite automata).

The work [18], which studies discrete-event systems, is 
of great interest, although it also uses symbolic forms of 
defining automata models of systems.

Quite interesting are the results of [19], which uses a 
geometric approach to describe such properties, within 
the framework of which the output function can be 
characterized by its polygon in the unit square [0, 1] × [0, 
1], in [19] also investigated the properties of such polygons 
and their relationship with the properties of the used 
output function are investigated.

In this paper, we consider problems from the general 
problem of recognizing of finite deterministic automatons 
by properties and signs of their functioning.

In [10] it is shown that for a fixed number of input signals 
of the automaton and the order on the set of input words, 
the geometric image is in one-to-one correspondence with 
the sequence of the second coordinates of the points of 
the geometric image. From the geometric image γs of the 
automaton As = (S, X, Y, δ, λ), where S is the set of states, 
X is the set of input signals, Y is the set of output signals, 
δ : S×X→S is the next-state function, λ: S×X→Y is the 
function of outputs and s Ss∈ S is the initial state, a sequence 
of second coordinates of points of the geometric image is 
selected, which one-to-one corresponds to the complete 
geometric image (with a fixed order on the set X* and the 
value m = | X |).

As a result, the laws of the automaton functioning and 
the specific processes of the automata functioning (that is, 
the phase trajectories) turn out to be uniquely determined 
by the sequence of the second coordinates of the points of 
the geometric image.

This allows us to consider an arbitrary sequence of 
elements from a finite set as a sequence of second coordinates 

of points of a geometric image and, therefore, as definition 
of the laws of the automaton functioning, which, in turn, 
opens up opportunities for analyzing the processes of 
the functioning of systems through the analysis of the 
properties of sequences.

The fundamental novelty of this research consists in the 
development of new recognition methods, which use not 
the classical specification of automata models of systems by 
tables, matrices, graphs, systems of logical equations, but 
the representation of automatic models by their geometric 
images located on analytically specified curves (and, under 
certain conditions, extracted from such curves of numerical 
sequences). The novelty of this research is determined by 
the fact that such a representation, in contrast to the classical 
existing methods, in a number of cases allows one to 
effectively overcome the dimensionality barrier of automaton 
models of real systems.

2. Mathematical Apparatus and Research 
Methods

Geometric images of the laws of the functioning 
of automata recognition of geometric images of 
automatic models of systems

Geometric image γs of the laws of operation (see [10-12]) 
(the next-state function δ : S×X→S and output functions λ: 
S×X→ Y) of an initial finite state machine As = (S, X, Y, δ, 
λ) with sets of states S, input signals X and output signals 
Y is determined based on the introduction of a linear order 

ω in the automata mapping , where 

λ'(s,p)=λ(δ(s,p'),x), p=p'x. An automata mapping sρ′  (set 
of pairs) is ordered by the linear order ω, defined based on 
the order ω1 on X* and given by the following rules:

Rule 1. A certain linear order ω1 is introduced on the 
set X (which we will denote );

Rule 2. The order ω1 on X extends to a linear order 
on the set X*, assuming that for any words p1,p2

*
21, Xpp ∈X* of 

unequal length (|p1|≠|p2|) |p1|<|p2|→ ; for any 
words p1,p2

*
21, Xpp ∈X* for which |p1|=|p2| and p1≠p2, their ratio in 

the order ω1 repeats the ratio of the nearest non-coinciding 
letters of the words p1 and p2 to the left.

The order ω´2 on the set of words Y* is defined similarly.
After introducing the linear order ω1 on the set X* we 

obtain a linearly ordered set ),( 1ω′ρ′=ρ ss , where 1ω′  is the 
order on sρ′  induced by the order ω1 on X*.

Defining the linear order ω2 on the set Y and placing 
the set of points in the coordinate system with the abscissa 
axis (X*, ω1) and the ordinate axis (Y, ω2), we obtain a 
geometric image of the laws of functioning of an initial 
finite state machine . It should be noted 
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that the linear orders ω1 on X* and ω2 on Y are generally 
independent. This means that the specific form of the a 
geometric image of the laws of functioning of an initial 
finite state machine  depends on the 
chosen orders ω1 and ω2. Other variants of linear orderings 
on X* are also possible (see, for example, [10,12]). In this 
paper, the study of the laws functioning of an initial finite 
state machine is carried out using the order ω1 on X* 
defined above. Linear orders ω1 and ω2 allow to replace 
elements of the sets X* and Y by their numbers r1(p) and 
r2(p) in these orders. As a result, two forms of geometric 
images are determined, firstly, as a symbolic structure 
in a coordinate system 1D , and secondly, as a numerical 
structure in a coordinate system with integer or real 
positive semiaxes.

From the geometric image γs of the automaton As is 
extracted sequence of second coordinates of points of 
the geometric image, which one-to-one corresponds to 
the complete geometric image (for a fixed order on the 
set X* and the value m = |X|). As a result, the laws of 
the automaton functioning (that is, the phase picture) 
and the specific processes of the automaton functioning 
(that is, the phase trajectories) turn out to be one-to-one 
determined by the sequence of the second coordinates 
of the points of the geometric image. This allows us to 
consider an arbitrary sequence of elements from a finite 
set as a sequence of the second coordinates of points of a 
geometric image and, therefore, as setting the laws of the 
automaton functioning.

The representation of a geometric image γ s as a 
numerical structure allows to use the apparatus of 
continuous mathematics in the formulations and methods 
of solving problems: setting the laws of the functioning 
of automata by numerical equations, using numerical 
procedures, interpolation and approximation of partially 
given laws of functioning, etc. The geometric image 
γs completely determines the laws of the automaton 
functioning, that is, the entire phase picture of the 
connections of the input sequences with the output signals. 
Specific variants of the functioning processes, that is, 
phase trajectories, have geometric images ( ) *

s Xp,p ∈γ , in 
the form of γs sections along individual points. Geometric 
images can also be defined by numerical, rather than 
symbolic, equations.

3. Results

Recognition of geometric images of automata 
models of systems

In [10] a formal apparatus for replacing symbolic 
automaton models in the form of tables, graphs, logical 
equations, numerical structures in the form of geometric 

figures, numerical equations and sequences is proposed 
and developed. This approach is intended to search for new 
ideas and methods for organizing technical diagnostics of 
complex systems. In works [10] V.A.Tverdokhlebov proposed 
and developed methods for the synthesis of an automaton 
by sequences and geometric curves. In [10], a new type of 
automaton is proposed - R (α, m, d (α)) - automaton. The 
laws of functioning of this type of automaton are specified 
by the numerical sequence α, which is assumed to be the 
sequence of the second coordinates of the points of the 
geometric image. An initial segment of length d (α) of the 
sequence α is considered. The value m is the number of input 
signals of the automaton.

In this paper, we propose a method for recognizing an 
automaton in a given finite family of automatons, based 
on the selection of a set of characteristic sequences from 
geometric images. The laws of functioning of a complex 
system in case of malfunctions from a set of accounted 
for malfunctions and in an operable state are represented 
by geometric images of automatons. The search for 
diagnostic sequences with this method of setting the 
laws of functioning is reduced to finding such intervals 
on the abscissa axis in which the geometric images 
corresponding to various faults do not coincide.

In [10] it is shown that for a fixed number of input signals 
of the automaton and the order on the set of input words, 
the geometric image is in one-to-one correspondence with 
the sequence of the second coordinates of the points of the 
geometric image. In view of this, an effective search for 
diagnostic influences is possible based on the analysis of 
numerical sequences. A numerical sequence (a sequence 
of the second coordinates of the points of the geometric 
image of the automaton) is associated with each fault 
from the set of considered and taken into account faults, 
and the problem of fault recognition is reduced to the 
problem of finding such numbers of elements in sequences 
whose values are different in each of the sequences under 
consideration.

At the large number of sequences and a large length of the 
sequences themselves, this problem has a complex solution 
and requires large amounts of computational resources. In 
view of this, it is proposed to carry out the recognition of 
the original (numerical) sequences based on the analysis of 
characteristic (binary) sequences reflecting the location of the 
values of the elements in the original sequences.

The diagnostic method based on the decomposition of 
geometric images of automatons includes the following stages:

(1) Construction of a mathematical model of the system 
in a working state and mathematical models of the laws of 
the system’s functioning in case of malfunctions (faults) 
in the form of partially specified geometric images of 
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automatons;
(2) Regularization of partially given geometric 

images to complete ones based on the use of classical 
interpolation methods (see [12,14]);

(3) Extraction of numerical sequences (sequences of 
second coordinates of points) from complete geometric 
images obtained on the basis of interpolation;

(4) Decomposition of sequences into a set of characteristic 
sequences without loss of information;

(5) Analysis of the obtained set of characteristic 
sequences in order to identify such a minimum set of 
characteristic sequences that covers all faults from the set 
of considered and taken into account system faults.

To illustrate the described diagnostic method with a 
reduction in the generality of reasoning, let us assume that 
the set of considered and taken into account system faults 
consists of 999 faults, and as a result of the implementation 
of stages (1)-(3) of the proposed diagnostic method, the 
following family of numerical sequences { H0, H1, H2, …, 
H999}, where H0 is the sequence of the second coordinates 
of points of the geometric image of the automaton 
model of an operable system, and H1, H2, …, H999 are the 
sequences of the second coordinates of the points of the 
geometric image of the automaton models of the system 
in case of malfunctions.

With a reduction in the generality of reasoning, as the 
sequences H0, H1, H2, …, H999, numerical sequences of 
length 1000 characters are considered, extracted from the 
initial segment of a number π with a length of 1,000,000 
characters according to the following rule: the first 
character of the sequence Hi , 0 ≤ i ≤ 999, has a number 
(i+1)·1000 in number π, and the last sign of the sequence 
H i has a number (i+1)·1000, i.e. the initial segment 
of number π with a length of 1,000,000 characters is 
sequentially divided into 1,000 subsequences of the same 
length 1,000 characters each.

As a result of the implementation of stage (4), a set of 
characteristic sequences was built, consisting of 10,000 
sequences of length 1000. A computational experiment 
that implements stage 5 of the proposed diagnostic method 
revealed the following specific properties of the considerated 
set of characteristic sequences under. Recognition of all 
1000 sequences H0, H1, H2, …, H999 (in the case when all 
1000 characters are analyzed) is possible using any of 10 
characteristic sequences, i.e. each of the sequences H0, H1, 
H2, …, H999 has a unique distribution of all ten digits.

Thus, the amount of necessary diagnostic information 
can be reduced by at least 10 times (for each malfunction, 
instead of storing the entire original sequence, it is 
sufficient to store any of 10 characteristic sequences).

In addition, the following properties are noted, which 

make it possible to more significantly reduce the amount 
of diagnostic information:

(1) When using only the first 10 points of the 
characteristic sequences, 85% of the sequences are 
recognized;

(2) When using the first 20 points of the characteristic 
sequences, more than 97% of the sequences are recognized;

(3) When using the first 25 points of the characteristic 
sequences, more than 99% of the sequences are recognized;

(4) To recognize all 1000 sequences, the first 60 points of 
the characteristic sequences are sufficient, highlighting the 
location of the digit 8 in the sequences H0, H1, H2, …, H999;

(5) The use of any of the 10 sections of the geometric 
image for recognizing all 1000 sequences is possible when 
using the first 90 points of the characteristic sequences.

The performed computational experiment shows that 
the use of the diagnostic method using the decomposition 
of geometric images of automatons (using the example 
of the class (π, m, d (π)) - automatons constructed from 
the first 1,000,000 digits of π) can significantly reduce the 
amount of diagnostic information.

The effectiveness of the proposed method for reducing 
diagnostic information was investigated for another 9 
classes of automatons constructed from 9 sequences 
by length of 1 million characters, specifying the 
approximations of the following mathematical quantities: 

e, 
2

51+
=ϕ  ( so-called golden ratio), 2  , 3 2  , ln (2), 

ln(10), , Catalan’s constants C , 

Euler’s constants  (see [15]).

Specific properties are defined for each class. For 
example, the largest number of recognizable sequences 
(88%) using only the first 10 points of characteristic 
sequences is noted in the class of automata constructed 
from the first million digits of a number 3 2 . In the class (e, 
m, d(e)) - automatons for recognizing all 1000 sequences, 
it is enough to know the first 54 points in the characteristic 
(binary) sequence that highlights the location of the digit 1.

The used geometric approach allows us to research 
the properties of the laws of functioning of discrete 
deterministic dynamic systems of large dimension based 
on the analysis of the properties of geometric curves and 
numerical sequences. In this paper, classes of discrete 
deterministic automatons are constructed and analyzed, 
which are determined on the basis of the mathematical 
properties of geometric images that define the laws of the 
functioning of automatons.

The results presented in the paragraph show the 
possibility of practical use of the apparatus of geometric 
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images for specifying and studying the properties of the 
laws of functioning of discrete deterministic dynamical 
systems. A method for reducing diagnostic information 
based on the decomposition of geometric images is 
proposed. An illustration of the method is given on the 
example of the class (π, m, d (π)) - automatons constructed 
from the first million digits of the sequence specifying the 
approximation of the number π.

A method for recognizing automata, the vertices 
of the geometric images of the laws of functioning 
of which are located on analytically specified 
geometric curves

Let the automaton A0 be a mathematical model of a 
workable technical system and the family of automatons 

 represent the set of faults I of the technical 
system. Suppose that these automata are given by a 
geometric image γ0 and , respectively, by a family of 
geometric images Iii ∈γ=β }{ i∈I. In the developed method of 
technical diagnostics, geometric images are assumed to 
be located on an analytically specified geometric curve 
L0 and a family of analytically specified geometric curves 

. Then equality  is determined 
by the solution of the control problem using a simple 
unconditional experiment.

Definition 1. Let L be a geometric curve and Δ - a 
segment on the abscissa axis, on which the curve or part 
of the curve L is defined. This part of the curve will be 
denoted by L (Δ).

Theorem 1. Let: - to the initial automaton A0 = (S, X, 
Y, δ, λ, s0), Ss ∈0 , there is a one-to-one correspondence 
with the geometric image  located on the 
geometric curve L0; - the family of initial automatons 

, where Ai = (Si, X, Y, δi, λi , S0i), S0i iSs
i
∈0 Si, is in 

one-to-one correspondence with a family of geometric 
images  located respectively on geometric 

curves .
For the proof, see, for example, [12,14].
On the basis of Theorem 1, is proposed a method of 

recognizing of automatons, the laws of functioning of which 
are defined by geometric images located on analytically 
given curves. The method consists of the following steps:

Stage 1. Construction (selection) of a family  
of geometric curves and the location on them of geometric 
images of the laws of functioning of automatons from the 
family of automatons .

Stage 2. For the system of inequalities , i, 
j I, i ≠ j, is determined the family of solutions , i, j I, 
i ≠ j. 

Stage 3. A segment  is determined, which, 

by construction, satisfies the following conditions:

(1) If ≠ , then each point of the segment Δ , 

which is the first coordinate of points of geometric images 
of automatons from a family of automatons 
, determines the solution of the problem of recognizing 
an automaton in a family of automatons by a simple 
unconditional experiment.

(2) If = , then for the selected specific 

geometric curves L i, i ∈ I, and the arrangement of 
geometric images of the laws of the functioning of 
automata on these curves, the solution of the problem of 
recognizing an automaton in a family of automatons does 
not exist by a simple unconditional experiment.

Stage 4. In accordance with the conditions Δ ≠ ∅ or  
Δ = ∅ a specific solution to the problem of recognizing 
an automaton in a family of automatons is determined by 
a simple unconditional experiment, or it is concluded that 
for a family of automatons , a selected family 
of geometric curves  and a chosen arrangement 
of geometric images on curves, the solution to the problem 
recognition of an automaton in a family of automata does 
not exist by a simple unconditional experiment.

Remark to a method. In the developed method, 
symbolic structures - input and output sequences - are 
determined not by their numbers according to the linear 
orders ω1 and ω2, but by the numbers associated with the 
numbers. The numbers are matched to the numbers of 
the input sequences based on their alignment with points 
equally spaced on the abscissa axis. To the numbers of 
the output sequences are mapped half-intervals on the 
ordinate axis.

4. Discussion

Consider an example of constructing a solution to 
the problem of recognizing an automaton in a family of 
automatons whose points of geometric images of the laws 
of functioning are located on the following geometric 
curves (see Figure 1): y1=e (x-5.5) (for an automaton 

А1=(S1, X, Y, δ1 , λ1, s01)),  (for the 

automaton А2 = (S2, X, Y, δ2, λ2, s02)),  (for the 

automaton А3 = (S3, X,Y, δ3, λ3, s03)),  (for 

the automaton А4= (S4, X, Y, δ4 , λ4, s04)).
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For the example under consideration, we will restrict 
ourselves to 16 points of the geometric image. The 
relationship between input sequences, numbers of input 
sequences and numbers associated with numbers of input 
sequences is shown in Table 1 (with | X | = 2). For output 
signals, each signal is associated with a half-interval of 
the form (α, β]. This allows each point in the selected area 
of the plane with the first coordinate, which is the number 
associated with the input sequence number, to determine 
the semi-interval (to which the second coordinate of the 
point belongs).

In the example under consideration, the number of 
output signals of the automaton is 74 and each output 
signal , where 1 ≤ i ≤ 74, is compared to a semi-

interval of the form (αi, βi], where  and 

. Table 2 shows the values of the functions y1 = e(x-5.5), 

,  ,  in 

points, the first coordinates of which are mapped to the 
numbers of the input sequences (see Table 1).

As a result of the specified choice of the family of 
geometric curves y1, y2, y3 and y4 (respectively, for the 
automatons A1, A2, A3, A4) and the chosen arrangement 
of the geometric images of the automatons on the curves 
(the numbers are corresponded to the numbers of the input 
sequences based on their alignment with equidistant on 
the abscissa axis points) and the analysis of the curves, 7 
solutions of the problem of recognizing an automaton in a 
family of automatons α={A1, A2, A3, A4} were found by a 

simple unconditional experiment.

Table 1. Relationship of input sequences, number of input 
sequences and numbers associated with numbers of input 

sequences.

