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ABSTRACT

Water scarcity and climate change are two of the biggest worldwide concerns.  A complicated and sometimes 
underappreciated occurrence, drought has an impact on many facets of human existence.  Early drought forecasts are 
therefore essential for water resource management and strategic planning.  In order to improve the accuracy of drought 
prediction, this work presents a unique hybrid model that combines the Autoregressive Moving Average (ARMA), 
Holt-Winters (Exponential Smoothing) model, Autoregressive Integrated Moving Average (ARIMA), and Random 
Forest Regressor model. We do a thorough analysis of the Dhaka Division, Bangladesh, daily precipitation data from 
January 1981 to March 2025. In contrast to other research that only examined standalone machine learning algorithms 
or conventional statistical models, our study combines the two and offers a comparative performance analysis of hybrid 
models in the context of drought prediction using SPI.  Furthermore, the study uses these models in the understudied 
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setting of Dhaka, Bangladesh, a place where little previous research has been done on drought forecasting. When  
examined side by side, our hybrid model Holt-Winters with LSTM model outperforms the hybrid approach. For SPI 
daily predictions, significant statistical parameters like Mean Absolute Error (MAE) and Root Mean Squared Error 
(RMSE) are especially crucial. This noteworthy enhancement highlights how much more accurate the innovative model 
is in forecasting droughts in Bangladesh’s Dhaka Division. Our findings highlight the hybrid model’s vital importance 
in tackling the problems caused by drought in the larger framework of climate change and water resource management.
Keywords: ARMA; ARIMA; Mean Absolute Error; LSTM; Drought

1.	 Introduction
Since droughts are natural disasters that almost al-

ways occur in all climates, researchers in a wide range of 
disciplines, including ecology, agriculture, meteorology, 
and environment, have been interested in researching them 
recently [1]. Human life is negatively impacted by drought, 
which is characterized as a time when there is insufficient 
soil moisture and a reduction in the amount of water avail-
able in surface and groundwater reservoirs. Given that 
drought is an unexplainable event that has particular detri-
mental impacts on civilization, one reasonable strategy to 
lessen its impact would be to forecast when it will occur 
[2]. Distinct areas may have distinct effects from drought. 
Drought indices (DIs) are commonly used to evaluate 
the effects of hydro-meteorological components, such as 
streamflow and precipitation, by showing a function of 
these variables. Four types of droughts may be evaluated 
using DI: hydrological, agricultural, socioeconomic, and 
meteorological. But there’s no guarantee that there won’t 
be a drought, which is why it’s critical to monitor drought 
events with indexes. Given that drought varies both mo-
mentarily and geographically, it is crucial to evaluate the 
likelihood of DI as well as the availability of hydro-meteo-
rological data [3]. In contrast to unexpected calamities, me-
teorological droughts occur gradually, giving time for edu-
cation and planning. Even though these droughts don’t first 
appear to be severe, they offer an opportunity for proactive 
water conservation and sustainable practices. As they de-
velop, more individuals realize how important it is to use 
water, which encourages positive behavioral adjustments. 
Weather-related droughts also encourage scientific inqui-
ry and result in improvements to forecast and resilience 
mechanisms. Most significantly, communities have more 
time to respond because of its slow start, which reduces 
the immediate hazards to people and property. While the 

advantages may vary, taking advantage of these opportuni-
ties contributes to societal resilience, sustainable practices, 
and the resolution of many drought-related problems. The 
meteorological perspective is important because it may be 
used to predict drought conditions before they happen [4]. 

