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Fatigue impairs workers’ judgment, reduces their productivity, and jeop-
ardizes their safety. The paper presents a tool to predict workers’ fatigue 
based on their vital signs. An experimental study was conducted in which 
the heart rate and sleep quality for three individuals were monitored using 
fitness trackers (wearable sensors). The data collected were used to develop 
two models based on regression analysis and Artificial Neural Networks 
(ANN), to predict their fatigue level. A Borg’s scale was used to estimate 
the Rating of Perceived Exertion (RPE) of the participants. The two models 
were able to satisfactorily predict the RPE (workers fatigue level) with an 
average validity of 75% and 80% for the regression ANN models, respec-
tively. The developed models can provide project managers and superinten-
dents with early warning to avoid potential worker overexertion, injuries, 
and fatalities. 
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1. Introduction

Construction operations are inherently hazardous as 
they customarily involve man-machine close interaction, 
heavy equipment operation, heavy lifts, deep excavation, 
and overcrowded jobsites [1]. Construction tasks are often 
labor-intensive and physical in nature. Such work can 
cause fatigue that leads to poor judgement, lower work 
quality, decreased productivity, and increased risk for 
accidents [2,3]. Fatigue is often the result of long working 

hours, night shifts, and limited rest periods [4]. Fatigue 
symptoms include physical and cognitive impairment [5]. 
In 2014, about 40% of the reported fatalities were due to 
fatigue [6]. In 2015, the rate of nonfatal injuries was 10.6 
per 10,000 workers [7]. Investigating those incidents ascer-
tained that the incidents were caused by overexertion. On 
average, each of those incidents required 13 days of off-
work period. However, our literature search confirmed 
that only limited information is available on the impact of 
fatigue on the performance, health, and safety of construc-
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tion workers.
This paper attempts to fill this gap in the current knowl-

edge by providing tools for predicting workers’ fatigue 
based on their vital signs. The tools presented here are two 
models that use the heart rate and sleep quality to predict 
the expected fatigue level.

2. Background

Some researchers attempted to use oxygen level, heart 
rate, and breathing rate to assess the fatigue level of 
construction workers. However, collecting such data is 
impractical as the monitoring devices are cumbersome to 
wear, and the data collection impedes the routine activi-
ties of the workers [8]. To resolve this issue, a noninvasive, 
wireless, wrist-worn monitors were used in the study 
presented here. These noninvasive monitors record in real 
time the heart rates and sleep qualities of the participants. 
The collected data were used to develop regression and 
ANN models that can predict the fatigue level of the in-
dividuals wearing the monitors. The paper presented here 
focuses mostly on developing and comparing the perfor-
mance of the two models.

3. Previous Studies 

In 2010, Powell and Copping conducted an experiment 
to explore the effect of sleep quality on construction work-
ers [9]. The participating workers were continuously fitted 
with actigraphs for a full week to collect data regarding 
their sleep quality and mental alertness levels. The study 
confirmed that a certain level of fatigue would cause judg-
ment impairment, lower performance, and increased acci-
dent risk. They also developed a fatigue awareness survey 
with which they showed that fatigue impairment is viewed 
as a common problem on construction jobsites.

In 2016, an experiment was conducted to determine 
the accuracy of wristband trackers in collecting data from 
construction workers [10]. The experiment involved seven 
construction workers, and the researchers compared the 
workers’ heart rates recorded by wristband trackers to the 
workers’ heart rates recorded by an electrocardiography 
(ECG). The results showed that the wearable trackers had 
a mean-average-percentage-error (MAPE) of 4.79% and 
a correlation coefficient of 0.8 when compared to the data 
recorded by the EGC monitors.

In 2017, Aryal et al. monitored the physical and mental 
fatigue of 12 construction workers fitted with wearable 
sensors [3]. In their investigation, they used the heart rate 
and thermoregulatory changes to predict the physical 
fatigue, and the Psychomotor Vigilance Test (PVT) and 
Electroencephalogram (EEG) sensors to predict the men-

tal fatigue. They reported that boosted tree classifiers 
gave the best results. They concluded that monitoring 
thermoregulatory changes were better predictors of work-
ers’ fatigue than heart rate. However, this research did not 
include the sleep quality of the participants. It should also 
be noted that the thermoregulatory sensors were attached 
to the helmet, making it heavier. A more compact, light-
weight sensors would be more advantageous for collecting 
data from construction workers.

