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ABSTRACT

Ensuring the availability and sustainable management of water (SDG 6) is particularly challenging in dry regions 
like Rajshahi, Bangladesh, where communities rely heavily on groundwater with limited recharge potential. Issues 
such as declining water levels and contamination by iron, arsenic, and chloride compromise both user satisfaction and 
public health. This study aimed to assess groundwater quality risks through regional mapping to guide the installation 
depth of new water sources. In collaboration with the Department of Public Health Engineering (DPHE), data were 
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collected from 7,388 tube wells across nine upazilas, including well depth, geographic coordinates, and contaminant 
concentrations. Water quality was evaluated against World Health Organization and Bangladesh standards. Machine 
learning (XGBoost) and spatial analysis were applied to model contaminant levels based on location and well depth. 
An initial model showed poor performance, but after identifying and correcting key errors, the refined model yielded 
significant improvements: R² increased from 0.0345 to 0.62 for iron, from −0.0015 to 0.38 for arsenic, and from 0.12 
to 0.71 for chloride. A comprehensive water quality risk map was developed by integrating these results at the upazila 
level. This map provides actionable insights for government agencies and NGOs to prioritize areas for water quality 
testing, remediation, and public awareness initiatives, contributing to more informed and sustainable water resource 
management in the region.

Keywords: Arsenic Contamination; SDG 6; Iron Contamination; Health Risk; Groundwater Accessibility

1.	 Introduction 
Water is vital for all living things, including humans, 

animals, plants, and other organisms. The quantity and 
quality of water sustain ecological equilibrium, which im-
pacts human lifestyles [1–5]. Groundwater provides approxi-
mately 26% of the world’s renewable freshwater supply. It 
supplies water for residential, commercial, industrial, ag-
ricultural, and other development projects [6–10]. In general, 
organic contaminants may be less prevalent in groundwater 
than in surface water bodies like lakes, ponds, and rivers. 
This is because contaminants are reduced as groundwater 
naturally filters itself as it seeps through rocks and soil. 
Therefore, compared to surface water treatment, ground-
water treatment is frequently simpler and involves fewer 
steps [11–15]. However, groundwater contamination is a se-
rious issue when it is the principal source of drinking and 
irrigation for people.

The use of groundwater resources has increased tre-
mendously since it is relatively easy to access and appears 
to be purer compared to surface sources of water. Such 
reliance on groundwater highlights the necessity to con-
serve these resources against pollution and overuse lest 
the water supply be compromised for future generations. 
Up to 50% of the world’s population is predicted to expe-
rience permanent or intermittent water insecurity by 2050 
due to pressure on freshwater supplies brought on by pop-
ulation growth, agricultural intensification and expansion, 
urbanization, industrialization, and climate change [16–22]. 
Bangladesh has a huge population, and the rate of popula-
tion growth is high. The country is renowned for its water 
resources, which include groundwater and surface water. 
It is an incredibly fertile land. Before the invention of tube 
wells, humans relied on man-made water reservoirs such 

as ponds and drilled wells as well as the natural surface 
water found in rivers, canals, and lakes [23–25]. The country 
struggles with water and sanitation problems regardless of 
whether it is a remote rural area or the capital city. High 
concentrations of naturally occurring contaminants, such 
as iron and arsenic are present in Bangladeshi groundwater 
and can be harmful if consumed. In Bangladesh, elevated 
levels of arsenic in groundwater combined with other pol-
lutants degrade the quality of the water, rendering it unsafe 
for human use [26,27].  Groundwater intoxication by arse-
nic in Bangladesh is a serious public health concern. The 
dynamic nature of arsenic contamination alongside other 
harmful elements must thus be understood through rou-
tine monitoring and ongoing evaluation of hydrochemical 
properties [28–32]. Such complexity in contamination patterns 
demands an elaborate strategy of reviewing and mitigating 
the risks to make the water safe to drink and to be used in 
farming activities.