Because of its inherent benefits, SPI was chosen for 
this inquiry. SPI will be quite beneficial as it just depends 
on precipitation, to start. This is particularly true in places 
where evaporation, moisture content, or temperature are 
unavailable. Second, SPI was made available as a tool for 
evaluating precipitation shortfalls across different time pe-
riods. Precipitation anomalies may cause different water 
resources to react at different times, with shorter or longer 
durations indicating these delays [5]. Lastly, SPI is a stan-
dardized index that is simpler to compute and versatile [6,7]. 
Time series event prediction is approached in a variety of 
ways. Because of its exceptional accuracy in predicting 
time-oriented events, the autoregressive integrated moving 
average (ARIMA) model is a widely used method. ARIMA 
has long been regarded as a reliable tool for time series 
forecasting, including streamflow and drought forecasting, 
due to some of its advantages over other approaches like 
neural networks and exponential smoothing [5]. ARIMA, for 
instance, may be able to adequately account for serial cor-
relation, which is frequently seen in time series modeling. 
In order to choose an appropriate model, this model can 
also offer a searching stage that comprises identification, 
estimate, and diagnostic testing. Because of its prediction 
accuracy and adaptability, ARIMA is a commonly used 
approach for a variety of time series data sets [8]. Neverthe-
less, ARIMA can only capture a portion of nonlinear and 
nonstationary time-oriented data, and it is only very useful 
for linear and stationary datasets [9]. The literature has a 
wide range of time series forecasting techniques, includ-
ing neural networks, ARMA, ARIMA, linear regression, 
and simple moving averages (MAs). These techniques use 
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historical records to predict future occurrences; time series 
data, on the other hand, are not determinist series and are 
regarded by scholars as stationary series. One way to mod-
el time series is to think of them as a mix of white noise 
and deterministic functions. In any time, series, a de-nos-
ing technique like the wavelet transform may reduce white 
noise and provide a better model [3]. In Dhaka, Bangladesh, 
the agriculture and water resource management sectors 
have a major challenge with drought predictions. Prompt 
and accurate forecasting of drought conditions can less-
en its negative effects on agricultural productivity, water 
availability, and general economic stability. This work fo-
cuses on using daily Standardized Precipitation Index (SPI) 
data, a commonly used measure of meteorological drought, 
to anticipate drought conditions. The goal is to increase 
the accuracy and dependability of drought forecasts by uti-
lizing sophisticated hybrid models that integrate machine 
learning techniques like Random Forest Regressor with 
statistical techniques like the Holt-Winters exponential 
smoothing technique. The resilience and sustainability of 
the region’s agricultural and water resources will eventual-
ly be enhanced by improved forecasting skills, which will 
allow for better readiness and response measures.

This study is based on machine learning, deep learn-
ing and some hybrid models combining for forecasting 
drought for Dhaka, Bangladesh. In this study we have pre-
sented the forecasting technique using standardized pre-
cipitation index (SPI) value for 1981 to 2023 for everyday 
intervals. The related works are discussed in this segment. 

Wavelet transform has been extensively employed 
to enhance forecasting precision in various mathematical 
prediction domains, often in conjunction with stochastic 
and artificial intelligence-based techniques [10]. Wang and 
Ding et al., identified wavelet transform as a valuable tool 
for drought forecasting. In their study, the integration of 
wavelet transforms with an artificial neural network (ANN) 
demonstrated improved drought prediction accuracy by le-
veraging the strengths of both methodologies [11]. Similarly, 
Kriechbaumer et al. utilized wavelet transform as a prepro-
cessing step to enhance the predictive performance of the 
ARIMA model in forecasting metal prices, validating its 
effectiveness [12].

Venkata Ramana et al., applied a wavelet-ANN hy-
brid approach to estimate monthly rainfall, where model 
calibration and validation were assessed using statistical 

criteria [13]. Their findings indicated that this hybrid model 
outperformed standalone ANN models, significantly im-
proving rainfall prediction accuracy. Several researchers 
have recognized wavelet transform as a robust tool for time 
series analysis, particularly in identifying trends, periodici-
ties, and fluctuations [14,15]. By applying wavelet transform, 
both time and frequency domain representations of a sig-
nal can be obtained, offering insights into the underlying 
processes. Research has demonstrated that wavelet-based 
methods are effective in analyzing time-oriented datasets, 
as each decomposed subseries reveals detailed information 
about data structure and periodicity [16–18].

Wavelet integration with stochastic models such as 
ARIMA and artificial intelligence models like ANN has 
gained popularity as a preprocessing technique for hydro-
logic time series, particularly in de-noising data and im-
proving model performance [19–23]. This is particularly use-
ful since single ANN models struggle with nonstationary 
time series.

Belayneh and Adamowski evaluated the effective-
ness of three data-driven approaches—Support Vector 
Machines (SVM), ANN, and Wavelet-ANN (WANN)—
for drought prediction in Ethiopia’s Awash River Basin 
using Standardized Precipitation Index (SPI) values. Their 
results demonstrated that the hybrid WANN model pro-
vided superior prediction accuracy compared to the other 
methods, as measured by R², Mean Absolute Error (MAE), 
and Root Mean Square Error (RMSE) [19–21]. A subsequent 
study compared the performance of traditional stochastic 
ARIMA models, Support Vector Regression (SVR), and 
ANN in predicting drought occurrences within the same 
basin [19]. In this study, the wavelet transform was integrat-
ed into these models as a data preprocessing step. Notably, 
the wavelet-based SVR (WSVR) model showed superior 
predictive capabilities, particularly for longer forecasting 
horizons of 6 to 12 months.

In another approach, a hybrid model called wavelet 
linear genetic programming (WLGP) was developed using 
Palmer’s modified drought index. Danandeh Mehr et al. 
found that WLGP outperformed standard genetic program-
ming models for long-term drought prediction, as the latter 
struggled to model beyond a three-month lead time [24]. 
Similarly, Djerbouai [25] assessed drought forecasting accu-
racy in Algeria’s Algerois Basin by comparing ANN mod-
els with stochastic ARIMA and SARIMA models using 
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SPI data for different lead times. Their study demonstrated 
that preprocessing data with wavelet transform significant-
ly enhanced ANN model performance, as indicated by sta-
tistical metrics such as the Nash-Sutcliffe Efficiency (NSE) 
coefficient, RMSE, and MAE across lead times of 1 to 6 
months [26–32].