4. Methodology 

Wrist-worn monitors (Fitbit Charge 2) were used to 
record the heart rate (HR) and sleep quality of the par-
ticipants in the study presented here. These monitors are 
affordable, reliable, and not cumbersome in construction 
activities. They allow continuous monitoring of the heart 
rates, sleep quality, and the total number of minutes of 
sleep for each participant. The heart rate was chosen be-
cause: 1) it directly reflects the amount of physical effort 
exerted by the workers, and 2) it is feasible to monitor 
objectively and continuously. The quality of sleep was 
chosen because the quantity and quality of sleep directly 
impact the physical and cognitive abilities of the workers. 
Sleep is the natural cure for fatigue.

The Rating of Perceived Exertion (RPE) was used for 
the validation of the study results. RPE is the amount of 
effort/stress/distress felt by an individual during a physical 
activity [3,11]. Perceived exertion is widely assessed using 
Borg’s Scale [12,13]. Table 1 provides the description of the 
scale ratings. 

Table 1. Borg Scale Rating- Revised [14]

Rating Perceived Exertion

0 Rest

1 Really Easy

2 Easy

3 Moderate

4 Sort of Hard

5 Hard

6 Really Hard

7 Really, Very Hard

8 Really, Really, Very Hard

9 Almost Maximal

10 Maximal
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Sensors and Sensing Systems

Fitbit monitors were used in the study to collect the 
heart rate and sleep quality of the participants. They are 
comfortable, lightweight, and unobtrusive. The Fitbit uses 
embedded Photoplethysmography (PPG) sensors to meas-
ure the heart rate. The principle behind the PPG sensor is 
the optical detection of blood volume changes in the mi-
crovascular bed of the tissue. It consists of a light-emitting 
diode (LEDs) and a detector. The PPG sensor monitors 
changes in the light intensity via reflection from or trans-
mission through the tissue of the wearer. During the night, 
it records whether the wearer is awake or asleep based on 
his/her movements.

Experimental Setup

The experiment was conducted at the University of 
Houston. Figure 1 shows the experiment platform adopted 
in the study. The protocol simulated a common construc-
tion task: a manual handling of building materials. Sand-
bags (10 kg) were used as the building materials.

Figure 1. Schematic Design of Experimental Platform 
(adapted from [15]).

Three healthy adult participants were selected to con-
duct the experiment. Before starting the experiment, the 
participants were briefed on the testing protocol and the 
use of the Fitbit watches. The participants were requested 
to continue wearing the watches throughout the next 7 
days, even during the nights. Table 2 summarizes the par-
ticipant demographic features.

Table 2. Participant Demographic Features 

Age Weight (kg) Height (cm) Sex Ethnicity

23-26 68-75 165-170 Male Asian

For seven consecutive days, each participant performed 
a total of 100 trials (pick up-walk-drop off) daily. The Fit-

bit watch recorded the participant’s heart rate throughout 
the experiment. The heart rate values were checked every 
20 minutes. A two-minute break was scheduled after 
every 20 cycles of pick up and drop offs. Verbal feedback 
was received from the participants during each break. The 
RPE was determined periodically to assess the fatigue lev-
el. Figure 2 shows the data collection form. The quantity 
and quality of sleep were also monitored throughout the 
7-day experiment. The collected data were analyzed using 
classification and regression models to estimate the rela-
tionship between fatigue and the monitored parameters. 

