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ABSTRACT

Periodic structures effectively address challenges in manufacturing, transportation, and installation of large-scale

systems by streamlining processes and enhancing transport, replacement, and assembly efficiency. This paper introduces a

topology optimization method specifically for cantilever beam structures, to minimize structural flexibility and optimize

frequency by determining the optimal material distribution under given loads and constraints. The study explores continuum

periodic structures, examining the effects of material properties, optimization parameters, and boundary conditions on the

outcomes. Various aspects of periodic optimization design, such as structural configuration, connections, and layout, are

also investigated. Through the application of topology optimization using SolidWorks and Ansys, the experimental results

validate the method’s effectiveness in enhancing structural performance and material utilization. This research presents a

systematic approach and highlights the practical potential of designing periodic structures.
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1. Introduction

Over the past twenty years, structural topology opti-

mization has seen significant growth, with its applications

extending into aerospace, automotive, and civil engineer-

ing [1]. The focus has evolved beyond just weight and stiff-

ness considerations to encompass dynamics, fatigue, and

noise. Traditional design methodologies, which often de-

pend heavily on the experience of designers, tend to lack
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standardized procedures and quantitative rigor, resulting in

inefficiencies [2]. The advent of finite element theory, coupled

with advancements in computer technology, has transformed

structural analysis, leading to more scientific and precise

designs [3].

Structural optimization can be categorized into size,

shape, and topology optimization [4]. Although size and shape

optimization are well-established areas, topology optimiza-

tion, which seeks to determine the optimal material distri-

bution for properties such as stiffness or frequency, remains

a complex and challenging field [5]. The implementation of

topology optimization is further complicated by manufac-

turing difficulties, particularly when dealing with intricate

designs [6].

This paper delves into the topology optimization of

periodic continuum structures, focusing on compliance and

frequency criteria, and employs ANSYS for case analysis. It

examines the influence of critical parameters on structural

flexibility and frequency, applying the insights gained to the

detailed design of a support frame.

2. Literature review

Since the introduction of homogenization theory and

continuous density functions by Bendsøe [5, 7], topology opti-

mization has undergone significant advancements, address-

ing the limitations of traditional methods such as dependence

on initial designs and the need for remeshing. Subsequent re-

search by van Dijk [6] highlighted the level set method (LSM)

for its ability to clearly define boundaries, although chal-

lenges like controlling the length scale remain. Sigmund [8]

stressed the importance of establishing standardized bench-

marks to assess different optimization techniques, while Os-

anov [9] discussed the integration of topology optimization

with additive manufacturing, pointing out issues like grid

dependence.

In advanced structural design, Xia [10] explored the effi-

ciency of the Bidirectional Evolutionary Structural Optimiza-

tion (BESO) method, particularly in microstructure design.

Wu [11] provided a classification of multi-scale structural op-

timization methods, identifying potential compatibility and

computational complexity challenges.

Several practical case studies have illustrated the real-

world applications of topology optimization. Enhanced

BESO method by improving numerical stability and reduc-

ing grid dependency, which addressed some of the practical

limitations of earlier implementations. Zhou [12] employed

the level set method to minimize frequency response, demon-

strating its effectiveness in dynamic applications. Addition-

ally, Andreassen optimized MATLAB code to enhance com-

putational efficiency, reflecting ongoing efforts to improve

the practical performance of optimization tools.

In engineering design, the integration of topology opti-

mization with feature fitting algorithms has increased design

flexibility, allowing for more adaptable and efficient solu-

tions. Applications such as using ANSYS for optimizing

complex structures, including brackets for ROV simulators,

showcase the versatility and impact of topology optimization

in solving real-world engineering challenges [13].

3. Topology optimization methods

Topology optimization research is primarily catego-

rized into two main areas: Truss Topology Optimization,

which includes structures such as trusses, rigid frames, and

grids; and ContinuumTopology Optimization, which focuses

on solid and shell structures. Continuum optimization is par-

ticularly prominent due to its critical role in determining the

optimal material configuration within a structure, such as

the number, size, and placement of voids, to achieve specific

objectives under given constraints.

