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ABSTRACT

Landslides remain a significant environmental hazard in India’s hill regions, particularly in the Nilgiris district of 
Tamil Nadu, due to its steep terrain, fractured geology, and heavy seasonal rainfall. This study applies the Frequency 
Ratio (FR) model within a GIS and remote sensing framework to map landslide susceptibility and identify key 
contributing factors to slope instability. Ten thematic layers were used, including land use/land cover (LULC), NDVI, 
slope gradient, soil type and depth, geomorphology, aspect, rainfall, lineament density, and lineament proximity—
derived from geological databases, DEMs, and satellite imagery. A landslide inventory was analyzed statistically to 
evaluate each factor’s role in landslide occurrence. Results indicate that slope gradient (9.15%) and LULC (8.37%) 
are the most influential factors, followed by geomorphology (7.78%), soil type (7.48%), and lineament density 
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(4.50%). A key innovation of this study is the integration of lineament buffer zones to assess the influence of structural 
discontinuities, often overlooked in regional models. The model’s predictive performance was validated using the 
Area Under the Curve (AUC) method, yielding a value of 0.879, indicating high accuracy. The resulting susceptibility 
map categorizes the landscape into low, moderate, and high-risk zones, providing a critical tool for regional planning, 
infrastructure development, and disaster management. This research supports climate-resilient development and 
sustainable land-use planning in vulnerable hill regions, emphasizing that both natural terrain characteristics and human-
induced land alterations significantly contribute to landslide risk.

Keywords: Slope Failure Risk; Frequency Ratio Analysis; GIS-based Mapping; Nilgiris Terrain; Landslide-prone Zones

1. Introduction
In mountainous regions, landslides remain a per-

sistent natural hazard, causing substantial threats to hu-
man life and property. With rapid urban expansion and 
increasing human activity in ecologically sensitive areas, 
the frequency and impact of such events have intensi-
fied. The recent surge in landslide-related disasters calls 
for robust mechanisms to identify and manage high-risk 
zones effectively. Scientific studies emphasize the impor-
tance of spatial prediction tools to support regional plan-
ning and early warning systems, especially in high-rain-
fall regions like the Nilgiris [1–3].

Scholarly research consistently cindicates that land-
slide-prone zones tend to exhibit recurring instability, 
especially under similar geological and environmen-
tal conditions as previous events. This insight forms 
the backbone of predictive landslide modeling. India’s 
mountainous regions, such as the Western Ghats, Hi-
malayas, and certain isolated hill ranges, face persistent 
landslide challenges—particularly during the monsoon 
season. The Nilgiris, marked by complex terrain and 
high rainfall, are notably affected. For instance, studies 
employing statistical and regression-based approaches 
have highlighted the significant role of steep gradients 
in triggering slope failures during intense precipitation 
periods [4]. These heavy rains, particularly prevalent from 
June through September, often disrupt transport net-
works, cutting off communities and hindering emergency 
response efforts. Indigenous populations residing in un-
stable zones are especially at risk, reinforcing the need 
for localized risk assessments. This study utilizes the 
Frequency Ratio model, emphasizing topographic and 
structural variables over direct rainfall inputs to create a 
targeted susceptibility map for the district. Such maps, 

when integrated with remote sensing and GIS platforms, 
serve as strategic tools for planners and disaster mitiga-
tion agencies.

Various natural and anthropogenic factors including 
landform structure, geology, hydrological pathways, and 
climatic dynamics contribute to landslide formation. Ef-
fectively predicting these events requires spatial analysis 
tools that can accommodate the complex interactions 
among these elements [5]. Broadly, two approaches are 
used for susceptibility mapping: quantitative models, 
which depend on statistical or computational simula-
tions, and qualitative models, which draw from expert 
assessments and field observations [6]. This study pri-
marily utilizes secondary geospatial datasets to perform 
landslide susceptibility analysis. Land cover classifica-
tion and vegetation metrics were derived from Landsat 8 
imagery obtained through the USGS archives, while ele-
vation and slope data were sourced from SRTM (Shuttle 
Radar Topography Mission) datasets. 

Additional information on soil composition and geo-
logical profiles was accessed from the Geological Survey 
of India. Historical records of landslides were consulted 
for model calibration and validation. All thematic layers 
were generated using ArcGIS, and terrain characteristics 
were derived using a Digital Elevation Model to assess 
stability and vulnerability across the landscape.

Vegetation patterns across the study area were eval-
uated using the Normalized Difference Vegetation Index 
(NDVI), calculated from red and near-infrared reflec-
tance values available in Landsat 8 imagery. Simultane-
ously, structural discontinuities in the terrain—referred 
to as lineaments—were detected by preprocessing the 
same satellite data. A directional filtering-based algo-
rithm, operated through PCI-Geomatica software, was 
employed to identify linear features indicative of geo-
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logical fractures. These extracted lineaments were sub-
sequently processed in ArcGIS to generate density and 
proximity maps, which helped assess their influence on 
slope instability. For land cover classification, a super-
vised classification approach using key spectral bands 
(green, red, and near-infrared) was implemented. Train-
ing data based on known land use types ensured accurate 
classification, allowing for a detailed analysis of surface 
dynamics within the study region.

