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1. Introduction

When the author was attending a post on Ace-

demia.edu (March 2021) he was invited to read the 
paper [1] “Boxplot-based Phase I Control Charts for 
Time Between Events” (BCCTBE) published in the 
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ABSTRACT
Good decisions (Quality Decisions) depend on scientific analysis of data. Data are collected, generally, in two 

ways: 1) one sample of suitable size, 2) subsequent samples, at regular intervals of time. Often the data are considered 
normally distributed. This is wrong because the data must be analysed according to their distribution: Decisions are 
different. In several cases the data are exponentially distributed: we see how to scientifically deal with Control Charts 
(CC) to decide; this is opposite to what gives the T Charts that are claimed to be a good method for dealing with “rare 
events”: The Minitab Software (19 & 20 & 21) for “T Charts” is considered. The author will compare some methods, 
found in the literature with the author’s Theory RIT (Reliability Integral Theory): We will see various cases found in 
the literature. Classical Shewhart Control Charts and the TBE (Time Between Events) Control Charts have been con-
sidered: it appears that with RIT the future decisions will be both sounder and cheaper, for data is exponentially dis-
tributed. The novelty of the paper is in the scientific way of dealing with the Control Charts and their Control Limits, 
both with normally distributed data and with exponentially distributed data. In this way, a lot of wrong published pa-
pers on “Time Between Events” are to be discarded, even if their authors claim “We used Standard Statistical methods, 
typical in the vast literature of similar papers”. The author had to self-cite because it seems the only one that has been 
fighting for years for “Papers Quality”; he humbly asked the readers to inform him if some people did the same.
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magazine Quality and Reliability Engineering In-
ternational. Soon after he read “Statistical design of 
ATS-unbiased charts with runs rules for monitoring 
exponential time between events”, Communications 
in Statistics—Theory and Methods [2], where there is 
the same type of errors about the Control Limits as 
Dovoedo and Chakraborti [1] and the papers [3-23]. The 
author tried several times, to inform the “Scientific 
Community” about the problems of Control Charts 
for TBE (Time Between Event): Wrong Control 
Limits in them: He had no success.

In this paper I will use the Reliability Integral 
Theory (RIT) of Reliability Tests, for various cases 
found in the literature, when the data are exponen-
tially distributed (Poisson Statistical Process). 

On September 2, 2022, the author looked for TBE 
(Time Between Event) papers and books to see their 
way of dealing with “Rare Events” Control Charts; 
he copied 77 pages of documents (several from Con-
sultants) and of Journal wanting, from 15 $ to 60 $, 
to download a paper. 32 papers were Open Source 
and were downloaded. 

Up to now, in September 2022, the author found 
a desperate situation: All the papers have the same 
problem, generated by Ignorance about the funda-
mental concepts of Confidence Limits, at a specified 
Confidence Level.

All the documents [1-24] have the same problem: 
Wrong formulae for the Control Limits (LCL and 
UCL). The author [25] and M. Sivo (in ResearchGate) 
raised the question about Control Limits and Confi-
dence Limits. An answer was given in “Six Sigma_
Hoax against Quality_Professionals Ignorance and 
MINITAB WRONG T Charts” [25]. Looking at docu-
ments from 1 to 10 in the references, it came out that 
the “Box-plot” method was a competitor of another 
method that the author had asked (for discussion) 
in a post at site iSixSigma: https://www.isixsigma.
com/topic /control-charts-non-normal-distribution 
related to control charts [25] by saying that the author 
was looking for a solution of Two cases for Master- 
Black-Belts-dec-2019”, with data are exponentially 
distributed (see Figure 1). The first of the cases were 
taken from the book of D. C. Montgomery [26]; the 

author knew about that since 1996; Montgomery 
dealt with it in all the later editions of the book [26]. 
The iSixSigma “experts” were unable to provide a 
correct way to solve the cases and did not want to 
accept that Montgomery’s solution was doubtful 
because he finds that the process is In Control (IC), 
while actually, the process is Out Of Control (OOC). 
To date, in September 2022, nobody (in iSixSigma, 
Academia.edu] and Research Gate) provided any 
good solution to the problem (see Figure 1).

Letters (not mentioned in the References) sent 
to the Editors of the Journals “Quality Engineering, 
Quality Technology & Quantitative Management, 
Quality and Reliability Engineering International, 
Communications in Statistics - Theory and Methods, 
PLOS one, …” are not yet been published: the pa-
pers [1-24] are wrong and obviously the Editors cannot 
acknowledge that. In 2020 the author showed [25] the 
drawbacks of TBE Control charts in “Six Sigma_
Hoax against Quality_Professionals Ignorance and 
MINITAB WRONG T Charts”, HAL Archives Ou-
vert.

Figure 1. Question to MBB and Statisticians and Experts.

Control Charts are a statistical tool for monitoring 
the “measurable output” of a Process (Production or 
Service Process).

The “Box-plot” uses the data taken from Montgom-
ery [26]; I will use the same data for comparison be-
tween the two methods, “Box-plot” and “T Charts” 
and the Reliability Integral Theory (RIT) of Relia-
bility Tests, for various cases found in the literature, 
when the data are exponentially distributed (Poisson 
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Statistical Process). Since T Charts are claimed to be 
a good method for dealing with “rare events”, I con-
sider, as well, the Minitab Software (19 & 20 & 21) 
for “T Charts”. 

The “measurable output” of the Process can be 
viewed as a “Stochastic Process X(t)”, ruled by a 
probability density for any set of n “Random Variables 
RV” X(t1), X(t2), …, X(tn), considered at the “time in-
stants” t1, t2, …, tn, of the “Stochastic Process X(t)”. 
X(t) can be multidimensional or unidimensional: 
generally in applications there is a single measured 
quality characteristic X(t); such control charts (CC) 
are routinely called univariate SPC (Statistical Pro-
cess Control) charts in the literature.

The data plotted are the means x(ti), determinations 
of the Random Variables X (ti) , i=1, 2, ..., n (n=number 
of the samples) computed from the collected data xij, 
j=1, 2, ..., k (k=sample size); xij are the determinations 
of X(tij) at very close instants tij, j=1, 2, ..., k; X (ti) 
are normally distributed because they are the means 
of k data (usually k=5). The Random Variable X (ti), 
is the mean, at time ti, of the k RVs X(tij) j=1, 2, ...,  
k, sampled, at very near times tij; the distribution is 

2
( ) ( )( ) ~ ( , )i X ti X tiX t N m σ  with mean 2

( ) ( )( ) ~ ( , )i X ti X tiX t N m σ and variance 2
( ) ( )( ) ~ ( , )i X ti X tiX t N m σ ;  

a common assumption for Variable Control Charts is 
that the RVs (random variables) X(tij)are independ-
ents and anybody can compute a grand mean X  [mean 

of all the RVs X(tij)] distributed as 2~ ( , )
X X

X Nx m σ . In 
Figure 2 the determinations of the RVs X (ti) and X 
are shown. 

An application in the papers [1-8] draws the au-
thor’s attention: The papers considered Montgom-
ery’s case and did not solve it correctly.