A widely adopted approach in this domain is the vari-

able density method, which simplifies the complex homog-

enization theory by employing artificially defined material

densities to establish a relationship between density and ma-

terial properties. This method, which uses the relative den-

sity of each element as a design variable, provides benefits

such as a reduced number of design variables, simplified

sensitivity analysis, and increased computational efficiency.

Because of its effectiveness, the variable density method is

widely implemented in commercial software like ANSYS

and OptiStruct. However, challenges such as numerical in-

stabilities, including grid dependencies and checkerboard

patterns, can occur and are usually addressed using filtering

techniques.

In practical applications, topology optimization is typ-

ically conducted under idealized conditions, such as high

mesh quality and uniform material properties. However,
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these assumptions often diverge from the complexities en-

countered in real-world engineering scenarios. Additionally,

the optimization outcomes can be sensitive to numerical

instabilities and are often based on single working condi-

tions, which may not fully capture the intricacies of actual

design situations. Therefore, these factors require careful

consideration, and further validation and refinement are of-

ten necessary when transitioning from research to practical

applications.

In the context of applying the density penalty method

for structural topology optimization, the penalty factor p as-

sociated with intermediate density materials plays a crucial

role. This parameter is essential for eliminating intermediate

densities to achieve minimal compliance, thereby clarifying

the structural topology and improving maneuverability. A

higher value of p more effectively drives intermediate densi-

ties toward 0, theoretically leading to a more optimal solution.

The optimization results is shown in Figure 1.

Figure 1. Optimization results for the different Penalty factor.

The optimization results indicate that when the penalty

factor p ranges between 1 and 4, the topology remains stable,

clearly delineating a well-defined force transmission path.

However, as p exceeds 5, the topology undergoes signifi-

cant changes, becoming more streamlined yet introducing

a higher prevalence of intermediate densities. At p=1, the

penalty function is linear and less effective at discouraging

intermediate densities, resulting in less optimal material dis-

tribution. The most favorable results are generally observed

with p values around 3 or 4, where there is an optimal balance

between structural clarity and effective control over interme-

diate densities, leading to a well-defined and manufacture

topology.

4. Variable density method

In the context of a two-dimensional static analysis prob-

lem, finite element theory is implemented by discretizing

the specified design domain into a finite number of elements.

The principle of virtual work, which asserts that the total

work performed by all active forces on a system’s virtual

displacements is zero, underpins the theoretical framework

for finite element analysis. This principle is employed to

derive equilibrium equations that enable the calculation of

deformation, stress, and strain within complex structures.

Specifically, for plane stress problems, the finite element

equilibrium equations are formulated based on the principle

of virtual work, providing a robust method for analyzing and

solving such structural issues.

K·U = F  ,     U =
F

K
  (1)

In finite element analysis, the equilibrium equation is

expressed as F=KU, where F represents the nodal load vector,

U denotes the nodal displacement vector, and K is the global

stiffness matrix of the system, formed by assembling the

stiffness matrices of all individual elements. This equation

is fundamental in solving for the displacements at each node,

which can then be used to determine the stress and strain

distributions within the structure.

4.1 Principles of topology optimization

The isoparametric element framework employs two co-

ordinate systems to enhance modeling flexibility: the actual

coordinate system (x,y), which represents the physical dimen-

sions of elements like trapezoids, and the local coordinate

system (ζ,η), used for simpler elements such as squares. This

approach allows for an efficient representation of complex

geometries by mapping the local coordinates to the actual

coordinates through a transformation. This transformation

involves defining a set of interpolation functions that link

the local coordinates to the global system, ensuring that the

element’s shape, material properties, and response are ac-

curately represented in the global model. By employing

this transformation, the isoparametric element framework

accommodates various element shapes and facilitates accu-

rate numerical simulations, integrating local behaviors into

a consistent global framework. This method is crucial for ef-

fectively analyzing complex structures and ensuring precise

results in finite element analysis.
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x =

4∑
i=1

Nixi

y =
4∑

i=1

Niyi

  (2)

xiand yi are the coordinates of the element nodes, Ni

is interpolation function.