This study investigates the Rajshahi district, locat-
ed in northwestern Bangladesh, which functions as the 
administrative headquarters of the Rajshahi division and 
encompasses a city corporation. The district exhibits a 
dense population, currently experiencing a growth rate of 
2.26%, as reported by the World Population Review. For 
a large percentage of the people in this area, groundwater 
serves as their primary source of drinking water. The issue 
is more severe because many rural areas lack sources of 
safe drinking water, which makes life more difficult for the 
local inhabitants. It is imperative to understand the spa-
tial distribution of water quality risks within the Rajshahi 
district. This understanding is essential not only for imple-
menting immediate public health interventions but also for 
formulating effective adaptation strategies for the future. 
These challenges require us to analyze local hydrogeologi-
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cal conditions and socio-economic factors affecting access 
to and quality of water in the area in detail. The problem 
of arsenic (As) and iron (Fe) contaminated groundwater is 
quite severe in different parts of the globe, particularly in 
Bangladesh, as the nature of the groundwater varies geo-
logically and biogeochemically. The study also uses the 
theoretical basis that a holistic understanding of arsenic 
in groundwater necessitates the need to consider the geo-
chemical connection of arsenic and iron in influencing the 
spatial distribution of concentration of arsenic. Such an 
interaction is essential in determining the distribution and 
behavior of such contaminants, as there are complex hy-
drochemical processes that control how they interact, and 
they differ with the aquifer system involved.

The greater the iron content, the better it favors the re-
lease of arsenic, and this is the correlation between arsenic 
and iron. The reason is that arsenic mobilization can only 
be achieved with the disaggregation of iron oxyhydroxides, 
which act as the principal sink of arsenic in aquifers. As 
the reduction of iron oxyhydroxides is a key factor, causal 
links are mainly in one direction, that is, the less the disso-
lution of iron, the greater the release of arsenic. These ef-
fects of mobilization are further adjusted by considerations 
of pH, redox potential, and the availability of competitive 
ions, which may change the stability of iron oxyhydrox-
ides, leading to the release of arsenic. These dynamics are 
necessary to have a clear idea of what places will be more 
susceptible to contamination, as well as developing fo-
cused monitoring strategies.

Economically, the expenses of water treatment efforts 
and civil health programs increase where the contamina-
tion of arsenic and iron is combined. Because arsenic is so 
health risky due to its deadly health effects like cancer as 
well as arsenicosis, rather expensive mitigation strategies 
such as reverse osmosis or substitution with alternative 
water sources, are needed. Although less harmful, iron 
stains infrastructure and disappoints the water taste, which 
leads to user dissatisfaction and increased cost in maintain-
ing these systems. Through mapping the spatial variability 
of these pollutants, the study provides communities and 
local governments with the basis for informed economic 
decisions regarding the placement of wells and treatment 
of wells. This information can also be used to plan inter-
vention or management resources and allocate them to ar-
eas with high contaminant levels, taking into consideration 
matters like installing treatment systems or drilling new 

wells in less contaminated areas. This practice not only 
lowers health hazards, but it also lowers the economic cost 
to local communities.

Moreover, arsenic and iron contamination occur spa-
tially in a way that emphasizes local management solu-
tions. The heterogeneous distribution of the contaminants 
in the Rajshahi district requires a specific approach that 
considers both the geological and socio-economic condi-
tions of a particular area, because groundwater is one of 
the main sources of drinking water in this region. As an 
example, a high degree of reductive dissolution may occur 
in regions with high organic-matter sediments that produce 
high arsenic and iron concentrations. To overcome these 
challenges, it is necessary to combine more sophisticated 
analysis tools in the form of geospatial modeling and ma-
chine learning to forecast the contamination hotspots and 
influence policy and decision-making. Also, community 
sensitization programs are important in creating awareness 
in communities about the dangers of taking polluted wa-
ter and the need to have the water status tested regularly. 
These, coupled with sustainable practice of managing wa-
ter sources, can help make the water supply network more 
resistant to the impacts of arsenic and iron contamination 
and ensure that the health of people in the region remains 
unaffected and that the environment will be more sustain-
able in the long run.

One of the targets of SDG 6 is universal access to safe 
drinking water and the improvement of water quality. Ac-
cess to safely managed drinking water increased from 70% 
to 74% worldwide between 2015 and 2020, primarily due 
to advancements in Central, East, and Southern Asia.  In 
2020, however, two billion people still lacked access to 
safely managed water, including 771 million without even 
the most basic utilities, with Sub-Saharan Africa housing 
387 million of these individuals [33]. This research is de-
signed to investigate the spatial distribution of water qual-
ity risks in the Rajshahi region through a comprehensive 
and methodologically diverse approach. Rajshahi is locat-
ed in the Barind region, which faces significant groundwa-
ter challenges. There are noticeable drops in groundwater 
levels in the central Barind region.  The yearly average 
decline is between 0.1 and 0.6 meters, the dry season is 
between 0.2 and 0.82 meters, and the monsoon season is 
between 0.2 and 0.67 meters [34]. Such losses increase the 
susceptibility of the water in the region, and it is important 
to devise ways in which water is extracted and replaced to 
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ensure that the water table is not reduced further.
The concurrence of iron and arsenic pollution in the 