Numbers of input 
sequences

Input sequences Numerical value

1 x1 0
2 x2 0,5
3 x1 x1 1
4 x1 x2 1,5
5 x2 x1 2
6 x2 x2 2,5
7 x1 x1 x1 3
8 x1 x1 x2 3,5
9 x1 x2 x1 4
10 x1 x2 x2 4,5
11 x2 x1 x1 5
12 x2 x1 x2 5,5
13 x2 x2 x1 6
14 x2 x2 x2 6,5
15 x1 x1 x1 x1 7
16 x1 x1 x1 x2 7,5

The solutions obtained using the developed method are 
the input sequences p1= x1 x2 x1, p2= x2 x1 x1, p3 = x2 x1 x2, 
p4= x2 x2 x1, p5= x2x2 x2, p6= x1 x1 x1 x1, p7= x1 x1 x1 x2.

Table 3 shows the reactions of the automatons A1, A2, 
A3, A4 on 16 input sequences (based on the comparison to 
the numbers of the output signals , where 1 ≤ i ≤ 74, 

a semi-interval of the form (αi, βi], where  and 

).

Table 2. Values of functions y1, y2, y3, y4 .

Numbers of input 
sequences Numerical value y1=e(x-5.5)

3

3 6
1






 +

=
xy

2

4 3
8.2






 −

=
xy

1 0 0.004 0.821 0.004 0.871
2 0,5 0.006 0.558 0.015 0.587
3 1 0.011 0.329 0.037 0.36
4 1,5 0.018 0.151 0.072 0.187
5 2 0.030 0.039 0.125 0.071
6 2,5 0.049 0 0.198 0.01
7 3 0.082 0.037 0.296 0.004
8 3,5 0.135 0.148 0.421 0.054
9 4 0.223 0.325 0.578 0.16
10 4,5 0.367 0.553 0.770 0.321
11 5 0.606 0.816 1 0.537
12 5,5 1 1.093 1.271 0.81
13 6 1.648 1.362 1.587 1.137
14 6,5 2.718 1.604 1.953 1.521
15 7 4.481 1.799 2.370 1.96
16 7,5 7.389 1.933 2.843 2.454
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5. Practical Use

Construction and analysis of automata models of 
FPGA

Field Programmable Gate Array (FPGA) concern to a 
class of complex technical devices with large dimensions 
of a set of signals and memories. FPGA is complex digital 

integrated microcircuits consisting of programmed logic 
blocks and programmed connections between these 
blocks. FPGA are widely used not only for realization 
of simple controllers and the interface units, but also for 
digital processing signals, complex intellectual controllers, 
neurochips and in systems of mobile communication.

Mathematical models of integrated chips are the basic 
information for the decision of problems of development 

Figure 1. Geometric curves on which the geometric images of the laws of functioning  
of the automatons A1, A2, A3, A4 are located

Table 3. Reactions of automatons A1 , A2 , A3 , A4 .

Number of sequence Numerical value Input sequences A1 A2 A3 A4

1 0 x1 y1 y9 y1 y9

2 0,5 x2 y1 y6 y1 y6

3 1 x1 x1 y1y1 y9y4 y1y1 y9y4

4 1,5 x1 x2 y1y1 y9y2 y1y1 y9y2

5 2 x2 x1 y1y1 y6y1 y1y2 y6y1

6 2,5 x2 x2 y1y1 y6y1 y1y2 y6y1

7 3 x1 x1 x1 y1y1y1 y9y4y1 y1y1y3 y9y4y1

8 3,5 x1 x1 x2 y1y1y2 y9y4y2 y1y1y5 y9y4y1

9 4 x1 x2 x1 y1y1y3 y9y2y4 y1y1y6 y9y2y2

10 4,5 x1 x2 x2 y1y1y4 y9y2y6 y1y1y8 y9y2y4

11 5 x2 x1 x1 y1y1y7 y6y1y9 y1y2y10 y6y1y6

12 5,5 x2 x1 x2 y1y1y10 y6y1y11 y1y2y13 y6y1y9

13 6 x2 x2 x1 y1y1y17 y6y1y14 y1y2y16 y6y1y12

14 6,5 x2 x2 x2 y1y1y28 y6y1y17 y1y2y20 y6y1y16

15 7 x1 x1 x1 x1 y1y1y1y45 y9y4y1y18 y1y1y3y24 y9y4y1y20

16 7,5 x1 x1 x1 x2 y1y1y1y74 y9y4y1y20 y1y1y3y29 y9y4y1y25
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of chips, the analysis and technical diagnosing, 
optimization of structures and laws of functioning of 
integrated circuit. Field Programmable Gate Array (FPGA) 
concern to technical devices with enough complex 
structure, complex laws of functioning and the big 
dimension of sets of signals and memories (at present the 
industry lets out models of FPGA with more than 1000 
pins). In this connection mathematical models of FPGA 
available now, particularly, the finite state machines, are 
not sufficient not only for the decision of problems, but 
even for explicit representation of FPGA. 

In this parer is considered construction of mathematical 
model of FPGA in the form of symbolical and numerical 
graph (located on analytically set curves) and also a basic 
provisions of diagnosing of FPGA based on use of the 
apparatus of geometrical images of laws of functioning of 
state machines (automatons). Without loss of generality 
as an example in article is analyzed one of the most 
widespread classes of algorithms of digital processing 
of signals, realizing on FPGA– the algorithms based on 
application of orthogonal transformations.

Now FPGA is used for construction various on 
complexity and opportunities digital devices. Existing 
mathematical models of FPGA, in particular, the finite 
state machines, do not allow to represent obviously FPGA 
in view of their big dimension (existing FPGA contain up 
to 10 million logic gates, have more than 1000 pins and 
tens mbyte of the built in block memory). In this work is 
offered to use the mathematical apparatus of geometrical 
images of state machine (see [10]) for the representation 
and research of laws of functioning of FPGA, including 
for the decision of problems of technical diagnosing. 
In work [10] Tverdohlebov V.A. is shown, that, technical 
diagnosing of systems, which are characterized as large-
scale or complex systems carried out in conditions of 
essential restrictions on mathematical models and means 
of diagnosing. FPGA as object of diagnosing does not 
suppose enough a full and exact intuitive review and 
formal representation by traditional means: tables, 
columns, the logic equations. Besides opportunities of 
means of diagnosing in each used interval of time are 
limited by supervision only parts of structure of object 
and supervision only some functions of object. The 
analysis of working capacity and localization of defects 
can be demanded on the interval of time somehow 
removed from the beginning of functioning of object. 
Technical diagnosing of FPGA cannot be carried out by 
homogeneous means of diagnosing. Only overlapping of 
testing, measurement of physical parameters, the analysis 
of processes of “decision” objects of diagnostic problems, 
optical survey and the signal system, etc. should form 

means of diagnosing.
The method of technical diagnosing of complex 

systems with use of the apparatus of geometrical images [10] 
includes construction of mathematical models of means 
of technical diagnosing in the form of communication of 
diagnostic interactions with reactions to them of object of 
diagnosing; construction of mathematical models in the 
form of geometrical images for object of the diagnosing, 
including development of geometrical images on the 
basis of interpolation and extrapolation; development of 
strategy of carrying out of diagnostic experiment on the 
basis of the analysis of geometrical images and realization 
of diagnostic experiment according to the developed 
strategy.

To illustrate the possible practical application of the 
apparatus of geometric images of automata in this paper 
is considered construction of mathematical model in the 
form of a geometrical image of the FPGA of family Xilinx 
Spartan II (see [22]), including development of geometrical 
images on the basis of classical methods of interpolation 
of Newton, Lagrange and Gauss (a detailed description 
of the method of synthesizing an automaton model of an 
FPGA in the form of a geometric image is not given due 
to limitations on the size of the article, it can be found, 
for example, in work [12]). One of the basic classes of 
algorithms of digital processing signals implementated by 
FPGA – the algorithms based on application of orthogonal 
transformations is considered: fast Fourier transformation 
(FFT), Hartly, EWT, Hadamard, Karhunene-Loev 
expansion etc. (Figure 2 represent as an example the 
algorithm based on orthogonal transformation - algorithm 
of 16-dot fast Fourier transformation (FFT)). 

FPGA is programmed on realization of the specified 
algorithms with use of system Xilinx ISE 9.2i. Efficiency 
of the specified methods of interpolation for restoration of 
partially set geometrical images of laws of functioning is 
analyzed at a various arrangement and number of units of 
interpolation. In Figure 3 is represented the example (it is 
schematically shown) of comparison on an initial interval 
of an initial geometrical image and the geometrical image 
constructed with use of a method of interpolation of 
Newton (in the given example at programming of FPGA 
as off pins are used only 4 pin). Lack of a method of 
interpolation of Gauss unlike the considered methods of 
interpolation of Newton and Lagrange is restriction of an 
opportunity of its use only for a case of equidistant units 
of interpolation. (A detailed description of the research 
of the effectiveness of various interpolation methods 
as a means of completing the definition of automatons 
models can be found in work [12]). The given property 
imposes additional restrictions on allocation of units 
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Figure 2. Algorithm 16-dot FFT on the basis 2 with constant structure, without replacement, with normal order and 
binary-inverse on an output (multipliers for decimation on time and frequency are shown).

Figure 3. Initial pieces of an initial geometrical image and restored by means of a method of interpolation of Lagrange.
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of interpolation. On the basis of the lead computing 
experiment it is shown, that for a considered class of 
algorithms the method of interpolation of Gauss yields the 
best results, than methods of interpolation of Newton and 
Lagrange. For each of the considered algorithms from 2 
methods of interpolation (Newton and Lagrange) the most 
effective method is certain.

Base model of the discrete determined dynamic 
systems are the finite state machines. The analysis of such 
state machines can be made on the basis of research of the 
mathematical structures representing specificity of laws 
of functioning of the state machines. As such structures 
can be used geometrical images of laws of functioning 
of automata. Use of the apparatus of geometrical images 
for the definition of laws of functioning of the discrete 
determined dynamic systems allows to carry out search 
of diagnostic sequences effectively. For this purpose 
from set of considered malfunctions and to an efficient 
condition of system the mathematical model in the form 
of a geometrical image of laws of functioning of the state 
machine is compared with each malfunction. Points of 
geometrical images are assumed located on the curves 
which can be set analytically. At such way of the definition 
of diagnostic model search of diagnostic sequences is 
reduced to a finding of intervals on an axis of abscissa in 
which the geometrical curves representing mathematical 
models of malfunctions, have no even points. Effective 
search of such intervals can be carried out on the basis of 
the decision of systems of inequalities (or equalities).

6. Conclusions

In this paper we propose methods for recognizing 
automata models of systems defined by analytically 
specified geometric curves (on which points are located, 
interpreted by using the apparatus of geometric images 
of automata as a pairs of automata mappings). It is 
proposed to carry out the recognition of automata by 
their geometric images based on the decomposition of the 
original (numerical) sequences into a set of characteristic 
sequences and their subsequent analysis. In a number 
of cases, the combined use of the proposed methods for 
recognizing automata makes it possible to effectively 
overcome the dimensionality barrier of automaton models 
of systems. One of the problems of interest for further 
research is the problem of developing a search method 
under the conditions of specific variants of restrictions on 
the use of means of control and diagnostics of variants of 
specific sets of observation sites of control and diagnostic 
information.
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1. Introduction

Control problem of turning the spacecraft into given 
angular position from arbitrary initial attitude in a finite 
time tf with minimization of propellant consumption and 
given accuracy of reorientation was solved. Spacecraft 
motion around the center of mass is described by 
quaternion of attitude [1]. Designing the optimal rotation 
program is based on quaternion models, method of free 
trajectories, and method of iterative guidance as particular 
case of the method of guidance by a required velocity [2].  

Now, spacecrafts are used in many areas of scientific 
occupations and industry. In particular, astrophysical 
researches and other scientific discoveries would be 
impossible without modern spacecrafts [3-5]. Success of 
mission and duration of performance in a working point of 
orbit (orbital position) are provided by successful control 
of motion, by an efficiency of attitude control (an improved 
system of spacecraft attitude is especially important for the 
spacecrafts with instruments and devices for astronomy 
measurements and for satellites of Earth supervision).
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Numerous papers study control problems of rigid bodies in
various statements [6-29]. For spherically symmetric body, time-
optimal spatial rotation is known [1]. Diverse methods are used
for constructing control program of spacecraft orientation, in
particular, algorithm of fuzzy logic [7] or concept of inverse
problem of dynamics [8,9]. Finding the optimal solution of
spacecraft’s motion control is known also [10-24]. Time-optimal
maneuvers are more popular [11-20]. Some solutions are
obtained for axially symmetric spacecraft [19-22]. Terminal
control for orbital orientation of a spacecraft was considered
also [25]; controlling the spacecrafts with control moment
gyroscopes has features [26-28]. Optimization of spacecraft
attitude with minimum fuel consumption is a difficult issue in
mathematical aspect (and difficult engineering problem, also).
This paper describes optimal program of spatial turn of
arbitrary spacecraft realizing the mode of guidance by a
required velocity and method of free trajectories. We give
numerical estimates of fuel expenditure for realization of a
turn taking into account disturbances acting upon the
spacecraft (in particular, gravitational and aerodynamic
torques). Issues of economical control of spacecraft motion are
still relevant and topical today, so the solved problem of a turn
is practically important.

2. Angular Motion’s Equations and Statement
of Control Problem

We consider the case when parameters of a turn (for
example, components of turn quaternion) are known in
advance, even before the beginning of maneuver; any initial
angular differences are possible (from a few degrees up to 180
degrees), angular orientation of right-hand coordinate system
ОXYZ related with a spacecraft (as well as its initial and final
positions) being determined relative to a chosen reference
basis. It is assumed that the reference system coincides with
inertial coordinate system (inertial basis I), as the most popular
case. Spacecraft rotation satisfies dynamical equations [1,6]:

  1322311 MJJJ  ,

  2313122 MJJJ  ,

  3211233 MJJJ  (1)

where Ji are central principal moments of inertia of spacecraft,
Mi are projections of torque M onto principal axes of
spacecraft’s inertia ellipsoid, i are projections of spacecraft’s
absolute angular velocity vector ω onto axes of body basis E
formed by the principal central axes of spacecraft’s inertia
ellipsoid (i= 1, 3 ). Spacecraft attitude is described by known
equation [1].

 2  (2)

where  is vector of absolute angular velocity of spacecraft; 
is quaternion of orientation with respect to basis I (we assume
   (0)   = 1). Equation (2) has the boundary conditions
(0)= in and (Т)= f , where Т is time of termination of a
turn ( in and  f have any a priori given values which satisfy
the condition  in= f= 1 (because quaternion  is
normalized). We assume that initial and final angular
velocities are equal to zero: ω(0)=ω(T)=0. If spacecraft’s
actuators are jet engines which control rotations about three
axes of a spacecraft, general form of index for fuel expenditure
is

dt
l
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1 (3)

where l1, l2, and l3 >0 are the arms of thrust action of jet
engines (for attitude control) in channels x, y, z. Optimization
problem of spacecraft’s spatial reorientation is a finding a
control rotating the spacecraft from position Λin into position
Λf and minimizing the index (3) under constraint [1,11]:

М12 +М22 +М32  т02 (4)

and requirement T  Tdes , where m0 is maximal possible
magnitude of control torque M which actuators can give (m0
characterizes a power of spacecraft's actuators); Tdes is a
desired duration of turn.

3. Solving the Formulated Problem of Controlled
Turn

We assume that spacecraft is solid (it is rigid body).
Optimal control of three-dimensional turn must rotate
spacecraft from attitude to th  in e required attitude  f

according to the Equations (1), (2) with minimal functional (3).
When finding optimal law of rotation (in sense of minimum
(3)), we assume that angular velocity  (t) is a piecewise
continuous time function. It is known [23], spacecraft’s rotation
optimal in fuel consumption includes two phases with
maximal control torque (segment of acceleration and segment
of braking), and free motion phase when control torque is
absent. This type of controlling reorientation of a spacecraft is
called two-pulse control (first pulse for imparting the required
angular momentum L to spacecraft’s body, and second pulse
suppress angular velocity). Taking into account that
disturbances act slightly (disturbance torque much less control
torque), we suggest that free rotation is optimal for arbitrary
spacecraft in sense of consumption G (since control moment
Mc is absent). Free rotation is described by known system of
equations

3211  k , 3122  k , 2133  k (5)
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where 1321 /)( JJJk  , 2132 /)( JJJk  , and

3213 /)( JJJk  are constant coefficients.

Idea of the proposed principle of control consists in
determining such angular momentum L* under which
spacecraft transfers in given attitude Λf under free motion. In
this case, fuel is expended for spacecraft’s acceleration and
braking (for increasing the angular velocity and damping of
rotation). Reorientation itself is fulfilled without control torque
(Mc = 0), and therefore, regime of fuel economy is made
practically along entire trajectory of motion. For this approach,
basic turn is executed with zero fuel expenditure, and mode of
a controlled turn is optimum. Possibility of designing the
optimal solution in class of two-impulse control is justified by
fact that each segment of attitude trajectory is optimal for
chosen criterion. Expense is G = Gac + Gfm + Gbr, where Gac is
fuel expenditures during acceleration of a spacecraft, Gbr is
expenditures during a braking of a spacecraft, and Gfm is fuel
expenditures within phase of spacecraft’s free rotation
(between acceleration and braking).

For slew maneuver, important characteristic is an integral


Т

dttS
0

)(L (6)

The value S is determined only by rotation conditions in ,

f , and spacecraft’s principal central moments of inertia J1, J2,
J3. The calculated value S is S = Kctex , where Kc is arbitrary
magnitude of angular momentum (Kc > 0); tex is the expected
time of reorientation from position  in into position  f , i.e.
time when equality  = f holds for solution (t) of system of
Equations (2), (5) with initial conditions (0)=Kc*/JSC*,
Λ(0)=Λin (the corresponding theorem can be proven [24]),
where  * is solution of the boundary problem Λ(0)=Λin ,
Λ(tf)=Λf , taking into account the Equations (2), (5); tf is time
of arrival to position Λf obtained by simulation of motion
according to the Equations (2), (5).

The boundary value problem Λ(tj)=Λin , Λ(tf)=Λf , for the
system of Equations (2), (5), has analytical solution (in
elementary functions) only for dynamically symmetric and
dynamically spherical bodies. For spherically symmetric
spacecraft (when J1=J2=J3), solution p(t), ω (t) have
elementary form: p(t)=const and ω(t)=const, or in detail

321  iip , and
321

0arccos2



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i

i

where 3210 ,,,  are components of turn quaternion

fint
~

  [1]. Characteristic (6) is equal to

01 arccos2  JS .