When the element nodes are displaced, the displace-

ment of any point inside the element can be expressed as:
N1=

1
4 (1−ζ)(1−η)

N2=
1
4 (1+ζ)(1−η)

N3=
1
4 (1−ζ)(1+η)

N4=
1
4 (1+ζ)(1+η)

    (3)


u =

4∑
i=1

Niui

v =
4∑

i=1

Nivi

  (4)

Introducing a simple Jacobian matrix for single ele-

ment analysis, the relationship between the strain within the

element and the nodal displacements can be derived.

{ε} =


∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x

 =


∂Ni
∂x

0

0 ∂Ni
∂y

∂Ni
∂y

∂Ni
∂x

{ ui

vi

}
= [B] [δ]

(5)

In the context of finite element analysis, the geometric

matrix [B] plays a crucial role in defining the mapping rela-

tionship between the natural coordinate system and the actual

coordinate system of the element. This matrix essentially

transforms coordinates from the natural system, which is

often simpler and more convenient for theoretical derivation,

to the actual system used in practical applications. Once

the geometric matrix [B] is established, it allows for the

derivation of the element stiffness matrix for plane prob-

lems. This derivation follows from applying the principle of

virtual work, which involves calculating the work done by

virtual forces and displacements to ensure that the stiffness

matrix accurately represents the mechanical behavior of the

element within the plane problem. The accuracy of the el-

ement stiffness matrix is essential for the reliable analysis

and simulation of structural behavior.

Ke = t

∫ ∫
[B]

T
[D] [B] |J | dζdη (6)

In this context, (t) represents the thickness of the ele-

ment, which is a critical parameter in defining the element’s

response in structural analysis. The matrix ([D]) is the elas-

ticity matrix, which characterizes the relationship between

stress and strain within the material. This matrix, often re-

ferred to as the constitutive matrix, encapsulates the mate-

rial’s mechanical properties, such as Young’s modulus and

Poisson’s ratio, and is used to describe how the material de-

forms under applied stresses. By incorporating the thickness

(t) and the elasticity matrix ([D]), the analysis accurately

models how the element behaves under various loading con-

ditions, ensuring that the computed stresses and strains reflect

the true mechanical response of the material.

4.2 Variable density method

The core concept of the variable density method is to

assume the existence of a material element with a density

that varies rather than being fixed. The structure is then dis-

cretized using the finite element method, with the density

of each material element treated as a continuous variable

ranging between 0 and 1. Furthermore, a functional relation-

ship is assumed between the material density and its physical

properties, enabling these properties to be expressed as func-

tions of the element’s density.

Using the global volume as a constraint and considering

stiffness topology optimization for a continuum structure:

ρ = {ρ1, ρ2, ρ2, . . . , ρn}T ∈ Ω 

0 < ρmin ≤ ρi ≤ 1 (i = 1, 2, 3, . . . , n)

C (x) = FTU   v∗ ≤ fV

(7)

By introducing variable density materials, the origi-

nally discrete topology optimization problem is converted

into a continuous one, making it more tractable. However,

this approach often leads to a substantial number of elements

with intermediate densities, which are impractical for manu-

facturing.

To mitigate this issue, a material interpolation model

with an intermediate density penalty function is proposed.

This model effectively reduces the occurrence of intermedi-

ate densities, steering the material densities in the optimized

design towards either 0 or 1, thus yielding results that are

more practical and manufacturable.

In variable density methods, interpolation models in-

clude the Solid Isotropic Material with Penalization (SIMP)

model and the Rational Approximation of Material Proper-

ties (RAMP) model. In the SIMP interpolation model, the

elastic modulus of the element is expressed as: where (Ee)

is the elastic modulus of the element, (E_0) is the elastic
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modulus of the material, and (ρe) is the relative density of

the element. To avoid numerical singularities in finite ele-

ment calculations, a lower limit of (ρn =  10−3) is typically

used; (P) is the penalty factor, and (p = 3) is usually cho-

sen to minimize compliance in the optimization problem.