Therefore the readers are confronted with the 
following situation: Several scholars, who published 
papers in “good and reputed” Journals, after “Peer 
Review” have been dealing wrongly with the way of 
using Control Charts for Exponentially Distributed 
Data. MINITAB, as well, with its T Charts, provides 
wrong Control Charts for Exponentially Distributed 
Data; the same for SAS.

The author for many years has been showing [25,27-41] 
the many drawbacks present in various books and 
papers: Wrong definitions of the term Quality, wrong 

control charts for Exponentially Distributed Data, 
wrong Design of Experiments cases…

Figure 2. The process and the data “means” shown.

Suppose now that someone thinks that “The 
problem of monitoring TBE that follows an 
exponential distribution is well-defined and solved”. 
I do not agree that “nobody could solve scientifically 
the cases”. 

He is wrong. 
But, which chance has this paper been accepted? 

If the reader (PR, Editor) does not know RIT he 
would reject the paper.

Suppose, as well, that someone looks either more 
at the “style” of the paper or at the way of writing 
the references (or citing them) than to the scientific 
content for the solution of the problem of monitoring 
TBE that follows an exponential distribution, 
thinking that the paper sounds as a lecture: which 
chance has this paper to be accepted?

Suppose, finally, that someone writes “We do 
not know this author and are not familiar with his 
work. His claim about our formulas being wrong is 
not justified by any facts or material evidence. Our 
limits are calculated using standard mathematical 
statistical results/methods as is typical in the vast 
literature of similar papers.” which chance has this 
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paper been accepted?
In my humble opinion, it is better a paper 

“sounding like a lecture” than several “scientific 
(???, actually wrong) papers with the wrong theory.”

This paper has the following structure: First, I 
briefly present the Shewhart Control Charts and 
the Individual Control Charts; second, I analyse the 
method “(BCCTBE)”; third, the reader will see the 
Minitab calculations for the T Charts; finally I show 
the correct control limits of charts with exponentially 
distributed data, with the applications dealt in [1-24].  
There is no specific “literature review” because I 
am only interested in showing the RIT ability to 
solve correctly the Control Charts for Exponentially 
Distributed Data. (Boxplot-based CCTBE and 
MINITAB T Charts): RIT was devised by the author 
in 1975 (47 years ago) well before the T Charts 
invention and BCCTBE. 

The paper is important because all the papers 
[known by the author] on the TBE (Time Between 
Events) Control Charts are based on the same 
wrong formulae: “limits calculated using standard 
mathematical statistical results/methods as is typical 
in the vast literature of similar papers”. The two 
authors forgot that “many wrongs do not make a 
right”…

Let’s hope that the Peer Reviewers (of this paper) 
have better knowledge than those authors, referees, 
and Journals Editors.

2. The theory of Control Charts
I describe, very briefly, the Shewhart Control 

Charts (CC) [42,43]: I provide the formulae used and 
connect them to the concept of Confidence Interval 
(CI). I ask the readers to look at the books [42,43].

The technique was used extensively during World 
War II both in the UK and in the US. In the 1950s, 
the Shewhart ideas have been greatly appreciated by 
Deming [44,45] and Juran [46] who introduced them in 
Japan. The success in Japan spurred the interest in 
the West… 

This section is important for the readers to un-
derstand the problems with the CCs for Normal and 
Exponentially Distributed Data.

The theory behind the (Shewhart) CC is very 
simple: the RV means X (t) of each sample, at time t, 
drawn from the “Stochastic Process” X(t) can be ap-
proximated as “normally distributed” (Central Limit 
Theorem); the Control Limits are derived according-
ly. Several papers, two in the references [22,23] use the 
Normal distribution (for the np Control Charts).

In any Production or Service process (Figure 2), 
modelled by the “Stochastic Process” X(t), there is 
a “background noise”, which generates a variable 
output: A certain amount of inherent natural varia-
bility always exists in any process output (it is called 
“due to chance causes of variability”); a process is 
declared “statistically In Control”, IC. If a product 
(output of the process) has variability, in its quality 
characteristics, greater than the inherent natural var-
iability we say that the process is an Out-Of-Control 
process (OOC) and operating in the presence of “as-
signable causes of variation”. The Control Charts 
are a tool used to understand if a process is IC (In 
Control) or OOC [47-51].

The Theory of W. Shewhart, devised almost a 
century ago [42,43] in the 1920s, at Bell Telephone  
Laboratories, plots [the determinations of the “Sto-
chastic Process” X (ti)  providing] the means x(ti), i=1, 
2, ..., n (n=number of the samples) computed from 
the collected data xij, j=1, 2, ..., k (k=sample size); xij 
are the determinations of X(tij) at very close instants 
tij, j=1, 2, ..., k; x(ti) follow a normal distribution. The 
RV mean (at time ti) X (ti) , of the (k sampled, at very 
near times tij), RVs X(tij) j=1, 2, ..., k, is distributed as 

2
( ) ( )( ) ~ ( , )i X ti X tiX t N m σ  with mean 

2
( ) ( )( ) ~ ( , )i X ti X tiX t N m σ and variance 2

( ) ( )( ) ~ ( , )i X ti X tiX t N m σ ; 
a common assumption for Variable Control Charts is 
that the RVs (random variables) X(tij) are independ-
ents and we can compute a grand mean 2~ ( , )

X X
X Nx m σ [mean of 

all the RVs X(tij)] distributed [47] as 2~ ( , )
X X

X Nx m σ ; 
with this assumption we can draw two lines [see for-
mula (1)] which have the probability p=1-a=0.9997 
of comprising the RVs X (ti) , due to the Central Lim-
it Theorem
L=μx－3σx,       U=μx + 3σx (1)

Formulae (1) are true when the parameters X
m  

and 
X

σ  are completely known: in such a case, the 
Probability P{L ≤ X ≤ U } is 0.997 because, for any 
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Normal distributed RV X, we have P{μ – 3σ ≤ X ≤ +  
3σ}=0.997. Unfortunately they are not known and 
we collect the data xij from the process X(t) and esti-
mate them: therefore we should not use (1) to com-
pute the Control Limits LCL and UCL of the CC.

Consider (Figure 3) the Probability P{L ≤ X ≤ U }; 
I can transform it into the following P{[(μX  – 3σX ) – 
μX ]/σX  ≤ (X – μX )/(σX  ) ≤ [(μX  + 3σX ) – μX ]/σX }and, from 
that, I get the true Probability Statement P{–3≤ (X －
μX )/σX  ≤ 3}=0.997.

I write the true Probability Statement P{–t1–a/2 ≤  
(X – μX )/SX  ≤ t1–a/2 }=1 – a; from this I derive the oth-
er Probability Statement P{μX  – t1–a/2Sx  ≤ X ≤ μX  +  
t1–a/2Sx}=1–a; the two quantities RVs L=μX  – t1–a/2SX  
and U=μX  + t1–a/2Sx  are two random straight lines 
parallel to the bisector in the plane with abscissa the 
“true” mean m and ordinate the grand mean X .

When, from the collected data, we estimate the 
grand mean x and the standard deviation SX  we have 
two lines (out of the infinite we can draw for any 
value of SX ) as in Figure 3.