For a dynamically symmetric body (when, for example,
J2=J3 ), the optimal control problem is solved completely. We
write optimal solution (t) in the following form:

1 = + cos , 2 = sin sin ( t +  ) , 3 = sin cos
( t +  )

where  = arctg(p20 / p30);  is the angle between the
spacecraft’s longitudinal axis and the vector р (0    ); 
is the angular velocity of its own rotation (around the
longitudinal axis); and  is the angular velocity of the
precession (around the vector р). Characteristic (6) is equal to

S=  222
2

22
1 sin)cos( JJ

where  is angle of turn about longitudinal axis;  is angle
of turn about vector р (note, p10=cos  ). Optimal values of
parameters p0,  ,  , and  are determined by the boundary
angularpositionsΛin andΛf throughthe system ofequations [23]
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concurrently with condition J1(+cos)2 + J 2sin2 min
( , 0 ), where J1 is the moment of inertia about

longitudinal axis of a spacecraft; J is the moment of inertia
about transverse axis of a spacecraft. Optimal values of vector
p0 and values α, β, and , which satisfy the given attitudesΛin
and Λf in initial and final instants, can be determined with use
of known device [30].

It is essential that many known methods are unsuitable for
situations when initial angle of turn between attitudes Λin and
Λf is large. Many researchers use method of combining
synthesis which use predictive model. But such algorithms
give final result and control program that completely depends
from the assumed form of predictive model (the chosen model
of motion forecast completely determines type of controlled
rotation during maneuver). Any author has insuperable
mathematical difficulties if takes predictive model even little
close to reality. Below we consider one method of optimal
reorientation which uses the method of guidance by a required
velocity and method of free trajectories.

4. Application of the Method of Guidance by
a Required Velocity for Controlled Maneuver

Method's essence consists in periodical correction of
spacecraft's attitude trajectory at specified instants of time.
Control is reduced to correction for which onboard computer
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where 1321 /)( JJJk  , 2132 /)( JJJk  , and

3213 /)( JJJk  are constant coefficients.
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determines angular velocity that is necessary for reaching the
given attitude Λf under free rotation, calculation of the desired
angular momentum, corresponding to the calculated angular
rate, and a transferring a correction impulse ΔL to spacecraft's
body having angular momentum L, if the latter is substantially
different from the desired value. Every time, guidance is
carried out from current attitude Λ(t) to the given position Λf .
Angular rates that are required for next site of attitude
trajectory are calculated by condition of minimum fuel
expenditure for further control of spacecraft rotation. The used
predictive model has specific feature, the form of this model
gives forecast of free rotation in class of spacecraft motion
along conical trajectories where direction of angular
momentum of dynamically symmetric body is constant in
inertial coordinate system. Such approach allows us to solve
problem of constructing the optimal control of arbitrary
spacecraft turn using the iterations method. Free rotation of a
spacecraft is a combination of two motions: precession of
longitudinal axis ОX about angular momentum vector L and
spacecraft's rotation itself about longitudinal axisОX.

For axial-symmetric body (J2=J3) the rates of precession 

and proper rotation  are constant and connected between
themselves by the dependence:  =  (J/J1 - 1)cos, where J
is moment of inertia with respect to transverse axis, J1 is
moment of inertia with respect to longitudinal axis, and  is
angle of nutation (angle between longitudinal axis ОX and
angular momentum L). The desired vector L* runs in the plane
which is perpendicular to plane XsOXf and is deviated from
axis ОX on angle ϑ that guarantees spacecraft's rotation
simultaneously through angles  and  in time Tdes (we note
that Xs and Xf are the directions of spacecraft’s longitudinal
axis before and after reorientation).

Situations when boundary rates  (0)=  (Т )=0 (such
conditions of spacecraft turn are most typical) are of practical
importance. Of course, at times t=0 and t=T angular rate for
nominal rotation program are not zero. Consequently, transfer
phases are necessary: acceleration of rotation as transition
from state of rest (when  = 0) to regime of rotation with
angular momentum of maximum magnitude Lm, and braking,
i.e. reduction of spacecraft’s angular rate to zero (value Lm is
specified by turn duration T). Between acceleration of rotation
and braking, spacecraft carries out free motion.

We find prediction of free rotation in form of regular
precession of dynamically symmetric body. Parameters of
predictive model are computed using the condition of maximal
approximation of the predicted motion to real rotation of a
spacecraft. Let us study system of equations that reflects
motion within uncontrolled phase (Mc = 0). For many
spacecrafts, J2 ≈ J3, but J2 ≠ J3. Further on, for definiteness we
suppose J2 > J3 , and J3 much more than J1 and |J2 - J3| much

less than J1. Then the moment (J3 - J2)ω2ω3 is insignificant,
and we assume it as perturbation (we neglect its influence on
prediction). For complete integrability of equations of rotation
(including kinematic equations for spacecraft attitude) we use
assumption about dynamical symmetry of a spacecraft (for
predicting only). Moment of inertia J around transversal axis
must satisfy the relationship J3<J<J2 . For decreasing the errors
of model, choice of concrete value J must preserve invariable
characteristic equation of the system. Therefore, condition for
finding the value J consists in following:

32
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since ω1 = const = ω10 in simplified system (i.e. system (1)
without the moment (J3 - J2)ω2ω3), and cyclic frequency is

)/())(( 32121310 JJJJJJf  (we know that dynamically

symmetric body has cyclic frequency ω10(J - J1)/J because
ω1 =const).

Dynamics of real spacecraft during free motion is described
by the following system:
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where Mxp , Myp , Mzp are moments of perturbations,
and  1)/1)(/1( 3121
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J .

Torques in right-hand parts of Equations (8) are
small (they can be assumed as perturbations), and
they are neglected in predictive model. Then, we
can write predictive model as the following system:
ω1 =ω10 = const ,

  03112  JJJ 
,   02113  JJJ  (9)

Solving the boundary value problem Λ(tj)=Λj , Λ(tf)=Λf

with (2), (9) taken into account, we will find expressions for
calculating the required angular rates ω10, ω20, and ω30 (at the
beginning of segment of the uncontrolled motion). We remind
that j is number of correction, tj is instant of beginning the
correction; fist segment of free motion starts with initial
angular velocities which satisfy the boundary value problem
Λ(0)=Λin ,Λ(tf)=Λf for dynamic system (2), (9).

Taking into account that distinction between real and the
predicted rotation is insignificant, we apply method of iterative
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where 1321 /)( JJJk  , 2132 /)( JJJk  , and

3213 /)( JJJk  are constant coefficients.

Idea of the proposed principle of control consists in
determining such angular momentum L* under which
spacecraft transfers in given attitude Λf under free motion. In
this case, fuel is expended for spacecraft’s acceleration and
braking (for increasing the angular velocity and damping of
rotation). Reorientation itself is fulfilled without control torque
(Mc = 0), and therefore, regime of fuel economy is made
practically along entire trajectory of motion. For this approach,
basic turn is executed with zero fuel expenditure, and mode of
a controlled turn is optimum. Possibility of designing the
optimal solution in class of two-impulse control is justified by
fact that each segment of attitude trajectory is optimal for
chosen criterion. Expense is G = Gac + Gfm + Gbr, where Gac is
fuel expenditures during acceleration of a spacecraft, Gbr is
expenditures during a braking of a spacecraft, and Gfm is fuel
expenditures within phase of spacecraft’s free rotation
(between acceleration and braking).

For slew maneuver, important characteristic is an integral


Т

dttS
0

)(L (6)

The value S is determined only by rotation conditions in ,

f , and spacecraft’s principal central moments of inertia J1, J2,
J3. The calculated value S is S = Kctex , where Kc is arbitrary
magnitude of angular momentum (Kc > 0); tex is the expected
time of reorientation from position  in into position  f , i.e.
time when equality  = f holds for solution (t) of system of
Equations (2), (5) with initial conditions (0)=Kc*/JSC*,
Λ(0)=Λin (the corresponding theorem can be proven [24]),
where  * is solution of the boundary problem Λ(0)=Λin ,
Λ(tf)=Λf , taking into account the Equations (2), (5); tf is time
of arrival to position Λf obtained by simulation of motion
according to the Equations (2), (5).

The boundary value problem Λ(tj)=Λin , Λ(tf)=Λf , for the
system of Equations (2), (5), has analytical solution (in
elementary functions) only for dynamically symmetric and
dynamically spherical bodies. For spherically symmetric
spacecraft (when J1=J2=J3), solution p(t), ω (t) have
elementary form: p(t)=const and ω(t)=const, or in detail
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where 3210 ,,,  are components of turn quaternion

fint
~

  [1]. Characteristic (6) is equal to

01 arccos2  JS .

For a dynamically symmetric body (when, for example,
J2=J3 ), the optimal control problem is solved completely. We
write optimal solution (t) in the following form:

1 = + cos , 2 = sin sin ( t +  ) , 3 = sin cos
( t +  )

where  = arctg(p20 / p30);  is the angle between the
spacecraft’s longitudinal axis and the vector р (0    ); 
is the angular velocity of its own rotation (around the
longitudinal axis); and  is the angular velocity of the
precession (around the vector р). Characteristic (6) is equal to

S=  222
2

22
1 sin)cos( JJ

where  is angle of turn about longitudinal axis;  is angle
of turn about vector р (note, p10=cos  ). Optimal values of
parameters p0,  ,  , and  are determined by the boundary
angularpositionsΛin andΛf throughthe system ofequations [23]
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concurrently with condition J1(+cos)2 + J 2sin2 min
( , 0 ), where J1 is the moment of inertia about

longitudinal axis of a spacecraft; J is the moment of inertia
about transverse axis of a spacecraft. Optimal values of vector
p0 and values α, β, and , which satisfy the given attitudesΛin
and Λf in initial and final instants, can be determined with use
of known device [30].

It is essential that many known methods are unsuitable for
situations when initial angle of turn between attitudes Λin and
Λf is large. Many researchers use method of combining
synthesis which use predictive model. But such algorithms
give final result and control program that completely depends
from the assumed form of predictive model (the chosen model
of motion forecast completely determines type of controlled
rotation during maneuver). Any author has insuperable
mathematical difficulties if takes predictive model even little
close to reality. Below we consider one method of optimal
reorientation which uses the method of guidance by a required
velocity and method of free trajectories.

4. Application of the Method of Guidance by
a Required Velocity for Controlled Maneuver

Method's essence consists in periodical correction of
spacecraft's attitude trajectory at specified instants of time.
Control is reduced to correction for which onboard computer
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where 1321 /)( JJJk  , 2132 /)( JJJk  , and

3213 /)( JJJk  are constant coefficients.

Idea of the proposed principle of control consists in
determining such angular momentum L* under which
spacecraft transfers in given attitude Λf under free motion. In
this case, fuel is expended for spacecraft’s acceleration and
braking (for increasing the angular velocity and damping of
rotation). Reorientation itself is fulfilled without control torque
(Mc = 0), and therefore, regime of fuel economy is made
practically along entire trajectory of motion. For this approach,
basic turn is executed with zero fuel expenditure, and mode of
a controlled turn is optimum. Possibility of designing the
optimal solution in class of two-impulse control is justified by
fact that each segment of attitude trajectory is optimal for
chosen criterion. Expense is G = Gac + Gfm + Gbr, where Gac is
fuel expenditures during acceleration of a spacecraft, Gbr is
expenditures during a braking of a spacecraft, and Gfm is fuel
expenditures within phase of spacecraft’s free rotation
(between acceleration and braking).

For slew maneuver, important characteristic is an integral
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)(L (6)

The value S is determined only by rotation conditions in ,

f , and spacecraft’s principal central moments of inertia J1, J2,
J3. The calculated value S is S = Kctex , where Kc is arbitrary
magnitude of angular momentum (Kc > 0); tex is the expected
time of reorientation from position  in into position  f , i.e.
time when equality  = f holds for solution (t) of system of
Equations (2), (5) with initial conditions (0)=Kc*/JSC*,
Λ(0)=Λin (the corresponding theorem can be proven [24]),
where  * is solution of the boundary problem Λ(0)=Λin ,
Λ(tf)=Λf , taking into account the Equations (2), (5); tf is time
of arrival to position Λf obtained by simulation of motion
according to the Equations (2), (5).

The boundary value problem Λ(tj)=Λin , Λ(tf)=Λf , for the
system of Equations (2), (5), has analytical solution (in
elementary functions) only for dynamically symmetric and
dynamically spherical bodies. For spherically symmetric
spacecraft (when J1=J2=J3), solution p(t), ω (t) have
elementary form: p(t)=const and ω(t)=const, or in detail
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where 3210 ,,,  are components of turn quaternion
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  [1]. Characteristic (6) is equal to
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For a dynamically symmetric body (when, for example,
J2=J3 ), the optimal control problem is solved completely. We
write optimal solution (t) in the following form:

1 = + cos , 2 = sin sin ( t +  ) , 3 = sin cos
( t +  )

where  = arctg(p20 / p30);  is the angle between the
spacecraft’s longitudinal axis and the vector р (0    ); 
is the angular velocity of its own rotation (around the
longitudinal axis); and  is the angular velocity of the
precession (around the vector р). Characteristic (6) is equal to

S=  222
2

22
1 sin)cos( JJ

where  is angle of turn about longitudinal axis;  is angle
of turn about vector р (note, p10=cos  ). Optimal values of
parameters p0,  ,  , and  are determined by the boundary
angularpositionsΛin andΛf throughthe system ofequations [23]
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concurrently with condition J1(+cos)2 + J 2sin2 min
( , 0 ), where J1 is the moment of inertia about

longitudinal axis of a spacecraft; J is the moment of inertia
about transverse axis of a spacecraft. Optimal values of vector
p0 and values α, β, and , which satisfy the given attitudesΛin
and Λf in initial and final instants, can be determined with use
of known device [30].

It is essential that many known methods are unsuitable for
situations when initial angle of turn between attitudes Λin and
Λf is large. Many researchers use method of combining
synthesis which use predictive model. But such algorithms
give final result and control program that completely depends
from the assumed form of predictive model (the chosen model
of motion forecast completely determines type of controlled
rotation during maneuver). Any author has insuperable
mathematical difficulties if takes predictive model even little
close to reality. Below we consider one method of optimal
reorientation which uses the method of guidance by a required
velocity and method of free trajectories.

4. Application of the Method of Guidance by
a Required Velocity for Controlled Maneuver

Method's essence consists in periodical correction of
spacecraft's attitude trajectory at specified instants of time.
Control is reduced to correction for which onboard computer
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determines angular velocity that is necessary for reaching the
given attitude Λf under free rotation, calculation of the desired
angular momentum, corresponding to the calculated angular
rate, and a transferring a correction impulse ΔL to spacecraft's
body having angular momentum L, if the latter is substantially
different from the desired value. Every time, guidance is
carried out from current attitude Λ(t) to the given position Λf .
Angular rates that are required for next site of attitude
trajectory are calculated by condition of minimum fuel
expenditure for further control of spacecraft rotation. The used
predictive model has specific feature, the form of this model
gives forecast of free rotation in class of spacecraft motion
along conical trajectories where direction of angular
momentum of dynamically symmetric body is constant in
inertial coordinate system. Such approach allows us to solve
problem of constructing the optimal control of arbitrary
spacecraft turn using the iterations method. Free rotation of a
spacecraft is a combination of two motions: precession of
longitudinal axis ОX about angular momentum vector L and
spacecraft's rotation itself about longitudinal axisОX.

For axial-symmetric body (J2=J3) the rates of precession 

and proper rotation  are constant and connected between
themselves by the dependence:  =  (J/J1 - 1)cos, where J
is moment of inertia with respect to transverse axis, J1 is
moment of inertia with respect to longitudinal axis, and  is
angle of nutation (angle between longitudinal axis ОX and
angular momentum L). The desired vector L* runs in the plane
which is perpendicular to plane XsOXf and is deviated from
axis ОX on angle ϑ that guarantees spacecraft's rotation
simultaneously through angles  and  in time Tdes (we note
that Xs and Xf are the directions of spacecraft’s longitudinal
axis before and after reorientation).

Situations when boundary rates  (0)=  (Т )=0 (such
conditions of spacecraft turn are most typical) are of practical
importance. Of course, at times t=0 and t=T angular rate for
nominal rotation program are not zero. Consequently, transfer
phases are necessary: acceleration of rotation as transition
from state of rest (when  = 0) to regime of rotation with
angular momentum of maximum magnitude Lm, and braking,
i.e. reduction of spacecraft’s angular rate to zero (value Lm is
specified by turn duration T). Between acceleration of rotation
and braking, spacecraft carries out free motion.

We find prediction of free rotation in form of regular
precession of dynamically symmetric body. Parameters of
predictive model are computed using the condition of maximal
approximation of the predicted motion to real rotation of a
spacecraft. Let us study system of equations that reflects
motion within uncontrolled phase (Mc = 0). For many
spacecrafts, J2 ≈ J3, but J2 ≠ J3. Further on, for definiteness we
suppose J2 > J3 , and J3 much more than J1 and |J2 - J3| much

less than J1. Then the moment (J3 - J2)ω2ω3 is insignificant,
and we assume it as perturbation (we neglect its influence on
prediction). For complete integrability of equations of rotation
(including kinematic equations for spacecraft attitude) we use
assumption about dynamical symmetry of a spacecraft (for
predicting only). Moment of inertia J around transversal axis
must satisfy the relationship J3<J<J2 . For decreasing the errors
of model, choice of concrete value J must preserve invariable
characteristic equation of the system. Therefore, condition for
finding the value J consists in following:
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since ω1 = const = ω10 in simplified system (i.e. system (1)
without the moment (J3 - J2)ω2ω3), and cyclic frequency is

)/())(( 32121310 JJJJJJf  (we know that dynamically

symmetric body has cyclic frequency ω10(J - J1)/J because
ω1 =const).

Dynamics of real spacecraft during free motion is described
by the following system:
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where Mxp , Myp , Mzp are moments of perturbations,
and  1)/1)(/1( 3121
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Torques in right-hand parts of Equations (8) are
small (they can be assumed as perturbations), and
they are neglected in predictive model. Then, we
can write predictive model as the following system:
ω1 =ω10 = const ,

  03112  JJJ 
,   02113  JJJ  (9)

Solving the boundary value problem Λ(tj)=Λj , Λ(tf)=Λf

with (2), (9) taken into account, we will find expressions for
calculating the required angular rates ω10, ω20, and ω30 (at the
beginning of segment of the uncontrolled motion). We remind
that j is number of correction, tj is instant of beginning the
correction; fist segment of free motion starts with initial
angular velocities which satisfy the boundary value problem
Λ(0)=Λin ,Λ(tf)=Λf for dynamic system (2), (9).

