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Superhydrophobic (SH) coatings are intended to resist a surface from cor-
rosion and thereby increases the product life duration. It is also a promising 
solution to save cleaning costs and time by providing self-clean nature to 
the surface. This review article provides the most recent updates in design-
ing SH surfaces and their characterizations adopted both in experimental 
and computational techniques. To gain a comprehensive perspective, the 
SH surfaces present in nature those are inspiring human beings to mimic 
such surfaces are introduced at the beginning of this article. Subsequently, 
different fabrication techniques undertaken recently to design artificial SH 
surfaces are briefly discussed. Recent progress in computations employed 
in the development of SH surfaces is then discussed. Next, the limitations 
in SH surfaces are addressed. Finally, perceptiveness of different strategies 
and their limitations are presented in the concluding remarks and outlook. 
Overall, this mini review article brings together and highlights the 
significant advancements in fabrication of superhydrophobic surfaces 
which may surely help the early-stage researchers/scientists to plan their 
work accordingly.
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1. Introduction
Superhydrophobic (SH) surfaces in nature demonstra-

ting water contact angle (WCA) > 150° have enticed sub-
stantial topical research attention owing to their potential 
applications in many industrial sectors [1-4]. Fundamentally, 
this SH nature is a physicochemical phenomenon, wherein 
the physical appearance (surface texture) of a surface in 
combination with its chemical nature (low surface energy) 
combinedly helps to enhance the phobic nature of repelling 

water [1,5]. Before fabricating any artificial SH surface, it 
is better to first understand the self-clean surfaces present 
in nature. Lotus leaf [4,6,7], rice leaf [8,9], taro leaf [10,11], 
butterfly wings [12-14], water-strider legs [15], rose petals [16-18], 
and gecko feet [19-21] are the most exemplary cases present 
in nature exhibiting SH characteristics. Barthlott et al. [7] 
have investigated the self-clean nature of lotus leaf and 
found that there is a presence of (nano-scaled) epicuticular 
waxes superimposed over (micro-scaled) epidermal cells 
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combinedly provide a dual scale surface to surface. Both 
these textures are hydrophobic in nature and hence enable 
the surface to provide sufficient repellence nature against 
water. When water drops fall on the lotus leaf surface, it 
forms a completely spherical shape which can easily be 
rolled down the surface taking the dirt particles along with 
it. Likewise, the rice leaf surface is consisted of micro 
papillae that is superimposed by epicuticular waxy nano 
bumps and in butterfly wings the presence of hierarchical 
scales with micro grooves. Such surfaces demonstrate SH 
characteristics simultaneously providing drag reduction 
with several fluids. Basically this super hydrophobicity 
is governed by two prime factors as described earlier 
by Wenzel [22] and Cassie Baxter [23]. The intrinsic 
hydrophobic material presents at the extreme surface and 
the micro and nano-scale roughness on the topography. 
Scientists and researchers have utilized several techniques 
to fabricated biomimetic SH surfaces. The details of the 
various approaches are summarized in the subsequent 
section.

2. Fabrications Techniques
This section addresses the most used fabrication tech-

niques for SH surfaces. Techniques such as spraying [24,25], 
chemical etching [26-28], lithography [29,30], electrospinning [31,32], 
surface wrinkling [33,34], chemical vapor deposition (CVD) [35-37], 
layer-by-layer coating [38,39], and photolithography laser 
surface treatment [40,41] are the numerous approaches for 
reported in recent years. 

Spray coating is one of the most used techniques 
which is carried out by using a spray gun. A micron-level 
thickness with/without multi-layer coatings can be easily 
done in this technique. Zhang et al. [42] have fabricated a 
robust fluorine-free SH surface with a self-clean effect 
by first coating epoxy resin on a surface and then spray-
ing silica nanoparticles and dodecyltrimethoxysilane to 
induce roughness and thereby reduce the surface energy. 
The coated surface demonstrated a water contact angle 
of >153°, which also can be used for oil-water separation 
applications. In the same line, Polizos et al. [43] reported 
a scalable technique for developing anti-soiling coatings 
based on SH surfaces by using the spray coating method. 
The authors have used polymer binders and silica nan-
oparticles and obtained a WCA of > 166°. Hence, this 
unique fabrication technique is a promising technique for 
producing SH surfaces for outdoor and indoor applica-
tions.