Figure 2. Data Collection Form

5. Data Extraction 

The participant heart rate data were downloaded into 
Google spreadsheet using the Fitbit Application Program 
Interface (API), and then imported into Microsoft Excel. 
Tables 3, 4, and 5 summarize the recorded heart rates for 
the participants.
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Table 3. Heart Rate for Participant #1 

Time HR Time HR Time HR Time HR Time HR Time HR Time HR
11:39 57 12:12 74 13:01 65 13:41 77 14:31 83 14:17 66 18:50 75
11:40 57 12:13 70 13:02 63 13:42 79 14:32 78 14:18 69 18:51 73
11:41 66 12:14 76 13:03 65 13:43 80 14:33 75 14:19 67 18:52 76
11:42 95 12:15 90 13:04 68 13:44 86 14:34 86 14:20 80 18:53 96
11:43 104 12:16 107 13:05 74 13:45 92 14:35 102 14:21 93 18:54 100
11:44 103 12:17 108 13:06 80 13:46 108 14:36 104 14:22 101 18:55 109
11:45 93 12:18 104 13:07 79 13:47 113 14:37 100 14:23 102 18:56 109
11:46 71 12:19 90 13:08 88 13:48 113 14:38 92 14:24 104 18:57 98
11:47 77 12:20 87 13:09 75 13:49 112 14:39 80 14:25 102 18:58 97
11:48 88 12:21 96 13:10 69 13:50 107 14:40 83 14:26 108 18:59 105
11:49 103 12:22 95 13:11 77 13:51 110 14:41 90 14:27 106 19:00 105
11:50 104 12:23 102 13:12 83 13:52 111 14:42 100 14:28 107 19:01 112
11:51 114 12:24 104 13:13 81 13:53 104 14:43 96 14:29 109 19:02 114
11:52 101 12:25 96 13:14 92 13:54 95 14:44 93 14:30 108 19:03 108
11:53 104 12:26 80 13:15 73 13:55 82 14:45 92 14:31 107 19:04 108
11:54 100 12:27 88 13:16 73 13:56 87 14:46 104 14:32 109 19:05 110
11:55 106 12:28 102 13:17 96 13:57 94 14:47 107 14:33 108 19:06 103
11:56 108 12:29 104 13:18 106 13:58 94 14:48 107 14:34 106 19:07 106
11:57 105 12:30 93 13:19 105 13:59 110 14:49 107 14:35 108 19:08 107
11:58 93 12:31 85 13:20 99 14:00 95 14:50 102 14:36 109 19:09 104
11:59 88 12:32 80 13:21 74 14:01 97 14:51 104 14:37 107 19:10 97
12:00 91 12:33 89 13:22 66 14:02 101 14:52 108 14:38 101 19:11 102
12:01 105 12:34 96 13:23 84 14:03 101 14:53 108 14:39 100 19:12 112
12:02 110 12:35 98 13:24 100 14:04 107 14:54 107 14:40 105 19:13 113
12:03 104 12:36 110 13:25 99 14:05 107 14:55 101 14:41 109 19:14 115
12:04 99 12:37 85 13:26 94 14:06 81 14:56 88 14:42 110 19:15 111
12:05 76 12:38 85 13:27 80 14:07 77 14:57 103 14:43 112 19:16 111
12:06 92 12:39 99 13:28 68 14:08 76 14:58 113 14:44 107 19:17 100
12:07 105 12:40 108 13:29 78 14:09 90 14:59 112 14:45 106 19:18 98
12:08 103 12:41 108 13:30 89 14:10 97 15:00 107 14:46 108 19:19 117
12:09 111 12:42 107 13:31 97 14:11 104 15:01 105 14:47 108 19:20 105
12:10 112 12:43 86 13:32 111 14:12 102 15:02 97 14:48 109 19:21 107
12:11 89 12:44 103 13:33 83 14:13 85 15:03 114 14:49 106 19:22 100

Day-7Day-4Day-1 Day-2 Day-3 Day-5 Day-6
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Table 4. Heart Rate for Participant #2 

Time HR Time HR Time HR Time HR Time HR Time HR
11:57 79 12:06 83 13:31 70 13:41 68 14:25 67 14:25 71