Taking into account that distinction between real and the
predicted rotation is insignificant, we apply method of iterative
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guidance in order to synthesise control program, for impulses
of jet engines, during reorientation. In accordance with this
principle, entire trajectory of attitude is partitioned in a number
of sites within which there is no control (impulses of jet
engines are absent). Transition from one site to another site is
executed by impulses of correction. There is only one
requirement to the sites of uncontrolled rotation: they must
pass through positions  (t) and  f. At instant of correction
impulse, the calculated angular velocity (the programmed
value) is determined

i 0= iimi JpL 0nom  , and

Lm=m0   2/)/(411 2
des0des TmST 

where pi 0 are computed by the system (7) in which
3210 ,,,  are components of quaternion of discrepancy

fd
~

  at beginning of correction impulse. If

correction impulses are carried out continuously then pi0

almost not change practically (because correction moments act
constantly in this case). If corrections are made periodically
and very often, then pi 0 vary very slightly (insignificantly) but
it require the increased expense of fuel also. We offer to
correct motion at discrete separate instants of time tj for
decrease of fuel consumption. For example, we can do
corrections according to the following law: correction impulse
is made at instant when condition f =k0 is satisfied, and

0= ))
~

(al2arccos(sq 0   ; f = ))
~

(al2arccos(sq f   ,
k=const
where tj is instant of start of motion correction (j is number of
correction), 0 is angle of turn from attitude of last previous
correction impulse to the current position , and  f is angle of
turn from current attitude to final position  f. After each
correction Λ0=Λ(tn), where tn is instant of acting the correction
impulse. For fist correction Λ0=Λin (before the beginning of a
turnΛ0=Λin).

It is expedient to select value of coefficient k close to unity.
When k increases (k > 1), size of the uncontrolled sites
increases also, perturbations are accumulated, that leads to
increasing fuel expenditure. When k decreases (k < 1),
corrections are made so frequently that control is almost
continuous. In this situation, necessary direction of angular
momentum is endlessly recomputed (its magnitude remains
constant). By virtue of smallness of sites of rotation this
direction is also almost constant in inertial coordinate system.
This senseless computing expenditure is totally unjustified
because it does not reduce fuel consumption in comparison
with control when spacecraft rotate along conical trajectory (in
form of regular precession with constant angle of nutation).

More best version of strategy for correction of spacecraft
rotation is variant when correction impulse is made at half of a
hitting trajectory (a predicted motion), i.e. when angle between
current position and position preset at ending a controlling
impulse (acceleration or correction) is equal to the angle
between current position and the required final position.
Condition for start of correction is

0sqal ( )   =
fsqal ( )   .

If the controlling moment М is limited, then a boost of
spacecraft angular momentum to the required level L=Lm at
beginning of a turn and damping of available angular
momentum to zero at end of reorientation maneuver occupy
some finite time (distinct from zero). In general case,
conditions of turn  in and  f may be such that one cannot
neglect transition segments (acceleration and braking). Quite
often the vector М obey condition (4). Since initial and final
angular velocities are equal to zero and magnitude of control
moment is constant  M  =const=m0 , duration of stages of
acceleration and braking is identical. Optimal solution  (t)
during segment of nominal motion (between acceleration and
braking) possesses property  L   const (inconstancy of
modulus of angular momentum can be due to a presence of
disturbing moments and inequality of the moments of inertia
J2=J3).

The laws of fastest imparting and reduction of angular
velocity under constraint (4) are known [11]. At segment of
acceleration, optimal control has following form [11]:

М=m0JSC / JSC (10)

where JSC = diag ( J1 , J2 , J3 ) is spacecraft’s
inertia tensor. If differentiate by time last
equation, taking into account the Equation (1),
then we will obtain the following equations

32231 MMM  , 13312 MMM  ,

21123 MMM 

which show that M is constant vector relative to inertial basis I,
and M=const=m0 . At optimal motion, angular momentum
of a spacecraft does not change direction in inertial coordinate
system. Magnitude of angular momentum varies according to
the law L=m0t . At segment of braking, optimal control is

М= m0JSC / JSC (11)

(the controlling moment М makes with angular momentum an
angle of 180 degree) [11]. Angular momentum varies according
to the law L= Lос  m0(t  tbr) , where Lос=JSC(tbr); tbr is
time of beginning of damping. For both acceleration and
braking, optimal control (as fast response) is control under
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guidance in order to synthesise control program, for impulses
of jet engines, during reorientation. In accordance with this
principle, entire trajectory of attitude is partitioned in a number
of sites within which there is no control (impulses of jet
engines are absent). Transition from one site to another site is
executed by impulses of correction. There is only one
requirement to the sites of uncontrolled rotation: they must
pass through positions  (t) and  f. At instant of correction
impulse, the calculated angular velocity (the programmed
value) is determined

i 0= iimi JpL 0nom  , and

Lm=m0   2/)/(411 2
des0des TmST 

where pi 0 are computed by the system (7) in which
3210 ,,,  are components of quaternion of discrepancy

fd
~

  at beginning of correction impulse. If

correction impulses are carried out continuously then pi0

almost not change practically (because correction moments act
constantly in this case). If corrections are made periodically
and very often, then pi 0 vary very slightly (insignificantly) but
it require the increased expense of fuel also. We offer to
correct motion at discrete separate instants of time tj for
decrease of fuel consumption. For example, we can do
corrections according to the following law: correction impulse
is made at instant when condition f =k0 is satisfied, and

0= ))
~

(al2arccos(sq 0   ; f = ))
~

(al2arccos(sq f   ,
k=const
where tj is instant of start of motion correction (j is number of
correction), 0 is angle of turn from attitude of last previous
correction impulse to the current position , and  f is angle of
turn from current attitude to final position  f. After each
correction Λ0=Λ(tn), where tn is instant of acting the correction
impulse. For fist correction Λ0=Λin (before the beginning of a
turnΛ0=Λin).

It is expedient to select value of coefficient k close to unity.
When k increases (k > 1), size of the uncontrolled sites
increases also, perturbations are accumulated, that leads to
increasing fuel expenditure. When k decreases (k < 1),
corrections are made so frequently that control is almost
continuous. In this situation, necessary direction of angular
momentum is endlessly recomputed (its magnitude remains
constant). By virtue of smallness of sites of rotation this
direction is also almost constant in inertial coordinate system.
This senseless computing expenditure is totally unjustified
because it does not reduce fuel consumption in comparison
with control when spacecraft rotate along conical trajectory (in
form of regular precession with constant angle of nutation).

More best version of strategy for correction of spacecraft
rotation is variant when correction impulse is made at half of a
hitting trajectory (a predicted motion), i.e. when angle between
current position and position preset at ending a controlling
impulse (acceleration or correction) is equal to the angle
between current position and the required final position.
Condition for start of correction is

0sqal ( )   =
fsqal ( )   .

If the controlling moment М is limited, then a boost of
spacecraft angular momentum to the required level L=Lm at
beginning of a turn and damping of available angular
momentum to zero at end of reorientation maneuver occupy
some finite time (distinct from zero). In general case,
conditions of turn  in and  f may be such that one cannot
neglect transition segments (acceleration and braking). Quite
often the vector М obey condition (4). Since initial and final
angular velocities are equal to zero and magnitude of control
moment is constant  M  =const=m0 , duration of stages of
acceleration and braking is identical. Optimal solution  (t)
during segment of nominal motion (between acceleration and
braking) possesses property  L   const (inconstancy of
modulus of angular momentum can be due to a presence of
disturbing moments and inequality of the moments of inertia
J2=J3).

The laws of fastest imparting and reduction of angular
velocity under constraint (4) are known [11]. At segment of
acceleration, optimal control has following form [11]:

М=m0JSC / JSC (10)

where JSC = diag ( J1 , J2 , J3 ) is spacecraft’s
inertia tensor. If differentiate by time last
equation, taking into account the Equation (1),
then we will obtain the following equations

32231 MMM  , 13312 MMM  ,

21123 MMM 

which show that M is constant vector relative to inertial basis I,
and M=const=m0 . At optimal motion, angular momentum
of a spacecraft does not change direction in inertial coordinate
system. Magnitude of angular momentum varies according to
the law L=m0t . At segment of braking, optimal control is

М= m0JSC / JSC (11)

(the controlling moment М makes with angular momentum an
angle of 180 degree) [11]. Angular momentum varies according
to the law L= Lос  m0(t  tbr) , where Lос=JSC(tbr); tbr is
time of beginning of damping. For both acceleration and
braking, optimal control (as fast response) is control under
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which the controlling moment is parallel to angular momentum at
any momentof time.

The proposed algorithm performs the control of spacecraft
rotation according to method of free trajectories. It presumes
correction of spacecraft's rotation at certain discrete instant of
time. Entire attitude trajectory consists of alternating the
controlled phases and uncontrolled phases, and it includes
phases of acceleration and braking, phases of free rotation
(when Mc = 0) and short-time phases of correcting the attitude
trajectory. Task of control is to provide such start conditions
for uncontrolled phases that the predicted trajectory of rotation
must pass through final attitude Λf. For synthesis of control
impulses, quaternion of turn fn

)(
t )(

~
 tn , at beginning

of each non-controlled site tn , is calculated. Using it, initial
rates ω10, ω20, ω30 are computed for next site of uncontrolled
rotation. Usually, from one to three or five correcting impulses
(it depends on turn angle) are sufficient for reorientation.
Optimization consists in determining the time of rotation's
acceleration and damping of rotation. Control torque on
segment of acceleration (braking) is specified by conditions:
(10) for acceleration segment, and (11) on the braking segment.
Control moment remains immobile vector in inertial space
during both segments. Duration of acceleration (braking) τ can
be determined as tactbr=τ=

  2/)/(411 2
des0des TmST  , and time of free motion is

tfree= )/(41 2
des0des TmST  (it is assumed that 4S

< 2
des0Tm ). Let us explain it.

For free rotation, integral of modulus of spacecraft’s
angular momentum S does not depend from time of turn T [24].
If durations of transition periods tac and tbr (acceleration and
braking) are small, and the sum tac+tbr much less than Tdes,
then integral of modulus of angular momentum during rotation
time Т barely changes and remains close to S , and the change
of modulus of angular momentum during acceleration and
braking can be considered linear. Then we have the equality
(Tdes ( tac+ tbr)/ 2 )Lm=S , where Lm is modulus of angular
momentum at phase of nominal rotation (when L=const );
 tac and  tbr are durations of acceleration and extinction of
angular momentum. We have  tac+  tтr  2Lm/m0 , since
=Lm/m0 is minimal possible acceleration (braking) time with
restriction  М   m0 . Hence Lm  S/(Tdes   ) and
TdesS/Lm+Lm/m0 (since times of acceleration tac and braking
tbr are equal).

As a result, control for spacecraft’s spatial reorientation
consists in following operations:

(1) The computing the turn quaternion fint
~

  ,

and the determining the required angular velocities ω10, ω20,
andω30 for next uncontrolled phase.

(2) Acceleration of rotation to the calculated angular
momentum L* under control

Mc=m0(L*-L)/ L*-L,

where L* = 
~

in  Lpr in
~
   , and Lpr is preset vector of

angular momentum with components Jiωi 0 ;
(3) Free rotation (Mc= 0) until instant tn , when

0sqal ( ( ))nt   = )
~

)((sqal f nt .

(4) At instant tn one should calculate new quaternion of turn
and compute initial rates ωi n for new site of attitude trajectory
(new hitting trajectory). Then the controlling impulse ΔL:
ΔLi = Ji(ωin - ωi) is calculated. Control torques are computed
Mi = ΔLi/Δt, where Δt is calculated from constraint (4) (Δt is
minimum possible value but such that constraint (4) is valid).

Then one should set t0 = tn and repeat items (3) and (4)
until instant for which 2f > L/m0 .

(5) Damping of spacecraft’s rotation using control torque
(11) for which Mc·L<0,   brc

~
MM , where

Mbr =br  Lbr br
~
 , and Lbr , br are angular momentum and

quaternion of spacecraft attitude at instant of start of braking
(i.e., control torque is directed exactly against angular

momentum, and direction of controlling torque is constant in
inertial basis).

The proposed algorithm of spacecraft’s attitude control was
patented earlier [29]. Angular velocitiesωin required for next site
of uncontrolled trajectory are determined using the condition
of minimum consumption for control of maneuver terminating.
Evidently, in neighborhood of the programmed angular rate
ω* we can assume that ωin = *

in , i.e. direction of angular

rate is immobile (it is known after calculating the vector ω*),
and modulus of angular velocity vector must be optimized:
  → var. Therefore, consumption of fuel for maneuver
terminating is function of single parameter . Spacecraft’s
rotation begins to be damped since the instant when equality
2f =L/m0 becomes satisfied.

Optimal control problem of three-dimensional reorientation
was solved applying algorithm of joint synthesis based on use
of predictive model. Constructed control law is quasi-optimal
and invariant, and it does not require exact knowledge of
rotation model parameters. Efficiency in sense of energy-
saving control is reached by the mode when control torque is
absent during main part of maneuver (Mc = 0), and high
precision is ensured by the constructing the feedback with use
of data about spacecraft's attitude and angular velocity when
control torques are formed and generated.
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guidance in order to synthesise control program, for impulses
of jet engines, during reorientation. In accordance with this
principle, entire trajectory of attitude is partitioned in a number
of sites within which there is no control (impulses of jet
engines are absent). Transition from one site to another site is
executed by impulses of correction. There is only one
requirement to the sites of uncontrolled rotation: they must
pass through positions  (t) and  f. At instant of correction
impulse, the calculated angular velocity (the programmed
value) is determined

i 0= iimi JpL 0nom  , and

Lm=m0   2/)/(411 2
des0des TmST 

where pi 0 are computed by the system (7) in which
3210 ,,,  are components of quaternion of discrepancy

fd
~

  at beginning of correction impulse. If

correction impulses are carried out continuously then pi0

almost not change practically (because correction moments act
constantly in this case). If corrections are made periodically
and very often, then pi 0 vary very slightly (insignificantly) but
it require the increased expense of fuel also. We offer to
correct motion at discrete separate instants of time tj for
decrease of fuel consumption. For example, we can do
corrections according to the following law: correction impulse
is made at instant when condition f =k0 is satisfied, and

0= ))
~

(al2arccos(sq 0   ; f = ))
~

(al2arccos(sq f   ,
k=const
where tj is instant of start of motion correction (j is number of
correction), 0 is angle of turn from attitude of last previous
correction impulse to the current position , and  f is angle of
turn from current attitude to final position  f. After each
correction Λ0=Λ(tn), where tn is instant of acting the correction
impulse. For fist correction Λ0=Λin (before the beginning of a
turnΛ0=Λin).

It is expedient to select value of coefficient k close to unity.
When k increases (k > 1), size of the uncontrolled sites
increases also, perturbations are accumulated, that leads to
increasing fuel expenditure. When k decreases (k < 1),
corrections are made so frequently that control is almost
continuous. In this situation, necessary direction of angular
momentum is endlessly recomputed (its magnitude remains
constant). By virtue of smallness of sites of rotation this
direction is also almost constant in inertial coordinate system.
This senseless computing expenditure is totally unjustified
because it does not reduce fuel consumption in comparison
with control when spacecraft rotate along conical trajectory (in
form of regular precession with constant angle of nutation).

More best version of strategy for correction of spacecraft
rotation is variant when correction impulse is made at half of a
hitting trajectory (a predicted motion), i.e. when angle between
current position and position preset at ending a controlling
impulse (acceleration or correction) is equal to the angle
between current position and the required final position.
Condition for start of correction is

0sqal ( )   =
fsqal ( )   .

If the controlling moment М is limited, then a boost of
spacecraft angular momentum to the required level L=Lm at
beginning of a turn and damping of available angular
momentum to zero at end of reorientation maneuver occupy
some finite time (distinct from zero). In general case,
conditions of turn  in and  f may be such that one cannot
neglect transition segments (acceleration and braking). Quite
often the vector М obey condition (4). Since initial and final
angular velocities are equal to zero and magnitude of control
moment is constant  M  =const=m0 , duration of stages of
acceleration and braking is identical. Optimal solution  (t)
during segment of nominal motion (between acceleration and
braking) possesses property  L   const (inconstancy of
modulus of angular momentum can be due to a presence of
disturbing moments and inequality of the moments of inertia
J2=J3).

The laws of fastest imparting and reduction of angular
velocity under constraint (4) are known [11]. At segment of
acceleration, optimal control has following form [11]:

М=m0JSC / JSC (10)

where JSC = diag ( J1 , J2 , J3 ) is spacecraft’s
inertia tensor. If differentiate by time last
equation, taking into account the Equation (1),
then we will obtain the following equations

32231 MMM  , 13312 MMM  ,

21123 MMM 

which show that M is constant vector relative to inertial basis I,
and M=const=m0 . At optimal motion, angular momentum
of a spacecraft does not change direction in inertial coordinate
system. Magnitude of angular momentum varies according to
the law L=m0t . At segment of braking, optimal control is

М= m0JSC / JSC (11)

(the controlling moment М makes with angular momentum an
angle of 180 degree) [11]. Angular momentum varies according
to the law L= Lос  m0(t  tbr) , where Lос=JSC(tbr); tbr is
time of beginning of damping. For both acceleration and
braking, optimal control (as fast response) is control under
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guidance in order to synthesise control program, for impulses
of jet engines, during reorientation. In accordance with this
principle, entire trajectory of attitude is partitioned in a number
of sites within which there is no control (impulses of jet
engines are absent). Transition from one site to another site is
executed by impulses of correction. There is only one
requirement to the sites of uncontrolled rotation: they must
pass through positions  (t) and  f. At instant of correction
impulse, the calculated angular velocity (the programmed
value) is determined

i 0= iimi JpL 0nom  , and

Lm=m0   2/)/(411 2
des0des TmST 

where pi 0 are computed by the system (7) in which
3210 ,,,  are components of quaternion of discrepancy

fd
~

  at beginning of correction impulse. If

correction impulses are carried out continuously then pi0

almost not change practically (because correction moments act
constantly in this case). If corrections are made periodically
and very often, then pi 0 vary very slightly (insignificantly) but
it require the increased expense of fuel also. We offer to
correct motion at discrete separate instants of time tj for
decrease of fuel consumption. For example, we can do
corrections according to the following law: correction impulse
is made at instant when condition f =k0 is satisfied, and

0= ))
~

(al2arccos(sq 0   ; f = ))
~

(al2arccos(sq f   ,
k=const
where tj is instant of start of motion correction (j is number of
correction), 0 is angle of turn from attitude of last previous
correction impulse to the current position , and  f is angle of
turn from current attitude to final position  f. After each
correction Λ0=Λ(tn), where tn is instant of acting the correction
impulse. For fist correction Λ0=Λin (before the beginning of a
turnΛ0=Λin).