These conclusions and their clear representation are illus-

trated in the following Figure 2, as discussed in my earlier

optimization experiments.

Figure 2. Solid Isotropic Material with Penalization model.

As illustrated in Figure 2, the specific stiffness, given

by E/ρ, behaves differently depending on the penalty factor

p. For intermediate density values from 0 to 1, the specific

stiffness is higher when the penalty factor p is set to 1. In con-

trast, when p is greater than 1, the specific stiffness decreases.

The design variable ρ ranges from 0 to 1, affecting the rela-

tionship between stiffness and density. This characteristic

pushes the design variable towards the extremes—either 0

or 1—resulting in the SIMP (Solid Isotropic Material with

Penalization) interpolation model tending to produce binary

(0/1) design outcomes.

The core feature of the SIMP model is its penalized

interpolation process, which promotes this binary distribu-

tion. In an improved model, the lower bound of the density

variable can be set to 0. The mathematical expression for

this is:

Ee = Em + (E0 − Em)ρpe (8)

4.3 Sensitivity analysis

In structural optimization, sensitivity analysis plays

a crucial role in updating design variables. This process

involves computing the derivatives of the objective and con-

straint functions with respect to the design variables. The

load vector, which is constant and independent of the design

variables, functions as an input condition in this analysis.

∂F

∂xi
= 0 (9)

∂v∗

∂xi
=

n∑
i=1

vi (10)

The compliance formula for the SIMPmodel expressed

as follows:

C = FTU    (11)

C = FTU + λT (KU − F ) (12)

The partial derivative of ρe on both sides of the for-

mula represents the sensitivity of the objective function with

respect to changes in the element density. This derivative

is crucial for updating the design variables during the opti-

mization process, guiding the material distribution toward

an optimal solution.

∂C

∂ρe
= (FT + λTK)

∂U

∂ρe
+

(
∂FT

∂ρe
U − λ

T
∂F

∂ρe

)
+ λT ∂K

∂ρe
U

(13)

The Stiffness formula is

F = K · U (14)

The compliance sensitivity analysis expression is de-

signed to be self-adjoint and incorporates the displacement

vector. This means that the analysis takes into account how

changes in the displacement vector influence compliance,

and it inherently maintains a symmetrical relationship. This

self-adjoint property simplifies the analysis and ensures that

the sensitivity calculations are consistent and reliable, re-

flecting the impact of displacement variations on the overall

compliance. This means that the expression can be symmet-

rically expressed in terms of the design variables, further

emphasizing the direct relationship between the structure’s

response and the design modifications. This relationship can

be expressed as a concise function of the design variables

and their corresponding sensitivities.

∂C

∂ρe
= −uT

e

∂ke
∂ρe

ue (15)

ρe =
ρi
ρ0

, Ei = E0ρ
p
e, vi = v0  (16)

This sensitivity measure provides insight into how vari-

ations in the density of individual elements impact the overall
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compliance of the structure, serving as a crucial metric in

guiding the optimization process toward more efficient ma-

terial distribution.

αe
i =

∂C

∂ρe
= ρp−1

e {ue
i}

T
[Ke

i ] {ue
i} (17)

The structure’s dynamic behavior can be represented

by an eigenvalue problem, with the equation for undamped

free vibration being

KΦj = ω2
jMΦj (18)

The partial derivative with respect to ρe is:

∂ω2
j

∂ρe
= ΦT

j

∂K

∂ρe
Φj − ΦT

j ω
2

j

∂M

∂ρe
Φj (19)

5. ANSYS workbench

In topology optimization, the initial structure is dis-

cretized into a finite element mesh, with boundary and load-

ing conditions applied to simulate real-world operating condi-

tions. The structure is optimized based on specific objectives

and constraints, producing a new topological configuration.

This configuration undergoes further finite element analysis

and evaluation until the design criteria are met.