11:58 69 12:07 83 13:32 71 13:42 66 14:26 66 14:26 66

11:59 73 12:08 82 13:33 74 13:43 76 14:27 67 14:27 67

12:00 83 12:09 82 13:34 79 13:44 91 14:28 69 14:28 82

12:01 96 12:10 90 13:35 90 13:45 105 14:29 76 14:29 90

12:02 107 12:11 105 13:36 105 13:46 115 14:30 80 14:30 101

12:03 114 12:12 114 13:37 111 13:47 115 14:31 90 14:31 106

12:04 90 12:13 114 13:38 110 13:48 114 14:32 96 14:32 97

12:05 87 12:14 111 13:39 110 13:49 114 14:33 98 14:33 86

12:06 96 12:15 112 13:40 110 13:50 114 14:34 104 14:34 91

12:07 106 12:16 116 13:41 120 13:51 108 14:35 120 14:35 98

12:08 107 12:17 119 13:42 122 13:52 114 14:36 126 14:36 103

12:09 115 12:18 120 13:43 122 13:53 115 14:37 127 14:37 109

12:10 111 12:19 121 13:44 116 13:54 102 14:38 125 14:38 114

12:11 112 12:20 120 13:45 92 13:55 87 14:39 131 14:39 111

12:12 113 12:21 121 13:46 93 13:56 107 14:40 131 14:40 113

12:13 114 12:22 123 13:47 106 13:57 119 14:41 132 14:41 112

12:14 113 12:23 125 13:48 125 13:58 117 14:42 124 14:42 115

12:15 111 12:24 124 13:49 111 13:59 0 14:43 97 14:43 118

12:16 111 12:25 122 13:50 110 14:00 112 14:44 84 14:44 123

12:17 103 12:26 64 13:51 109 14:01 111 14:45 97 14:45 120

12:18 103 12:27 86 13:52 110 14:02 117 14:46 119 14:46 120

12:19 101 12:28 103 13:53 113 14:03 119 14:47 126 14:47 118

12:20 103 12:29 117 13:54 117 14:04 120 14:48 135 14:48 121

12:21 108 12:30 120 13:55 113 14:05 128 14:49 129 14:49 123

12:22 119 12:31 117 13:56 104 14:06 97 14:50 128 14:50 122

12:23 106 12:32 110 13:57 99 14:07 89 14:51 129 14:51 119

12:24 106 12:33 114 13:58 105 14:08 95 14:52 128 14:52 100

12:25 124 12:34 122 13:59 110 14:09 102 14:53 136 14:53 66

12:26 110 12:35 127 14:00 115 14:10 111 14:54 129 14:54 75

12:27 111 12:36 127 14:01 119 14:11 127 14:56 127 14:55 83

12:28 105 12:37 121 14:02 117 14:12 101 14:56 109

12:29 93 12:38 108 14:03 111 14:13 99 14:57 127

12:30 82 14:04 92 14:58 109

Day-6Day-1 Day-2 Day-3 Day-4 Day-5
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Table 5. Heart Rate for Participant #3 

Time HR Time HR Time HR Time HR Time HR
11:22 71 11:55 73 13:02 82 13:40 65 14:21 64