Chemical etching is another approach to designing SH 
surfaces; wherein etchant chemicals are used to produce 
corrugated surfaces. Varshney et al. [44] have prepared SH 
brass surfaces using a two-step process. In the first step, 

they have used a chemical etching method with a mixture 
of hydrochloric and nitric acids and then treatment with 
lauric acid. With the help of this etching technique, they 
obtained an adequate rough surface that demonstrated a 
WCA of > 173°. The authors also proposed its wide appli-
cation in self-cleaning and anti-fogging applications. 

Lithography is a non-complicated and dynamic ap-
proach that was developed to prepare different grades of 
nano/micro-structured surfaces over large areas. Jinpeng 
et al. [45] have used an ultrafast laser to develop nano/mi-
cro hierarchical structures on a metal surface with tunable 
micro-cones. Such a SH surface can withstand 70 abrasion 
cycles, 28 minutes of solid particles impact, or 500 peeling 
tape cycles and still can show a WCA of > 150°. This arti-
cle explains the promising possibility of accomplishing ex-
cellent durability for real-time applications. Feng et al. [46]  
have reported a novel, versatile and efficient method for 
the fabrication of microscopic hierarchical SH surfaces 
with the presence of both micro and nano-scale textures 
using the electron-beam lithography technique. 

SH coatings can also be prepared by using the electros-
pinning process. Radwan et al. [47] successfully fabricated 
PVDF/ZnO-based SH coating using this technique, which 
demonstrates a contact angle of 155° and contact angle 
hysteresis (CAH) of 4.5°. Though there were a number of 
literature reporting different coating techniques to design 
PVDF/ZnO based SH coating with excellent phobic na-
ture but the significance of the study reported by Radwan 
and co-workers [47] are: (i) the authors have used a very 
low ZnO concentration without compromising with its 
phobic nature, (ii) an excellent dispersion was attained 
without any usage of dispersing agent, (iii) the ZnO filler 
doesn’t phase out with time, (iv) the entire fabrication is a 
one-step process and (v) the formulated coating material 
demonstrates excellent corrosion protection nature.

Surface wrinkling is a spontaneous process of gener-
ating a rough surface. Scientists use this mechanism to 
fabricate corrugated surface-based SH surfaces. This phe-
nomenon occurs due to the mismatch in elasticity among 
the underneath shrinkable substrate and the top rigid 
coated layer. Upon allowing the substrate to shrink, the 
first waves appear in the top layer and as more stress is 
applied, they turn into wrinkles and finally into folds [48-51].  
Using this approach, Scarratt et al. [52] reported the fabri-
cation of both single scale and hierarchical SH surfaces 
prepared by exploiting the spontaneous wrinkling of rigid 
Teflon film on two types of shrinkable plastic substrates. 
The hierarchical wrinkled SH surface exhibits an excellent 
WCA of ~172° with a very low CAH of 2°. The authors 
suggested that such an approach can be tuned to obtain 
micro-to-nano scale wrinkled surfaces in one step.



25

Non-Metallic Material Science | Volume 04 | Issue 01 | April 2022

Chemical vapor deposition (CVD) is another versa-
tile approach to preparing a SH surface by reducing the 
surface free energy. Rezaei et al. [53] have prepared a 
bio-inspired SH coating by using vinyltrimethoxysilane 
and triethyl orthosilicate as surface-modifying molecules 
and ammonia. This material showed a WCA of >160° 
and a low sliding angle of <5°. The major advantages of 
this article were, (i) the authors have explored an all gas-
phase and simultaneous deposition and modification of 
silane coating to avoid HCl production and post-treatment 
of silica nanoparticles. With the help of ammonia, they 
were able to lower the working temperature, which sug-
gests that such technology can also be used for tempera-
ture-sensitive materials. There are several types of CVD 
processes, such as atmospheric pressure chemical vapor 
deposition (APCVD), aerosol-assisted chemical vapor 
deposition (AACVD), and plasma enhanced chemical 
vapor deposition (PECVD), used for fabricating SH sur-
faces. A comprehensive study can be found elsewhere [54].  
The fundamental behind such different approaches to de-
veloping SH surfaces are like to reduce the surface free 
energy either by using low surface energy treatment or by 
designing corrugated surfaces.