For the topology optimization of a cantilever beam,An-

sys is used to model and analyze a bridge structure measuring

50m in length, 10m in width, and 7m in height. Fixed con-

straints are applied at both ends, and a pressure of 100 MPa

is applied to the bridge deck. The structure is discretized

with a rectangular mesh, and static analysis is performed to

determine stress and displacement distributions, as shown

in Figure 3. The optimization process aims to reduce the

structure’s volume to 35% while maximizing stiffness. Key

steps involve setting optimization parameters, defining non-

optimized regions (such as support structures), and estab-

lishing a minimum volume constraint. After 18 iterations,

the bridge volume is reduced by 63.3%, with corresponding

changes in displacement and stress distribution, as shown in

Figure 4. Post-processing is then carried out to standardize

the optimized structure for manufacturing.

Figure 3. Optimization iteration number and volume response convergence relationship curve.

Figure 4. Bridge post-processing results (left); Bridge post-processing results (right).
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Through the optimization process, the bridge’s volume

and mass were reduced by 58.2%, from 3,500 cubic meters

to 1,463 cubic meters, while maintaining structural integrity.

The maximum displacement increased by 512%, reflecting

greater flexibility, though still within acceptable limits. The

average stress rose by 306% to 22.4 MPa, with the maximum

stress increasing slightly from 121 MPa to 210 MPa, which

remains within the strength requirements for concrete.

Post-optimization modal analysis revealed notable im-

provements in the bridge’s vibration characteristics. The

first-order frequency decreased from 14.6 Hz to 5.8 Hz, in-

dicating better overall vibration performance. While the

second-order mode saw a smaller reduction, the third-order

mode improved significantly, decreasing by 61%. The maxi-

mum deformation shifted to the sixth mode, with a value of

0.0012 m.

6. Periodic structure

In the design of periodic structures, symmetry plays a

vital role due to its significant influence on alignment, assem-

bly, and the overall performance of the structure. Symmetry

facilitates the installation process by ensuring proper orien-

tation and alignment of components, which is critical for

preserving structural integrity.

6.1 Structural symmetry

This study uses a brick-shaped object with dimensions

of 2 meters in length and 1 meter in height as the analysis

model. The left side of the brick is fixed, while the right side

is subjected to three forces of 500 N each, simulating the

load on periodically arranged structures. The model employs

a grid size of 0.025 meters, resulting in 9,830 nodes. Flexi-

bility and frequency were chosen as the optimization targets,

with a requirement that the structure’s volume increase by at

least 40% over the original to ensure quality. Asymmetric

results of this optimization process are shown in Figure 5.

The original structure exhibited amaximum stress of ap-

proximately 0.61 MPa and a maximum deformation around

0.0007 mm. The displacement influenced by frequency var-

ied between roughly 0.36 mm and 0.56 mm. The effects of

different symmetry constraints on the structure are presented

in Figure 6.

Figure 5. Asymmetric results.

Figure 6. Different symmetry constraint results.

Topology optimization is used to efficiently allocate

materials within specific constraints, aiming to achieve op-

timal performance. For example, Brick1 demonstrated su-

perior performance under minimal topology optimization

constraints, suggesting that fewer constraints allow the de-

sign to better utilize material properties, thereby enhancing

structural effectiveness. However, one significant drawback

of Brick1 is its stringent installation requirements, which

limit its adaptability to different operational conditions. Al-

though its performance is excellent, these strict installation

demands could present challenges in real-world applications.

In contrast, Brick2 and Brick3 incorporate symmetry

constraints in their design. While symmetry can simplify

manufacturing and installation processes, it may also lead

to some performance trade-offs. Specifically, the symmetry

requirement in Brick2 and Brick3 can restrict the ability of

certain materials to fully support and stabilize the structure

under stress, resulting in a reduction in overall performance.
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6.2 Arrange

The arrangement of periodic structural bricks requires

careful consideration of optimal material distribution and

structural performance, guided by constraints set through

topology optimization. Various configurations were ana-

lyzed, including a fully symmetrical structure as well as

uniaxially symmetrical structures. The fully symmetrical ar-

rangement ensures uniform performance across all directions,

while uniaxial symmetry introduces variations in stiffness

and stability. The different arrangement methods are shown

in Figure 7.