11:23 75 11:56 73 13:03 65 13:41 65 14:22 68
11:24 84 11:57 86 13:04 63 13:42 78 14:23 66
11:25 99 11:58 100 13:05 85 13:43 96 14:24 64
11:26 109 11:59 112 13:06 96 13:44 111 14:25 68
11:27 109 12:00 114 13:07 81 13:45 107 14:26 64
11:28 108 12:01 114 13:08 83 13:46 105 14:27 65
11:29 116 12:02 100 13:09 60 13:47 96 14:28 65
11:30 110 12:03 100 13:10 67 13:48 96 14:29 72
11:31 108 12:04 117 13:11 70 13:49 103 14:30 63
11:32 109 12:05 119 13:12 74 13:50 97 14:31 64
11:33 105 12:06 100 13:13 97 13:51 87 14:32 69
11:34 99 12:07 67 13:14 68 13:52 80 14:33 65
11:35 94 12:08 52 13:15 69 13:53 90 14:34 66
11:36 102 12:09 89 13:16 88 13:54 97 14:35 75
11:37 104 12:10 102 13:17 102 13:55 97 14:36 83
11:38 96 12:11 115 13:18 114 13:56 91 14:37 110
11:39 102 12:12 120 13:19 92 13:57 75 14:38 64
11:40 115 12:13 98 13:20 72 13:58 68 14:39 67
11:41 97 12:14 87 13:21 84 13:59 83 14:40 72
11:42 98 12:15 107 13:22 109 14:00 98 14:41 81
11:43 115 12:16 116 13:23 115 14:01 95 14:42 110
11:44 122 12:17 125 13:24 119 14:02 80 14:43 57
11:45 121 12:18 134 13:25 98 14:03 79 14:44 65
11:46 122 12:19 126 13:26 66 14:04 78 14:45 66
11:47 113 12:20 70 13:27 79 14:05 95 14:46 76
11:48 112 12:21 100 13:28 102 14:06 90 14:47 104
11:49 109 12:22 125 13:29 112 14:07 82 14:48 59
11:50 110 12:23 135 13:30 120 14:08 85 14:49 56
11:51 113 12:24 117 13:31 94 14:09 72
11:52 120 12:25 100 13:32 113
11:53 109
11:54 101

Day-2 Day-3 Day-4 Day-5Day-1

 

Note: The missing data in the above Tables were due to the participant feeling some back pain. 
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The participant sleep quality data were also extracted daily. Tables 6, 7, and 8 summarize the sleep quality details for 
the participants.

Table 6. Sleep Quality Data for Participant#1 

Start End Minutes Minutes Number of Time Minutes Minutes Minutes
Night Time Time Asleep Awake Awakenings in Bed REM Sleep Light Sleep Deep Sleep

1 3:51 AM 9:32 AM 287 54 24 341 52 186 49
2 3:14 AM 9:17 AM 310 53 21 363 50 179 81
3 3:48 AM 10:34 AM 358 48 22 406 91 167 100
4 1:52 AM 6:28 AM 243 33 13 276 34 174 35
5 3:35 AM 7:04 AM 171 38 12 209 25 142 4
5 10:07 AM 1:30 AM 173 30 12 203 31 135 7
6 4:28 AM 10:29 AM 307 54 11 361 15 263 29

Table 7. Sleep Quality Data for Participant#2 

Start End Minutes Minutes Number of Time Minutes Minutes Minutes
Night Time Time Asleep Awake Awakenings in Bed REM Sleep Light Sleep Deep Sleep

1 10:38PM 7:02 AM 364 64 16 428 77 233 54
2 10:07 PM 7:30 AM 306 46 29 352 67 197 42
3 9:58PM 7:58 AM 500 100 28 600 104 330 66
4 12:19AM 8:09AM 403 67 31 470 89 267 47
5 10:38PM 4:30AM 171 38 12 209 25 142 4
6 9:22PM 4:30AM 173 30 12 203 31 135 7

Table 8. Sleep Quality Data for Participant#3 

Start End Minutes Minutes Number of Time Minutes Minutes Minutes
Time Time Asleep Awake Awakenings in Bed REM Sleep Light Sleep Deep Sleep

1 1:41 AM 9:29 AM 385 83 36 468 39 279 67
2 2:54 AM 10:25 AM 379 72 30 451 53 249 77
3 10:57 AM 11:01 AM 645 79 5 724 72 497 76
4 2:33 AM 10:45 AM 403 89 36 492 63 276 64
5 3:25 AM 11:41 AM 403 93 36 496 42 277 84
6 3:03 AM 12:36 PM 464 109 39 573 54 303 107

Night

6. Data Analysis

The experiment yielded 93 usable data points. These 
included the heart rate and the sleep quality (minutes 
asleep) of each participant, as shown in Table 9. The data 
in Table 9 were used to develop the models for predicting 
the fatigue level of the participants.