For drought index forecasting, a novel hybrid mod-
el known as the wavelet-based extreme learning machine 
(WELM) was tested at three locations in Australia. This 
model was compared with Extreme Learning Machine 
(ELM), ANN, Least-Squares SVR (LSSVR), and their 
wavelet-enhanced counterparts (WANN and WLSSVR). 
Findings from Deo et al. revealed that WELM consistently 
outperformed the other models based on statistical perfor-
mance metrics [26]. Additionally, WANN exhibited promis-
ing results with lower frequency error rates and computa-
tional efficiency, further demonstrating the advantages of 
wavelet-based models in drought forecasting.

This study aims to evaluate the predictive accu-
racy of hybrid models and ARIMA for forecasting SPI-
based drought conditions. By comparing these models, the 
research assesses their effectiveness in predicting daily 
drought conditions at different time points. While ARI-
MA remains a popular choice for hydrological time series 
forecasting, it struggles with nonlinearity and nonstation-
arity—key characteristics of SPI data [33,34]. Despite the in-
creasing application of drought forecasting models, there is 
a lack of research specific to Dhaka, Bangladesh, a region 
particularly vulnerable to the socioeconomic impacts of 
drought. This study addresses this gap by presenting both 
ARIMA and hybrid models to improve prediction accuracy 
and assess their comparative performance.

Recent years have witnessed a surge in research le-
veraging machine learning and deep learning approaches to 
enhance the accuracy and robustness of drought forecast-
ing. Globally, numerous studies have demonstrated the ef-
fectiveness of hybrid and deep learning models in predict-
ing drought indices such as SPI. For example, Gasmi et al. 
[35] and Agudelo et al. [36] explored hybrid ARIMA-LSTM 
architectures and neural feature fusion methods for rain-
fall and drought predictions, highlighting their advantages 
over standalone statistical models. Similarly, Zhang et al. 
[37,38] and Rezaiy and Shabri [39] proposed advanced neural 
networks such as STAT-LSTM and EEMD-ARIMA for 
capturing spatiotemporal patterns and short-term drought 

fluctuations. Otkin et al. [40] and Dikshit et al. [41] who noted 
significant improvements in early drought warning systems 
when integrating these approaches. Deep learning models 
such as LSTM, RBF, and quantum Mamba networks were 
investigated by Tang et al. [42] and Hossaini-Moghari et al. 
[43] showcasing their strong performance in nonlinear time 
series modeling. The importance of hybrid models combin-
ing statistical and machine learning techniques was further 
emphasized by studies like those of Brust et al. [44]. 

In the context of Bangladesh, a number of studies 
have focused on localized drought forecasting using SPI 
and related indices. Rahman and Azim [45], along with 
Rabby and Adhikary [46], examined the trends and uncer-
tainty of meteorological droughts, while Mondol et al. [47] 
and Islam et al. [48] validated the performance of SPI, EDI, 
and other indices for regional drought monitoring. Several 
studies such as Paul et al. [49] and Hossain and Rahman [50] 
introduced machine learning-based tools using satellite and 
remote sensing data, advancing agricultural drought mon-
itoring frameworks. In parallel, Khatun and Khan [51] used 
CMIP5 projections with SPI and EDI to forecast future 
drought conditions under climate change scenarios, while 
Rahman et al. [52] and Alam et al. [53] integrated geospatial 
and statistical indicators for drought mapping in northwest-
ern Bangladesh [54]. Overall, these works collectively high-
light a growing research trend toward integrating statistical 
methods with artificial intelligence to improve drought 
prediction, offering significant implications for water re-
source planning and disaster management, particularly in 
climate-vulnerable regions like Bangladesh.

2.	 Materials and Methods
At first, we have selected the topic as per daily life 

needs. Then we have justified the topic according to the 
problem solutions. We have collected the dataset. Then 
we have planned for the study. We have implemented Hy-
brid models with some regular forecasting models. The 
Box-Jenkins method and the theory of stochastic process-
es serve as the foundation for ARIMA models. Climate 
persistence causes temporal autocorrelation in drought 
indicators like the SPI, which makes them ideal for ARI-
MA modeling.  The premise of this study is that previous 
climate patterns have an impact on future results (Granger 
causality). Therefore, by accounting for these lag-depen-



5

Research in Ecology | Volume 07 | Issue 05 | December 2025

dent effects, ARIMA may be used to statistically anticipate 
the onset of drought.