Figure 3. Probability interval L----U and Control Limits LCL----

UCL, for Normal data

For a stated value m0 we have the vertical prob-
ability segment L-----U (one out of the infinite …): 
L=μ0 – t1–a/2SX  and  and U=μ0 + t1–a/2SX  .

From the estimate of the grand mean x (on the 
vertical axis) we draw the Horizontal line intersec-
tion of the two above-mentioned parallel lines: we 
get the Horizontal Confidence Interval LCL-----UCL 
segment: its abscissas are the limits of the Confidence 
Interval LCL(imit)= x – t1–a/2SX  and UCL(imit)= x – t1–

a/2SX .

These two values are drawn as horizontal lines in 
Figure 4.

For Control Charts, since the parameters μX  and 
σX  are unknown, we usually estimate them and write 
the Control Limits:
LCLX = x – A2R,        UCLX = x + A2R (2)

Figure 4. Control Limits LCL----UCL=L----U (Probability inter-
val), for Normal data

It is clearly seen that the interval LCLX
-------UCLX 

(Control Limits, on the horizontal axis, in Figure 3 
and on the vertical axis, in Figure 4) are the Lower 
Confidence Limit and Upper Confidence Limit [with 
“Confidence Level” 1-a=0.9997] of the unknown 
mean μX(t) of the Stochastic Process X(t); R is the 
“mean of the ranges ri” [determination of the RV R 
=  ∑ri/n], by putting A2R=t1–a/2SX  . ri = max (xij) – min (xij) 
of the i-th sample [determination of the RV Ri], and 
A2 depending on the sample size k (as t depends on 
the degrees of freedom). 

A similar control chart is drawn for the range by 
making a “big mental leap” [because the distribution 
of R is not normal.] and using the formulae (1) [which 
are probabilistically true] changing them into the 
statistical formulae (3) where we have the determi-
nations of RVs (the coefficient D3 and D4 depend on 
the sample size k)
LCLR=D3R,     CLR=R,     LCLR=D4R,  (3)

The interval LCLR
-------UCLR is the “Confidence 

Interval” with “Confidence Level” 1-a=0.9997 for 
the unknown Range of the Stochastic Process X(t).

Notice that UCL-LCL=U-L for normally distrib-
uted data, as a consequence of the parallelism. (Fig-
ure 3)
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From the papers on CC it is clear that people 
(researchers, professors, practitioners) who use both 
the formulae (2) and (3) also for NON_normal data 
by transforming them in order to “produce Normal 
data” and to apply formulae (2) and (3) are failing.

This is especially dome when we use the so-
called “individual control charts” I-CC (we have litt-
le data): in such a case we use the following figure.

3. Individual Control Charts (I-CC) 
and exponentially distributed data

Consider the data in Table 1 [Example 7.6 in the 
Montgomery book [26] (7th edition, as reported in the 
paper [25])], where he writes “A chemical engineer 
wants to set up a control chart for monitoring the 
occurrence of failures of an important valve. She has 
decided to use the number of hours between failures 
as the variable to monitor”. Notice that Minitab 
19&20&21 show the same problems). Since the data 
are not normal I cannot use the ideas in Figure 2. 
The readers must be very careful.

The paper Boxplot-based Phase I Control Charts 
for Time Between Events [1] uses the same data (in 
Table 1). The authors (DC) [1] write “As an illustra-
tion, consider the example in Montgomery in which 
a chemical engineer wishes to control the average 
time between failures of a valve. She observed 20 
times between failures for this valve. JC uses these 
data, …, as an illustration of their two-sided control 
chart. Note that the data with all 20 observations 
do not fail the Anderson–Darling test for the expo-
nential distribution. From Minitab, the Anderson–
Darling statistic is found to be 0.53 with a P-value = 
0.44.” Notice that JC is the authors of the paper [3].

The readers will see their (wrong) solution in the 
next session.

Formulae (2) and (3) should not be used because 
the data are few, 20, and exponentially distributed; 
Figure 5 shows the Control Limits. Using [wrongly] 
those formulae one finds Figures 6 and 7. [25] Notice 
that k=1 (sample size).

See Figure 6: according to Figure 6, using the 
formulae (2), the “process is OOC” (Out Of Con-
trol): Two points are “above” UCL [25].

Table 1. Lifetime data (exponentially distributed, from Mont-
gomery’s book):k=1 (sample size)

Failure # lifetime Failure # lifetime Failure # lifetime
1 286 8 143 15 603
2 948 9 431 16 492
3 536 10 8 17 1199
4 124 11 2837 18 1214
5 816 12 596 19 2831
6 729 13 81 20 96
7 4 14 227

Figure 5. Individual Control Chart. Notice that k=1 (sample size)

Also the Moving Ranges CC shows two other 
points OOC.

All the software used provides the same picture 
of the process [25].

This is not the true picture of the process: these 
OOC depend on the formulae used [25].

Figure 6. Individual chart lifetime. Minitab 19 & 20 & 21 used 

Transforming the exponential data into Weibull 
data with shape parameter b=1/3.6 (the idea is due 
to Nelson) the original (exponential) data yi become 
xi=yi

1/3.6 (Weibull) data; Montgomery uses a I-MR 
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Chart (see Figure 7) and writes [26] “Note that the 
control charts indicate a state of control, implying 
that …”

This is not the true picture of the process: These 
IC depends on the formulae used [25].

Before acting this way, any scholar should see if 
it is suitable, because, as said by Deming, “Manage-
ment need to grow-up their knowledge because expe-
rience alone, without theory, teaches nothing that to 
do to make Quality” and “The result is that hundreds 
of people are learning what is wrong. I make this state-
ment on the basis of experience, seeing every day the 
devastating effects of incompetent teaching and faulty 
applications.” [Deming (1986)] 

Figures 6 and 7 provide two contradictory con-
clusions.

Figure 7. Chart of “transformed” lifetime (Nelson suggestion). 
Minitab 19&20&21 used (F. Galetto).

Assuming that T Charts are a good method to 
deal with “rare events” [25] (Minitab, JMP, SAS, …) 
one gets Figure 8; see the paper “Six Sigma_Hoax 
against Quality_Professionals Ignorance and MINIT-
AB WRONG T Charts” [25]. The process is “In Con-
trol”, again.

Actually, the process is Out Of Control.
The author found himself in such a situation 

during several International Conferences, Courses, 
Seminars and reading papers: wrong methods. Many 
times he invited scholars and professors to be scien-
tific [27-41]. In particular see the paper [39], very useful 
for the next parts. The author had to self-cite because 
it seems he has been the only one that has been fight-
ing for years for “Papers Quality”; he humbly 

asks the readers to inform him if some people did the 
same.

Figure 8. T Chart of Montgomery lifetime data. Minitab 19 & 
20 & 21 used (F. Galetto). 

4. Box-plot Control Charts (I-CC) 
for Time Between Events (TBE)

Now we see a bit of Theory in the papers [1,3,5] and 
the document [6]. The Box-plot based Control Charts 
(BpCC) are very similar to the Shewhart Control 
Charts. BpCC uses the median (instead of the mean) 
and the interquartile range (instead of the ranges) of 
the collected data.