Two models, regression analysis and Artificial Neural 
Network (ANN), were developed to predict the fatigue 
level. Regression analysis was selected because it is a 
common statistical methodology to determine the relation-
ship between two or more variables to predict the value of 
the dependent variable(s). In its simplest form, the model 

can be developed using the following equation [16]:

Two models, regression analysis and Artificial Neural Network (ANN), were developed
to predict the fatigue level. Regression analysis was selected because it is a common statistical
methodology to determine the relationship between two or more variables to predict the value of the dependent
variable(s). In its simplest form, the model can be developed using the following equation [16]:

 = 0 + 1 +  (1)

where Yi is the response variable value in the ith trial, β0 and β1 are the regression parameters, Xi is the predictor
variable the value in the ith trial and i is the random error.

In multiple regression models, more than one variable is used to predict the behavior of the response
variable. Therefore, Equation (1) can be transformed into the following equation:

 = 0 + 1,1 + 2,2 + … + −1,−1 +  (2)

The regression equation is expected to give the best fit curve and to have variation errors given the
following assumptions: (1) the errors around a regression line are independent for each value of the predictor
variable; (2) the errors around a regression line are assumed constants for all variable values, and (3) the errors
around a regression line are assumed to be normally distributed at each value of X [16].

In the case study presented, the Heart Rate (HR) and Sleep Quality (SQ) were the independent variables
while the RPE was the dependent variable. Equation (3) presents the developed model:

� =− 8.611 + 0.121  − 0.001 � (3)

Since Equation (3) can result in non-integer values, such values were rounded to the nearest integer to
match the Borg’s scale ratings. For example, a computed value of 2.20 indicates a higher probability of an “easy”
perceiving exertion rating (i.e., RPE=2.0).

The values of the coefficient of multiple determinations R2 and R2-adjusted were found equal to 71.8% and
71.1%, respectively. These values show a good linear correlation between the fatigue exertion level (RPE), the heart
rate (HR), and the sleep quality (SQ).

The F-test for regression relation and the t-test for each regression parameter ‘βk’ were also conducted to
confirm the soundness of the regression model. The F-test was conducted to determine the F value for the entire

� (1)
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fit curve and to have variation errors given the following 
assumptions: (1) the errors around a regression line are in-
dependent for each value of the predictor variable; (2) the 
errors around a regression line are assumed constants for 
all variable values, and (3) the errors around a regression 
line are assumed to be normally distributed at each value 
of X [16].

In the case study presented, the Heart Rate (HR) and 
Sleep Quality (SQ) were the independent variables while 
the RPE was the dependent variable. Equation (3) presents 
the developed model: 

Two models, regression analysis and Artificial Neural Network (ANN), were developed
to predict the fatigue level. Regression analysis was selected because it is a common statistical
methodology to determine the relationship between two or more variables to predict the value of the dependent
variable(s). In its simplest form, the model can be developed using the following equation [16]:

 = 0 + 1 +  (1)

where Yi is the response variable value in the ith trial, β0 and β1 are the regression parameters, Xi is the predictor
variable the value in the ith trial and i is the random error.

In multiple regression models, more than one variable is used to predict the behavior of the response
variable. Therefore, Equation (1) can be transformed into the following equation:

 = 0 + 1,1 + 2,2 + … + −1,−1 +  (2)

The regression equation is expected to give the best fit curve and to have variation errors given the
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variable; (2) the errors around a regression line are assumed constants for all variable values, and (3) the errors
around a regression line are assumed to be normally distributed at each value of X [16].
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while the RPE was the dependent variable. Equation (3) presents the developed model:

� =− 8.611 + 0.121  − 0.001 � (3)

Since Equation (3) can result in non-integer values, such values were rounded to the nearest integer to
match the Borg’s scale ratings. For example, a computed value of 2.20 indicates a higher probability of an “easy”
perceiving exertion rating (i.e., RPE=2.0).

The values of the coefficient of multiple determinations R2 and R2-adjusted were found equal to 71.8% and
71.1%, respectively. These values show a good linear correlation between the fatigue exertion level (RPE), the heart
rate (HR), and the sleep quality (SQ).