2.1.	Data Collection

We utilized the NASA POWER website to obtain 
the daily temporal average of solar fluxes and related 

temperature, humidity/precipitation, wind/pressure, and 

solar fluxes from 1-1-1981 to 7-3-2025. The coordinates 

are: 23.873, 89.7573. We used the coordinates to pin-

point the site and then pulled all of the historical data 

into a CSV file [55]. Figure 1 shows the map of Dhaka 

Division.

Figure 1. The Map of Dhaka Division.

2.2.	Data Pre-Processing

Here we will explain the data pre-processing tech-
nique we have applied for our study. We have Converted 
the Year, Month, Day column into one Date column. We 
also dropped unnecessary columns from our dataset. We 
checked the missing values presented in our dataset. But 
there were no any missing value. We have evaluated the 
SPI value using equations. The SPI (Soil Precipitation In-
dex) is a drought index that is calculated using the follow-
ing formula:

SPI = (Rainfall − MonthlyAvgRainFall) / Month-
lyStdRainFall

where:
Rainfall is the amount of rainfall that fell in a given 

month and year.
MonthlyAvgRainFall is the average amount of rain-

fall that falls in that month and year, based on a historical 
record.

MonthlyStdRainFall is the standard deviation of the 
rainfall in that month and year, based on a historical re-
cord.
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The SPI is a standardized measure of drought, mean-
ing that it has a mean of 0 and a standard deviation of 1. A 
positive SPI value indicates that the rainfall was above av-
erage for that month and year, while a negative SPI value 
indicates that the rainfall was below average.

The df.apply() function is used to apply the SPI for-
mula to each row of the df DataFrame. The lambda func-
tion is used to define the SPI formula. The lambda function 
takes two arguments: the row of the DataFrame and the 
index of the row. The lambda function then calculates the 
SPI value for that row and returns it. 

If the MonthlyStdRainFall value is 0, then the SPI 
value cannot be calculated. In this case, the lambda func-
tion returns the value -2. This value is used to indicate that 
the SPI value is not available. Here is a mathematical ex-
planation of the SPI formula:

SPI = (Rainfall − MonthlyAvgRainFall) / Month-
lyStdRainFall

The numerator of the fraction represents the differ-
ence between the actual rainfall and the average rainfall for 
that month and year. The denominator of the fraction rep-
resents the standard deviation of the rainfall for that month 
and year.

By dividing the difference between the actual and 
average rainfall by the standard deviation, we are standard-
izing the SPI value. This means that the SPI value has a 

mean of 0 and a standard deviation of 1.
A positive SPI value indicates that the rainfall was 

above average for that month and year. A negative SPI val-
ue indicates that the rainfall was below average.

•	 It then returns a classification label for the SPI value, 
based on the following criteria below.

•	 If the SPI value is greater than or equal to 2, the clas-
sification label is “Extremely wet”.

•	 If the SPI value is between 1.5 and 2, the classifica-
tion label is “Severely wet”.

•	 If the SPI value is between 1 and 1.5, the classifica-
tion label is “Moderately wet”.

•	 If the SPI value is between 0 and 1, the classification 
label is “Mild wet”.

•	 If the SPI value is between -1 and 0, the classifica-
tion label is “Mild drought”.

•	 If the SPI value is between -1.49 and -1, the classifi-
cation label is “Moderately drought”.

•	 If the SPI value is between -1.99 and -1.5, the classi-
fication label is “Severely drought”.

•	 If the SPI value is less than -1.5, the classification la-
bel is “Extremely drought”.

The Figure 2 shows the graphical view of the dataset 
according to SPI. Figure 3 shows the graphical view of the 
Seasonal Decompose for Monthly SPI value.

Figure 2. The Graphical View of the Dataset According To SPI.
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Figure 3. The Graphical View of the Seasonal Decompose for Monthly SPI Value.

2.3.	Algorithms

We have employed the Holt-Winters (Exponential 
Smoothing) model, the Autoregressive Moving Average 
(ARMA) model, the Autoregressive Integrated Moving Av-
erage (ARIMA) model, and the Random Forest Regressor 
model. Along with hybrid models ARIMA with Multi-Lay-
er Perception Model (MLP), ARIMA with Long-Short 
Time Memory (LSTM) model, and ARIMA with Random 
Forest Regressor, Holt-Winters with Multi-Layer Percep-
tion Model, Holt-Winters with Long-Short Time Memory, 
and Holt-Winters with Random Forest Regressor were also 
used.