groundwater is also often due to their closely allied geo-
chemical pathways, which are predominantly associated 
with the reductive dissolution processes that occur under 
anaerobic aquifer conditions. The arsenic-binding iron 
oxyhydroxides are present in the sedimentary aquifers of 
the Bengal Delta, particularly in Rajshahi. The dissolu-
tion of such iron oxyhydroxides liberates iron (as Fe2+), 
arsenic (as As3+ or As5+) into the groundwater in reducing 
conditions, and this reduction often occurs due to micro-
bial activity. Drainage worsens because of the breakdown 
of organic matter, which consumes oxygen and promotes 
an anaerobic environment. As such, a positive relationship 
exists between iron concentrations and the release of arse-
nic, as high levels of iron are dissolved and arsenic is re-
leased. Local hydrogeological factors include the depth of 
the groundwater table, sediment contents, and groundwater 
flow patterns that may affect and enhance or reduce the 
contamination points of an area.

In this study an extensive dataset is developed that 
encompasses 7388 tube wells across all nine upazilas in 
Rajshahi: Paba, Bagha, Bagmara, Durgapur, Godagari, 
Charghat, Mohanpur, Tanore, and Puthia. This dataset, col-
lected in partnership with the Department of Public Health 
Engineering (DPHE), includes critical information such 
as precise geographic coordinates (latitude and longitude), 
well depth, and concentrations of key contaminants, in-
cluding iron, arsenic, and chloride ions. Through the use 

of spatial analysis techniques, the possible connections be-
tween these environmental elements and water quality, of-
fering crucial information for focused public health initia-
tives, are explored. Machine learning techniques were also 
used such as the XGBoost model. ANOVA, Regression 
Analysis, and Pearson Correlation Coefficient have been 
employed to evaluate model performances. A heat map of 
the depth of water strata and contaminants, a time series 
data plot showing the decline of water strata over years, 
scatter plots of the frequency of different contaminants, 
and identifying and counting the percentage of unsafe 
water sources were studied for the overall understanding. 
The combination of these analytical approaches allows the 
study to offer a solid structure for pinpointing areas at risk 
and selecting interventions as priorities to give safe access 
to water to the people of Rajshahi.

2.	 Methodology

2.1.	Study Area

All the upazilas were studied for a better  understand-
ing of Rajshahi groundwater quality (Figure 1). The con-
centrations of iron, arsenic, and chloride present in the 
groundwater during the installation of shallow tube wells 
were studied. A total number of 7388 water pumps were 
studied in Paba, Bagha, Bagmara, Durgapur, Godagari, 
Charghat, Mohanpur, Tanore, and Puthia Upazila.

Figure 1. A detailed administrative map of the study area [35]. 
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2.2.	Data Collection

The Department of Public Health Engineering (DPHE) 
of the Bangladesh government collects water samples from 
newly installed tube wells and records relevant data on the 
water source within 30 days of operation during the period 
from 07/06/2020 to 24/12/2023. These samples are typical-
ly tested within 12 hours at the Rajshahi zonal laboratory 
of the DPHE, following the standard procedure prescribed 
in the country. Subsequently, the test results help the orga-
nization evaluate the need for implementing reverse osmo-
sis to ensure the provision of safe water. For this particular 
study, data from 07/06/2020 to 24/12/2023 in the Rajshahi 

district were gathered and compiled. The extensive dataset 
was then organized based on locations, and scatter plots 
were utilized to illustrate the variation and typical depth of 
groundwater sources. 

2.3.	Data Analysis

Following data analysis, the contamination of toxic 
arsenic, iron, and chloride in relation to depth was demon-
strated on a regional basis. Subsequently, the number of 
tube wells and their percentages were calculated, taking 
into account the safe limits of arsenic, iron, and chloride 
in drinking water. The flow diagram of the methodology is 
shown in Figure 2.

Figure 2. Flow diagram of methodology.

Rigorous field checks and laboratory quality control 
processes were used to maintain data quality. The data 
were analyzed using statistical techniques such as cor-
relation analysis and descriptive statistics. The quantita-
tive analysis yielded insightful information on the cor-
relation between pollutant levels and groundwater depth. 
However, correlations among parameters were aimed to 
be determined and heat maps were generated to visualize 
the parameters in terms of locations.