Denoting as F(x) the [continuous] cumulative dis-
tribution of the RV X, one can find the abscissas x1, 
x2, x3, so that F(x1)=1/4, F(x2)=2/4, F(x3)=3/4; x2 is 
the median and x3-x1 is the interquartile range.

For BpCC one estimate F(x) from the nk col-
lected data; let F( )x  [a step function with nk 
steps] the estimate of F(x): He then chooses the 
three abscissas   1 2 3  x ,x ,x  satisfying the relationships 
     

1 2 3( ) 0.25  ( ) 0.5 ( ) 0.75F x F x F x≅ ≅ ≅

The two authors define the LCL and UCL.
  

X 2 3 1[ ]LLCL x k x x= − −  

X 2CL x=    

X 2 3 1[ ]UUCL x k x x= − −  (2b)

where the coefficients, for a significance lev-
el a0=0.01 and sample size 20, are kL=4.617 and 
kU=15.56 (to be applied to Montgomery’s case). The 
name “nominal false alarm rate” is the quantity a0. 
Notice that (2b) have the same structure as (2).

Therefore I do not understand their claim that 
“the proposed control charts are comparable to other 
charts, in their performance.”
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Those authors consider the example in Montgom-
ery [data in our Table 1]; they find:

U C L = q 2 + k U( q 3 − q 2 ) = X ( 1 0 ) + k U( X ( 1 6 ) −
X(10))=4341.552

L C L = q 2 − k L( q 2 − q 1 ) = X ( 1 0 ) − k L( X ( 1 0 ) −
X(5))=−533.616

They put LCL=0 because of LCL<0. They, 
wrongly, say that the process is IC. Note that JC’s 
two-sided control chart leads to the same conclusion. 
Notice: JC is the author of the paper [3].

Their Figure 1 (cited above) is the one called 
Figure 9 [even if it is an Excerpt from the paper].

Compare Figures 8 and 9: Both show no out-of-
control. The Process is considered IC.

The reader will see, on the contrary, that this is 
wrong.

Figure 9. Chart of Montgomery lifetime data analysed by 
Dovoedo et al., “Boxplot-based … for TBE”. Quality and Relia-
bility Engineering International 2011.

5. T Charts and exponentially 
distributed data: Part 1

Now I give the ideas of two Minitab authors [21]: 
They provide “0.00135 t , 6.60773 t , and log(2) t ” [21] 
[(see formulae (4)]. The paper, “Peer Reviewed”, has 
wrong formulae (4) [25]:t  is the estimate of the pa-
rameter q, determination of the Random Variable T /
m,  the ratio of the “total time on a test” T  and the 
number of failures m (m=20 in this case)] [25].
LCLT = 0.00135 t      CLT = ln (2) t       UCLT = 6.60773 t  (4)

A lot of papers present formulae (4). 
One of last papers I found is “A Comparative 

Study of Exponential Time Between Event Charts 
By Liu J., Xie M., Sharma P.”, Quality Technology 
& Quantitative Management, 2006 [7]. Figure 10 is 
made from an excerpt in the paper [7] (see) proving 
the author’s attitude. The last 2022 is, “Statistical 
design of ATS-unbiased charts with runs rules for 
monitoring exponential time between events [by 
N. Kumar, A. C. Rakitzis, S. Chakraborti, T. Singh 
(2022)], Communications in Statistics—Theory and 
Methods [2]…

This proves the truth of Deming’s statements 
mentioned above “It is a hazard to copy”, etc…
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where R(t) is the vector of the reliabilities Ri(t) of the Up-states, i=0, 1, …, g*-1, B(s) is the square matrix
of the kernels bij(s) [related to the transition probabilities bij(s)ds] between the Up-states and  () the
diagonal matrix of the probabilities of remaining in each Up-state, for the time mission t. From (5) I get the
EQUIVALENT matrix equation

  =  + 0
   −   (6)

where u is the column vector [1, 1, …,1]T and A the matrix of the constant transition rates.
When one considers the exponential kernels, formulae (5) [and (6)] provide the fundamental

system of the Reliability Integral Theory, for Markov processes.
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gets the following fundamental system of Integral Theory of Reliability Tests [F. Galetto, holding for any
distribution of the time to failures of the units], for i=0, 1, …, g-1, where he assumes that r is the entrance
time instant when he begins observing the system.

 | =  (|) + 
 ,+1 | +1 |  (7)

In matrix form it is

 | =  (|) + 
  |  |  (8)

The component R0(t|0) is the probability that the physical sample does not experience the gth
failure during the interval r=0-----t (t end of the test). At the end of the test, we have the empirical sample
D=t1, t2, …, tg-1, tg, t; so we get

 | =  (|) + 
 ,+1 | +1 | 

for i = 0, 1, …, g − 1,  | =    
(9)

From (8) and (9) I compute the determinant detB(s|r) [depending on ]:  is estimated, from

det [ |; ,  = exp [ −   ] (10)
where   = 1

  + ( − ) is the “Total Time on Test” generated by n items tested until the gth failure.
At the end of the test of the equations (8) and (9) are constrained by D; deriving by , compute given the
constraint D, I obtain exactly the same result as one can obtain with the Maximum Likelihood method.

From the documents [25,47-56] and F. Galetto “Minitab T-Charts and Quality Decisions”, Journal of
Statistics and Management System, 2021, anybody can obtain the Confidence Interval (symmetric) for the
parameter  [which is the MTTF of any unit] by finding the quantities L and U satisfying (11), with given
tO the “known (at the end of the test)” observed Total Time on Test (), and Confidence Level CL=1-

0 ;  = 
2

, 0 ;  = 1 − /2 (11)

7. T Charts and exponentially distributed data: part 2

Let’s apply RIT to the data in Table 1. The n=g*=20 lifetimes (exponentially distributed; ti “time
to failure ” from state i-1 to state i: they are the “individuals”) are the “transition times” between states of a
stand-by system of 20 units: the state 20 (g*) is the Down-state. The reliability R0(t|  ) [the system
reliability R0(t|) given the parameter )] is, as well, the Operating Characteristic Curve of the reliability
test, given t: the pdf (probability density function) of any transition (“individual”) is  ; ,  = 1/
 exp ( − /); (Figure 11).
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distribution of the time to failures of the units], for i=0, 1, …, g-1, where he assumes that r is the entrance
time instant when he begins observing the system.
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failure during the interval r=0-----t (t end of the test). At the end of the test, we have the empirical sample
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At the end of the test of the equations (8) and (9) are constrained by D; deriving by , compute given the
constraint D, I obtain exactly the same result as one can obtain with the Maximum Likelihood method.

From the documents [25,47-56] and F. Galetto “Minitab T-Charts and Quality Decisions”, Journal of
Statistics and Management System, 2021, anybody can obtain the Confidence Interval (symmetric) for the
parameter  [which is the MTTF of any unit] by finding the quantities L and U satisfying (11), with given
tO the “known (at the end of the test)” observed Total Time on Test (), and Confidence Level CL=1-
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Figure 12. RIT LCL and UCL for the Individual Control Chart 
of Table 1 data [logarithmic scales].