It is expedient to select value of coefficient k close to unity.
When k increases (k > 1), size of the uncontrolled sites
increases also, perturbations are accumulated, that leads to
increasing fuel expenditure. When k decreases (k < 1),
corrections are made so frequently that control is almost
continuous. In this situation, necessary direction of angular
momentum is endlessly recomputed (its magnitude remains
constant). By virtue of smallness of sites of rotation this
direction is also almost constant in inertial coordinate system.
This senseless computing expenditure is totally unjustified
because it does not reduce fuel consumption in comparison
with control when spacecraft rotate along conical trajectory (in
form of regular precession with constant angle of nutation).

More best version of strategy for correction of spacecraft
rotation is variant when correction impulse is made at half of a
hitting trajectory (a predicted motion), i.e. when angle between
current position and position preset at ending a controlling
impulse (acceleration or correction) is equal to the angle
between current position and the required final position.
Condition for start of correction is

0sqal ( )   =
fsqal ( )   .

If the controlling moment М is limited, then a boost of
spacecraft angular momentum to the required level L=Lm at
beginning of a turn and damping of available angular
momentum to zero at end of reorientation maneuver occupy
some finite time (distinct from zero). In general case,
conditions of turn  in and  f may be such that one cannot
neglect transition segments (acceleration and braking). Quite
often the vector М obey condition (4). Since initial and final
angular velocities are equal to zero and magnitude of control
moment is constant  M  =const=m0 , duration of stages of
acceleration and braking is identical. Optimal solution  (t)
during segment of nominal motion (between acceleration and
braking) possesses property  L   const (inconstancy of
modulus of angular momentum can be due to a presence of
disturbing moments and inequality of the moments of inertia
J2=J3).

The laws of fastest imparting and reduction of angular
velocity under constraint (4) are known [11]. At segment of
acceleration, optimal control has following form [11]:

М=m0JSC / JSC (10)

where JSC = diag ( J1 , J2 , J3 ) is spacecraft’s
inertia tensor. If differentiate by time last
equation, taking into account the Equation (1),
then we will obtain the following equations

32231 MMM  , 13312 MMM  ,

21123 MMM 

which show that M is constant vector relative to inertial basis I,
and M=const=m0 . At optimal motion, angular momentum
of a spacecraft does not change direction in inertial coordinate
system. Magnitude of angular momentum varies according to
the law L=m0t . At segment of braking, optimal control is

М= m0JSC / JSC (11)

(the controlling moment М makes with angular momentum an
angle of 180 degree) [11]. Angular momentum varies according
to the law L= Lос  m0(t  tbr) , where Lос=JSC(tbr); tbr is
time of beginning of damping. For both acceleration and
braking, optimal control (as fast response) is control under
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which the controlling moment is parallel to angular momentum at
any momentof time.

The proposed algorithm performs the control of spacecraft
rotation according to method of free trajectories. It presumes
correction of spacecraft's rotation at certain discrete instant of
time. Entire attitude trajectory consists of alternating the
controlled phases and uncontrolled phases, and it includes
phases of acceleration and braking, phases of free rotation
(when Mc = 0) and short-time phases of correcting the attitude
trajectory. Task of control is to provide such start conditions
for uncontrolled phases that the predicted trajectory of rotation
must pass through final attitude Λf. For synthesis of control
impulses, quaternion of turn fn

)(
t )(

~
 tn , at beginning

of each non-controlled site tn , is calculated. Using it, initial
rates ω10, ω20, ω30 are computed for next site of uncontrolled
rotation. Usually, from one to three or five correcting impulses
(it depends on turn angle) are sufficient for reorientation.
Optimization consists in determining the time of rotation's
acceleration and damping of rotation. Control torque on
segment of acceleration (braking) is specified by conditions:
(10) for acceleration segment, and (11) on the braking segment.
Control moment remains immobile vector in inertial space
during both segments. Duration of acceleration (braking) τ can
be determined as tactbr=τ=

  2/)/(411 2
des0des TmST  , and time of free motion is

tfree= )/(41 2
des0des TmST  (it is assumed that 4S

< 2
des0Tm ). Let us explain it.

For free rotation, integral of modulus of spacecraft’s
angular momentum S does not depend from time of turn T [24].
If durations of transition periods tac and tbr (acceleration and
braking) are small, and the sum tac+tbr much less than Tdes,
then integral of modulus of angular momentum during rotation
time Т barely changes and remains close to S , and the change
of modulus of angular momentum during acceleration and
braking can be considered linear. Then we have the equality
(Tdes ( tac+ tbr)/ 2 )Lm=S , where Lm is modulus of angular
momentum at phase of nominal rotation (when L=const );
 tac and  tbr are durations of acceleration and extinction of
angular momentum. We have  tac+  tтr  2Lm/m0 , since
=Lm/m0 is minimal possible acceleration (braking) time with
restriction  М   m0 . Hence Lm  S/(Tdes   ) and
TdesS/Lm+Lm/m0 (since times of acceleration tac and braking
tbr are equal).

As a result, control for spacecraft’s spatial reorientation
consists in following operations:

(1) The computing the turn quaternion fint
~

  ,

and the determining the required angular velocities ω10, ω20,
andω30 for next uncontrolled phase.

(2) Acceleration of rotation to the calculated angular
momentum L* under control

Mc=m0(L*-L)/ L*-L,

where L* = 
~

in  Lpr in
~
   , and Lpr is preset vector of

angular momentum with components Jiωi 0 ;
(3) Free rotation (Mc= 0) until instant tn , when

0sqal ( ( ))nt   = )
~

)((sqal f nt .

(4) At instant tn one should calculate new quaternion of turn
and compute initial rates ωi n for new site of attitude trajectory
(new hitting trajectory). Then the controlling impulse ΔL:
ΔLi = Ji(ωin - ωi) is calculated. Control torques are computed
Mi = ΔLi/Δt, where Δt is calculated from constraint (4) (Δt is
minimum possible value but such that constraint (4) is valid).

Then one should set t0 = tn and repeat items (3) and (4)
until instant for which 2f > L/m0 .

(5) Damping of spacecraft’s rotation using control torque
(11) for which Mc·L<0,   brc

~
MM , where

Mbr =br  Lbr br
~
 , and Lbr , br are angular momentum and

quaternion of spacecraft attitude at instant of start of braking
(i.e., control torque is directed exactly against angular

momentum, and direction of controlling torque is constant in
inertial basis).

The proposed algorithm of spacecraft’s attitude control was
patented earlier [29]. Angular velocitiesωin required for next site
of uncontrolled trajectory are determined using the condition
of minimum consumption for control of maneuver terminating.
Evidently, in neighborhood of the programmed angular rate
ω* we can assume that ωin = *

in , i.e. direction of angular

rate is immobile (it is known after calculating the vector ω*),
and modulus of angular velocity vector must be optimized:
  → var. Therefore, consumption of fuel for maneuver
terminating is function of single parameter . Spacecraft’s
rotation begins to be damped since the instant when equality
2f =L/m0 becomes satisfied.

Optimal control problem of three-dimensional reorientation
was solved applying algorithm of joint synthesis based on use
of predictive model. Constructed control law is quasi-optimal
and invariant, and it does not require exact knowledge of
rotation model parameters. Efficiency in sense of energy-
saving control is reached by the mode when control torque is
absent during main part of maneuver (Mc = 0), and high
precision is ensured by the constructing the feedback with use
of data about spacecraft's attitude and angular velocity when
control torques are formed and generated.
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5. Application of the Method of Guidance by
a Required Velocity with Prediction

For improving an accuracy of reorientation and for
decrease of fuel consumption, we can use information about
calculated prognostic position  * at instant of satisfaction of
condition )

~
(sqal in   = )

~
(sqal f , which is obtained for

accurately predicted trajectory passed through current position
 and the required final positionΛf (i.e. *

insqal ( )   =
*

fsqal ( )  . Taking into account that real spacecraft
motion only slightly differs from the predicted one, let us
employ method of iterative guidance in order to form the
control moments in process of a turn. Its essence consists of
regular correction of spacecraft motion trajectory at fixed
moments of time. Correction consists of determining the
angular momentum L*, which is necessary for attaining the
final position  f, and of imparting the correcting impulse L
to angular momentum L of a spacecraft. Entire motion
trajectory will consist of alternating active and passive sections
and include accelerating and decelerating sections, sections of
free motion (Mc = 0), and short-term sections of trajectory
correction. Problem of control consists of providing initial
conditions for such uncontrolled sections, where predicted
motion travels through the required position  pr. At first
correction, the predicted calculated spacecraft position  * is
taken: *

1fpr )(
~

  t , and quaternion of turn for

computation of fist correction impulse  c is c 1( )t   
*

f 1( )t   
. At all other corrections of spacecraft

motion, pr=f and fc
~

 j .

It was assumed in prognostic model that spacecraft is
dynamically symmetric with respect to longitudinal axis and
that disturbing moments are negligibly small. Specificity of
this model is prediction of “free” motion of a spacecraft, in
class of regular precession of rigid body. If we, taking this into
account, solve kinematic problem of attitude with aim of
transferring a spacecraft from position 0 to position pr , we
get the calculated value of vector of angular momentum L*.
Velocities  10 ,  20 ,  30 required for next section of free
motion are determined from condition of fuel consumption
minimum for the following control of spacecraft turn. It is
evident that, in neighborhood of the calculated vector of
angular velocity *, we can consider its direction as fixed. In
this case, fuel consumption G is function of only magnitude of
angular velocity vector, which should be optimized. Sections
of acceleration and deceleration coincide with predicted
trajectories (because disturbance moment Md is much less than
control moment Mc), and their duration is determined by time
of a turn, value of control moment that could be achieved, and

quaternion of a turn. Duration of free motion sections is
determined from condition of minimization of the functional
G. Thus, control of spacecraft turn is reduced to successive
realization of the following operations:

(1) Calculation of turn quaternion fint
~

  and

determination of initial angular velocities for passive section
10 , 20 , 30; prediction of spacecraft angular position * to
instant of first correction )

~
(sqal *

in   = )
~

(sqal f
*   ;

determination of the required angular momentum L* and
control moment M; we set 0 =in;

(2) Acceleration of a spacecraft to the required angular
momentum, and magnitude of control moment is maximal;
accelerating torque is   acc

~
MM ; and Mac is

maximal accelerating torque in inertial coordinate system,
Mc·L>0;

(3) Free motion of a spacecraft (Mc = 0) up to instant when
0sqal ( ( ))jt   = fsqal ( ( ) )jt  , i.e., up to half of turn angle;

(4) At instant of time tj , determination of new turn
quaternion prt )(

~
 jt (moreover (1)

pr f   
*

1( )t   , and f
)(

pr  j if j >1) and determination of

initial angular velocities for new section (new hitting trajectory)
1j , 2j , 3j; determination of the required impulse of angular
momentum L equal L1 =J1(1j - 1) , L2 =J2 (2j - 2) ,
L3 = J3(3j -  3) and transfer of it to body of a spacecraft;
here control moment Mc =L/t (t is such that condition (4)
is satisfied; we assume that tin = tj and repeat points (3) and (4)
up to instant of time t= tf - ;

(5) Slowing down the angular velocities of a spacecraft
with maximum control moment Mc·L<0,   brc

~
MM

(i.e., control moment is directed exactly against the vector
of angular momentum).

Scheme of iterative control that is proposed here allows one
to take into account random factors on previous stages of
spacecraft motion, thus decreasing the fuel consumption
needed for control in further corrections. This is achieved due
to exploiting the information about random and stochastic
factors concerning spacecraft motion before first correction of
angular momentum. Quaternion   = 1

*~
  contains

information concerning stochastic factors, random acts and
perturbations, and factors that were not taken into account in
control law. If we introduce it in sight parameters while
forming the first correcting impulse, trajectory of free motion
will be passed with lesser deviation from the required final
position  f (and with lesser expenditures needed for its
compensation). Subsequent corrections are realized by
guidance at final position (“reaiming” is done every time, from
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5. Application of the Method of Guidance by
a Required Velocity with Prediction

For improving an accuracy of reorientation and for
decrease of fuel consumption, we can use information about
calculated prognostic position  * at instant of satisfaction of
condition )

~
(sqal in   = )

~
(sqal f , which is obtained for

accurately predicted trajectory passed through current position
 and the required final positionΛf (i.e. *

insqal ( )   =
*

fsqal ( )  . Taking into account that real spacecraft
motion only slightly differs from the predicted one, let us
employ method of iterative guidance in order to form the
control moments in process of a turn. Its essence consists of
regular correction of spacecraft motion trajectory at fixed
moments of time. Correction consists of determining the
angular momentum L*, which is necessary for attaining the
final position  f, and of imparting the correcting impulse L
to angular momentum L of a spacecraft. Entire motion
trajectory will consist of alternating active and passive sections
and include accelerating and decelerating sections, sections of
free motion (Mc = 0), and short-term sections of trajectory
correction. Problem of control consists of providing initial
conditions for such uncontrolled sections, where predicted
motion travels through the required position  pr. At first
correction, the predicted calculated spacecraft position  * is
taken: *

1fpr )(
~

  t , and quaternion of turn for

computation of fist correction impulse  c is c 1( )t   
*

f 1( )t   
. At all other corrections of spacecraft

motion, pr=f and fc
~

 j .

It was assumed in prognostic model that spacecraft is
dynamically symmetric with respect to longitudinal axis and
that disturbing moments are negligibly small. Specificity of
this model is prediction of “free” motion of a spacecraft, in
class of regular precession of rigid body. If we, taking this into
account, solve kinematic problem of attitude with aim of
transferring a spacecraft from position 0 to position pr , we
get the calculated value of vector of angular momentum L*.
Velocities  10 ,  20 ,  30 required for next section of free
motion are determined from condition of fuel consumption
minimum for the following control of spacecraft turn. It is
evident that, in neighborhood of the calculated vector of
angular velocity *, we can consider its direction as fixed. In
this case, fuel consumption G is function of only magnitude of
angular velocity vector, which should be optimized. Sections
of acceleration and deceleration coincide with predicted
trajectories (because disturbance moment Md is much less than
control moment Mc), and their duration is determined by time
of a turn, value of control moment that could be achieved, and

quaternion of a turn. Duration of free motion sections is
determined from condition of minimization of the functional
G. Thus, control of spacecraft turn is reduced to successive
realization of the following operations:

(1) Calculation of turn quaternion fint
~

  and

determination of initial angular velocities for passive section
10 , 20 , 30; prediction of spacecraft angular position * to
instant of first correction )

~
(sqal *

in   = )
~

(sqal f
*   ;

determination of the required angular momentum L* and
control moment M; we set 0 =in;

(2) Acceleration of a spacecraft to the required angular
momentum, and magnitude of control moment is maximal;
accelerating torque is   acc

~
MM ; and Mac is

maximal accelerating torque in inertial coordinate system,
Mc·L>0;

(3) Free motion of a spacecraft (Mc = 0) up to instant when
0sqal ( ( ))jt   = fsqal ( ( ) )jt  , i.e., up to half of turn angle;

(4) At instant of time tj , determination of new turn
quaternion prt )(

~
 jt (moreover (1)

pr f   
*

1( )t   , and f
)(

pr  j if j >1) and determination of

initial angular velocities for new section (new hitting trajectory)
1j , 2j , 3j; determination of the required impulse of angular
momentum L equal L1 =J1(1j - 1) , L2 =J2 (2j - 2) ,
L3 = J3(3j -  3) and transfer of it to body of a spacecraft;
here control moment Mc =L/t (t is such that condition (4)
is satisfied; we assume that tin = tj and repeat points (3) and (4)
up to instant of time t= tf - ;

(5) Slowing down the angular velocities of a spacecraft
with maximum control moment Mc·L<0,   brc

~
MM

(i.e., control moment is directed exactly against the vector
of angular momentum).

Scheme of iterative control that is proposed here allows one
to take into account random factors on previous stages of
spacecraft motion, thus decreasing the fuel consumption
needed for control in further corrections. This is achieved due
to exploiting the information about random and stochastic
factors concerning spacecraft motion before first correction of
angular momentum. Quaternion   = 1

*~
  contains

information concerning stochastic factors, random acts and
perturbations, and factors that were not taken into account in
control law. If we introduce it in sight parameters while
forming the first correcting impulse, trajectory of free motion
will be passed with lesser deviation from the required final
position  f (and with lesser expenditures needed for its
compensation). Subsequent corrections are realized by
guidance at final position (“reaiming” is done every time, from
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current position  to final one,  f). The obtained control
law for spacecraft turn is sufficiently close to optimal one and
allows one to decrease significantly the error in reducing the
axes related with the spacecraft to a fixed final position  f, in
relation to other algorithms for realizing the method of
guidance by a required velocity together with method of free
trajectories. If conditions of turn  in , f , and time T are such
that times of acceleration and braking are very small (in
comparison with total time of turn Т) and we may to neglect
them, then one can consider as impulsive processes both
imparting necessary angular momentum Lm to spacecraft and
reducing available angular momentum down to zero, and
almost during all turn (between acceleration and braking)
 L (t)  =const=Lm. These control algorithms can be easily
realized by existing onboard means.

If durations of acceleration and braking are much smaller
than duration of turn T, then the torque М is directed strictly
against angular momentum L at spacecraft braking, and
instant when braking begins can be predicted with high
accuracy. Duration of rotation damping is  =  L  /m0 [11].
Instant of beginning of braking segment is determined by the
condition [26]:

2
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where 1 , 2 , 3 are components of vector part of mismatch
quaternion f)(

~
 t ; К= J is magnitude of spacecraft’s

angular momentum. At braking segment, cancellation of
angular momentum is carried out according to linear law:
 L(t)  = Lm-т0(t- tbr) , where tbr is instant of beginning of
braking.