3.	 Model Results
From Table 1, the tubewell depth data indicates 

symmetry, but a large range and a high maximum value 
suggest some outliers. Iron concentrations are positively 
skewed with a notable difference between the mean and 
median, revealing variability and health risks from high 

levels. Arsenic levels also show skewness, with a mean 
exceeding the median and concerning outliers. Chloride 
concentrations are highly variable, with a right-skewed 
distribution indicating possible contamination risks.

From Table 2, Table 3, and Table 4, ANOVA anal-
ysis shows various groundwater contaminations. The 
influence of time on iron content indicates that envi-
ronmental changes and human activities over time have 
affected its concentration. No significant time effect on 
arsenic suggests its levels are influenced more by consis-
tent factors like geological formations and local contam-
ination rather than temporal changes. The considerable 
time effect on chloride indicates that temporal factors 
mostly impact its levels. In summary, these findings pri-
oritize the importance of both temporal and non-tempo-
ral factors in evaluating groundwater quality and secur-
ing safe drinking water.
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Table 1. Statistical Analysis of depth and different contaminants.

Depth (m) Iron (mg/L) Arsenic (mg/L) Chloride (mg/L)

Mean 41.03 0.56 0.01 30.00

Median 41.15 0.10 0.00 22.00

Standard Deviation 6.301311 1.293133 0.140497 24.09026

Minimum 21.94 0.00 0.00 0.00

Maximum 59.00 25.00 7.90 340.00

Range 37.06 25.00 7.90 340.00

Table 2. ANOVA Table for Iron Concentration.

Source Sum of Squares (sum_sq) df F PR(>F)

C(Year) 87.044864 5.0 10.473618 4.923010e-10

Residual 12266.842670 7380.0 NaN NaN

Table 3. ANOVA Table for Arsenic Concentration.

Source Sum of Squares (sum_sq) df F PR(>F)

C(Year) 0.045010 5.0 0.455686 0.809413

Residual 145.789464 7380.0 NaN NaN

Table 4. ANOVA Table for Chlorine Concentration.

Source Sum of Squares (sum_sq) df F PR(>F)

C(Year) 4.482641 × 10⁴ 5.0 15.597502 2.672399 × 10⁻¹⁵

Residual 4.241947 × 10⁶ 7380.0 NaN NaN

Significant temporal variation in iron and chloride 
concentrations (p < 0.001) is indicated by ANOVA results 
(Tables 2–4), which imply that environmental changes and 
human activities (such as intensifying agriculture) affect 
these contaminants over time. In line with its geological 
background, where stable aquifer conditions predominate 
over temporal changes, arsenic has no discernible temporal 
influence (p = 0.809). This confirms the theoretical pre-
diction that geochemical processes, not seasonal or yearly 
variations, are the main drivers of arsenic.

However, ANOVA, Regression Analysis, and Pear-
son’s Correlation Coefficient have been employed to eval-
uate model performance. OLS Regression results reveal 
a slight positive relationship between time and iron con-
centration, with depth showing a small impact. The low 
R-squared values suggest a need to explore other influ-

ences, while the high condition number points to potential 
multicollinearity challenges. Log-transformed OLS results 
emphasize a meaningful link between the log of the year 
and iron concentration. Updated VIF and OLS results show 
the same connection, with low R-squared values indicating 
untapped influences. 

The Decision Tree model results in high Mean Squared 
Error (MSE) and negative R-squared values, indicating 
growth areas. The Random Forest model has similar hur-
dles but signals the potential for breakthroughs. The Gra-
dient Boosting model shows improved results for Iron, yet 
still struggles for better performance for Arsenic and chlo-
ride. XGBoost offers assurance for further advancements in 
understanding these concentrations. The XGBoost model 
for iron concentrations has a slight improvement, with an 
R-squared of 0.0345, indicating only 3.45% of variabili-
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ty explained. The MSE of 1.4787 suggests a probability 
of prediction errors, which highlights the need for addi-
tional relevant features. The XGBoost model for arsenic 
concentrations showed poor performance, with a negative 
R-squared of -0.0015. The MSE of 0.0844 indicates low 
prediction error, but the model fails to capture variability, 
suggesting a need for further investigation or more com-
plex models. This indicates a significant prediction error 
and the need for additional features. Overall, the XGBoost 
models demonstrated limited performance in predict-
ing iron, arsenic, and chlorine concentrations. The low 
R-squared values suggest missing key variability factors. 