Any intelligent person should realise that the two 
segments L----U (vertical) and LCL----UCL (horizon-
tal) are two different intervals with clearly different 
meanings and obviously different lengths UCL-LCL 
≠ U-L. All the documents, known to the author, make 
this BIG ERROR: they confound the vertical segment, 
which is a “Probability segment” with the horizontal 
segment, which is a “Confidence segment”.

Formulae (4) and Figure 10 made from “A Com-
parative Study of Exponential Time Between Event 
Charts”, Quality Technology & Quantitative Man-
agement [7] (see Figure 13, as well), consider the 
segments L----U (vertical) as though it were the Con-
fidence Interval. This is completely WRONG.

Simple example with 2 data: t1 and t2, of a 2 
units stand-by system. The matrix equation (5) 
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case k=1 (sample size), allow computing the Control 
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Methods, PLOS one, … are wrong.

Figure 13. RIT LCL and UCL for the Individual Control Chart 
of Table 1 data.
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have any effect (see Figures 3 and 4)... The error 
is there, but it has no consequences, because for 
Normal data, formulae (12) 
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0.00135   = ln 2  , = 6.60773  , with =? The Authors, the Peer Reviewers and the Editors
of the Journals Quality Engineering, Quality Technology & Quantitative Management, Quality and
Reliability Engineering International, Communications in Statistics - Theory and Methods, PLOS one, …
are wrong.

All the authors do not realise that, when the data are Normally distributed, they have UCL-
LCL=U-L (same length...) notwithstanding L----U and LCL----UCL are two different intervals with different
meaning. Very likely for the users the error does not have any effect (see Figures 3 and 4)... The error is
there, but it has no consequences, because for Normal data, formulae (12) 0 ��;  = /2
and 0 ��;  = 1 − /2 , for each sample, of (sample size) k=5, with � = �� , provide formulae (2)
above, here repeated  = �� − 2( = 5)�  = ��  = �� + 2( = 5)� , the same result of the
classical theory (assuming R known).

From Figures 12 and 14, it is very clear that, for the Table 1 lifetime data, the TBE Control Charts
tell us (the Theory shows the truth) that the process is OOC (Out Of Control). Notice the plural “TBE
Control Charts” because also the differences |ti-ti+1| are exponentially distributed, as well; see Figure 15.

This proves again the truth of Deming’s statement “…people are learning what is wrong.”, “It is
necessary to understand the theory….”

There is a deep ignorance of “Professionals” about the Control Charts with Exponentially
Distributed Data.

See both Figures 8 and 14: The reader can CLEARLY see both the wrong Control Limits of the
Control Chart and the right Lower Limit (the dotted line). Also the ranges are OOC (Figure 15).

Figure 16 is very important: It shows the wrong Control Limits [LCL, UCL] derived from the
formulae (2), which are valid when the data are normally distributed, and the right correct LCL (the dotted
line for TBE) computed with RIT. The “original” Minitab 19 & 20 & 21 I-Chart shows two “wrong” Out Of
Control points that do not actually exist; moreover it does not show the real OOC points below the dotted
line: it shows them because the author forced the software to draw the correct LCL (the dotted line). The
Minitab LCL is wrong, as well.

Anybody can transform the Exponential data into Weibull data, as suggested by D. C.
Montgomery, who used the idea of Nelson.

He gets the wrong Control Charts, showing the Process IC (the opposite of the truth), as well…
The related I-Chart is in Figure 17: It shows the wrong Control Limits [LCL, UCL] derived from

the formulae (2), now valid because the transformed data are normally distributed, and the right correct
LCL (the dotted line) computed with RIT. Minitab 19 & 20 & 21 I-Chart does not show only the real Out Of
Control points below the dotted line: It shows them because the author forced the software to show the
dotted line.

The same happens with Johnson’s transformation (Figure 18).
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computing the Control Limits [that is the Confidence Interval for each sample, of size k=1. horizontal line],
via the mean � ; = (1 + 2)/2 and CL=1-=0.997 [Figure 13]. Formulae (4), on the contrary,  =
0.00135   = ln 2 , = 6.60773 , with  = � providing the vertical line L-----U, at the abscissa
 =  (Figure 12).

Look at Figure 10, as well; does the reader see that those formulae are the same as  =
0.00135   = ln 2  , = 6.60773  , with =? The Authors, the Peer Reviewers and the Editors
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All the authors do not realise that, when the data are Normally distributed, they have UCL-
LCL=U-L (same length...) notwithstanding L----U and LCL----UCL are two different intervals with different
meaning. Very likely for the users the error does not have any effect (see Figures 3 and 4)... The error is
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From Figures 12 and 14, it is very clear that, for the Table 1 lifetime data, the TBE Control Charts
tell us (the Theory shows the truth) that the process is OOC (Out Of Control). Notice the plural “TBE
Control Charts” because also the differences |ti-ti+1| are exponentially distributed, as well; see Figure 15.

This proves again the truth of Deming’s statement “…people are learning what is wrong.”, “It is
necessary to understand the theory….”

There is a deep ignorance of “Professionals” about the Control Charts with Exponentially
Distributed Data.

See both Figures 8 and 14: The reader can CLEARLY see both the wrong Control Limits of the
Control Chart and the right Lower Limit (the dotted line). Also the ranges are OOC (Figure 15).

Figure 16 is very important: It shows the wrong Control Limits [LCL, UCL] derived from the
formulae (2), which are valid when the data are normally distributed, and the right correct LCL (the dotted
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Control points that do not actually exist; moreover it does not show the real OOC points below the dotted
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Anybody can transform the Exponential data into Weibull data, as suggested by D. C.
Montgomery, who used the idea of Nelson.

He gets the wrong Control Charts, showing the Process IC (the opposite of the truth), as well…
The related I-Chart is in Figure 17: It shows the wrong Control Limits [LCL, UCL] derived from

the formulae (2), now valid because the transformed data are normally distributed, and the right correct
LCL (the dotted line) computed with RIT. Minitab 19 & 20 & 21 I-Chart does not show only the real Out Of
Control points below the dotted line: It shows them because the author forced the software to show the
dotted line.
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The same happens with Johnson’s transformation 
(Figure 18).

Any reader can clearly see that anybody needs the 
right and scientific method to analyse the data and 
derive the correct Control Charts: Data transforma-
tions can hide the truth.

Figure 16. RIT I-Chart of Valve_TTF for Table 1 data . The 
dotted line is the right correct LCL.

Figure 17. RIT I-Chart of Weib-transf_TTF for Table 1 data 
[transformed into Normal data, by Weibull transformation]. The 
dotted line is the right correct LCL.

Figure 18. RIT I-Chart of Johnson-transf_TTF for Table 1 data 
[transformed into Normal data, by the Johnson’s transformation]. 
The dotted line is the right correct LCL.

8. Time between events exponentially 
distributed data: From the paper 
“Improved Phase I Control Charts 
for Monitoring Times Between 
Events”

Now the readers can see how RIT can solve a 
case, found in a paper [5] published by Quality and 
Reliability Engineering International (whose editor 
is D.C. Montgomery). The two authors provide a 
wrong solution found neither by the Peer Review-
ers nor by the Editor). Nevertheless, they “thank D. 
Montgomery, Co-editor, for his interest and encour-
agement.”

In their Abstract they claim that “their charts are 
more robust (i.e. less sensitive to unwanted OOC” 
than competitors).