2.3.1.	ARIMA Model

Time series data analysis and forecasting are com-
monly done using the ARIMA (AutoRegressive Integrated 
Moving Average) model. Our chosen ARIMA model, des-
ignated as ARIMA(2,0,1), has one moving average term, 
two autoregressive terms, and no differencing required to 
keep the time series stationary (d = 0). This model rep-
resents both the historical errors (moving average portion) 
and the connection between the series’ current value and 
its prior values (autoregressive part). Our model’s stepwise 
search method minimized the Akaike Information Criteri-
on (AIC), a model quality metric that strikes a compromise 
between model complexity and goodness of fit, in order 

to determine the ideal parameters. Based on the lowest 
AIC value among the models that were taken into consid-
eration, ARIMA(2,0,1) was deemed to be the best match 
for our data. Now that the model has been fitted, projec-
tions based on past data patterns may be made, providing 
insights into future trends. The links between the present 
value, previous values, and previous errors are captured by 
our model, ARIMA(2,0,1), which consists of one moving 
average term and two autoregressive components. A step-
wise search was used to find the model by minimizing the 
Akaike Information Criterion (AIC), a metric that weighs 
complexity and fit quality. Now that the best-fitting model, 
ARIMA(2,0,1), has been identified, future values may be 
predicted using previous data patterns. It is expressed as:

t 1 t 1 2 t 2 p t p t 1 t 1 2 t 2 q t qy I a y a y a y e e e e′ ′ ′ ′
− − − − − −= + + +… + + θ + θ +…+θ

2.3.2.	ARMA Model

A well-liked technique for time series forecasting, 
the ARMA (AutoRegressive Moving Average) model 
combines moving average (MA) and autoregressive (AR) 
components to identify relationships in the data. The best 
match for the Monthly SPI data, according to our study, 
was the ARMA(1,0) model, which has one autoregressive 
component and no moving average terms. Every value in 
the series is impacted by its recent past value, as the AR 
term illustrates. The auto_arima function, which finds the 



8

Research in Ecology | Volume 07 | Issue 05 | December 2025

optimum compromise between model complexity and fit 
by doing a stepwise search to minimize the Akaike Infor-
mation Criterion (AIC), was used to choose this model. It 
is now possible to use the final model to estimate future 
values since it has a substantial autoregressive coefficient, 
indicating a strong link between subsequent observations 
in the time series. An essential method for time series fore-
casting, the ARMA (AutoRegressive Moving Average) 
model combines moving average (MA) and autoregres-
sive (AR) components to represent time-dependent data. 
The best model for the Monthly SPI data, according to our 
study, is the ARMA(1,0) model, which has one autoregres-
sive term and no moving average terms. To ensure that the 
model offers a decent fit without needless complexity, the 
selection method made use of the auto_arima function, 
which uses a stepwise search to minimize the Akaike Infor-
mation Criterion (AIC). According to the AR(1) concept, 
every value in the series is mostly impacted by the value 
that comes right before it. The autoregressive coefficient, 
which indicates a substantial temporal dependency in the 
data, was extremely significant when the model’s parame-
ters were calculated. AIC value of 42240.387 for the final 
model indicates a strong fit, and suitability of the residuals 
is shown by diagnostic tests. By utilizing the patterns seen 
in the historical data, this ARMA(1,0) model may now be 
utilized to predict future Monthly SPI values with accura-
cy. It is expressed as:

[ ] [ ] [ ]n 0 1 2 qY W n W n 1 W n 2 W[n q]= β +β − +β − +…+β −

2.3.3.	Holt-Winters Model

In our research, we applied the Holt-Winters model, 
which is a widely used technique for time series forecast-
ing, especially for data with seasonal trends. Three ele-
ments make up this model: seasonality, trend, and level. 
These elements are updated recursively to reflect the un-
derlying patterns in the data. To accommodate for potential 
dampening effects over time, we have included a damped 
trend in addition to additive seasonal and trend compo-
nents in our implementation of the model. Next, with op-
timization turned on for parameter estimation, the model 
is fitted to the training set of data using the Exponential 
Smoothing function. Predicted values are then acquired for 
the test data interval. All things considered, the Holt-Win-

ters model offers a strong foundation for predicting time 
series data, using seasonal and trend data to provide pre-
cise forecasts. The Holt-Winters model is a powerful fore-
casting technique designed to capture trends and seasonal 
patterns in time series data. It incorporates three key com-
ponents: level, trend, and seasonality. In our implementa-
tion, the model is configured with additive seasonal and 
trend components, indicating that the seasonal and trend 
effects are added to the level. Additionally, a damped trend 
is incorporated to account for potential dampening of the 
trend over time. It is expressed as:

t t t t mS (y l ) (1 )s −= γ ∗ − + − γ∗

2.3.4.	Random Forest Regressor Model

For regression problems, a flexible machine learn-
ing technique called the Random Forest Regressor is 
employed. In order to get a final result, it builds many 
decision trees during training and then averages their 
forecasts. To provide variety and lessen overfitting, every 
decision tree in the forest is trained using a random sub-
set of features and a random portion of the training data. 
A reliable and accurate model is produced by averaging 
the predictions provided by each individual tree. Because 
of its versatility, scalability, and capacity to manage intri-
cate datasets with high-dimensional features, the Random 
Forest Regressor is a well-liked solution for regression 
issues across a range of industries. A potent machine learn-
ing method for regression tasks involving the prediction 
of continuous outcomes is the Random Forest Regressor. 
It is based on the idea of an ensemble of decision trees, 
in which several separate trees are trained using different 
subsets of the feature set and data. In order to minimize 
overfitting and enhance generalization performance, each 
decision tree learns to generate predictions based on a dis-
tinct subset of the data and features during training. Fur-
thermore, by taking into account just a random subset of 
characteristics at each split in the tree-building process, 
random forests provide randomization to the training pro-
cess. This unpredictability keeps individual trees from 
being overly specialized to the training set and increases 
variability among them. It is expressed as:

g(x) = f₀(x) + f₁(x) + f₂(x)
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2.3.5.	MLP Model

A basic artificial neural network design for super-
vised learning tasks like regression and classification is the 
Multilayer Perceptron (MLP) model. MLPs are composed 
of several layers of networked nodes (neurons) that use 
forward propagation to transfer input data across the net-
work. An activation function and the weighted sum of each 
neuron’s inputs define each neuron’s output. The model 
minimizes the discrepancy between expected and actual 
results during training by learning to modify the weights 
connecting neurons using backpropagation. Because of 
their ability to recognize intricate patterns in data through 
repeated optimization, multilevel perception (MLP) algo-
rithms are useful for a variety of tasks in a variety of fields. 
An artificial neural network type called the Multilayer 
Perceptron (MLP) model is distinguished by its tiered de-
sign, which consists of an input layer, one or more hidden 
layers, and an output layer. Neurones, or networked nodes, 
make up each layer and process the input data through 
calculations. In order to reduce the discrepancy between 
expected and actual outputs, the MLP learns during train-
ing by modifying the weights and biases connected to each 
link between neurons. Gradients are used to update the 
model parameters, and backpropagation—which propa-
gates mistakes backward through the network—helps with 
this process. The key strength of MLPs lies in their ability 
to learn complex nonlinear relationships within data. By 
employing activation functions at each neuron, MLPs can 
capture intricate patterns and dependencies, making them 
well-suited for tasks with high-dimensional input spaces 
and nonlinear decision boundaries.

∑d+1 d d d+1
j i ij j

i
x = y w -a

2.3.6.	LSTM Model

The Long Short-Term Memory (LSTM) model is 
a type of recurrent neural network (RNN) architecture 
designed to address the vanishing gradient problem and 
capture long-term dependencies in sequential data. LSTM 
networks consist of memory cells with self-connected 
recurrent units, allowing them to selectively retain and 
update information over time. This architecture enables 
LSTMs to effectively learn from and remember patterns 
in sequential data, making them particularly well-suited 
for tasks such as time series prediction, natural language 

processing, and speech recognition. The Long Short-Term 
Memory (LSTM) model is a specialized type of recurrent 
neural network (RNN) designed to overcome the limita-
tions of traditional RNNs in learning and retaining infor-
mation over long sequences. Unlike standard RNNs, which 
struggle with the vanishing gradient problem and have 
difficulty capturing long-range dependencies in sequential 
data, LSTMs feature a more complex architecture with 
memory cells, input and output gates, and forget gates. The 
core components of an LSTM cell include a memory cell 
that stores information over time, an input gate that con-
trols the flow of information into the cell, an output gate 
that controls the flow of information out of the cell, and a 
forget gate that determines which information to discard 
from the cell’s memory. These gates, implemented using 
sigmoid and tanh activation functions, enable LSTMs to 
selectively update and retain information based on its rele-
vance to the current task.

2.3.7.	Hybrid Model

In this study we have used the combination of mul-
tiple forecasting models for best performance. We have 
used ARIMA with MLP, ARIMA with LSTM, ARIMA 
with Random Forest Regressor, Holt-Winter with MLP, 
Holt-Winter with LSTM model and Holt-Winter with Ran-
dom Forest Regressor model.

In our analysis, we have employed various com-
binations of traditional time series models and advanced 
machine learning algorithms to forecast future values. 
The ARIMA models, coupled with Multilayer Perceptron 
(MLP), Long Short-Term Memory (LSTM), and Random 
Forest Regressor, leverage autoregressive and moving av-
erage components to capture temporal patterns in the data. 
Similarly, Holt-Winters models, integrated with MLP, 
LSTM, and Random Forest Regressor, exploit seasonal and 
trend components to make predictions. By combining these 
time-tested models with powerful machine learning tech-
niques, we aim to harness the strengths of both approaches, 
utilizing the flexibility and interpretability of traditional 
models alongside the capacity for capturing complex rela-
tionships and nonlinearities offered by machine learning 
algorithms. This comprehensive approach allows us to 
explore diverse modeling strategies and identify the most 
effective combination for accurate and robust forecasting. 
The proposed methodology is presented in Figure 4.
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Figure 4. Proposed Methodology.