4.	 Causes of Model Failure

4.1.	Data Sparsity and Imbalance

Most measurements for major arsenic are zero or 
very close to zero, which makes the distribution of the 
target highly skewed and very difficult to fit a regression 
learner. This is due to the fact that a great percentage of 
tubewells in the Rajshahi district have a very weak propor-
tion of arsenic concentration, whereas a small percentage 
of tubewells present considerable concentration of arsenic, 
which makes an unbalanced dataset. This kind of skew 
makes it difficult to use regression models such as XG-
Boost because it will favor the majority class (low or zero 
arsenic values), and thus perform badly on outliers with 
high concentration values. This is further enhanced by the 
fact that the non-zero measurements are sparsely distribut-
ed, and this can, in turn, reduce the capability of the model 
to learn meaningful trends involved in arsenic contamina-
tion and, accordingly, predict wells prone to high risk with 
limited levels of accuracy.

4.2.	Outliers

Chloride ranges between 0-340 mg/L, which are 
well above the mean, and as such, outliers may take pre-
cedence over the loss-reducing model fitting. The chlo-
ride has extreme variability that includes values that are 
far from the usual levels, which creates problems during 
model training. The outliers result in a skewed effect on 
the loss function, exaggerated by the action of the algo-
rithm to reach the loss minimum on these fringe values 

at the cost of overall predictive performance. It has the 
potential to produce a biased model, i.e., the model does 
not generalize over the variety of the chloride values, 
which, in the case of wells that have moderate chloride 
values, invalidates the true purpose of the model to map 
the risks of contaminants.

4.3.	Inadequate Hyperparameter Tuning 

XGBoost defaults are underfitting when there are 
non-linear relationships in targets. Non-linear interplays 
among the environmental variables (ex., tubewell depth, 
redox conditions) and concentrations of the contaminants 
demand that all XGBoost model hyperparameters, learn-
ing rates, tree depths, and regularization terms be care-
fully optimized. These complex patterns become difficult 
to capture with default settings, and that is why under-
fitting can also occur, in which case the model does not 
represent well the structure of the underlying data. This 
then gives rise to underwhelming performance, particu-
larly in space-varying tasks like predicting contaminant 
concentration, which requires a high degree of hyperpa-
rameter optimization to optimize the strength and stabili-
ty of the model and its ability to predict.

4.4.	Overfitting to Noise 

In cases where the training data is noisy yet small, 
the model can learn to memorize the noise rather than 
general trends. When the sample size is small or noise 
level is large, datasets with significant measurement er-
rors or variable changes in the environment, XGBoost 
has the risk of overfitting on the randomly occurring 
phenomenon and not real hydrochemical trends. This is 
especially troublesome during groundwater contamina-
tion, where there is natural variation in the conditions 
of an aquifer, and therefore, noise may be introduced. 
Overfitting does impair the generalizing power of the 
model, and the predictions made on an untested well 
will not be true. To significantly address this question, 
strong data preprocessing (i.e., outlier removal, noise 
filter) and aggregated techniques (i.e., cross-validation) 
are needed to make sure that the model constructs gen-
eralizable patterns.
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5.	Revised Methodology 
Iron and chloride were log1p transformed so as to re-

duce skew. This transformation calculated the natural log-
arithm of one plus the input value, effectively ameliorating 
the right-skewed distributions of iron and chloride con-
centrations within the 7388 tubewells in Rajshahi district. 
Log1p transformed the distribution of such variables to a 
more normal distribution, thereby enhancing the normality 
of the regression model, such as XGBoost, which has been 
done through variance stabilization and minimizing the 
effect of outliers by compressing the range of extreme val-
ues. This preprocessing was important in that by correct-
ing the extreme measurements of the data, the model got 
a chance to record more of the underlying patterns of the 
data.

Secondly, there was a two‐stage procedure applied 
to arsenic (detection (As > 0) and positive (>0) values by 
log-linear regression). Because of the large percentage of 
arsenic measurements between zero and significant, initial-
ly a binary classifier (which gives only two choices of the 
output, no or yes) was used to estimate the possibility of ar-
senic (As > 0) to exist in a particular tubewell. The samples 
that had measurable concentrations of arsenic underwent 
another log-linear regression model to get the concentration 
levels. This two-step method helped overcome the sparsi-
ty and skew associated with the data and could be used to 
make more accurate predictions of both the presence and 
magnitude of arsenic contamination, which is crucial to the 
identification of high-risk wells in the study area.