Thus, we solved the problem of control for a programmed
turn optimal with respect to fuel consumption on basis of
algorithm with prognostic model. We investigated case when
spacecraft’s inertial characteristics are not exactly known in
advance. Optimal solution to this problem is obtained in class
of controls realized by method of free trajectories. Numerical
realization of algorithm for coincident synthesis of optimal
control in process of spacecraft turn is affected. Effective
methods of control of terminal reorientation of a spacecraft is
presented, one of which additionally has adaptive qualities - it
is invariant with respect to external perturbations and
substantially insensitive with respect to parametric errors.
Indices of quality (economy and accuracy) of obtained laws
are sufficiently high. Relatively low level of fuel consumption
for a turn is achieved due to the transfer from permanent
control of spacecraft attitude to formation of control moments
only at certain definite instants of time. High accuracy of
attitude is achieved by correcting angular momentum of a

spacecraft by varying its angular momentum up to its
calculated value during reorientation process, at stage of free
rotation, at discrete instants of time. Determination of time
instant tbr according to actual (the measured values) kinematic
parameters of motion (angular mismatch and angular velocity)
improve accuracy of bringing the spacecraft into the required
state =f , =0.

6. Example of Numerical Solving the Control
Problem and Results of Mathematical Modeling

Let us provide numerical solution of spacecraft’s optimal
control problem with respect to a programmed rotation. We
consider maneuver from initial attitude Λin, when body axes
coincide with axes of the supporting basis I, into the given
final positionΛf with the following elements:

λ0 = 0, λ1 = 0.8, λ2 = 0.6, λ3 = 0

Spacecraft rotates from state of rest to state of rest, therefore
initial and final angular velocities are zero: ω(0)=ω(T)=0. We
assume that maximum possible magnitude of the controlling
moment m0 and spacecraft’s principal central inertia moments
have values:

m0=75 Nm, J1 = 63559.2 kgm2, J2 = 192218.5 kgm2, and J3

= 176808.9 kgm2

Also, we assume that duration of reorientation maneuver
should be 360 seconds, approximately. As result of solving
kinematic reorientation problem on transition from position
Λ(0)=Λin into position Λ(Т)=Λf (optimal rotation problem in
impulse statement), we obtained value of ort of spacecraft’s
angular momentum for end of acceleration segment
p0={0.600828; 0.451445; 0.659699}, if assume that spacecraft
is dynamically symmetric body.

Optimal motion of a spacecraft consists of segments on
which control moment maximum in magnitude acts (segments
of acceleration and braking), of segments of free rotation, and
of several corrections of angular motion within stage between
acceleration and braking. On segment of maximal control
moment, angular momentum vector L has permanent direction in
inertial space, but it is variable in magnitude (increase up to preset
value on acceleration segment, and decrease to zero on braking
segment), while moment М is immovable with respect to
reference basis I (the vectors М and L are parallel). During
spacecraft rotation with maximum angular momentum
modulus, parameters of motion are supported maximum
nearby to the programmed values by impulses of the control-

ling moment. In this case, angular momentum vector L has
approximately constant magnitude Lm between acceleration and
braking.Duringcorrection impulses direction ofangularmom
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5. Application of the Method of Guidance by
a Required Velocity with Prediction

For improving an accuracy of reorientation and for
decrease of fuel consumption, we can use information about
calculated prognostic position  * at instant of satisfaction of
condition )

~
(sqal in   = )

~
(sqal f , which is obtained for

accurately predicted trajectory passed through current position
 and the required final positionΛf (i.e. *

insqal ( )   =
*

fsqal ( )  . Taking into account that real spacecraft
motion only slightly differs from the predicted one, let us
employ method of iterative guidance in order to form the
control moments in process of a turn. Its essence consists of
regular correction of spacecraft motion trajectory at fixed
moments of time. Correction consists of determining the
angular momentum L*, which is necessary for attaining the
final position  f, and of imparting the correcting impulse L
to angular momentum L of a spacecraft. Entire motion
trajectory will consist of alternating active and passive sections
and include accelerating and decelerating sections, sections of
free motion (Mc = 0), and short-term sections of trajectory
correction. Problem of control consists of providing initial
conditions for such uncontrolled sections, where predicted
motion travels through the required position  pr. At first
correction, the predicted calculated spacecraft position  * is
taken: *

1fpr )(
~

  t , and quaternion of turn for

computation of fist correction impulse  c is c 1( )t   
*

f 1( )t   
. At all other corrections of spacecraft

motion, pr=f and fc
~

 j .

It was assumed in prognostic model that spacecraft is
dynamically symmetric with respect to longitudinal axis and
that disturbing moments are negligibly small. Specificity of
this model is prediction of “free” motion of a spacecraft, in
class of regular precession of rigid body. If we, taking this into
account, solve kinematic problem of attitude with aim of
transferring a spacecraft from position 0 to position pr , we
get the calculated value of vector of angular momentum L*.
Velocities  10 ,  20 ,  30 required for next section of free
motion are determined from condition of fuel consumption
minimum for the following control of spacecraft turn. It is
evident that, in neighborhood of the calculated vector of
angular velocity *, we can consider its direction as fixed. In
this case, fuel consumption G is function of only magnitude of
angular velocity vector, which should be optimized. Sections
of acceleration and deceleration coincide with predicted
trajectories (because disturbance moment Md is much less than
control moment Mc), and their duration is determined by time
of a turn, value of control moment that could be achieved, and

quaternion of a turn. Duration of free motion sections is
determined from condition of minimization of the functional
G. Thus, control of spacecraft turn is reduced to successive
realization of the following operations:

(1) Calculation of turn quaternion fint
~

  and

determination of initial angular velocities for passive section
10 , 20 , 30; prediction of spacecraft angular position * to
instant of first correction )

~
(sqal *

in   = )
~

(sqal f
*   ;

determination of the required angular momentum L* and
control moment M; we set 0 =in;

(2) Acceleration of a spacecraft to the required angular
momentum, and magnitude of control moment is maximal;
accelerating torque is   acc

~
MM ; and Mac is

maximal accelerating torque in inertial coordinate system,
Mc·L>0;

(3) Free motion of a spacecraft (Mc = 0) up to instant when
0sqal ( ( ))jt   = fsqal ( ( ) )jt  , i.e., up to half of turn angle;

(4) At instant of time tj , determination of new turn
quaternion prt )(

~
 jt (moreover (1)

pr f   
*

1( )t   , and f
)(

pr  j if j >1) and determination of

initial angular velocities for new section (new hitting trajectory)
1j , 2j , 3j; determination of the required impulse of angular
momentum L equal L1 =J1(1j - 1) , L2 =J2 (2j - 2) ,
L3 = J3(3j -  3) and transfer of it to body of a spacecraft;
here control moment Mc =L/t (t is such that condition (4)
is satisfied; we assume that tin = tj and repeat points (3) and (4)
up to instant of time t= tf - ;

(5) Slowing down the angular velocities of a spacecraft
with maximum control moment Mc·L<0,   brc

~
MM

(i.e., control moment is directed exactly against the vector
of angular momentum).

Scheme of iterative control that is proposed here allows one
to take into account random factors on previous stages of
spacecraft motion, thus decreasing the fuel consumption
needed for control in further corrections. This is achieved due
to exploiting the information about random and stochastic
factors concerning spacecraft motion before first correction of
angular momentum. Quaternion   = 1

*~
  contains

information concerning stochastic factors, random acts and
perturbations, and factors that were not taken into account in
control law. If we introduce it in sight parameters while
forming the first correcting impulse, trajectory of free motion
will be passed with lesser deviation from the required final
position  f (and with lesser expenditures needed for its
compensation). Subsequent corrections are realized by
guidance at final position (“reaiming” is done every time, from
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5. Application of the Method of Guidance by
a Required Velocity with Prediction

For improving an accuracy of reorientation and for
decrease of fuel consumption, we can use information about
calculated prognostic position  * at instant of satisfaction of
condition )

~
(sqal in   = )

~
(sqal f , which is obtained for

accurately predicted trajectory passed through current position
 and the required final positionΛf (i.e. *

insqal ( )   =
*

fsqal ( )  . Taking into account that real spacecraft
motion only slightly differs from the predicted one, let us
employ method of iterative guidance in order to form the
control moments in process of a turn. Its essence consists of
regular correction of spacecraft motion trajectory at fixed
moments of time. Correction consists of determining the
angular momentum L*, which is necessary for attaining the
final position  f, and of imparting the correcting impulse L
to angular momentum L of a spacecraft. Entire motion
trajectory will consist of alternating active and passive sections
and include accelerating and decelerating sections, sections of
free motion (Mc = 0), and short-term sections of trajectory
correction. Problem of control consists of providing initial
conditions for such uncontrolled sections, where predicted
motion travels through the required position  pr. At first
correction, the predicted calculated spacecraft position  * is
taken: *

1fpr )(
~

  t , and quaternion of turn for

computation of fist correction impulse  c is c 1( )t   
*

f 1( )t   
. At all other corrections of spacecraft

motion, pr=f and fc
~

 j .

It was assumed in prognostic model that spacecraft is
dynamically symmetric with respect to longitudinal axis and
that disturbing moments are negligibly small. Specificity of
this model is prediction of “free” motion of a spacecraft, in
class of regular precession of rigid body. If we, taking this into
account, solve kinematic problem of attitude with aim of
transferring a spacecraft from position 0 to position pr , we
get the calculated value of vector of angular momentum L*.
Velocities  10 ,  20 ,  30 required for next section of free
motion are determined from condition of fuel consumption
minimum for the following control of spacecraft turn. It is
evident that, in neighborhood of the calculated vector of
angular velocity *, we can consider its direction as fixed. In
this case, fuel consumption G is function of only magnitude of
angular velocity vector, which should be optimized. Sections
of acceleration and deceleration coincide with predicted
trajectories (because disturbance moment Md is much less than
control moment Mc), and their duration is determined by time
of a turn, value of control moment that could be achieved, and

quaternion of a turn. Duration of free motion sections is
determined from condition of minimization of the functional
G. Thus, control of spacecraft turn is reduced to successive
realization of the following operations:

(1) Calculation of turn quaternion fint
~

  and

determination of initial angular velocities for passive section
10 , 20 , 30; prediction of spacecraft angular position * to
instant of first correction )

~
(sqal *

in   = )
~

(sqal f
*   ;

determination of the required angular momentum L* and
control moment M; we set 0 =in;

(2) Acceleration of a spacecraft to the required angular
momentum, and magnitude of control moment is maximal;
accelerating torque is   acc

~
MM ; and Mac is

maximal accelerating torque in inertial coordinate system,
Mc·L>0;

(3) Free motion of a spacecraft (Mc = 0) up to instant when
0sqal ( ( ))jt   = fsqal ( ( ) )jt  , i.e., up to half of turn angle;

(4) At instant of time tj , determination of new turn
quaternion prt )(

~
 jt (moreover (1)

pr f   
*

1( )t   , and f
)(

pr  j if j >1) and determination of

initial angular velocities for new section (new hitting trajectory)
1j , 2j , 3j; determination of the required impulse of angular
momentum L equal L1 =J1(1j - 1) , L2 =J2 (2j - 2) ,
L3 = J3(3j -  3) and transfer of it to body of a spacecraft;
here control moment Mc =L/t (t is such that condition (4)
is satisfied; we assume that tin = tj and repeat points (3) and (4)
up to instant of time t= tf - ;

(5) Slowing down the angular velocities of a spacecraft
with maximum control moment Mc·L<0,   brc

~
MM

(i.e., control moment is directed exactly against the vector
of angular momentum).

Scheme of iterative control that is proposed here allows one
to take into account random factors on previous stages of
spacecraft motion, thus decreasing the fuel consumption
needed for control in further corrections. This is achieved due
to exploiting the information about random and stochastic
factors concerning spacecraft motion before first correction of
angular momentum. Quaternion   = 1

*~
  contains

information concerning stochastic factors, random acts and
perturbations, and factors that were not taken into account in
control law. If we introduce it in sight parameters while
forming the first correcting impulse, trajectory of free motion
will be passed with lesser deviation from the required final
position  f (and with lesser expenditures needed for its
compensation). Subsequent corrections are realized by
guidance at final position (“reaiming” is done every time, from
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current position  to final one,  f). The obtained control
law for spacecraft turn is sufficiently close to optimal one and
allows one to decrease significantly the error in reducing the
axes related with the spacecraft to a fixed final position  f, in
relation to other algorithms for realizing the method of
guidance by a required velocity together with method of free
trajectories. If conditions of turn  in , f , and time T are such
that times of acceleration and braking are very small (in
comparison with total time of turn Т) and we may to neglect
them, then one can consider as impulsive processes both
imparting necessary angular momentum Lm to spacecraft and
reducing available angular momentum down to zero, and
almost during all turn (between acceleration and braking)
 L (t)  =const=Lm. These control algorithms can be easily
realized by existing onboard means.

If durations of acceleration and braking are much smaller
than duration of turn T, then the torque М is directed strictly
against angular momentum L at spacecraft braking, and
instant when braking begins can be predicted with high
accuracy. Duration of rotation damping is  =  L  /m0 [11].
Instant of beginning of braking segment is determined by the
condition [26]:
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where 1 , 2 , 3 are components of vector part of mismatch
quaternion f)(

~
 t ; К= J is magnitude of spacecraft’s

angular momentum. At braking segment, cancellation of
angular momentum is carried out according to linear law:
 L(t)  = Lm-т0(t- tbr) , where tbr is instant of beginning of
braking.

Thus, we solved the problem of control for a programmed
turn optimal with respect to fuel consumption on basis of
algorithm with prognostic model. We investigated case when
spacecraft’s inertial characteristics are not exactly known in
advance. Optimal solution to this problem is obtained in class
of controls realized by method of free trajectories. Numerical
realization of algorithm for coincident synthesis of optimal
control in process of spacecraft turn is affected. Effective
methods of control of terminal reorientation of a spacecraft is
presented, one of which additionally has adaptive qualities - it
is invariant with respect to external perturbations and
substantially insensitive with respect to parametric errors.
Indices of quality (economy and accuracy) of obtained laws
are sufficiently high. Relatively low level of fuel consumption
for a turn is achieved due to the transfer from permanent
control of spacecraft attitude to formation of control moments
only at certain definite instants of time. High accuracy of
attitude is achieved by correcting angular momentum of a

spacecraft by varying its angular momentum up to its
calculated value during reorientation process, at stage of free
rotation, at discrete instants of time. Determination of time
instant tbr according to actual (the measured values) kinematic
parameters of motion (angular mismatch and angular velocity)
improve accuracy of bringing the spacecraft into the required
state =f , =0.

6. Example of Numerical Solving the Control
Problem and Results of Mathematical Modeling

Let us provide numerical solution of spacecraft’s optimal
control problem with respect to a programmed rotation. We
consider maneuver from initial attitude Λin, when body axes
coincide with axes of the supporting basis I, into the given
final positionΛf with the following elements:

λ0 = 0, λ1 = 0.8, λ2 = 0.6, λ3 = 0

Spacecraft rotates from state of rest to state of rest, therefore
initial and final angular velocities are zero: ω(0)=ω(T)=0. We
assume that maximum possible magnitude of the controlling
moment m0 and spacecraft’s principal central inertia moments
have values:

m0=75 Nm, J1 = 63559.2 kgm2, J2 = 192218.5 kgm2, and J3

= 176808.9 kgm2

Also, we assume that duration of reorientation maneuver
should be 360 seconds, approximately. As result of solving
kinematic reorientation problem on transition from position
Λ(0)=Λin into position Λ(Т)=Λf (optimal rotation problem in
impulse statement), we obtained value of ort of spacecraft’s
angular momentum for end of acceleration segment
p0={0.600828; 0.451445; 0.659699}, if assume that spacecraft
is dynamically symmetric body.

Optimal motion of a spacecraft consists of segments on
which control moment maximum in magnitude acts (segments
of acceleration and braking), of segments of free rotation, and
of several corrections of angular motion within stage between
acceleration and braking. On segment of maximal control
moment, angular momentum vector L has permanent direction in
inertial space, but it is variable in magnitude (increase up to preset
value on acceleration segment, and decrease to zero on braking
segment), while moment М is immovable with respect to
reference basis I (the vectors М and L are parallel). During
spacecraft rotation with maximum angular momentum
modulus, parameters of motion are supported maximum
nearby to the programmed values by impulses of the control-

ling moment. In this case, angular momentum vector L has
approximately constant magnitude Lm between acceleration and
braking.Duringcorrection impulses direction ofangularmom
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entum L varies from preset position to direction required for a
hitting to final Λf. The calculated duration of acceleration
(braking) is τ = 12 s. Maximal magnitude of angular
momentum (the programmed level) is Lm =900 Nms.

Results of mathematical modeling of rotation process under
optimal control in accordance with the method of guidance by
a required velocity are demonstrated in Figures 1-4. Turn’s
duration was Т=360.24 s. It means that perturbations
(including asymmetry of the spacecraft) complicate rotation
into required position. Visual illustration of rotation dynamics
is given in Figure 1, where we present graphs of the changing
angular velocities  1(t),  2(t), and  3(t) in time. In Figure 2
we present graphs of the changing components of quaternion
Λ(t), determining spacecraft’s current attitude during rotation:
λ0(t), λ1(t), λ2(t), and λ3(t). Figure 3 shows dynamics of the
changing the components р1(t), р2(t), and р3(t) of ort р of
angular momentum. The following rule is observed for
functions 1(t) and p1(t): these functions are sign functions of
time for any combinations of boundary values Λin and Λf .
From Figure 1 and Figure 3, we see that number of motion
corrections is five. Figure 4 shows character of changing the
controlling moment, where we see all phases of controllable
turn: acceleration of a spacecraft up to the programmed
angular momentum, free motion, braking of spacecraft
rotation, and short-term impulses of correction. Corrections of
spatial motion are formed by the law that is described in
section 4. In Figure 5, we see variations of angles f and 0 ;
f is smooth monotonically decreasing function of time, 0 is
piecewise continuous function of time, which is monotonically
increasing function of time within intervals of continuity
(between corrections). Instants of corrections are as follows:

t1=179.2 s , t2=267.8 s , t3 =312.72 s , t4 =335.12 s , t5 =346.4 s

Figure 1. Optimal variation of angular rates during spatial
reorientation

Figure 2. Variation of parameters of attitude during
rotary maneuver

Figure 3. Elements of unit vector p as functions of time

Figure 4. Changing the magnitude of control torque
during optimal maneuver

Figure 5. Angles f and 0 and instants of corrections
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Magnitudes of impulses of angular momentum for rotation
correction are:

L1 = 30 Nms , L2 = 24 Nms , L3 = 30 Nms , L4 = 36 N
ms , and L5 = 33 Nms

Respectively, durations of correction impulses are as
follows:

t1 = 0.40 s, t2 = 0.32 s , t3 = 0.40 s , t4 = 0.48 s ,
t5 = 0.44 s

Since  tn are small, the controlling moment for correction
of motion can be calculated as follows:
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where ωin are the programmed values of angular velocities
for next segment of free motion (for new hitting
trajectory); tn is instant of n-th correction;  tn is duration
of n-th correction impulse.