A range of methodologies has been explored in the 
literature for assessing landslide susceptibility, each of-
fering distinct strengths. These include inventory-based 
techniques, expert-driven frameworks, and statistical 
models [7]. Both deterministic and probabilistic approach-
es are also used, with growing attention now being given 
to machine learning algorithms, which provide prom-
ising accuracy in predictive modeling. Despite the ad-
vancement of such techniques, traditional methods such 
as the Information Value Method, Weight of Evidence, 
and Frequency Ratio (FR) remain widely adopted due 
to their computational simplicity and demonstrated ef-
fectiveness [8]. In this study, the FR method was selected 
for its statistical transparency and proven reliability. By 
integrating landslide occurrence data with thematic maps 
of influencing factors, the FR approach quantifies the 
relative probability of landslides for different environ-
mental conditions. Frequency ratios were computed for 
each classified factor to evaluate their influence on slope 
failure risk.

2. Study Area
The Nilgiris constitute one of India’s oldest mountain 

ranges and are located at the confluence of Tamil Nadu, 
Kerala, and Karnataka. This area holds significant geo-
graphical and ecological importance because it is part of 
the Western Ghats. Owing to its unique and diversified 
ecosystems, the Nilgiris was the first place in India to 
be designated as a biosphere reserve, and is recognized 
globally as one of the fourteen biodiversity hotspots. The 
Nilgiris have a lot of different heights, with some areas 
being as low as 900 m and others being as high as 2600 
m above sea level.

The Nilgiris is not only important for the envi-

ronment, but it is also a famous hill station and a ma-
jor tourist destination, both of which contribute sub-
stantially to the local economy and livelihoods. It is 
the only district in Tamil Nadu that is completely on 
the Nilgiri Plateau, at the junction of  the Western and 
Eastern Ghats. There are also eight hydroelectric pow-
er plants in the area that help provide Tamil Nadu with 
electricity,further enhancing its regional importance.  
The Nilgiris district spans an area of approximately 
2551 square kilometres, encompassing key adminis-
trative areas such as Ooty, Coonoor, Gudalur, Kota-
giri, Kundah, and Pandalur. For this study, the focus 
is on the southern and southeastern parts of the dis-
trict, where landslides happen more often. The re-
search area is between latitudes 11°11′28″ N and 
11°32′10″ N and longitudes 76°36′7″ E and 77°00′18″ 
E. It covers roughly 936 square kilometres of land.  
The Southwest monsoon (June to August) and the North-
east monsoon (October to December) are the two primary 
rainfall seasons in the Nilgiris region. The climate re-
mains generally mild, with average maximum tempera-
tures around 20.7 °C and minimum temperatures near 9.6 
°C. The humidity levels stay rather consistent throughout 
the year, typically ranging between 75.8% and 76.9%. 
Figure 1 shows the geographic extent and spatial config-
uration of the study area.

3. Data and Methodology
A lot of environmental factors, including geological 

formations, landform characteristics, water flow patterns, 
and weather conditions, can cause landslides. Accurately 
predicting landslide events requires the the complex and 
often interrelated nature of triggering factors. Research-
ers have come up with both qualitative and quantitative 
ways to assess landslide susceptibility over time. Quan-
titative methods typically involve statistical analysis, 
physical modelling, or computational simulations, where-
as qualitative methods rely more on expert judgement, 
terrain interpretation, and geomorphological insights.  
This investigation relied primarily on secondary geospa-
tial data to construct and analyze landslide susceptibility. 
Multispectral satellite imagery from the Landsat 8 OLI 
sensor, accessed via USGS repositories, facilitated land 
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cover classification and vegetation analysis. Additionally, 
terrain elevation and slope data were obtained from the 
SRTM dataset. Soil profiles and geological attributes were 
sourced from the Geological Survey of India, offering in-
sights into physical ground conditions. Historical landslide 
incident data and susceptibility records were compiled 
from district-level archives, aiding in both model training 
and validation. 

All spatial data were processed using ArcGIS to gener-
ate thematic layers essential for the FR-based susceptibility 
assessment. A Digital Elevation Model (DEM) was created 
and processed using ArcGIS for terrain analysis, includ-
ing the mapping of slopes and elevations. This proved to 
be a useful tool for for identifying stable and unstable ter-
rain zones. Satellite-based datasets were used to collect a 
number of important environmental indicators, such as the 
Normalised Difference Vegetation Index (NDVI), surface 
moisture levels, lineament patterns, and their density. Land 
use and land cover (LULC) classification in the study area 
was conducted using imagery from the Landsat 8 satellite. 
In a supervised classification method done with ArcGIS 

10.8, spectral bands 3 (green), 4 (red), and 5 (near-infrared) 
were used. This approach utilized training data based on 
known land cover types, enabling accurate identification 
and categorisation of distinct surface features. NDVI val-
ues were also derived from the same satellite imagery, pro-
viding information about the health and density of plants 
in different parts of the study area.