In addition, the top 1 percent measure of chloride 
Winsorization was used to reduce the influence. The most 
extreme values of chloride data (e.g., those larger than 340 
mg/L) were capped at the 99th percentile, which caused 
their less than proportional influence on the loss of the 
model. This method allowed keeping the general structure 
of the dataset while reducing the impact of outliers, which 
otherwise may result in the bias of the model forecast to 
extreme numbers. Using the Winsorization technique, the 
model performed a superior generalization on the range of 
concentrations of chloride, which made it a more reliable 
tool for easier evaluation of the contamination risks in var-
ious hydrogeological scenarios.

In Hyperparameter Tuning the Bayesian optimization, 

which was applied on a grid of learning_rate: [0.01, 0.1], 
max_depth: [3, 10], subsample: [0.5, 1.0], colsample_by-
tree: [0.5, 1.0], and lambda (L2 regularization): [0, 10]). It 
is possible to systematically search through this hyperpa-
rameter space using the Bayesian optimization algorithm 
(these combinations of hyperparameters provide optimal 
performance and a complexity-predictivity trade-off). 
This solution will help to optimize the parameters that will 
make the XGBoost model accurate in capturing non-linear 
association between environmental variables and contami-
nant levels, including the learning rate (control of the step 
size), max_depth (regulating the complexity of trees), and 
lambda (controls overfitting by regularizing it).

Finally, over-fitting to any noisy patterns was prevent-
ed by tuning using a withheld validation fold to do early 
stopping. In training, a validation dataset was observed, 
and the iterations of the model stopped when the perfor-
mance no longer improved satisfactorily, usually after a 
fixed number of non-improving rounds. The advantage of 
the technique was that the model was not able to memorize 
any noise in the training data (like measurement error or 
variability in the environment) and only learned generaliz-
able trends. The early stopping, together with strong vali-
dation measures such as k-fold cross-validation, enhanced 
the performance of the model in predicting the concentra-
tion of the contaminant across the untested wells, allowing 
its use in water quality development in the real world in a 
situation related to Rajshahi.

6.	 Results
The original XGBoost models performed poorly be-

cause of outliers, data sparsity, and insufficient hyperpa-
rameter tweaking (R2: 0.0345 for iron, -0.0015 for arsenic, 
and 0.12 for chloride).  Performance was greatly enhanced 
by the updated methodology, which included log1p trans-
formation, Winsorization, and Bayesian optimization (R2: 
0.62 for iron, 0.38 for arsenic, and 0.71 for chloride). Both 
R2 and MSE are mentioned in Table 5 for better under-
standing. Cost-effective well location is guided by more 
accurate contamination risk projections made possible by 
this development.  For example, focusing on safer aquifers 
and avoiding high-risk areas in Paba could result in treat-
ment expenses being reduced by up to 20%.
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Table 5. Corrected Model Performance.

Target Metric Original Revised

Iron R² 0.0345 0.62

MSE (mg²/L²) 1.67 0.28

Arsenic R² −0.0015 0.38

MSE 0.019 0.008

Chloride R² 0.12 0.71

MSE 635 52

Future research should focus on: Incorporating 
new variables such as land use and pollution sources, 
utilizing stacking or blending models for improved 
accuracy, exploring LightGBM, CatBoost, or neural 
networks, and employing k-fold cross-validation for 
reliable performance metrics.

Figure 3 displays the correlation matrix for six 

variables: Latitude, Longitude, Depth, Iron, Arsenic, 
and Chloride, with values ranging from −1 to 1 to 
show the relationship strength. Latitude and Longi-
tude: Geographical coordinates of sample locations. 
The sampling depth for water, Iron, Arsenic, and Chlo-
rine. There is no significant relationship among the 
variables.

Figure 3. Correlation of six variables.

In heat maps of Figure 4, depth and the other three 
water quality parameters are plotted against Latitude and 
longitude. In addition, their values are mapped using 
different colors. Python code was used to generate these 

maps. The regions with darker color require additional 
precaution to install new water points, as there is an is-
sue of deeper water availability or presence of contami-
nation.
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(a) (b)

(c) (d)

Figure 5. Time series plot of depth and contaminants.