2.1 Treatment with Low Surface Energy Polymers

Irrespective of the substrate used, the surface energy 
treatment relies on silane and fluorine chemistry. The silane 
treatment is generally preferred over fluorine treatment 
considering the toxicity impact on the environment. Re-
searchers employ poly(vinylidene fluoride) (PVDF) [55,56],  
per(fluoro octane) (PFO) [57,58], fluoroalkyl silane (FAS-

17) [59-61], and poly (tetrafluoroethylene) (PTFE) [62] 
etc., for fluoro treatment while making the desired 
surface SH. For silane treatment researchers use (tride-
cafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane [63],  
tetraethyl orthosilicate (TEOS) [64-66] and heptade-
cafluoro-1,1,2,2-tetrahydrodecyltriethoxysilane [67].

2.2 Designing of Hierarchical Surface Texture

Besides low surface energy treatment, the construction 
of micro or nanoscale rough surfaces is also an important 
technique to reduce the water attachment to the surface [1].  
Achieving a WCA of > 120° is not feasible only by sur-
face treatment with low-energy polymers. Hence, combin-
ing low surface energy with surface roughness is obligato-
ry to obtain a SH surface with an excellent WCA of >150° 
and a very low CAH of <5°. There are several ways to 
prepare micro/nano-scaled rough surfaces with enhanced 
contact angles, a few of them have already been discussed 
earlier in the manuscript in section 2. It can be considered 
that keeping the material same if the contact angle on a 
flat surface is around 100°-120°. Then it can be turned 
into 150°-160° only by adding roughness to it [68]. Two dif-
ferent models have been developed earlier to explain this 
effect, as depicted in Figure 2. When the rough pillars al-
low sufficient water molecules to impregnate the grooves, 
then a maximum wetting condition can be obtained, which 
is known as the Wenzel model [69]. When the rough pillars 
prevent the water molecules from entering inside it, thusly 
the water remains in a completely spherical shape and sits 
above the pillars then; it is considered as Cassie-Baxter 
model [23]. In this case the rolling angle is also very low.

Figure 1. Various fabrication techniques used for SH coating materials.
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3. Application of Molecular Dynamics (MD) 
Simulation in SH Coatings

MD simulations have long been served as a funda-
mental tool to gain understanding in different sectors of 
research, such as estimation of interaction energy among 
various polymers/fillers [70-73], the surface energy of poly-
mers/metals [74], interfacial shear strength [75], and wetting 
characteristics [76], etc. computational scientists use differ-
ent water models such as SPCE, SPC, TIP3P, and TIP4P [77], 
etc. to replicate the water droplets in MD simulations and 
then predict the SH nature of the desired surface [76]. To 
predict the simulated contact angle a number of methods 
have been developed, like microscopic wetting phenome-
na [78], float method [79], and quick-hull recursive method [80], 
etc. The details of each computational technique can be 
found elsewhere [76].

In this line, Sethi et al. [81] have first predicted the blend 
compatibility among poly(dimethylsiloxane) (PDMS) and 
poly(vinyl acetate) (PVAc) using MD simulations. Later 
on, the authors have predicted the easy-clean behavior of 