In remote sensing, vegetation conditions in this study 
were evaluated using NDVI, derived from spectral data 
collected by Landsat 8. Specifically, reflectance values 
from the red (Band 4) and near-infrared (Band 5) bands 
were processed to estimate vegetation health across the ter-
rain. In parallel, geological lineaments were identified by 
preprocessing the satellite imagery to highlight structural 
discontinuities. The LINE detection algorithm, executed 
through PCI-Geomatica software, extracted linear features 
based on directional contrast. These features were then im-
ported into ArcGIS for further spatial analysis, including 
density mapping and proximity buffering to evaluate their 
potential influence on landslide susceptibility.

Figure 1. Location of the Study area.
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The literature has examined a number of different 
methods for assessing landslide susceptibility, each with 
its advantages and limitations. There are a lot of different 
types of these methods, such as inventory-based studies 
[9], expert-driven evaluation models [10], and statistical ap-
proaches [11]. Along with these, deterministic and probabilis-
tic models, as well as non-parametric and distribution-free 
methods, have been used in many different regions [12].  
Machine learning and deep learning approaches have be-
come more popular for modelling landslip susceptibility 
in recent years due to their strong predictive performance. 
Several traditional methods are still widely used, along 
with these more advanced ones. These include the Infor-
mation Value Method (IVM) [13], the Weight of Evidence 
(WOE) model [14], and the Frequency Ratio (FR) tech-
nique [15], to name a few [16]. The Frequency Ratio approach 
continues to be widely adopted due to its computational 
simplicity and effectiveness as a bivariate statistical tool.  
Using GIS platforms to analyze geographical data, the 
Frequency Ratio (FR) approach is a useful tool to as-
sess how different environmental conditions affect the 
likelihood of landslides [17]. To make accurate forecasts 
regarding the risk of landslides, it is essential to have 
a good grasp of the physical topography and the ex-
act conditions that cause slope failures. The FR meth-
od is becoming more popular in recent studies due to its 
ease of use and effectiveness. It has also been found to 
be reliable in determining landslip susceptibility [18,19].  
The landslip inventory and the aspect map of the research 

area were combined to use the Frequency Ratio (FR) 

method. We used specific statistical formulae to calculate 

the frequency ratios for each class of contributing factors. 

These ratios show how much these factors affect the num-

ber of landslides.

Where, PCi = no. of pixel in respective class of a indi-

vidual parameter, 

n = no. of classes

α = Ratio of the parameters

Where, LSi = no. of landslide episodes

n = no. of classes

β = ratio of the landslides

Frequency Ratio, FR =  X 100

4. Result and Discussion
Choosing the best variables for modelling landslip 

susceptibility is a challenging part of spatial analysis. 
There is no one universal way to identify these condi-
tioning elements, especially when using GIS. But for a 
reliable assessment, the chosen metrics must be mea-
surable, spatially meaningful, and closely tied to the 
landscape’s physical and environmental features [20]. In 
this study, 10 of these characteristics were examined, 
including soil type and depth, slope, aspect, density 
of vegetation (NDVI), geomorphology, rainfall, and 
land use and land cover patterns. Each of these factors 
plays a different role in maintaining the terrain stable.  
Soil type is one of the most critical characteristics that 
might cause landslides. Slopes built of soils that aren’t 
very stable or well-compacted are more likely to fail, 
especially during intense rainfall. Earlier research, like 
the one by Wieczorek et al. (1996), found that areas with 
clay-heavy soils and loose deposits are more likely to 
have unstable slopes since they don’t drain well and their 
structures aren’t very strong.

4.1. Soil Structure in Nilgiris

There are three primary types of soil in the research 

area (see Figure 2): sandy clay loam, rocky terrain 

(rock land), and clay loam. The distribution of these 

soil types is not uniform across the area. Sandy clay 

loam is the most common type of soil. It covers a large 

area from the west to the east and is also found in small 

pockets in the north. The southern and southeastern 

parts of the district have more rocky ground, where-

as the eastern section has a smaller area of clay loam.  

The geographical distribution of soil types in the Nilg-

iris region’s defined research area is shown in the fig-

ure, which is essential for estimating the susceptibility 

of landslides. Three main soil types are depicted on the 
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map: rock land (in light brown), clay loam (in brown), 

and sandy clay loam (in light green), which is the dom-

inant kind. These soil types have a major impact on 

water infiltration capacity and slope stability, which in 

turn affects the likelihood of landslides. In a supervised 

classification framework, the map further superimpos-

es training (red dots) and testing (blue dots) data points 

that are utilized for model building and validation. In or-

der to calibrate and assess the dynamic landslide suscep-

tibility model, these georeferenced samples were crucial 

(Figure 2).

Sandy clay loam is the most common type of soil in 

terms of area covered, occupying about 798 square ki-

lometres, or about 85.3% of the study area. Next comes 

rocky terrain, which makes up about 133.8 square kilo-

metres, or 14.3%. Clay loam, on the other hand, is only 

found in a small area, covering only around 3.4 square 

kilometres, or 0.3% of the region. These variations in 

how the soil is spread out have a significant impact on 

how stable the slope is and how the ground reacts to wa-

ter. This is what causes the landslides that happen in the 

Nilgiris.

Figure 2. Soil Map.