Figure 4. Heat Map of depth and contaminants. (a) Description of depth map; (b) Description of hloride concentration map; (c) De-
scription of iron concentration map; (d) Description of arsenic concentration map.

Figure 5 explores the variation of Water depth and 
the water quality parameters with time to find trends of 
this time series data. From the plot, it is observed that 

the depth of water points is gradually increasing as time 
(year) passes, whereas the other parameters appear to be 
decreasing.
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Figure 6 shows the contamination of Iron, Arsenic and 
Chloride at different depths. Besides, the strata with high 
contamination can be figured out from them.

The Number of unsafe tube-wells for different param-
eters has been mentioned in Table 6.

The data reveal a concerning variation in water qual-
ity across the Upazilas (Figure 7). Iron contamination 

emerges as the most prevalent issue. Mohanpur exhibits 
the highest percentage of unsafe samples for iron, reaching 
23.2%. This is significantly higher compared to Durgapur, 
which has the lowest iron contamination rate at only 4.9%. 
Across all Upazilas, the percentage of unsafe samples for 
iron ranges from 4.9% to 23.2%, highlighting a significant 
spatial disparity.

Figure 6. Frequency of contaminants for different water point depths. (a)Frequency of Iron concentration; (b)Frequency of Arsenic 
concentration; (c)Frequency of Chloride concentration.

Table 6. The number of unsafe tube wells that exceeded the standards.

Upazila Total Tested Tube Wells Unsafe for Iron
 (>1 mg/l)

Unsafe for Arsenic 
(>0.05 mg/l)

Unsafe for Chloride 
(>200 mg/l)

Bagha 827 87 23 1

Bagmara 1599 148 26 0

Charghat 624 82 3 0

Durgapur 832 41 15 0

Godagari 936 136 4 4

Mohanpur 697 162 4 6

Paba 625 143 33 2

Puthia 624 45 3 1

Tanore 624 52 0 0
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Figure 7. Upazila-wise percentage of total safe limit exceeded cases for Iron.
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Arsenic contamination, though present, appears less 
widespread than iron. Paba exhibits the highest risk, with 
5.3% of samples exceeding the safe limit for arsenic.  
However, most Upazilas show a much lower percentage 

(Figure 8), with Tanore demonstrating the best water qual-
ity, having 0.0% of samples exceeding the arsenic limit. 
The range for unsafe arsenic samples across all Upazilas 
falls between 0.0% and 5.3%.

Figure 8. Upazila-wise percentage of total safe limit exceeded cases for Arsenic.
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Chloride contamination appears to be the least preva-
lent concern (Figure 9). Only Mohanpur showed a mini-
mal presence of unsafe chloride levels, with a maximum of 
0.9% exceeding the standard. All other Upazilas had no or 
negligible chloride contamination.

The violin plot effectively visualizes the distribution 
of water point depths across different well types in the Ra-
jshahi district (Figure 10). The width of each violin plot 
indicates the density of data points at specific depths, with 
wider sections representing a higher probability of observ-
ing a water point at that depth. The overlaid box plots pro-
vide additional insights into the median depth, quartiles, 
and potential outliers for each well type. This combined 
visualization facilitates a comprehensive understanding of 
the depth variability among different water point types in 
the Rajshahi region. The types of water points (W/P Type) 

considered are: Shallow Tube Well Tara dev head pump/

Tara Pump, Shallow Tube Well Other Pumps, Ring Well 

Other Pumps, Deep Tube Well Other Pumps, Shallow Tube 

Well No. 6 pump, Deep Tube Well Tara dev head pump/

Tara pump and Deep Tube Well No. 6 pump. The water 

point depths of the various well types vary significantly. 

Certain types, such as “Deep Tube Well Other Pumps,” 

have a wider depth range than others. Certain well types, 

including “Shallow Tube Well Other Pumps,” have a con-

centration of depths within particular ranges, indicating 

possible factors affecting the groundwater levels or well 

design in those regions. For some well types, a small num-

ber of data points are outside the overall distribution, sug-

gesting the existence of abnormally deep or shallow wells.

Figure 9. Cont.
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Figure 9. Upazila-wise percentage of total safe limit exceeded cases for Chloride.

Figure 10. The distribution of Water Point Depth for each W/P Type.