The authors say that the data follow a Poisson 
Distribution with q=0.1; they find LCL=–53. (put to 
0) and UCL=47.2; we see that the process is OOC 
because 52.32 plots above the UCL; they claim 
that for Table 2 data “neither the Dovoedo and 
Chakraborti, nor the Jones and Champ control chart 
indicates any OOC situation.”

Table 2. Time between failures data (“Improved Phase… for 
Monitoring TBE”.[5]).

Failure # TBE Failure # TBE Failure # TBE
1 1.24 11 52.32 21 6.09
2 6.69 12 14.75 22 20.41
3 9.77 13 4.69 23 5.93
4 1.23 14 0.18 24 19.03
5 14.03 15 13.61 25 13.65
6 18.07 16 4.57 26 6.37
7 3.90 17 0.28 27 2.06
8 13.61 18 7.08 28 3.30
9 18.47 19 12.00 29 6.91
10 12.85 20 5.15 30 12.08

Their Control Charts is the Figure 19. Notice that 
the “wrong” Control chart shows an Out Of Control 
(OOC) situation that should not be there and various 
In Control (IC) that should not be there… Now I use 
RIT.

As done in the previous section, now n=g*=30 
TBE 
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Figure 19. Control Chart from “Improved Phase… for Monitor-
ing TBE”. [5] Remember that in this case k=1 (sample size).

See the Figure 19. The Control Limits LCL 
and UCL must be consistent with the ti “Time be-
tween failures”: We want to assess if they are sig-
nificantly different from the “mean observed time 
to failure” 

10 12.85 20 5.15 30 12.08

Their Control Charts is the Figure 19. Notice that the “wrong” Control chart shows an Out Of
Control (OOC) situation that should not be there and various In Control (IC) that should not be there…
Now I use RIT.

Figure 19. Control Chart from “Improved Phase… for Monitoring TBE”. [5] Remember that in this case
k=1 (sample size)

As done in the previous section, now n=g*=30 TBE
See the Figure 19. The Control Limits LCL and UCL must be consistent with the ti “Time between

failures”: We want to assess if they are significantly different from the “mean observed time to failure”
 = tO/n. They are the values satisfying the two equations (12) for any single unit; so we have 30
Confidence Intervals [all equal, by solving formulae (12)], given  and CL=1-  [CL=0.997],
0  ;  = /2, 0  ;  = 1 − /2

Remember that in this case k=1 (sample size) and  =tO/n: I-CC.
Formula (12) proves how wrong all authors in the first referenced 21 papers [1-21].
Comparing Figure 19 and Figure 20, it becomes very clear that the Control Chart from “Improved

Phase… for Monitoring TBE” [5] presents 5 errors about OOC.

 = t
O
/n. They are the values satisfying 

the two equations (12) for any single unit; so we 
have 30 Confidence Intervals [all equal, by solving 
formulae (12)], given 

10 12.85 20 5.15 30 12.08

Their Control Charts is the Figure 19. Notice that the “wrong” Control chart shows an Out Of
Control (OOC) situation that should not be there and various In Control (IC) that should not be there…
Now I use RIT.

Figure 19. Control Chart from “Improved Phase… for Monitoring TBE”. [5] Remember that in this case
k=1 (sample size)

As done in the previous section, now n=g*=30 TBE
See the Figure 19. The Control Limits LCL and UCL must be consistent with the ti “Time between

failures”: We want to assess if they are significantly different from the “mean observed time to failure”
 = tO/n. They are the values satisfying the two equations (12) for any single unit; so we have 30
Confidence Intervals [all equal, by solving formulae (12)], given  and CL=1-  [CL=0.997],
0  ;  = /2, 0  ;  = 1 − /2

Remember that in this case k=1 (sample size) and  =tO/n: I-CC.
Formula (12) proves how wrong all authors in the first referenced 21 papers [1-21].
Comparing Figure 19 and Figure 20, it becomes very clear that the Control Chart from “Improved

Phase… for Monitoring TBE” [5] presents 5 errors about OOC.

 and CL=1-a [CL=0.997], 

10 12.85 20 5.15 30 12.08

Their Control Charts is the Figure 19. Notice that the “wrong” Control chart shows an Out Of
Control (OOC) situation that should not be there and various In Control (IC) that should not be there…
Now I use RIT.

Figure 19. Control Chart from “Improved Phase… for Monitoring TBE”. [5] Remember that in this case
k=1 (sample size)

As done in the previous section, now n=g*=30 TBE
See the Figure 19. The Control Limits LCL and UCL must be consistent with the ti “Time between

failures”: We want to assess if they are significantly different from the “mean observed time to failure”
 = tO/n. They are the values satisfying the two equations (12) for any single unit; so we have 30
Confidence Intervals [all equal, by solving formulae (12)], given  and CL=1-  [CL=0.997],
0  ;  = /2, 0  ;  = 1 − /2

Remember that in this case k=1 (sample size) and  =tO/n: I-CC.
Formula (12) proves how wrong all authors in the first referenced 21 papers [1-21].
Comparing Figure 19 and Figure 20, it becomes very clear that the Control Chart from “Improved

Phase… for Monitoring TBE” [5] presents 5 errors about OOC.

Remember that in this case k=1 (sample size) and  

10 12.85 20 5.15 30 12.08

Their Control Charts is the Figure 19. Notice that the “wrong” Control chart shows an Out Of
Control (OOC) situation that should not be there and various In Control (IC) that should not be there…
Now I use RIT.

Figure 19. Control Chart from “Improved Phase… for Monitoring TBE”. [5] Remember that in this case
k=1 (sample size)

As done in the previous section, now n=g*=30 TBE
See the Figure 19. The Control Limits LCL and UCL must be consistent with the ti “Time between

failures”: We want to assess if they are significantly different from the “mean observed time to failure”
 = tO/n. They are the values satisfying the two equations (12) for any single unit; so we have 30
Confidence Intervals [all equal, by solving formulae (12)], given  and CL=1-  [CL=0.997],
0  ;  = /2, 0  ;  = 1 − /2

Remember that in this case k=1 (sample size) and  =tO/n: I-CC.
Formula (12) proves how wrong all authors in the first referenced 21 papers [1-21].
Comparing Figure 19 and Figure 20, it becomes very clear that the Control Chart from “Improved

Phase… for Monitoring TBE” [5] presents 5 errors about OOC.

 = t
O
/n: I-CC.

Formula (12) proves how wrong all authors in the 
first referenced 21 papers [1-21].

Comparing Figure 19 and Figure 20, it becomes 
very clear that the Control Chart from “Improved 
Phase… for Monitoring TBE” [5] presents 5 errors 
about OOC.
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Figure 20. Control Chart of the data from “Improved Phase… 
for Monitoring TBE”. [5]; vertical axe logarithmic; UCL is >100. 
RIT used (F. Galetto). Remember that in this case k=1 (sample 
size). 

How can the Control Chart from “Improved 
Phase… for Monitoring TBE” [5] be good? 

See their “absurd” Concluding remarks: “…IC 
robustness property …more than Jones/Champ and 
Dovoedo/Chakraborti charts”.