4.2. Soil Depth

When figuring out how stable a slope is and how 

likely it is to experience a landslip, the depth of the 

soil is very important. Deeper soils are usually bet-

ter at holding water, supporting deeper root systems, 
and enhancing slope strength. When soil gets deeper, it 
can soak up more rain, which helps reduce surface run-
off and lowers the risk of erosion. On the other hand, 
shallow soils don’t have these stabilising features and 
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are more likely to fail, especially during heavy rain, 
which makes landslides more likely in these places.  
The geographical distribution of soil depth classes in the 
landslide-prone Nilgiris region is depicted on this map, 
which is essential for risk forecasting and dynamic land-
slide susceptibility modeling. Three main soil depth cate-
gories very deep soils (>150 cm), deep soils (100–150 cm), 
and rock land are present in the research region, which is 
indicated in red. The subsurface hydrology, root anchoring, 
and slope stability—all of which have a major impact on 

the onset and spread of landslides are determined in large 
part by these variations in soil depth (Figure 3). The ma-
jority of the research area is made up of very deep soils, 
which are shown in green. These soils have a comparative-
ly larger ability to retain water, which can result in higher 
pore water pressure during periods of intense rainfall. Be-
cause of their differing infiltration and drainage properties, 
the deep soils (shown in purple) and rock land (brown 
regions) represent zones that may have distinct landslide 
triggering processes.

Figure 3. Soil Depth Map.

The northern and eastern margins of the research area 
are where most of the areas with little or no soil depth are 
located. These areas are mostly rocky outcrops. There are 
also a few small areas of similar terrain in the southeast. 
Most of the soils that are between 100 and 150 centimetres 
deep are concentrated in the extreme north and south of the 
district. These variations in depth have a significant effect 
on both the stability of the slope and the passage of water 
through the soil. These are two important factors in accu-

rately modelling landslide susceptibility.

4.3. Slope

One of the most important factors that affects how sta-
ble a piece of land is the slope gradient. The ground is more 
likely to shift when the angle of inclination rises because 
the gravitational attraction on surface materials gets stron-
ger. Because there is a direct link between slope gradient 
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and mass movement, steeper slopes are more likely to ex-
perience landslides. Slope gradient is often seen as the most 
important cause of slope failures in landslip research [21].  
The slope classification map (Figure 4) shows that the re-
search area has slopes that range from flat land to inclines 
that are as steep as 50 degrees. We categorised the slopes 

into five groups: 0–5°, 5–15°, 15–30°, 30–50°, and over 
50° to better understand the terrain. Most of the northern 
part of the Nilgiris has mild slopes that are usually between 
0 and 5 degrees. As you move west and into the central re-
gion, these gentle slopes slowly turn into steeper ones that 
are between 5 and 15 degrees.

Figure 4. Slope Map.

As you go east and south in the area, the slopes usual-
ly stay between 15 and 30 degrees. This type can also be 
found in the southwestern part and in a few places in the 
central district. Steeper slopes, between 30° and 50°, cover 
less of the landscape but are very noticeable in the north-
eastern region and at the edges of the southeastern zone. 
Steep slopes that are more than 50° are not very common. 
They usually only occur in small areas in the southeast and 
on rocky outcrops in the southwest. Different slope an-
gles clearly affect the danger of landslides because steeper 
slopes are usually less stable and more likely to fail. These 
steeper slopes frequently indicate areas of the landscape 
that are more likely to be damaged.

4.4. Slope Aspect Distribution

The aspect of a slope, or the direction it faces, can 
have a significant effect on how likely it is to slide down 
because it changes the conditions that help keep the 
slope stable. The direction of the slope is very import-
ant for controlling the amount of vegetation cover and 
moisture retention, both of which help keep the soil to-
gether and strong. When these stabilising parts get weak-
er, the risks of the slope failing increase substantially.  
Aspect also affects microclimatic conditions, which 
change the physical properties of slope materials over 
time. Some of these conditions are the amount of rain-
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fall, how much sunlight the slope gets, and which 
way the wind blows (which affects whether the slope 
stays wet or dries out), and how much surface weath-
ering there is. The amount of sunshine a slope gets de-
pends on its orientation. This influences how fast water 
evaporates, how fast plants develop, and how fast soil 
breaks down, all of which increase the risk of landslides. 
Slope aspect is usually considered to be an essential fac-
tor in determining how likely a landslip is to happen be-
cause it affects several crucial environmental parameters. 
The direction of a slope impacts how much geochemical 
weathering happens and how stable it is overall. Slopes 
that don’t get as much vegetation because they don’t get 
enough sunshine or are exposed to harsh weather, or that 
dry up and degrade more quickly, are more likely to fail. 
Therefore, aspect is a useful tool for predicting landslides 

and assessing hazards.
Figure 5 illustrates the spatial distribution of slope as-

pects across the Nilgiris region, highlighting the terrain’s 
complexity and its influence on landslide susceptibility. 
The study area is predominantly mountainous, with only 
1.52 km² (0.17%) classified as flat terrain, mostly locat-
ed in the central part of the region. The slope orientation 
shows significant spatial variability. North-facing slopes 
account for approximately 110.4 km² (11.80%), closely 
followed by northeast-facing slopes at 109.2 km² (11.67%), 
and east-facing slopes, which also cover about 110.4 km² 
(11.80%). These dominant aspects are primarily observed 
in the central, eastern, and western zones of the study area. 
In contrast, the northwest and southeast parts of the region 
are characterized by east- and southeast-facing slopes, re-

spectively.