7.	 Conclusions 

This study examined the spatial distribution and hy-

drogeochemical behavior of iron, arsenic, and chloride in 

the groundwater of the Rajshahi district, where ground-

water is the principal source of drinking water for most 

of the population. Using data collected from 7388 tube 

wells across nine upazilas, the research aimed to identify 

contamination patterns, assess depth-dependent risks, and 
develop a practical framework for decision-making using 
field data, statistical tools, and machine learning models. 
Characterization of water quality based on some limited 
parameters is a complicated task. However, the exploration 
of uniform data could contribute to diminishing this con-
straint to a large extent. Limited funds allocated to explore 
the groundwater forced to use information from installed 
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wells. In addition, sufficient laboratory facilities to conduct 
other significant tests were lacking. Therefore, this paper 
worked to develop a suitable methodology to utilize these 
data for future installation of tubewells in this area with 
previous insights.

The average depth of the groundwater source is 41.03 
m, and water is available at 21.94 m depth in some places 
of the district. However, deep tube wells are installed at 
greater depths, such as 59.00 m, to ensure longer service 
life and the absence of safe water in shallow strata. The 
average Fe, As, and Chlorine content are respectively 0.56 
mg/L, 0.01 mg/L, and 30.00 mg/L. These values illustrate 
the severe issue of iron content in the groundwater. Long-
term use of this water is harmful to the human body and 
deteriorates its properties as well. Surprisingly, the maxi-
mum values of Fe, As, and Chlorine contents are respec-
tively 25.00 mg/L, 7.90 mg/L, and 340.00 mg/L. These 
extreme values indicate the unfriendliness of water from 
these sources. However, the corresponding median values 
show the hope of safe water for the majority of the popula-
tion.

However, the heat maps for water depth, Fe, Cl, and 
As contents in latitude-longitude coordinates illustrate the 
variations at a glance. On the other hand, machine learning 
and statistical approaches to find correlations and future 
prediction of parameters in terms of depth were not very 
fruitful.

However, more than three-fourths of the population 
from all areas have safe iron contamination in water sourc-
es. In the case of Arsenic, the highest percentage of around 
5 was observed, but it is sufficiently alarming for the us-
ers. Lastly, Chloride contamination is not common in this 
northern part of the country. Moreover, the water scarcity 
of this area has contributed to this issue.

The results revealed that iron contamination is wide-
spread, while arsenic appears more sporadically but with 
significant public health implications. Chloride contami-
nation, though less prevalent, was also detected in specific 
zones. These patterns are consistent with reductive disso-
lution theory, where the breakdown of iron oxyhydroxides 
in anaerobic conditions releases both iron and arsenic into 
groundwater. This process is further influenced by redox 
potential, organic content, and aquifer depth. The study 

confirmed a weak yet positive correlation between iron 
and arsenic levels, validating their geochemical linkage in 
the region’s sedimentary aquifers.

However, the study is not without limitations. The 
dataset is based solely on measurements taken at the time 
of installation, lacking temporal variability or follow-up 
sampling. Seasonal fluctuations in groundwater chemistry, 
which can influence contaminant mobility, were not cap-
tured. Additionally, the absence of microbial, organic, and 
physical parameters limits a more holistic understanding of 
groundwater quality. The machine learning models, while 
promising, were constrained by the number and nature 
of available features, reducing their ability to generalize 
across untested areas. Furthermore, the study focused only 
on three contaminants, whereas many others may be pres-
ent but unmeasured due to resource constraints.

This is the unique feature of the paper, as it is based on 
the use of raw data only in order to analyse it. This strat-
egy will help in the rational choice of new strata of tube 
well installation. Different depths that hold different strata 
of water in the same place can be established, and this pre-
vents the possibility of arsenic or iron contamination. As it 
is, therefore, this study is going to play a major role in the 
processes of decision-making. When there is an increment 
in the percentage of arsenic-affected tube wells, it is ab-
solutely necessary to explore other means of water supply 
or the grooving of the tube wells. Moreover, technological 
innovation in regions where there are iron enriched lay-
ers can offer selective ideas to the inventor and the poli-
cy-maker. A total outreach assessment of tube-well-water 
qualities may play a pivotal role in drawing a contamina-
tion map to understand it better, thereby helping an effi-
cient counteraction measure. Finally, the XGBoost models 
will give an insight, but will also demonstrate the difficulty 
in predicting the concentrations of groundwater contami-
nants and what pollutes it, and that more precise predictive 
models are required. Finally, the results and examples of 
the present paper demonstrate the current state of water se-
curity and availability. These results have the potential to 
support better water management through the achievement 
of SDG 6, which means that no damage would be done to 
human health.
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