the PVAc-PDMS blend [82] and obtained a contact angle of 
97 ± 1° for a 20:80 ratio of PVAc to PDMS. Owing to the 
incompatibility among polar PVAc and nonpolar PDMS, 
the authors have then grafted PVAc over PDMS, consid-
ering the same 20:80 concentration of PVAc to PDMS [83]. 
Subsequently, they have incorporated CNT [84] and ZnO 
QDs [74] in PVAc-g-PDMS and computed the WCAs, and 
found 109±2° (4 wt.% of ZnO QDs) and 117 ± 2° (3 wt.% 
of CNT). In another work, Sethi et al. [85] have computed 
the impact of roughness on wettability. They have mod-
elled different surfaces with varying grooves and studied 
how it affects the surface wettability. In the same line, Xu 
et al. [86] have investigated the variation in wetting char-
acteristics with varying defect % in graphene oxide. They 
found that the WCA increased from 70° to 82°, when 
the defective concentration increased from 0 to 10% (as 
shown in Figure 3). Similarly, researchers have computed 
the SH nature of graphene [86,87], poly(vinylidene fluoride) 
(PVDF) [55], poly(ethylene terephthalate) (PET) [88] and 
sphalerite [89], etc. using MD simulations.

Figure 3. Illustration of water contact angle profile of graphene oxide with varying defect %. (a) 0%, (b) 2%, (c) 5%, 
and (d) 10% defects in graphene oxide. Reprinted with permission from [86].

(a) (b) (c)
Figure 2. Schematic representation of WCA on (a) flat surface, (b) Wenzel model, and (c) Cassie-Baxter model.
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4. Limitations to the Development of SH 
Coatings

Although there is a wide range of applications for SH 
surfaces, still not many commercial products have been 
developed with these functionalities. Some of the major 
limitations have been listed and discussed below. 

4.1 Cost of Materials

A few of the fabrication techniques discussed above are 
very costly. Sometimes the fabrication process may also 
require costly materials. Techniques such as lithography 
and templates cannot be used on very large areas. Hence, 
designing small part surfaces and stitching them together 
to make a larger one may sometimes also increase the 
overall product’s cost [29,30,46]. 

4.2 Technique to Fabricate SH Material

Out of all possible techniques, a few of them have lim-
itations to their usage. Like template technique cannot be 
used for all materials, the attainable geometry is also lim-
ited [90]. 

4.3 Durability of Coating Material

Any SH surface requires either a dual-scale or na-
no-scale roughness. Most of the time, such roughness is 
not durable enough to withstand the abrasion caused dur-
ing their daily usage; thereby, it losses its SH nature [91]. 
Especially in the case of polymers, it is not very easy to 
maintain the corrugated textured surface for a long dura-
tion. Also, there is a standoff among its SH nature and its 
durability, as it is not very easy to bond any SH nanoparti-
cle without degrading or affecting its SH nature [92]. 

4.4 Precipitation/Condensation Issue

Since the SH surfaces are designed to repel water hence 
at below certain dew points when water condenses, it may 
not get repelled by the developed surface. Hence the sur-
face can substantially be wetted when the temperature of 
the environment changes [93,94].

4.5 Health and Environmental Effects

The most developed SH surfaces are derived from 
fluoro-based polymers. Though a little concentration may 
not have that much impact on health or the environment 
but a higher concentration may cause serious health issues 
during product manufacturing, usage, or disposal. It may 
cause fever, teeth and bone decay, harm to kidney nerves 
and muscles, and eye and nose irritations [95,96]. Besides, 
most of the silanes are poisonous.

5. Summary and Conclusions

In this review article, the latest achievements in the 
field of SH surface generation have been presented. The 
basic idea to create a SH surface is by surface treatment 
with low surface energy and construction of a rough-tex-
tured surface to enhance the water repellence nature. 
Properties like self-cleaning, anti-corrosion, and an-
ti-sticking have been identified for such SH surfaces and 
have a broad potential application. Here, several fabri-
cation techniques alongside computational techniques to 
gain some fundamental insight into wetting behavior were 
reviewed and discussed. Several manufacturing processes 
have certain limitations; those are also briefly discussed. 
Limitations such as cost, technique, durability, and envi-
ronmental impact are of great challenge for researchers. 
Designing fluorine-free eco-friendly self-clean coating 
materials are receiving overwhelming attention owing to 
its non-health hazardous effect. The importance of indus-
trial SH surfaces requires enhanced durability, for which 
scientists have developed robust self-clean surfaces with 
highly stable and durable surface characteristics. Simul-
taneously, the durable SH surfaces may be merged with 
some additional functionalities to develop multi-function-
al surfaces/coating materials that can be further strength-
ened to be developed in future work in this field.
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