Figure 5. Aspect Map.

Slope aspect plays a crucial role in influencing micro-
climatic conditions such as solar radiation exposure, soil 

moisture retention, and vegetation growth all of which 
directly affect the likelihood of slope failure. Therefore, 
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understanding the spatial variation in aspect is essen-
tial for accurately modeling landslide susceptibility and 
enhancing dynamic risk forecasting in this terrain-sen-
sitive region. The most common slope direction is south-
east, which covers 137.5 square kilometres, or 14.17% 
of the area. Next are the south-facing hills, which oc-
cupy 124.4 square kilometres (13.30%), and the south-
west-facing terrain, which covers 99.2 square kilometres 
(10.61%). West-facing slopes take up 94.6 square kilo-
metres, which is 10.11% of the total area. The slopes that 
face northwest are a little larger, covering 125.4 square 
kilometres or 13.43%. There is also a separate 14.04 
square kilometre area, or about 1.55%, that is listed as 
north-facing terrain. This could be because of overlap-
ping data entries or errors made in prior classifications.  
This range of slope orientations shows how diverse the 
topography is in the area and points to the many microcli-
matic and geophysical conditions that affect how stable or 
unstable particular parts of the landscape can be.

4.5. Normalised Difference Vegetation Index 
(NDVI)

The Normalised Difference Vegetation Index (NDVI) 
is an important factor in forecasting how likely a land-
slip is to happen. Vegetation is very important for keeping 
slopes stable because plant roots help hold the soil together 
and slow down erosion on the surface. Slopes with a lot of 
vegetation on them are usually more stable and less like-
ly to break down. On the other hand, slopes with little or 
no vegetation on them are more likely to erode and slide 
down. In general, greater NDVI values mean that the veg-
etation is healthier and denser, which usually means that it 
is better at resisting slope collapse.

Using the Normalized Difference plant Index (NDVI), 
a crucial biophysical indicator incorporated into landslide 
susceptibility models, Figure 6 shows the geographical 
distribution of plant density in the research region. Slope 
stability is affected differently by the low, moderate, and 
high vegetation cover classifications that the NDVI map 
assigns to the area. Large swaths of the northern and north-
west Nilgiris are covered in dense vegetation, mostly forest 
landscapes, as shown by high NDVI values (green). Be-
cause deep-rooted vegetation improves soil cohesion and 
decreases surface flow, these areas are often less vulnera-
ble to landslides.

Figure 6. NDVI Map.
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The spatial analysis suggests that about 42.3% of the 
studied area, or 395.9 square kilometres, has low vegeta-
tion cover. There are 238.6 square kilometres of land with 
moderate vegetation cover, which is 25.5% of the entire 
area. There are also 301.3 square kilometres of land with 
thick vegetation, which is 32.2% of the total area. These 
differences in vegetation density have a big effect on how 
well slopes hold up against erosion and are a major com-
ponent in figuring out how likely a landslip is to happen in 

a given area. 

4.6. Geomorphology 

Geomorphological traits are crucial for finding and 
studying places that are likely to have landslides. Hansen [22] 
states that landform morphology and the underlying lithol-
ogy has a big effect on surface evolution over time. The 
type of rock below them determines the basic properties 
of geological materials, such as strength, permeability, and 
porosity. Geomorphology is an important part of landslip 
risk assessment since these factors directly affect how like-
ly it is that a slope will give way under stress. 

The configuration of natural landforms, such as ridge-
lines, valleys, and degraded hilltops, has a direct effect on 

water accumulation, the mobilization of soil and debris, 
and the development of ground stress concentrations. For 
this reason, geomorphology is typically a key part of geo-
spatial models that try to assess landslide susceptibility. It 
helps show the natural weaknesses of the environment and 
the specific conditions that could cause slope failures.

The contour of the terrain, especially when you look 
at the slope gradients, plays a vital role in  determining 
both the behavior and intensity of landslide activity. This 
study breaks down the geomorphological environment 
into four primary groups: dome-shaped denudational hills, 
structurally controlled ridges, weathered hilltops, and up-
per piedmont slopes associated with valleys. The risk of 
landslides is different for each type of landform because of 
its own physical structure and the geology underneath it.  
Weathered hilltops are predominantly located in the west-
ern and northwestern parts of the research region, as shown 
in Figure 7. They span around 74.4 square kilometres, or 
about 7.9% of the total landscape. Dome-shaped denuda-
tional hills are more limited in extent, covering about 4.3 
square kilometres in the northeastern corner. Valley fea-
tures appear only in a few isolated zones in the eastern half 
of the region, covering around 0.70 square kilometres, or 
0.07% of the entire study area.

Figure 7. Geomorphology Map.
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The most common geomorphological feature in the 
studied area is ridge-type structural hills, which cover 
around 854 square kilometres, or about 91.3% of the total 
territory. These ridges are not only the dominant part of the 
terrain, but they are also associated with more landslides. 