Braking of a spacecraft requires some time and spacecraft
rotates around angular momentum L; the remaining angle rem

(for a turn around angular momentum from current position Λ
into position Λf) and angle of spacecraft’s rotation around
vector L of angular momentum for time of braking  br have
the following values (because modulus of angular momentum
is changed linearly):
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The remaining angle  rem is determined by relative
orientation of current attitude Λ and the required final position
Λf (for this purpose, we calculate quaternion of mismatch

f)(
~

 t ). Angle  br required for damping of angular
momentum is determined by spacecraft’s angular velocity.
Variation of angles  rem and  br is shown in Figure 6. We
begin a braking of a spacecraft when angles  rem and  br is
identical (and difference  = rem br is zero). If braking
begin earlier, then spacecraft will not be moved to the required
angular position Λf (spacecraft will stop before the required
position Λf and not reach position Λf when rotation will end).
If braking begin later, then spacecraft's angular velocity will be
distinct from zero at the moment of achievement of angular
orientation Λf. Deviation  is changed in accordance with
Figure 7. At segment of braking,  rem  br . It means that, at
any instant within phase of braking, spacecraft can be turned
through angle  rem during the remaining time of suppressing
angular velocity up to zero; on the other hand, at any instant
within phase of braking, spacecraft can be stopped to ω=0

during a turn through the angle rem (i.e. final position Λf will
be achieved when ω=0). Error of reorientation is  = 0.11
degrees (accuracy depends on the acting disturbance moments
- gravitational and aerodynamic moments - and due to
inequality of transverse moments of inertia J2 and J3). Notice,
angles f and sub = ωL/(2m0) is changed in accordance
with the Figure 8.

Figure 6. Variation of angles rem and br in ending of
optimal turn

Figure 7. Character of deviation  before instant of
beginning of braking and after it

Figure 8. Angles f and sub before instant of beginning
of braking and after it
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entum L varies from preset position to direction required for a
hitting to final Λf. The calculated duration of acceleration
(braking) is τ = 12 s. Maximal magnitude of angular
momentum (the programmed level) is Lm =900 Nms.

Results of mathematical modeling of rotation process under
optimal control in accordance with the method of guidance by
a required velocity are demonstrated in Figures 1-4. Turn’s
duration was Т=360.24 s. It means that perturbations
(including asymmetry of the spacecraft) complicate rotation
into required position. Visual illustration of rotation dynamics
is given in Figure 1, where we present graphs of the changing
angular velocities  1(t),  2(t), and  3(t) in time. In Figure 2
we present graphs of the changing components of quaternion
Λ(t), determining spacecraft’s current attitude during rotation:
λ0(t), λ1(t), λ2(t), and λ3(t). Figure 3 shows dynamics of the
changing the components р1(t), р2(t), and р3(t) of ort р of
angular momentum. The following rule is observed for
functions 1(t) and p1(t): these functions are sign functions of
time for any combinations of boundary values Λin and Λf .
From Figure 1 and Figure 3, we see that number of motion
corrections is five. Figure 4 shows character of changing the
controlling moment, where we see all phases of controllable
turn: acceleration of a spacecraft up to the programmed
angular momentum, free motion, braking of spacecraft
rotation, and short-term impulses of correction. Corrections of
spatial motion are formed by the law that is described in
section 4. In Figure 5, we see variations of angles f and 0 ;
f is smooth monotonically decreasing function of time, 0 is
piecewise continuous function of time, which is monotonically
increasing function of time within intervals of continuity
(between corrections). Instants of corrections are as follows:

t1=179.2 s , t2=267.8 s , t3 =312.72 s , t4 =335.12 s , t5 =346.4 s

Figure 1. Optimal variation of angular rates during spatial
reorientation

Figure 2. Variation of parameters of attitude during
rotary maneuver

Figure 3. Elements of unit vector p as functions of time

Figure 4. Changing the magnitude of control torque
during optimal maneuver

Figure 5. Angles f and 0 and instants of corrections

DOI: https://doi.org/10.30564/jmer.v4i2.3725 41

Journal of Mechanical Engineering Research | Volume 04 | Issue 02 | September 2021

Distributed under creative commons license 4.0

Journal of Mechanical Engineering Research | Volume 04 | Issue 02 | September 2021

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jmer.v4i2.3725
Distributed under creative commons license 4.020

40

entum L varies from preset position to direction required for a
hitting to final Λf. The calculated duration of acceleration
(braking) is τ = 12 s. Maximal magnitude of angular
momentum (the programmed level) is Lm =900 Nms.

Results of mathematical modeling of rotation process under
optimal control in accordance with the method of guidance by
a required velocity are demonstrated in Figures 1-4. Turn’s
duration was Т=360.24 s. It means that perturbations
(including asymmetry of the spacecraft) complicate rotation
into required position. Visual illustration of rotation dynamics
is given in Figure 1, where we present graphs of the changing
angular velocities  1(t),  2(t), and  3(t) in time. In Figure 2
we present graphs of the changing components of quaternion
Λ(t), determining spacecraft’s current attitude during rotation:
λ0(t), λ1(t), λ2(t), and λ3(t). Figure 3 shows dynamics of the
changing the components р1(t), р2(t), and р3(t) of ort р of
angular momentum. The following rule is observed for
functions 1(t) and p1(t): these functions are sign functions of
time for any combinations of boundary values Λin and Λf .
From Figure 1 and Figure 3, we see that number of motion
corrections is five. Figure 4 shows character of changing the
controlling moment, where we see all phases of controllable
turn: acceleration of a spacecraft up to the programmed
angular momentum, free motion, braking of spacecraft
rotation, and short-term impulses of correction. Corrections of
spatial motion are formed by the law that is described in
section 4. In Figure 5, we see variations of angles f and 0 ;
f is smooth monotonically decreasing function of time, 0 is
piecewise continuous function of time, which is monotonically
increasing function of time within intervals of continuity
(between corrections). Instants of corrections are as follows:

t1=179.2 s , t2=267.8 s , t3 =312.72 s , t4 =335.12 s , t5 =346.4 s

Figure 1. Optimal variation of angular rates during spatial
reorientation

Figure 2. Variation of parameters of attitude during
rotary maneuver

Figure 3. Elements of unit vector p as functions of time

Figure 4. Changing the magnitude of control torque
during optimal maneuver

Figure 5. Angles f and 0 and instants of corrections

Journal of Mechanical Engineering Research | Volume 04 | Issue 02 | September 2021

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jmer.v4i2.3725
Distributed under creative commons license 4.020

41

Magnitudes of impulses of angular momentum for rotation
correction are:

L1 = 30 Nms , L2 = 24 Nms , L3 = 30 Nms , L4 = 36 N
ms , and L5 = 33 Nms

Respectively, durations of correction impulses are as
follows:

t1 = 0.40 s, t2 = 0.32 s , t3 = 0.40 s , t4 = 0.48 s ,
t5 = 0.44 s

Since  tn are small, the controlling moment for correction
of motion can be calculated as follows:
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where ωin are the programmed values of angular velocities
for next segment of free motion (for new hitting
trajectory); tn is instant of n-th correction;  tn is duration
of n-th correction impulse.

Braking of a spacecraft requires some time and spacecraft
rotates around angular momentum L; the remaining angle rem

(for a turn around angular momentum from current position Λ
into position Λf) and angle of spacecraft’s rotation around
vector L of angular momentum for time of braking  br have
the following values (because modulus of angular momentum
is changed linearly):
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The remaining angle  rem is determined by relative
orientation of current attitude Λ and the required final position
Λf (for this purpose, we calculate quaternion of mismatch
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 t ). Angle  br required for damping of angular
momentum is determined by spacecraft’s angular velocity.
Variation of angles  rem and  br is shown in Figure 6. We
begin a braking of a spacecraft when angles  rem and  br is
identical (and difference  = rem br is zero). If braking
begin earlier, then spacecraft will not be moved to the required
angular position Λf (spacecraft will stop before the required
position Λf and not reach position Λf when rotation will end).
If braking begin later, then spacecraft's angular velocity will be
distinct from zero at the moment of achievement of angular
orientation Λf. Deviation  is changed in accordance with
Figure 7. At segment of braking,  rem  br . It means that, at
any instant within phase of braking, spacecraft can be turned
through angle  rem during the remaining time of suppressing
angular velocity up to zero; on the other hand, at any instant
within phase of braking, spacecraft can be stopped to ω=0

during a turn through the angle rem (i.e. final position Λf will
be achieved when ω=0). Error of reorientation is  = 0.11
degrees (accuracy depends on the acting disturbance moments
- gravitational and aerodynamic moments - and due to
inequality of transverse moments of inertia J2 and J3). Notice,
angles f and sub = ωL/(2m0) is changed in accordance
with the Figure 8.

Figure 6. Variation of angles rem and br in ending of
optimal turn

Figure 7. Character of deviation  before instant of
beginning of braking and after it

Figure 8. Angles f and sub before instant of beginning
of braking and after it
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Important characteristics of control are value of 
index (3) and accuracy of reorientation into the given 
final position. They were computed by mathematical 
simulation. Set of numerical experiments with modeling 
of spacecraft’s rotation process was made. Ratings of 
control laws and estimates of efficiency of the designed 
control algorithms (precision of reorientation, and energy-
saving efficiency) were calculated for each rotation 
maneuver in this series. Input data (original parameters of 
maneuvers - initial and final attitudes, spacecraft’s inertial 
characteristics, and duration of rotation) were identical. 
Average modulus of angular rate during the rotary 
maneuvers is 0.5 deg/s. Estimates of fuel expenditure G 
and error of final attitude σ determined as result of the 
numerical simulations were: G = 5.60 kg with attitude 
accuracy σ ≈ 0.1° correspond to iterative control by the 
method of guidance by a required velocity (without 
prediction of position at instant of first correction), and 
G = 5.55 kg with attitude accuracy σ < 0.08° correspond 
to mode of iterative guidance with prediction of position 
at instant of first correction. Also, for comparison, we 
cite values of same indicators of efficiency for same 
spacecraft which were specified after realizations of rotary 
maneuvers carried out according to mode of extensive 
rotation and rotation in form of regular precession 
(simultaneous rotation about longitudinal axis and about 
fixed transversal axis): Gex = 7.02 kg and Greg = 6.13 kg.

With help of mathematical modeling, for each method, 
we obtain statistical estimates of fuel consumption for one 
turn. They confirmed optimality of the designed control, 
which takes into account action of external moments 
of disturbance. Results of mathematical modeling 
demonstrate that the suggested methods of execution of 
the programmed turns improve accuracy of reorientation, 
given relatively large parametric undeterminacies and 
external perturbations. Moreover, “price” paid for 
absence of exact a priori information concerning dynamic 
characteristics of a spacecraft (some degradation of 
quality’s index) is not too large. Let us note that traditional 
methods of optimal control not only require much more 
computational expenditure, but lead to greater fuel 
consumption with respect to control as well.

7. Conclusions

In this research, new control method of spacecraft 
attitude is presented. Example and results of mathematical 
simulation for spacecraft rotation under optimal control 
are given. The obtained results demonstrate that the 
designed control method of spacecraft’s three-dimensional 
reorientation is feasible in practice.

Rotary maneuver is one of basic dynamic regimes of 

motion control system. It was topical problem to design 
optimal algorithm of attitude control and to calculate nu-
merical index of control efficiency. It seems impossible 
to solve the problem of slew maneuver of asymmetric 
spacecraft with minimal expense of fuel, taking into 
account disturbances (gravitational and aerodynamic 
torques). Algorithm of numerical constructing the control 
that satisfies all necessary requirements is suggested. It 
is limited in magnitude, ensures minimal consumption of 
fuel, and satisfies the given accuracy of attitude. Available 
mathematical model of spacecraft motion with respect to 
center of mass allowed us to use mode of guidance by a 
required velocity with prognostic model to form optimal 
control of attitude and to get its implementation. We know 
two-impulse control which rotate spacecraft along attitude 
trajectory consisting of three phases: fast imparting the re-
quired angular momentum to spacecraft’s body with max-
imal control torque, free rotation without control torque, 
and quickest damping of rotation with maximal modulus 
of control torque. Each phase satisfies conditions of opti-
mality: phase of free rotation fits condition of optimality, 
because there is no expenditure of fuel during it; phases 
of acceleration and braking also fit criterion of optimality, 
because minimal expenditure of fuel for acceleration and 
damping of rotation is determined only by the imparted 
angular momentum (which in turn is determined by in-
ertial characteristics of a spacecraft, by initial and final 
conditions, and by duration of maneuver Т). But error of 
reorientation can be unacceptable if external disturbing 
moments act long time (or angle of turn is large).

For improving the precision of attitude in the required 
position, one needs to control spacecraft’s angular 
momentum in process of maneuver, using actual parameters 
of attitude. We present effective algorithms of controlling 
the reorientation, which are invariant under external 
disturbances and parametric discrepancy of model. Very 
effective mode is iteration control at which correction of 
rotation is carried out impulsively, at discrete instants of 
time. This mode ensures the required precision of attitude 
without refusal of control by method of free trajectories. 
Control commands are formed such that attitude 
actuators change angular momentum of a spacecraft not 
continuously, as at known methods, but impulsively at 
discrete instants of time. Since exact values of parameters 
of model of spacecraft rotation (e.g., moments of inertia) 
a priori are not known (they are known only roughly), 
to simplify onboard algorithms when angular rates 
are computed for points of beginning the uncontrolled 
phases, spacecraft is assumed dynamically symmetric 
body. The developed control laws are free from following 
typical simplifications: field of possible values of control 
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torques is not closed; the minimized index is quadratic 
function; there is constraint on angle of turn; spacecraft 
is dynamically symmetric about longitudinal axis; and 
finally, perturbation torques are neglected.

We give numerical estimates of fuel expense for 
implementation of rotary maneuver according to control 
modes which are presented above. Mathematical 
simulation allowed us to find values of fuel saving in 
performance of the described control laws for spacecraft’s 
rotary maneuvers (in particular, for module of orbital 
station). Numerical modeling has shown that control 
which realize method of free trajectory with accounting 
for aerodynamic and gravitational models is sufficiently 
efficient and close to optimal solution. New control 
modes allow one to achieve considerable economy of 
fuel expense as compared to the known methods of 
control that is important for practice of spaceflight. In 
addition, these algorithms can be applied using modern 
onboard systems. The designed control methods of 
three-dimensional attitude allow expense of fuel for turn 
of existing spacecraft to be decreased by 20% - 30%. 
Estimates of fuel-saving efficiency of the presented 
modes of spacecraft attitude were calculated by statistical 
methods using numerical simulation in computer. Specific 
peculiarity of mathematical model of spacecraft rotation 
accepted in this paper for calculating the estimates of 
accuracy and fuel consumption is assumption about 
presence of significant aerodynamic and gravitational 
torques acting upon body of a spacecraft.

Notice, recent solutions [19-22] are not applicable for 
general case of three-dimensional turn of arbitrary 
spacecraft; the work [25] describes synthesis of terminal 
reorientation control only for spacecraft which moves 
along circular orbit. But method designed in present 
article is universal control, it does not depend on a ratio 
(proportion) of moments of inertia or final position of a 
spacecraft.
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Important characteristics of control are value of 
index (3) and accuracy of reorientation into the given 
final position. They were computed by mathematical 
simulation. Set of numerical experiments with modeling 
of spacecraft’s rotation process was made. Ratings of 
control laws and estimates of efficiency of the designed 
control algorithms (precision of reorientation, and energy-
saving efficiency) were calculated for each rotation 
maneuver in this series. Input data (original parameters of 
maneuvers - initial and final attitudes, spacecraft’s inertial 
characteristics, and duration of rotation) were identical. 
Average modulus of angular rate during the rotary 
maneuvers is 0.5 deg/s. Estimates of fuel expenditure G 
and error of final attitude σ determined as result of the 
numerical simulations were: G = 5.60 kg with attitude 
accuracy σ ≈ 0.1° correspond to iterative control by the 
method of guidance by a required velocity (without 
prediction of position at instant of first correction), and 
G = 5.55 kg with attitude accuracy σ < 0.08° correspond 
to mode of iterative guidance with prediction of position 
at instant of first correction. Also, for comparison, we 
cite values of same indicators of efficiency for same 
spacecraft which were specified after realizations of rotary 
maneuvers carried out according to mode of extensive 
rotation and rotation in form of regular precession 
(simultaneous rotation about longitudinal axis and about 
fixed transversal axis): Gex = 7.02 kg and Greg = 6.13 kg.

With help of mathematical modeling, for each method, 
we obtain statistical estimates of fuel consumption for one 
turn. They confirmed optimality of the designed control, 
which takes into account action of external moments 
of disturbance. Results of mathematical modeling 
demonstrate that the suggested methods of execution of 
the programmed turns improve accuracy of reorientation, 
given relatively large parametric undeterminacies and 
external perturbations. Moreover, “price” paid for 
absence of exact a priori information concerning dynamic 
characteristics of a spacecraft (some degradation of 
quality’s index) is not too large. Let us note that traditional 
methods of optimal control not only require much more 
computational expenditure, but lead to greater fuel 
consumption with respect to control as well.

7. Conclusions

In this research, new control method of spacecraft 
attitude is presented. Example and results of mathematical 
simulation for spacecraft rotation under optimal control 
are given. The obtained results demonstrate that the 
designed control method of spacecraft’s three-dimensional 
reorientation is feasible in practice.