The F-test for regression relation and the t-test for each regression parameter ‘βk’ were also conducted to
confirm the soundness of the regression model. The F-test was conducted to determine the F value for the entire
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Since Equation (3) can result in non-integer values, 
such values were rounded to the nearest integer to match 
the Borg’s scale ratings. For example, a computed value 
of 2.20 indicates a higher probability of an “easy” per-
ceiving exertion rating (i.e., RPE=2.0).

The values of the coefficient of multiple determinations 
R2 and R2-adjusted were found equal to 71.8% and 71.1%, 
respectively. These values show a good linear correlation 
between the fatigue exertion level (RPE), the heart rate 
(HR), and the sleep quality (SQ).

The F-test for regression relation and the t-test for each 
regression parameter ‘βk’ were also conducted to confirm 
the soundness of the regression model. The F-test was 
conducted to determine the F value for the entire model. 
A hypothesis test was carried out in which the null hy-
pothesis (H0) assumed that the values of the regression 
coefficients (β0, β1, and β2) are equal to zero (i.e., β0 = β1= 

β2=0). The alternate hypothesis (H1) assumed that at least 
one of the coefficients is not equal to zero. As can be seen 
in Table 10, the F-value (statistical significance) is 114.56, 
while the critical value for F is 0.00. In other words, the 
null hypothesis is rejected, and hence at least one coeffi-
cient in the developed regression equation is not equal to 
zero. 

Table 10. ANOVA Test Results

ANOVA df SS MS F Significance Level

Regression 2 217.29 108.65 114.56 1.83E-25

Residual 90 85.35 0.98

Total 92 302.65

The t-tests were performed to check the significant 
effect of the predictor related to the response variable. To 
determine the validity of the regression coefficients indi-
vidually, t-tests were performed separately for β0, β1, and 
β2. The t-test for the null hypothesis (H0) assumed that β0= 
0, while it assumed that β0≠ 0 for the alternative hypoth-
esis (H1). Similarly, the second null hypothesis assumed 
that β1 = 0 while it assumed that β1≠ 0 for the alternative 
hypothesis (H1). Moreover, the third null hypothesis as-
sumed that β2 = 0, while it assumed that β2≠ 0 for the al-
ternative hypothesis (H2).

Table 11 summarizes the results of the t-tests. The co-
efficients β0, β1, and β2 are accepted at P values of 0.00%, 
0.00%, and 20.5%, respectively. In other words, the re-
sults show that β0 and β1 are significant while β2 is less 
significant, which suggests that Sleep Quality (SQ) has a 
lower impact on RPE. 

Table 9. Summary of Participants Data



27

Journal of Smart Buildings and Construction Technology | Volume 04 | Issue 02 | December 2022

Table 11. Regression Model Coefficient t-Test Results

Coefficients Values Standard Error t-statistic P-Value α-Value

Intercept (β0) –8.611 1.031 –8.347 7.840 E-13 0.05

HR (β1) 0.012 0.008 14.725 1.070 E-25 0.05

SQ (β2) –0.001 0.001 –1.277 0.205 0.05

Artificial Neural Network (ANN) models provide 
good predictions based on available historical data. An 
ANN mimics the ability of the human brain to predict 
patterns based on learning and recalling processes. It is 
an effective prediction tool because of its ability to learn 
from historical data, especially when relationships among 
variables are unknown [17]. An ANN model was developed 
using GMDH Shell DS 3.8.9 package [18]. The data for the 
selected factors were used to train the ANN. The training 
criteria were the maximum and minimum absolute errors 
and the number of training cycles without improvements. 
The data were divided into two randomly selected sets: 
training (80%) and validation (20%). The input of the 
validation dataset was introduced to the trained model to 
generate the predicted output, which was then compared 
to the actual output. When the values are close, the model 
is considered valid. The selection of input and output vari-
ables greatly affects the ANN architecture. 

In the case study presented here, the ANN had only one 
output neuron that represents the fatigue exertion level 
(RPE) and two input neurons representing the heart rate 
and sleep quality. The hidden layer relied on the available 
dataset and the nature of outputs. Several iterations were 
used to generate the optimal number of neurons in the hid-
den layer. The training and testing processes were carried 
out successfully with acceptable results. The ANN model 
values of MSE and mean absolute error (MAE) were 
found to be equal to 0.064 and 0.088, respectively. The 
results confirmed the robustness of the developed model. 