Landform features like ridges and patterns of land use 
and land cover have a significant impact on the occurrence 
of landslides. Slope stability is directly impacted by human 
activities that alter soil structure, vegetation density, and 
surface runoff, such as urbanization, agriculture, and defor-
estation. In particular, deep-rooted vegetation is essential 
for binding soil and preventing erosion. Thus, determining 
landslide risk requires an awareness of and mapping of 

land use and vegetation, especially in areas that are vulner-

able to environmental changes or anthropogenic activity.

4.7. Land Use Land Cover Change 

Land cover plays a critical role in keeping slopes sta-
ble because it influences surface water flow and soil mois-
ture retention. There are six main types of land use and 
land cover considered in this study. Figure 8 shows that 
most of the water bodies are in the southwestern half of the 
study area. Most of the agricultural areas are found in the 
western part, with small patches of them distributed in the 

middle and northern parts.

Figure 8. Land Use Land Cover Map.

The Nilgiris region’s LULC distribution map, which 

is shown in the figure, supports the main goal of the re-

search project “Dynamic Landslide Susceptibility Model-

ing and Risk Forecasting in the Nilgiris Using Geospatial 

Approaches.” A variety of land cover types may be seen 

in the spatial representation, each of which affects the ter-

rain’s hydrological and geomorphic behavior and, conse-

quently, the vulnerability to landslides. Forest cover, which 
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makes up 482.2 km² (51.5%) of the entire study area, is the 
most common land cover (Figure 8). In the north, north-
east, south, and southeast sections, these wooded areas are 
extensively distributed. Because of their extensive root 
systems, which bind soil and reduce surface flow, forests 
are essential for stabilizing slopes and lowering the risk of 
landslides in these areas.

The study area’s central and western regions are home 
to the majority of the 236.6 km² (25.2%) of agricultural 
land, which makes up the second-largest category. Al-
though agriculture sustains local livelihoods, its expansion 
frequently results in the removal of native vegetation and 
disturbance to soil structure, increasing the risk of erosion 
and slope collapse in these areas. In regions with steep to-
pography or those close to lineaments, this risk is further 
elevated. The majority of the 107.0 km² (11.4%) of planta-
tion lands are located in the northern, central, and western 
regions. Plantations typically lack the structural complex-
ity of natural forests, although providing some vegetative 
cover. Monoculture plantings, especially during periods of 
heavy rainfall, may worsen soil degradation and decrease 
slope cohesiveness, raising the risk of landslides.

There are sporadic clusters in the east, but the majority 
of the 104.8 km² (11.2%) of built-up or settlement areas 
are concentrated in the central, western, and northeastern 
regions. Because of land grading, construction, and infra-
structure development, which alter the natural drainage and 
slope profiles, these developed regions are extremely vul-
nerable. Shallow landslides and runoff are also exacerbat-
ed by the growth of impervious surfaces. Despite its small 
size (1.2 km² or 0.13%), open land is scattered across the 
northern, central, and southern borders. These exposed or 
thinly vegetated areas are more vulnerable to shallow land-
slide occurrences and surface erosion. Lastly, water bodies 
make up 4.0 km² (0.42%), and they are usually found in 
depressions or lower elevations.

The geographic robustness of the susceptibility mod-
elling process is improved by the overlay of training and 
testing points (shown in red and blue, respectively) uti-
lized for model validation across different LULC classes. 
Robust predictive modeling is supported by the distribu-
tion of these points, which guarantees that all land cover 
groups are fairly represented. The map’s geographical ar-
rangement and quantitative descriptions of the various land 

cover categories directly contribute to the study’s landslide 
susceptibility modeling objective. Forest-dominated re-
gions are less vulnerable, but agricultural, plantation, open-
land, and built-up areas particularly those that overlap with 
geological features like lineaments need to be assessed for 
risk at higher levels.

4.8. Lineament Phenomena

Lineaments are straight lines on the Earth’s sur-
face that usually indicate geological phenomena in-
cluding faults, joints, ridges, and fractures beneath 
the surface. These features highlight zones of crust-
al weakness, especially in tectonically active places. 
Their analysis is crucial in landslide studies because 
they  influence subsurface water flow, alter rock and soil 
strength, and thereby increase slope failure susceptibility.  
In the Nilgiri region, lineaments natural linear features 
like faults and fractures are closely linked to valleys and 
drainage patterns, especially in highly weathered and erod-
ed terrain. Their presence significantly influences slope 
stability and the likelihood of landslides. Based on linea-
ment density, the region is divided into three classes: low 
density (66.01%), moderate density (19.94%), and high 
density (14.05%), with higher densities concentrated in the 
western, central, northern, and eastern parts of the district. 
To assess the influence of proximity to lineaments, buf-
fer zones were created at 500-meter intervals. The 0–500 
m zone covers 28.3%, primarily in the western and cen-
tral-western areas, and is highly susceptible to landslides. 
The 500–2000 m buffer covers 18.57%, mainly in the east-
ern and northern parts, while areas beyond 2000 m make 
up 53.1%, mostly in the eastern and southern regions, and 
are considered relatively more stable (Figure 9).