3.	 Results
The evaluation process for SPI (Standardized Precip-

itation Index) forecasting typically involves assessing the 
MSE and RMSE. The results are shown below Figure 5 
and Table 1.

The comparison of evaluation metrics for SPI fore-
casting across different models provides insights into 
their effectiveness. Among traditional time series models, 
ARIMA, ARMA, and Holt-Winters exhibit identical MSE 
(1.01) and RMSE (1.009) values, suggesting comparable 
predictive performance in capturing temporal patterns in 
the SPI data. In contrast, machine learning-based models 
demonstrate varying levels of accuracy. The Random For-
est Regressor records the highest MSE (2.37) and RMSE 
(1.54), indicating potential difficulties in capturing the 
underlying time-dependent structures in the data. Howev-
er, hybrid approaches combining ARIMA or Holt-Winters 
with machine learning models show promising improve-
ments. ARIMA with MLP, LSTM, and Random Forest 

Regressor yield MSE values between 1.10 and 1.14 and 
RMSE values between 1.05 and 1.06, indicating slightly 
higher errors compared to traditional time series mod-
els. Holt-Winters with MLP, LSTM, and Random Forest 
Regressor generally perform better than ARIMA-based 
hybrids, with MSE scores ranging from 0.88 to 1.08 and 
RMSE scores between 0.93 and 1.04. Notably, Holt-Win-
ters with LSTM achieves the lowest MSE (0.88) and 
RMSE (0.93) among all models, demonstrating strong ca-
pability in capturing both trend and seasonality patterns. 
While traditional models such as ARIMA and Holt-Winters 
provide consistent performance, hybrid models incorpo-
rating machine learning techniques, particularly Holt-Win-
ters with LSTM, offer the best predictive accuracy for SPI 
forecasting. Future work could focus on further optimizing 
these hybrid approaches to enhance their ability to model 
complex time series behaviors.

The Figure 6 shows the forecasting data according 
to the Test Data for Holt-Winters with LSTM model.

Figure 5. Evaluated Results.
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Table 1. Result Analysis.
Model Evaluation Matrices Evaluated Score

ARIMA MSE 1.01
RMSE 1.009

ARMA MSE 1.01
RMSE 1.009

Holt-Winters MSE 1.01
RMSE 1.009

Random Forest Regressor MSE 2.37
RMSE 1.54

ARIMA with MLP MSE 1.1
RMSE 1.05

ARIMA with LSTM MSE 1.14
RMSE 1.06

ARIMA with Random Forest Regressor MSE 1.12
RMSE 1.06

Holt-Winters with MLP MSE 0.919
RMSE 0.95

Holt-Winters with LSTM MSE 0.88
RMSE 0.93

Holt-Winters with Random Forest Regressor MSE 1.08
RMSE 1.04

Figure 6. The Forecasting Data According to Test Data.

4.	 Discussion and Future Works
A decline in rainfall leads to increased drought sever-

ity. This temporal causality is captured by autoregressive 
components in ARIMA, which implies that past SPI val-
ues statistically ‘cause’ current drought conditions under 
the Granger framework. This study may help the facts like 
crop planning and irrigation scheduling. Risk mitigation in 
agriculture-dependent economies. Early warning systems 
to reduce socioeconomic losses. In future work, several 
avenues can be explored to enhance the accuracy and ro-