Rotary maneuver is one of basic dynamic regimes of 

motion control system. It was topical problem to design 
optimal algorithm of attitude control and to calculate nu-
merical index of control efficiency. It seems impossible 
to solve the problem of slew maneuver of asymmetric 
spacecraft with minimal expense of fuel, taking into 
account disturbances (gravitational and aerodynamic 
torques). Algorithm of numerical constructing the control 
that satisfies all necessary requirements is suggested. It 
is limited in magnitude, ensures minimal consumption of 
fuel, and satisfies the given accuracy of attitude. Available 
mathematical model of spacecraft motion with respect to 
center of mass allowed us to use mode of guidance by a 
required velocity with prognostic model to form optimal 
control of attitude and to get its implementation. We know 
two-impulse control which rotate spacecraft along attitude 
trajectory consisting of three phases: fast imparting the re-
quired angular momentum to spacecraft’s body with max-
imal control torque, free rotation without control torque, 
and quickest damping of rotation with maximal modulus 
of control torque. Each phase satisfies conditions of opti-
mality: phase of free rotation fits condition of optimality, 
because there is no expenditure of fuel during it; phases 
of acceleration and braking also fit criterion of optimality, 
because minimal expenditure of fuel for acceleration and 
damping of rotation is determined only by the imparted 
angular momentum (which in turn is determined by in-
ertial characteristics of a spacecraft, by initial and final 
conditions, and by duration of maneuver Т). But error of 
reorientation can be unacceptable if external disturbing 
moments act long time (or angle of turn is large).

For improving the precision of attitude in the required 
position, one needs to control spacecraft’s angular 
momentum in process of maneuver, using actual parameters 
of attitude. We present effective algorithms of controlling 
the reorientation, which are invariant under external 
disturbances and parametric discrepancy of model. Very 
effective mode is iteration control at which correction of 
rotation is carried out impulsively, at discrete instants of 
time. This mode ensures the required precision of attitude 
without refusal of control by method of free trajectories. 
Control commands are formed such that attitude 
actuators change angular momentum of a spacecraft not 
continuously, as at known methods, but impulsively at 
discrete instants of time. Since exact values of parameters 
of model of spacecraft rotation (e.g., moments of inertia) 
a priori are not known (they are known only roughly), 
to simplify onboard algorithms when angular rates 
are computed for points of beginning the uncontrolled 
phases, spacecraft is assumed dynamically symmetric 
body. The developed control laws are free from following 
typical simplifications: field of possible values of control 
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torques is not closed; the minimized index is quadratic 
function; there is constraint on angle of turn; spacecraft 
is dynamically symmetric about longitudinal axis; and 
finally, perturbation torques are neglected.

We give numerical estimates of fuel expense for 
implementation of rotary maneuver according to control 
modes which are presented above. Mathematical 
simulation allowed us to find values of fuel saving in 
performance of the described control laws for spacecraft’s 
rotary maneuvers (in particular, for module of orbital 
station). Numerical modeling has shown that control 
which realize method of free trajectory with accounting 
for aerodynamic and gravitational models is sufficiently 
efficient and close to optimal solution. New control 
modes allow one to achieve considerable economy of 
fuel expense as compared to the known methods of 
control that is important for practice of spaceflight. In 
addition, these algorithms can be applied using modern 
onboard systems. The designed control methods of 
three-dimensional attitude allow expense of fuel for turn 
of existing spacecraft to be decreased by 20% - 30%. 
Estimates of fuel-saving efficiency of the presented 
modes of spacecraft attitude were calculated by statistical 
methods using numerical simulation in computer. Specific 
peculiarity of mathematical model of spacecraft rotation 
accepted in this paper for calculating the estimates of 
accuracy and fuel consumption is assumption about 
presence of significant aerodynamic and gravitational 
torques acting upon body of a spacecraft.

Notice, recent solutions [19-22] are not applicable for 
general case of three-dimensional turn of arbitrary 
spacecraft; the work [25] describes synthesis of terminal 
reorientation control only for spacecraft which moves 
along circular orbit. But method designed in present 
article is universal control, it does not depend on a ratio 
(proportion) of moments of inertia or final position of a 
spacecraft.
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Graphene has remarkable strength, such as yield strength and elastic 
constant. The dynamic behaviour of graphene sheet is affected by 
geometrical variation in atomic arrangement. This paper introduced 
graphene with armchair atomic structure for estimating fundamental natural 
frequencies. The presented analysis can be useful for the possible high 
frequency nanomechanical resonator systems. The analytical formulation, 
based on classical plate theory and continuum solid modelling based finite 
element method have been performed for estimation of fundamental natural 
frequencies of single layer graphene sheet (SGLS) with different boundary 
conditions. The free edge and clamped edge boundary conditions have been 
considered. For simplifying analytical formulations, Blevins approach for 
dynamic solution has been adopted and for validating analytical results. 
The finite element analysis of SLGS has been performed using ANSYS 
software. The effect of variation in geometrical parameters in terms of 
width and length of SLGS has been analysed for realization of ultra-high 
frequency based nanomechanical resonator systems.

Keywords:
Single layer graphene sheet (SLGS)
Size variation
Fundamental natural frequency
Finite element analysis

1. Introduction
There are many discoveries for nano structures have 

been found in which, graphene is the most predominant 
invention of the engineering science. And till date many 
broad range of innovation are appraised for exploring the 
properties such as thermal, electrical, and mechanical of 
graphene as a nanostructure [1,2]. There are several allo-
tropes, investigated based on carbon in which different 
phenomenon such as 3-dimensional, 2-dimenionsal and 
1-dimensional allotropes were identified as graphite, 
graphene and nanotube respectively [3-7]. In the structure 
of graphene, carbon atoms are bonded very densely as 
honeycomb arrangement with sp2 bond. Graphene has 

excellent material properties, which attracts the field of 
application such as nanoelectronic, bio mechanical, nano 
sensing element, resonators etc [8,9]. In the recent years, 
grapheme has been placed as stronger material in the field 
of material engineering due to its stunning material prop-
erties such as electrical, thermal, and chemical [10,11]. Prop-
erties such as mobility of electron at room temperature 
as 250000 cm2/Vs, thermal conductivity 5000 W/mK [12], 
explored surface area as 2630 m2/g [13] made it versatile in 
the today’s era.

Numerous researches on single layer graphene sheet 
have been done, which employ static and dynamic phe-
nomenon such as static behaviors, fatigue and vibration 
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behaviors. [14,15]. For example, Sakhaee et al. [16] had 
performed molecular structural mechanics and reported 
that single layer graphene sheet has remarkable dynamic 
behaviors. There are many technical phenomenon are 
completed on graphene for cultivating comprehension of 
behaviors of graphene with different boundary conditions 
such as clamped-pinned with mass, Clamped-pinned 
without mass etc [17]. Moreover, there are many technical 
aspects which are not explored yet by researchers in 
the field of material engineering that can distinguish 
the dynamic approach. Various boundary conditions 
and support conditions with different theories such as 
molecular dynamic theory, computational approaches etc. 
are still in consideration for investigation [18,19]. 

Graphene has principal applications in the field of 
biomechanical as sensor or in nanomechanical system 
as mass sensor [20]. The system based on graphene may 
have higher sensitivity as a mass sensor for monitoring 
resonance frequency. In the structural applications, 
aeronautical applications, automobile sectors, there are 
various aspects of graphene or graphene based composite 
material utilization, which can add noticeable advantages 
in terms of static and dynamic strength [21]. The atomic 
structures of graphene can be classified as armchair, 
zigzag and chiral and different types atomic structure of 
graphene affect significantly to the graphene’s behaviors 
in static and dynamic condition. In the armchair atomic 
structure, at the free edges along width of graphene sheet 
carbon-carbon bond of each hexagon are parallel to 
lateral dimensions as width of graphene sheet. When large 
portion of graphene is cut along sides of hexagons, then 
armchair structure is obtained [22]. In the zigzag atomic 
structure, at the free edges along width of graphene sheet 
carbon-carbon bond of each hexagon are 60 degrees 
offset to the axis of width of graphene sheet. When large 
graphene sheet is cut along sides the vertices of hexagons, 
then zigzag structure is obtained [22,23].

Figure 1. Direction of cutting graphene sheet to obtain 
armchair and zigzag structure [22]

2. Analysis Approach

In this research work, graphene sheet is simulated by 
employing three different approaches said, analytical, 
finite element analysis, and space frame modeling 
approach. The analytical approach has been employed 
for obtaining results based on analytical formulations, the 
obtained results are validated using continuum modeling 
based finite element analysis using ANSYS workbench.

2.1 Analytical Approach

The analytical formulation of the graphene sheet with 
armchair configuration has been performed by considering 
graphene sheet as a rectangular plate like structure. The 
classical plate theory based on Kirchoff theory for thin 
plate has been applied on the graphene sheet. Assumption 
further extended towards single layer of rectangular 
plate; as graphene sheet is a two-dimensional atomic 
structure. The thickness has been considered as diameter 
of carbon atom. The equation of motion has been derived 
by employing equilibrium approach of solution. And, the 
natural frequencies are obtained based on Blevins solution 
for dynamic approach. 

There are two motions in the concept of vibration 
phenomenon, which are important to technical point of 
view; known as transverse and longitudinal, and both are 
to be considered for understanding deformation in each 
direction. Deformation in specific direction decides stress 
level in particular direction as per boundary and support 
conditions so fundamental mode shape with natural 
frequency is become an important aspect of study. In this 
study, analytical calculation is executed by considering 
transverse direction only and Blevins solution of natural 
frequency is employed. As per equilibrium approach, 
equation of motion can be derived as,

� (1)

Now, considering no deformation at two adjacent sides, 
x = 0, y = 0. And considering free vibration, i.e. force = 0, 
solution of equation (1) is given by,

Where, λ2 = α2 + β2 = θ2 + Ø2 
Blevins had derived various dynamic solutions 

considering numerous boundary conditions such as bridge 
boundary, cantilever boundary condition etc. Bridge 
boundary condition is set by clamping two opposite edges 
and by keeping two free edges whereas cantilever has 
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one clamped edge and three free edges [24,25]. Based on 
mentioned boundary conditions, Blevins had developed 
various constants as per mode index, which are mentioned 
below, 

 � (2)

Where,  

Hx, Jx, Kx, Hy, Jy, Ky; all are constants depend on 
boundary conditions.

Table 1. Edges along Length (Free-Free boundary)

Mode index (j) Hy Jy Ky

1 0 0 0

2 0 0 1.22

3 1.51 1.25 5.017

Table 2. Edges along Length (Clamped-Clamped boundary)

Mode index (j) Hx Jx Kx

1 1.51 1.29 1.25

2 2.5 4.658 4.658

3 3.5 10.02 10.02

Table 3. Edges along Length (Clamped-Free boundary)

Mode index (j) Hx Jx Kx

1 0.597 -0.0870 0.471

2 1.494 1.347 3.284

3 2.5 4.658 7.842

Consider (5,5) armchair configuration for length 10A 
of the graphene.

Figure 2. General Dimensions of the Model

Figure 3. Free-Free-Free-Clamp (F-F-F-C) Boundary 
Condition (FEM)

Figure 4. Free-Free-Clamp-Clamp (F-F-C-C) Boundary 
Condition (SFA)

In general, two major boundary conditions are 
considered such as bridge boundary condition and 
cantilever boundary conditions. Bridge boundary 
condition is defined as Free-Free-Clamp-Clamp (F-F-C-C) 
whereas cantilever boundary condition is defined as Free-
Free-Free-Clamp (F-F-F-C). In bridge boundary condition 
opposite sides of the Graphene was fixed and two sides are 
remaining free whereas in cantilever boundary condition 
three sides of the Graphene remain free and one is fixed. 

This concept is applied to all three approaches, 
numerical, finite element analysis and finite element 
analysis (Space Frame Analysis). In numerical approach, 
boundary conditions with constants are presented in Table 
1, 2 & 3 through which analytical calculation is carried 
out for all armchair dimensions whereas FEA and FEA 
(SFA) are presented as per the below models created in 
ANSYS modeler and ANSYS APDL. 

Now from above tables, constants for bridge boundary 
condition are decided as, 

The one of the basic calculations of (5,5) armchair 
patter of graphene is derived here as, 
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= 6.62*1012Hz

 

= 6.73*1012 Hz

2.2 Finite Element Analysis

Continuum finite element method based approach of 
graphene sheet has been performed in ANSYS workbench 
for various configuration such as (11,11), (15,15), and  
(19,19). All the configuration are simulated using ANSYS 
workbench with bridge and cantilever boundary 
conditions. Dimensions of graphene sheet configuration 
was set as 10 x 21.31 Å with thickness of graphene as 
170 Å which is diameter of carbon atom. For continuum 
solid modeling based finite element analysis approach, all 
the configurations have been simulated as per bridge and 
cantilever boundary conditions with different length of 
graphene sheet. 

Table 4. Properties of Graphene.

Sr. No. Property Value

1 Poisons ratio u 0.456

2 Density 1161Kg/m3

3 Young’s modulus E 1 TPa=1012 Pa

Table 5. Geometrical Dimension of Graphene.

Sr. No. Dimensions Value

1 length of graphene sheet, a 10A =10-9 m

2 Width, b 21.315A=2.1315 x10-9 m

3 Thickness 0.17nm =1.7 x10-10 m

2.3 Space Frame Approach (FEA)

Space frame approach is advanced version of FEM 
based nodal calculation and for getting the advantage 
of this, ANSYS APDL is employed in the analysis. In 
ANSYS APDL all the coordinated are deployed from the 
Nano modeler software and file is exported in ANSYS 
APDL.Graphene sheet has hexagonal arrangement 
of atoms such as honey comb structure [26,27]. Results 
obtained, using continuum solid modeling approach has 
been validated by performing space frame modeling 

approach using ANSYS APDL. The development of space 
frame model of graphene sheet in ANSYS APDL requires 
the co-ordinates of all the atoms of carbon to represent 
approximation of single layer graphene sheet. The space 
frame models of (11,11) configuration has shown in Figure 
3, which is developed using ANSYS APDL. Similarly, the 
space frame model of atomic structures (15,15) and (19,19) 
have been developed.

Figure 5. Space Frame of (11, 11) configuration

x

Figure 6. Space Frame of (15, 15) configuration

x

Figure 7. Space Frame of (19, 19) configuration
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3. Results & Discussion

Single layer graphene sheet has been analyzed by three 
approaches as, analytically, finite element analysis, and finite 
element analysis with space frame approach. The analysis 
has been performed with different lengths of the graphene 
as 41.21A, 83.83A, 126.46A, 169.08A, and 211.71A, for 
three different widths of 12.31A, 17.23A, and 22.15A of 
the graphene sheet. The obtained results for bridged and 
cantilevered configurations are summarised in Table 6 and 
Table 7 respectively for all the considered approaches.

Table 6. Comparison of Natural Frequency (Bridge 
Boundary Condition)

Configuration 
(Armchair)

Width Length
Analytical

(GHz)
FEA

(GHz)
FEA(SFA)

(GHz)

(11,11) 12.31A

41.21A 669 599 600
83.83A 162 147 154
126.46A 71 64.5 66.1
169.08A 39.7 36.0 38.1
211.71A 25.3 22.9 24.1

(15,15) 17.23A

41.21A 668 607 632
83.83A 160 149 158
126.46A 70 65.2 70.4
169.08A 39 36.3 38.0
211.71A 25 23.1 23.9

(19,19) 22.15A

41.21A 665 612 655
83.83A 158 150 162
126.46A 68 65.7 68.9
169.08A 39 36.6 38.7
211.71A 25 23.2 30.0

Table 7. Comparison of Natural Frequency (Cantilever 
Boundary Condition)

Configuration 
(Armchair)

Width Length
Analytical

(GHz)
FEA

(GHz)
FEA(SFA)

(GHz)

(11,11) 12.31A

41.21A 105 96.1 93.0

83.83A 25.4 23.0 24.2

126.46A 11.2 10.1 10.6

169.08A 6.24 5.61 5.96

211.71A 3.98 3.57 3.20

(15,15) 17.23A

41.21A 106 97.4 98.0

83.83A 25.9 23.2 24.9

126.46A 12.0 10.1 9.10

169.08A 6.52 5.64 5.50

211.71A 4.10 3.59 3.91

(19,19) 22.15A

41.21A 106.5 98.5 106

83.83A 26.0 23.3 29.8

126.46A 12.1 10.2 10.4

169.08A 6.72 5.66 6.60

211.71A 4.19 3.60 4.25

3.1 Bridge Boundary Condition

Figure 8. Variation of Natural Frequency in Bridged 
Boundary Condition

In armchair atomic configuration of graphene sheet, 
for bridge boundary condition obtained results shows 
that, the maximum natural frequency for (19, 19) is 655 
GHz, whereas for (11, 11) armchair configuration the 
maximum natural frequency is 601 GHz. From Figure 8, 
it has been observed that, as the length of graphene sheet 
increases the natural frequencies decreases irrespective of 
configuration of (19, 19), (15,15), and (11,11). 

3.2 Cantilever Boundary Condition

Figure 9. Variation of Natural Frequency in Cantilever 
Boundary Condition

For cantilevered configuration obtained results (Table 7) 
also depicts that as the length of graphene sheet increases 
the natural frequency decreases irrespective of different 
considered armchair configurations. Also, it has been 
observed that for the same size frequency of graphene 
sheet for bridged boundary condition is higher than that 
for the cantilevered boundary condition (Figure 9). Such 
results suggest that cantilevered boundary condition is more 
sensitive than that of bridged boundary condition.
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Figure 10. Variation of Natural Frequency in Bridged & 
Cantilever Boundary Condition

4. Conclusions

The present  research work on Graphene was 
introduced for identification of dynamic behaviours 
based on analysis of natural frequency variation. Size 
variation of graphene sheet is carried out by performing 
modal analysis in finite element analysis and FEA 
space frame approach in ANSYS APDL and found to 
be useful for further realization of ultra-high frequency 
nanomechanical resonators. The present analysis also 
suggests that as the size of the graphene sheet increases 
(either width or length) the natural frequencies of 
graphene sheet decreases. Also, it has been observed 
that for a particular size of graphene sheet the natural 
frequency is found higher for bridged boundary condition 
compared to cantilevered boundary condition in armchair 
configuration. Such results depict that cantilevered 
boundary condition is found more sensitive compared to 
bridged boundary condition the armchair configuration. It 
has been observed that outcome from the research work 
is resembled in all analysis domains such as numerical, 
finite element method, and finite element analysis in space 
frame approach for natural frequency so the reliability 
of the space frame approach and finite element analysis 
can be carried out to nano size of the plate said as for 
Graphene. The presented analysis is found to be useful 
for the realization of high frequency sensor system based 
on nanomechanical resonator, which can be utilized as a 
mass sensor, gas-sensor, bio-detection sensor system etc.
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