These distance-based buffer zones give us important 
information about how geological characteristics affect 
landslide susceptibility across different parts of the land-
scape. They are a crucial component in making landslide 
prediction models more accurate. These findings show that 
areas located near or within zones of high lineament densi-
ty are more vulnerable to landslides due to increased rock 
fracturing and enhanced water infiltration. This spatial 
analysis is crucial for improving landslide prediction and 
land-use planning.
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Figure 9. Lineament, Lineament Density and Lineament Buffer map of Nilgiri district.

4.9. Frequency Ratio Method

The study used the Frequency Ratio (FR) model to 
look at the spatial correlations between landslip events 
and the associated conditioning factors. This bivariate 
statistical method uses the locations of recorded land-
slip incidents and the patterns of possible triggering 
conditions to figure out how likely it is that a landslip 
will happen. The method shows how different factors 
affect the chance of slope failure by comparing ar-
eas with and without landslides in similar conditions.  

 is used to analyze how different environmental features 
correspond with past landslide occurrences. For each 
contributing factor, the ratio is determined by comparing 
the The Frequency Ratio (FR) technique was employed 
to examine the spatial relationship between historical 
landslide records and various conditioning factors. This 
approach involves comparing the distribution of land-
slide occurrences within individual factor classes to their 
overall spatial extent in the study area. By calculating 
the ratio between the observed and expected distribu-
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tions, the model helps identify which terrain conditions 
are more prone to slope failure. A ratio greater than 1 
implies a stronger association with landslide incidence, 
while a ratio below 1 suggests a weaker correlation. 
The model indicated that slopes ranging between 15° and 
30° were more prone to landslides, showing higher FR 
values and demonstrating significant susceptibility. Sur-
prisingly, even steeper slopes those between 30° and 50° 
exhibited lower FR scores, suggesting localized stability, 

possibly due to compact rock formations or dense veg-
etation cover. Lower-angle slopes showed reduced fre-
quency ratios, reflecting decreased gravitational stress. 
Similarly, southeast- and south-facing slopes recorded 
the highest susceptibility, likely due to variations in so-
lar radiation exposure and surface moisture retention. 
The complete frequency ratio values for all parameters 
are compiled in Table 1 to provide a comparative under-
standing of influencing variables.

Table 1. Result of the frequency ratio model for each factor.
Parameters Class Frequency Ratio

Land use land cover

Water Body 0
Agriculture 1.87
Plantation 0.42

Forest 0.13
Open land 0
Settlement 5.77

Soil Depth
Very deep > 150 1.29
Deep 100 – 150 0

Rock land 0.3

NDVI
Low 0.75

Moderate 1.05
High 1.46

Soil
Sandy clay loam 1.44

Rock land 0.48
Clay loam 0.12

Slope

0 – 5 0.57
5–15 1.15

15 – 30 1.22
30 – 50 0.31

> 50 0

Geomorphology

Ridge type Structural hills 1.39
Upper Piedomont slope 0.67

Hilltop Weathered 1.29
Dome type Denudational hills 0.75

Valley 0

Lineament Density
Low 1.14

Moderate 0.81
High 0.28

Lineament Buffer
0 – 500 0.92

500 – 2000 1.17
> 2000 1.26

Aspect

Flat 0
North 0.91

Northeast 0.88
East 0.95

Southeast 1.45
South 1.76

Southwest 1.06
West 0.92

Northwest 0.28
North 0.49
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Figure 10 shows how several environmental and 
geological conditions affect the likelihood of landslides 
in the study area. Among all variables, the slope gradient 
emerged as the most influential, contributing 9.15% to the 
landslide susceptibility index. This suggests that areas with 
steeper inclines are naturally more prone to ground failure 
due to the increased gravitational force acting on surface 
materials, a relationship clearly illustrated in the suscepti-
bility map.

Land Use and Land Cover (LULC) is the second 
most important element, after slope gradient, contribut-
ing 8.37% to the model. This shows how crucial it is for 
human activities like farming, cutting down trees, and 
building cities, as well as natural vegetation patterns, to 
affect slope stability. These changes in how land is used 
often mess up natural drainage and make the soil less sta-
ble, which makes landslides more likely in such regions. 
After slope gradient and land use, geomorphology is the 
third most important element, accounting for 7.78% of the 
landslip susceptibility model. This shows how important 
the landforms and terrain structures below the surface are 

in determining how slopes react to environmental stimuli. 
Soil type is also important, contributing 7.48% to suscep-
tibility due to its influence on soil moisture retention and 
resistance to shear stresses. 

Lineament density, which shows the concentra-
tion of geological structures such as faults and fractures, 
constitutes 4.50% of the whole model. Soil depth, crit-
ical for water absorption and root stability, contributes 
4.42%. The Normalised Difference Vegetation Index 
(NDVI) measures vegetation cover, which has a low-
er effect, making up only 2.6% of the susceptibility.  
The lineament buffer zones show that being close to geo-
logical faults has the least effect, adding only 1.81%. 
This means that being close to these kinds of structures 
doesn’t have a big effect on starting a landslip in this area.  
Figure 10’s graph makes it easy to see how important each 
component is in relation to the others. This information can 
help you decide which risk reduction initiatives to focus on 
first and how to better prepare for landslides in the whole 

region.