Figure 7. Arrangement method.

Among the analyzed configurations, the arrangement

with a reversed alignment in the middle proved to be the

weakest, showing the highest deformation and reduced stiff-

ness. In contrast, the configuration aligned with the original

topology optimization design demonstrated the highest struc-

tural stiffness and the smallest displacement, approximately

0.015 mm, highlighting its superior performance.

7. Experiment design

The support frame is a structural mechanism made up

of multiple cantilever beams, designed for use in the struc-

tural units of large buildings. As depicted in Figure 8, the

frame is constructed from aluminum alloy and has overall

dimensions of approximately 700 mm by 750 mm by 1800

mm.

This frame consists of three columns, three width sup-

port beams, and four length support beams on one side. The

columns measure around 100 mm by 100 mm by 750 mm,

the width support beams are about 100 mm by 50 mm by 500

mm, and the length support beams measure approximately

800 mm by 50 mm by 150 mm. The total weight of this side

of the structure is roughly 149.6 kg. Before optimization, the

cantilever beams on this side, which are the focus of the op-

timization, weighed about 87.1 kg. This side of the structure

supports its own weight and is subjected to a pressure of 1

MPa applied to the mid-end support beam. The columns on

this side of the frame are fixedly supported to accommodate

the counterweight design.

Figure 8. Support frame structure.

Support beam length is 500 mm but divided into two

sections, each measuring approximately 243.8 mm in length.

The volume of each support beam is around 1.2187∗10−3m3,

and the mass is about 3.376 kg. The maximum stress in the

support frame is roughly 6.45 MPa, and the vertical displace-

ment is approximately 0.0033 mm.

Over 60 iterations in ANSYSWorkbench, the mass is

reduced to 32.90% of the initial part, bringing it down to

about 1.11 kg. The maximum stress increases to roughly

11.3 MPa, and the vertical displacement is around 0.0374

mm. Stress analysis results and the topology optimization

structure can be seen in Figure 9.

The post-optimization model has a complex structure

with uneven surfaces, which presents challenges for manufac-

turing. In the post-processing stage, the model is redesigned

using standard features to correct these surface irregularities.

Smoothing algorithms and tools like SpaceClaim or Blender

software are applied to refine the mesh, achieving a more

consistent surface height and reducing surface imperfections.

Additionally, the geometry is simplified using standard ma-
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chining features, which not only lowers manufacturing costs

but also provides more practical machining solutions. Func-

tional elements such as holes, smooth surfaces, and channels

are then incorporated according to the specific requirements.

The final result of the width direction optimization is shown

in Figure 10.

Figure 9. Stress analysis in ANSYSWorkbench (left); Topology optimization structure in ANSYSWorkbench (right).

Figure 10. Width direction optimization final result.

8. Conclusion

This study successfully demonstrated the application of

topology optimization in designing finite periodic structures,

emphasizing both compliance and frequency criteria. By

leveraging advanced techniques such as the variable density

approach and employing sophisticated tools likeANSYS, the

research achieved notable improvements in material distribu-

tion within cantilever beam structures. These enhancements

led to substantial gains in structural performance andmaterial

efficiency, highlighting the efficacy of topology optimization

in addressing complex engineering problems.

The findings of this study illustrate the substantial ben-

efits of using topology optimization to create more robust

and efficient structures while adhering to various constraints.

The research not only showcases the technique’s potential

in optimizing material usage but also in achieving superior

structural integrity and functionality.

Looking ahead, future research could build on these

findings by exploring the application of topology optimiza-

tion in more intricate multi-physics scenarios. This could

involve integrating additional factors such as thermal, fluid,

or electrical effects, thereby broadening the scope and impact

of this optimization approach. Such advancements would

further extend the practical applications of topology opti-

mization, offering even greater potential for innovation and

efficiency in engineering design.
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