Simulations made by F. Galetto (five million.) 
show that < 5% of the computations provide the cor-
rect decisions about IC and OOC… 

I agree with those authors that “Further work is 
necessary on the OOC performance of these charts” [5]: 
The further Work must be to STUDY (see Deming.) 
to avoid “Huge costs of DIS-quality applications/de-
cisions”…

9. Other cases from papers “Peer 
Reviewed”

The case presented before was taken from Peer 
Reviewed papers published in good and reputed 
Journals.

Now we see some other cases that show very 
clearly that the problem of Control Charts for TBE 
(Time Between Events) must be studied and solved 
using a sound Theory.

Consider the paper [21] and the good qualifications 
of both the authors [21]: Santiago/Smith both were (are 
now?) at Minitab, Inc.

The T Charts and the Box-plot methods compute 
WRONG Control Limits. And therefore the process is 
considered In Control, but it is not: Figure 21. The 
data are in Table 3.

F. Galetto analysis, with RIT, shows that the Pro-
cess is OOC (Out of Control) ….

Consider also the paper of the “Qualified authors” 
Xie, M., Goh, T. N., Ranjan, P. (2002) “Some effec-
tive control chart procedures for reliability moni-
toring”, Peer Reviewed by qualified Referees, pub-
lished in Reliability Engineering & System Safety [16]. 
Again WRONG Control Limits. 

Their data are in Table 4.
At least 10% of the data are Out Of Control: Xie 

et al. did not found that. Does the reader consider 
a very good result for a Peer Reviewed paper? See 
Figures 10 and 22. 
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Table 3. Urinary Tract Infection Data (from E. Santiago, J. 
Smith, Control charts based on the Exponential Distribution, 

Quality Engineering [21]).

Datum 
#

UTI 
(days)

Datum 
#

UTI 
(days)

Datum 
#

UTI 
(days)

1 0.57014 19 0.03819 37 0.12014
2 0.07431 20 0.24653 38 0.11458
3 0.15278 21 0.29514 39 0.00347
4 0.14583 22 0.11944 40 0.12014
5 0.13889 23 0.05208 41 0.04861
6 0.14931 24 0.12500 42 0.02778
7 0.03333 25 0.25000 43 0.32639
8 0.08681 26 0.40069 44 0.64931
9 0.33681 27 0.02500 45 0.14931
10 0.01389 28 0.27083 46 0.24653
11 0.03819 29 0.04514 47 0.04514
12 0.46806 30 0.13542 48 0.01736
13 0.22222 31 0.08681 49 1.08889
14 0.29514 32 0.40347 50 0.05208
15 0.53472 33 0.12639 51 0.02778
16 0.15139 34 0.18403 52 0.03472
17 0.52569 35 0.70833 53 0.23611
18 0.07986 36 0.15625 54 0.35972

0,001
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0,1

0 10 20 30 40 50 60

days

LCL

UCL

Figure 21. Table 3 Control Chart (of UTI); vertical axe logarith-
mic. (F. Galetto). Remember that in this case k=1 (sample size).

The two Peer Reviewers [16] should have known 
the Theory. “It is necessary to understand the the-
ory of what one wishes to do or to make.” [Deming 
1996]

It is clear that the shown methods (but RIT) com-
pel their users to take wrong decisions, caused by the 
authors’ qualifications….

Table 4. Time between failures (TBF) of a component. [16]

Failure # TBF Failure # TBF Failure # TBF
1 30.02 11 0.47 21 70.47
2 1.44 12 6.23 22 17.07
3 22.47 13 3.39 23 3.99
4 1.36 14 9.11 24 176.06
5 3.43 15 2.18 25 81.07
6 13.2 16 15.53 26 2.27
7 5.15 17 25.72 27 15.63
8 3.83 18 2.79 28 120.78
9 21,00 19 1.92 29 30.81
10 12.97 20 4.13 30 34.19
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Figure 22. Control Chart of Xie et al. TBF data; vertical axe 
logarithmic. RIT used (F. Galetto). Remember that in this case 
k=1 (sample size).

From the paper [2] one finds a new wrong case 
copied from Santiago and Smith (2013) [21]. I do not 
report the data… Notice that the Control Limits are 
wrong (remember Figure 10). 

Notice the “red and dashed lines” in Figure 23: 
They are “the control limits for the ATS-unbiased t1-
chart with the {1/1,M:3/4} scheme…”. Obviously, 
they are WRONG: Table 5.

The authors write [2]: “An example … appli-
cation of the proposed ATS-unbiased chart … we 
consider the data provided in Table B2 in Santiago 
and Smith (2013). …. First, for r=1, we obtain the 
lower and upper control limits for the basic ATS-un-
biased t1-chart, which are equal to LCL=0.63 and 
UCL=2093.69, respectively. In a similar manner, 
“the values of the control limits for the ATS-unbi-
ased t1-chart with the {1/1,M:3/4} scheme, are equal 
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to LCL=31.36 and UCL=1943.22, respectively”… the 
ATS-unbiased t1-chart with and without the runs 
rule scheme detects a signal at the 67th point.” 
“Thus, we next investigate monitoring the process 
by considering the times to every 2nd event and using 
the ATS-unbiased t2-chart. ” OMISSIS….

Figure 23. Control Chart from the paper [2] “Statistical design of 
ATS-unbiased charts with runs rules for monitoring exponential 
time between events”, published in Communications in Statistics 
- Theory and Methods, DOI: 10.1080/03610926.2022.2092143 
k=1 (sample size).

It is interesting what I find with RIT. See Table 5.

Table 5. Comparison of results from the paper [2] and RIT.

Type of Method LCL UCL Comment
N. Kumar et al. 
“t1 Chart” 0.63 2093.69 Both LCL and UCL are 

lower than Scientific
N. Kumar et al. 
“ATS–unbiased t1 
Chart…”

31.36 1943.22
LCL is 17 times higher 
than Scientific and UCL 
is 24% of Scientific

F. Galetto RIT 1.835 7940.01 Scientific

Both the method from the paper [2] provide wrong 
Control Limits: The decision based on the process 
would be wrong, with the proposed methods.

10. Discussion
It should now be clear that several Journals 

published wrong papers on Control Charts (CC) for 
TBE (Time Between Events) data, exponentially dis-
tributed.

Does the reader think that the statement “The 
problem of monitoring TBE that follow an exponen-

tial distribution is well-defined and solved”. I do not 
agree that “nobody could solve scientifically the cas-
es” has to be considered scientific?

Absolutely not. This is due to a lack of knowl-
edge of the Sound Theory of the CC, generated by 
wrong knowledge of the basic concepts about Confi-
dence Intervals.

It is a true disaster: It seems that nobody found 
the errors. Neither the Peer Reviews nor the Editors 
of the “good” Journals. 