Figure 10. Percentage Shares of Parameters.
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4.10. Landslide Susceptibility Map

This study’s landslide susceptibility map highlights 

the areas within the research region that are more prone 

to future landslide occurrences. The major goal of mak-

ing these kinds of maps is to clearly show areas with 

different levels of danger. This information can then be 

used to plan effective hazard management and mitiga-
tion measures. Numerous factors—including climatic 
conditions, lithology, geological structure, hydrological 
dynamics, and long-term landscape evolution—contrib-
ute to landslide susceptibility. However, it is frequent-
ly hard to combine all of these in one predictive model.  
Rather than attempting to include every available vari-
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able, this study focused on a small number of observ-
able characteristics, such as slope, soil type, lithology, 
and land use/land cover, each represented as a sepa-
rate spatial layer. The Frequency Ratio (FR) model and 
historical landslide records, were employed to figure 
out and map landslide risk across the whole area. The 
susceptibility map in Figure 11 shows the terrain di-
vided into three groups: low, moderate, and high risk. 

While low-susceptibility areas are widely distributed 
across the region, they are especially prevalent in the west-
ern and northeastern regions. Moderate-risk zones include 
a lot of the centre area and go a little bit towards the north-
ern parts. Notably, a lot of reported landslides fall into this 
moderate-risk areas—likely due to the influence of vari-
able rainfall intensity and the strength of the monsoon sea-
son change. 

Figure 11. Landslide Susceptible Map using Frequency Ratio.

Some areas of the district have also become unsta-
ble because of human activities, especially those related 
to tourism development and infrastructure expansion. 
High-susceptibility zones are larger and cover the eastern, 
southern, and parts of the western areas. These high-risk 
regions need targeted attention and proactive mitigation 
strategies to reduce the potential for damage to both lives 

and property.

4.11. Model Validation

We checked the accuracy of the landslip suscepti-
bility assessment by comparing known landslip loca-
tions with the hazard zones predicted by the Frequency 

Ratio (FR) model. We made success rate and predic-
tion rate curves to see how well the model worked, 
and we determined the Area Under the Curve (AUC) 
values for both the training and validation datasets.  
The Area Under the Curve (AUC) is a widely accept-
ed metric for assessing a model’s ability to discrimi-
nate between landslide-prone and stable areas. It is a 
good way to reflect the reliability and consistency of 
the model’s predictive capacity [23]. The model per-
formed well, getting an AUC score of 0.879 on the train-
ing dataset, indicating high predictive accuracy, as seen 
in Figure 12. The validation dataset had a lower AUC 
of 0.63, suggesting a moderate agreement between the 
projected susceptibility and actual landslip incidences. 
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These results show that the Frequency Ratio model used in 
this study offers a reasonably reliable prediction of land-
slide susceptibility. According to frequently accepted clas-

sification standards, the model is in the “good” category. 
This shows that it works well for continuous risk appraisal 
and disaster management efforts in the area.
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Figure 12. Accuracy Assessment for Frequent Ratio.

5. Conclusion
The study’s results clearly reveal that a mix of land 

use patterns, geological factors, and topographical features 
have a significant impact on landslides in the Nilgiri area. 
This study uses the Frequency Ratio (FR) model in con-
junction with geospatial tools to provide a thorough evalu-
ation of the Nilgiris’ landslide vulnerability. According to 
the research, the most important elements influencing the 
incidence of landslides are soil type (7.48%), geomorphol-
ogy (7.78%), land use/land cover (8.37%), and slope gra-
dient (9.15%). The study highlights how human-induced 
changes, such as urbanization, agricultural growth, and 
deforestation, drastically affect slope stability and heighten 
susceptibility in already fragile situations. 

High-risk areas are precisely identified on the land-
slide susceptibility map produced by this model, especially 
in the district’s central, eastern, and western regions. The 
model’s robustness is evidenced by the validation findings 
(AUC = 0.879). Areas close to geological discontinuities, 
particularly those within 500 meters, are more vulnerable 
to slope collapse because of structural flaws and water in-

filtration routes, according to lineament density and prox-
imity studies. These results have important implications 
for infrastructure development, disaster mitigation, and 
land-use planning. Policymakers, planners, and emergency 
services may utilize the susceptibility map to prioritize ac-
tions, control building in high-risk areas, and create early 
warning systems.

Incorporating dynamic meteorological data, like soil 
moisture and rainfall, and using machine learning ap-
proaches should enhance model accuracy and improve 
temporal forecasts for future studies. Evaluating social 
exposure to geohazards might also benefit from the in-
tegration of community vulnerability indices.  Overall, 
this study promotes sustainable development planning in 
mountainous, environmentally sensitive areas like the Nil-
giris and offers a repeatable framework for landslide risk 
predictions.

Taken together, these results show that the Frequency 
Ratio technique works well for assessing landslip suscepti-
bility and provides planners, engineers, and policymakers 
with useful information on how to make land-use decisions 
and manage risk to lower landslip risks.
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