bustness of SPI forecasting models. Firstly, incorporat-
ing additional meteorological and hydrological variables, 
such as temperature, humidity, and soil moisture, into the 
modeling process can provide a more comprehensive un-
derstanding of the factors influencing drought dynamics. 
This multi-variable approach may improve the predictive 
capability of the models by capturing a broader range of 
environmental conditions that contribute to drought devel-
opment and persistence. Secondly, leveraging advanced 
machine learning techniques, such as deep learning archi-
tectures like Convolutional Neural Networks (CNNs) and 
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Transformer models, could offer further improvements 
in SPI forecasting accuracy. These models have shown 
promise in capturing complex spatiotemporal patterns in 
various environmental datasets and may be particularly 
effective in modeling the intricate relationships within SPI 
time series data. Additionally, exploring ensemble model-
ing approaches, which combine predictions from multiple 
individual models, can help mitigate the inherent uncer-
tainties in SPI forecasting and enhance overall prediction 
accuracy. Ensemble methods, such as model averaging 
and stacking, integrate diverse modeling perspectives and 
exploit the complementary strengths of different forecast-
ing techniques, thereby providing more robust and reliable 
predictions. Furthermore, there is a need for enhanced data 
collection and preprocessing techniques to address issues 
related to data quality, missing values, and temporal incon-
sistencies in SPI datasets. Utilizing advanced data assimi-
lation methods and remote sensing technologies can facil-
itate the integration of diverse data sources and improve 
the spatial and temporal resolution of SPI observations, 
leading to more accurate and timely drought assessments. 
Moreover, developing tailored decision support systems 
and visualization tools for SPI forecasting can facilitate the 
interpretation and communication of forecasting results to 
stakeholders, including policymakers, agricultural practi-
tioners, and water resource managers. These tools can help 
translate SPI forecasts into actionable insights and inform 
proactive drought mitigation strategies, such as water re-
source allocation, crop planning, and disaster preparedness 
measures. Finally, conducting comprehensive validation 
studies and real-time testing of SPI forecasting models in 
diverse geographical regions and climatic conditions is es-
sential to assess their reliability and generalizability. Col-
laborative efforts between researchers, government agen-
cies, and stakeholders can facilitate the validation process 
and promote the adoption of validated forecasting models 
for operational use in drought monitoring and management 
initiatives. Overall, by addressing these future research 
directions, we can advance the state-of-the-art in SPI fore-
casting and contribute to more effective drought prepared-
ness, response, and resilience-building efforts at local, re-
gional, and global scales.

5.	 Conclusions
In this study, we investigated various forecasting 

models for predicting the Standardized Precipitation In-
dex (SPI), a critical indicator of drought conditions, across 
different regions and time scales. Through a comprehen-
sive evaluation process, we compared the performance of 
traditional time series models including ARIMA, ARMA, 
and Holt-Winters, with machine learning algorithms such 
as Multilayer Perceptron (MLP), Long Short-Term Mem-
ory (LSTM), and Random Forest Regressor. Our analysis 
revealed valuable insights into the strengths and limita-
tions of each modeling approach in capturing the complex 
temporal patterns inherent in SPI data. The results of our 
study demonstrated that traditional time series models, 
particularly Holt-Winters with LSTM, exhibited compet-
itive performance in SPI forecasting, achieving relatively 
low Mean Squared Error (MSE) and Root Mean Squared 
Error (RMSE) scores across different evaluation matrices. 
These models effectively captured the underlying seasonal 
and trend components of the SPI time series, making them 
suitable choices for drought prediction tasks. However, 
the ARMA model showed slightly higher error metrics, 
indicating a relatively weaker fit to the SPI data compared 
to Holt-Winters with LSTM. On the other hand, machine 
learning-based approaches, including MLP, LSTM, and 
Random Forest Regressor, presented mixed results in SPI 
forecasting. While Random Forest Regressor demonstrat-
ed promising performance, showcasing its ability to cap-
ture nonlinear relationships in the data, the combinations 
of ARIMA and machine learning algorithms, as well as 
Holt-Winters with machine learning algorithms, exhibited 
higher MSE and RMSE values. This suggests that further 
refinement and optimization of these hybrid models are 
needed to improve their predictive accuracy for SPI fore-
casting tasks.

In conclusion, our study highlights the importance 
of selecting appropriate modeling techniques based on 
the specific characteristics of the SPI data and the desired 
forecasting objectives. Traditional time series models such 
as Holt-Winters with LSTM remain robust choices for SPI 
forecasting, particularly in capturing seasonal and trend 
patterns. However, the integration of machine learning 
algorithms offers opportunities for enhancing predictive 
performance, especially in handling nonlinearities and 
complex dependencies within the SPI time series. Future 
research should focus on refining and optimizing hybrid 
modeling approaches to leverage the strengths of both 
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traditional and modern forecasting methods for more ac-
curate and reliable SPI predictions, ultimately aiding in 
effective drought monitoring and management efforts. In 
climate-vulnerable areas, this study offers a workable strat-
egy to increase the accuracy of drought predictions. The 
results can help make well-informed decisions on catastro-
phe risk reduction, water resource management, and agri-
cultural planning. This study provides important insight for 
future forecasting frameworks in environmental analytics 
by comparing many models and highlighting the benefits 
of hybrid models over conventional ones.

Recommendations
Based on the findings of this study, it is recommend-

ed that future efforts in SPI forecasting prioritize the use 
of traditional time series models, particularly Holt-Winters 
with LSTM, due to their strong ability to capture season-
al and trend components effectively. However, given the 
potential of machine learning approaches like Random 
Forest Regressor to model nonlinear relationships, further 
research should focus on refining and optimizing hybrid 
models that combine the strengths of both traditional and 
machine learning techniques. Enhancing these hybrid ap-
proaches could lead to more accurate and reliable SPI pre-
dictions, ultimately improving drought monitoring, early 
warning systems, and resource management strategies.
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