Many wrongs do not make a right.
Their “wrong formulae” are used by JMP, SAS, 

Minitab software.
The users of such software took and will take 

wrong decisions based on the “wrong formulae”…
Those Journals should, for future research about 

CC, accept the letters sent to their Editors.
I wrote letters to the Editors of Quality Engineer-

ing, Quality and Reliability Engineering and Com-
munications in Statistics_Theory and Methods to in-
form them and the readers of the Journals about the 
errors on Control Limits for TBE Charts, to avoid 
costly errors and decisions. They have not been pub-
lished yet…

To publish them they must understand the prob-
lem…

It is a big real problem: Big errors and nobody 
(known to the author), but F. Galetto, is taking care 
of teaching the students to use their own brains in or-
der not to be poisoned by incompetents (Figures 20 
and 21); for this reason the author self-cited himself 
(I ask the readers to signal him if other people have 
been sowing as many errors as he did).

The last document with errors [2] I found, pub-
lished in 2022, uses the data on earthquakes that are 
shown (from the paper [21]): The Control Limits are 
again wrong. 

The questions in Figure 1 give the readers some 
hints to think how many Statisticians, Certified MBB, 
…., all over the world, are learning the wrong methods 
and will take the wrong decisions? And are teaching 
wrong methods…

Writing this paper I think that I helped people (the 
readers, the Editors, the Peer Reviewers and other 
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Scholars) to avoid being cheated by the many wrong 
teachers running in the Disqualify Vicious Circle 
(Figure 24).

Figure 24. The Disquality Vicious Circle.

The author hopes that the Peer Reviewers of this 
paper have better knowledge than the discussants (in 
the various forums, iSixSigma, Research Gate, Qual-
ity Digest, Academia.edu and …), otherwise he risks 
being passed off…

In spite of all these proofs, the discussant who 
suggested the paper of J. Smith did not believe the 
evidence. He raised the problem that it could hap-
pen only by chance: He believed only in simulations 
((like all who do not know Theory). After ten million 
simulations, F. Galetto got the result that T Charts 
(Minitab and in all wrong papers) were wrong 93.3% 
of the time.

I think that it should be enough…
But is it? No…, due to the ideas in Figure 24.
Figure 25 shows the author’s position in teaching 

[Qualitatem Docere]: The “epsilon Quality, driven by 
Intellectual hOnesty and by Gedanken Experimente”.

Figure 24 shows the real problem with the Minit-
ab, JMP and SAS T Charts and the Box-plot based 
method.

The author many times (more than those you find 
in the references) tried to compel several scholars to 
be scientific [25,27-41,47-56]: He did not have success. 

Only Juran appreciated the author’s ideas when 
he mentioned the paper “Quality of methods for 
quality is important” at the plenary session of EOQC 
Conference, Vienna [28].

Intellectual hOnesty

Gedanken Experimente
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em
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F. Galetto

Figure 25. The “epsilon Quality, driven by Intellectual hOnesty 
and by Gedanken Experimente”.

For the control charts, it came out that RIT 
proved that the T Charts, for rare events and TBE 
(Time Between Events), used in the software Mi-
nitab, SixPack, JMP or SAS are wrong. So the au-
thor increased the h-index of authors publishing the 
wrong papers [1-24]. 

Since the basic rules for Control Charts are based 
on the “Central Limit Theorem”, many “profession-
als” transform the data to make them “almost Nor-
mally Distributed”; this behaviour can be dangerous 
as I showed before.

If the reader considers that the author asked 
many [>>50] “Statisticians and Certified Master 
Black Belts and Minitab users (you can find them in 
various forums such as ReasearchGate, iSixSigma, 
Academia.edu, Quality Digest, … and in several 
Universities)” and nobody could solve scientifically 
the cases, he has the dimension of the problem. 

The author hopes that the Peer Reviewers of this 
paper have better knowledge than the discussants (in 
the various forums, iSixSigma, Research Gate and 
…), otherwise he risks being passed off…

In spite of all these proofs, the discussant who 
suggested the paper of J. Smith did not believe the 
evidence. He raised the problem that it could happen 
only by chance: He believed only in simulations (as 
do all the people who do not know Theory). After 
ten million simulations F. Galetto got that T Charts 
(Minitab and in all wrong papers) were wrong 93.3% 
of the time.

I think that it should be enough…
Figure 25 shows the author’s position in his 

teaching at Turin Politecnico [Qualitatem Docere]: 
the “epsilon Quality, driven by Intellectual hOnesty 
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and by Gedanken Experimente”.

11. Conclusions
Any scholar needs and must analyse data with 

suitable methods devised on the basis of Scientific 
Theory and not on methods in fashion [1-25], in order 
to generate the correct Control Charts, with correct 
Control Limits. 

RIT is able to deal with many distributions (expo-
nential included) and then is usable for many types 
of data [47-56] and makes Quality Decisions.

First, I briefly presented the Shewhart Control 
Charts and the Individual Control Charts; second, I 
analysed the method “(BCCTBE)”; third, I showed 
the Minitab calculations for the T Charts; I showed 
the correct control limits of charts with exponen-
tially distributed data, with the applications dealt in 
the referenced papers. I showed the RIT ability to 
solve correctly the Control Charts for Exponentially 
Distributed Data. RIT was devised by the author in 
1975 (47 years ago) well before the T Charts inven-
tion and BCCTBE. 

I showed various cases (from books and papers) 
where errors were present due to the lack of knowl-
edge of a Sound Theory of Control Charts and of 
RIT.

RIT allows scholars (managers, students, profes-
sors) to find sound methods also for the ideas shown 
by Wheeler in his Quality Digest documents.

The truth sets you free.
Deficiencies in products and methods generate a 

huge cost of DIS-quality (poor quality) as highlight-
ed by Deming and Juran. Any book and paper is a 
product (providing methods). The books present-
ing financial considerations about reliability with 
wrong ideas and methods generate huge cost for the 
Companies using them. The methods given in our 
documents provide the route to avoid such costs, 
especially when RIT gives the right way to deal with 
Preventive Maintenance (risks and costs), Spare 
Parts Management (cost of unavailability of systems 
and production losses), Inventory Management, cost 
of wrong analyses and decisions.

In order to show the several wrong ideas and 

methods related to financial and business considera-
tions about quality in several books (not given in the 
references) I would need at least 30 more pages in 
this paper: I, obviously, cannot do that. Therefore I 
ask the readers to look at some of the documents [27-56], 
including the “Several Papers and Documents in the 
Research Gate Database, 2014”.

I end with the statements of two authors in one 
of the papers [1-25] who provided WRONG Control 
Charts, with WRONG Control Limits; they wrote, 
about F. Galetto comments:

“We do not know this author and are not famil-
iar with his work. His claim about our formulas 
being wrong is not justified by any facts or material 
evidence. Our limits are calculated using standard 
mathematical statistical results/methods as is typical 
in the vast literature of similar papers.”

The complete document is available for any inter-
ested reader (write to F. Galetto).

The dramatic problem for TBE Control Charts is 
this: “Limits are calculated using standard mathe-
matical statistical results/methods as is typical in the 
vast literature of similar papers.” This is the proof 
of how many “scholars” diffuse wrong ideas.

See Figures 1, 9, 12, 20, 21 and Table 5.
As the last information, the readers must consider 

that the ARL (Average Run Length) for Individual 
Control Charts for TBE is quite different from the 
usual formula they can find in books: ARL=1/a [56].

The author had to self-cite because it seems the 
only one that has been fighting for years for “Papers 
Quality”; he humbly asks the readers to inform him 
if some people did the same.
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