7. Data Validation

Validation was necessary to confirm the effective-
ness of the developed models. This was done by using 
mathematical validation. Equations (4) and (5) show one 
approach for calculating the average validity/invalidity 
percentages (i.e., AVP and AIP) to predict possible errors. 

The model is sound when the AIP value is close to 0.0, 
and the model is not appropriate when it is close to 100 [19].
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where AIP = average invalidity percentage; AVP = average validity percentage.

The root MSE (RMSE) was estimated using Equation (6). The model is sound when the value of the RMSE
is close to 0.
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Also, the MAE was determined using Equation (7). The MAE value should be close to zero for a sound
model (Dikmen et al. 2005).
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where RMSE = root mean squared error; MAE = mean absolute error; Ei = estimated (predicted) value; Ci = actual
value, and n = number of data points.

As shown in Table 12, the results of the validation for the regression model showed AVP of 76.1, RMSE of
0.10, and MAE of 0.76. On the other hand, the validation results for the ANN model showed AVP of 0.81, RMSE of
0.24 and MAE of 0.74. These values also were considered satisfactory.

Table 12.Model Validation Results

Model AVP (%) AIP (%) MAE RMSE
Regression 75.9 24.1 0.75 0.10

ANN 81.0 19.0 0.74 0.24

Figures 3 and 4 provide a comparison between the actual and predicted results of the two developed models.
Both Figures show that the predicted values were within the acceptable limits. However, the results shown in Table
12 and in Figures 3 and 4 indicate that the ANN model provided better results than the regression model. Perhaps
this can be explained by realizing that the ANN model considers the nonlinear relation of the dependent and
independent variables as well as the correlation between the factors that affect the participants’ fatigue.
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where RMSE = root mean squared error; MAE = mean 
absolute error; Ei = estimated (predicted) value; Ci = actu-
al value, and n = number of data points.

As shown in Table 12, the results of the validation for 
the regression model showed AVP of 76.1, RMSE of 0.10, 
and MAE of 0.76. On the other hand, the validation re-
sults for the ANN model showed AVP of 0.81, RMSE of 
0.24 and MAE of 0.74. These values also were considered 
satisfactory.

Table 12. Model Validation Results

Model AVP (%) AIP (%) MAE RMSE

Regression 75.9 24.1 0.75 0.10

ANN 81.0 19.0 0.74 0.24

Figures 3 and 4 provide a comparison between the ac-
tual and predicted results of the two developed models. 
Both Figures show that the predicted values were within 
the acceptable limits. However, the results shown in Table 
12 and in Figures 3 and 4 indicate that the ANN model 
provided better results than the regression model. Perhaps 
this can be explained by realizing that the ANN model 
considers the nonlinear relation of the dependent and in-
dependent variables as well as the correlation between the 
factors that affect the participants’ fatigue.
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8. Conclusions
This study presents the development of two models that 

use the heart rate and sleep quality to predict workers’ fa-
tigue. The two models (Regression analysis and Artificial 
Neural Network) were developed based on data collected 
from a simulated construction activity (material handling). 
The heart rate and sleep quality time were collected us-
ing wearable sensors (Fitbit watches). The experiment 
involved three participants and lasted for 7 days. At the 
participants used the Borg’s scale to report their perceived 
Rating of Perceived Exertion (RPE). The developed mod-
els were validated and verified. Both models showed that 
the heart rate is a strong sign for fatigue. The results also 
showed that combining the sleep quality and heart rate 
gave better information than solely monitoring of heart 
rate.

The information gained from this research can provide 
can assist in creating better work-breaks schedules in 
labor intensive industries such as construction, manufac-
turing, and mining. However, to generalize the findings of 

this investigation, future researchers may need to increase 
the sample size, involve participants of variable age, gen-
der, and health conditions.
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