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ABSTRACT

Soil is the basic component of the ecosystem responsible for life. The quality of the soil or soil health is the driving
force in the ecosystem. Globally with changing climatic scenario, soil health is greatly affected thus having a greater
impact on the agriculture and food production. Attributes like physico-chemical and biological properties of soil determine
the status of the soil health. Although, several impacts pertaining to the climate change, unsustainable farming practices,
overuse of agrochemicals have led to the depletion of the soil quality. A multifaceted approach is required for conserving
and enhancing soil productivity by means of integrating conventional knowledge with modern technology. Modern
technologies and concepts like precision agriculture, site-specific nutrient management are gaining importance due to

accurate and immediate decision making ability by optimizing input use, enhancing nutrient management, and supporting
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environmentally sustainable practices. These tools rely on data-driven techniques to monitor and manage soil conditions

effectively, thereby promoting soil fertility and reducing ecological harm. Nanotechnology is the other concept giving a

promising results under the emerging innovations. Soil fertility that includes the plant growth, nutrient availability and

diversified microbial population has improved by application of nanomaterials. Despite these advancements, challenges

persist in the widespread adoption of soil health monitoring technologies, including remote sensing and smart sensors.

Issues such as limited spatial resolution, inconsistent ground-truth data, and the requirement for specialized skills continue

to hinder long-term monitoring efforts. The challenges in adoption of the technologies are due to a lack of skill and high

installation costs.

Keywords: Soil Health; Sustainable Agriculture; Precision Agriculture; Nanotechnology; Remote Sensing

1. Introduction

Soil is an imperative material consisting of stratified
combinations of mineral, water, air, organic matter and infi-
nite living organisms from microbes to earthworms which
form the base for the terrestrial life. Healthy soil performs a
multitude of essential functions like ensuring flora and fauna,
governing water filtration and pollutants buffering, nutrients
recycling and providing physical stability. Soil health is
defined as “the continued capacity of soil to function as a
vital living ecosystem that sustains plants, animals, and hu-
mans” (USDA-NRCS). A lengthier version of the definition
is the capacity of soil to function as a vital living system,
within ecosystem and land-use boundaries, to sustain plant
and animal productivity, maintain or enhance water and air
quality, and promote plant and animal health['!. Soil health
is the crucial indicator of the vitality and sustainability of
terrestrial ecosystems which functions as a living ecosystem
by assuring the flora and fauna, also encompasses all the
three important properties viz., physical, chemical and bio-
logical to improve the productivity>*!. A comprehensive
approach to soil management was brought into limelight by
the scientists in the past 20" century depicting that soil is
a vast material where all physical, chemical and biological
properties are interconnected which helps in maintaining or
enhancing the soil health!*3]. The idea of soil health has
evolved over time to encompass a greater comprehension of
the capacity of the soil to function as a life-supporting sys-
tem, encouraging plant growth, controlling water flow, and
filtering contaminants 4. The concept of productive soils is
relevant to global climate change and food security [,

United Nations proposed 17 Sustainable Development
Goals (SDGs), of which Goal 2 focuses on zero hunger that

is interlinked with the development of international policy
agreements and efforts for maintaining soil health. Assuring
sustainable food production systems and putting into practice
persistent agricultural techniques that boost output and pro-
ductivity, support ecosystem maintenance, enhance ability
to adapt to climate change, extreme weather conditions and
other disasters which gradually increase the soil quality "],
The Paris Climate Agreement (2015) acknowledges soil as
a crucial carbon sink and highlights its role in mitigating
climate change through improved soil management. On the
contrary, the idea of soil health, which first appeared in the
early 2000s, is still developing today, reflecting the intricate
complexity of soil ecosystems(®l. The soil health is evalu-
ated through wide variety of structural, compositional and
microbial attributes related to the soil ecosystem activities,
water management, nutrient cycling and diversified microbe
population.

The global picture of soil health is concerning, with
widespread degradation posing significant threat to food secu-
rity, biodiversity, and climate change mitigation. UNESCO
warns that 75% of the planet’s soils are already degraded, di-
rectly impacting 3.2 billion people. If current trends continue,
this proportion could rise to a staggering 90% by 2050.

Soil health in India plays a crucial component in ensur-
ing national food security. However, it is subject to a variety
of challenges shaped by the country’s diverse soil types, cli-
matic variability, and heterogeneous farming systems. The
ongoing decline in soil quality driven by nutrient exhaustion,
excessive chemical inputs, and soil erosion poses serious
risks to agricultural output and ecological balance. The In-
dian subcontinent, possessing extensive agricultural arca
and a substantial population, encounters significant issues

concerning soil health.
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According to the National Bureau of Soil Survey and
Land Use Planning, approximately 146.8 million hectares
(around 30%) of India’s soil is degraded. The Desertification
and Land Degradation Atlas of India (2021) indicates this to
be 97.85 million hectares (29.77% of geographical area) in
2018-2019.

The Indian soils possess several nutrient deficiencies
due to inappropriate use of fertilizers as a result of green rev-

olution, nutrient mining and soil erosion driven by natural

CLIMATE
ACTION

and anthropogenic factors!!%l. The SOC content in Indian
soils is critically low, often below the threshold needed for
healthy soil, which affects soil structure, fertility, and its
ability to sequester carbon .

Goals of ecological sustainability in relation to soil
health focus on maintaining soil fertility and structure while
preserving biodiversity and minimizing degradation, ensur-
ing long-term productivity and environmental balance, as

shown in Figure 1.
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Figure 1. Goals of ecological sustainability in relation to soil health.

2. Soil Health: Concepts and Indica-
tors

The sustainable ecosystem and improved agricultural
productivity are indicated by the soil health through various
soil indicators, microbial community dynamics, and soil en-
zymes in relation to essential soil properties such as organic
carbon content, bulk density, and soil pH.

Soil health is a comprehensive expression of the rel-
evant soil physical, chemical, and biological properties
(Figure 2). Soil health degradation is “the loss of the in-
trinsic physical, chemical, and/or biological qualities of soil

either by natural or anthropogenic processes, which result in
the annihilation of important ecosystem functions” 2],

The impact of traditional agricultural practices, par-
ticularly conventional tillage, on soil structure and physical
properties, while advocating for conservation tillage prac-
tices that can improve soil health by reducing bulk density
and enhancing water and nutrient transfer, ultimately influ-
ences plant growth and ecosystem resilience. A fertile or
nutrient-rich soil is regarded as a dynamic living system that
can support biodiversity, improve or maintain the quality of
the air and water, control nutrient availability, build up soil
carbon, support plant and animal health and productivity,
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and lessen erosion, among other advantages for ecosystems.
Crop health and productivity, as well as sustainable agricul-
ture, are based on healthy soil. Soil health information links
stakeholder needs, agricultural laws, and sustainable pro-
duce management. Sustainable agriculture’s objectives now
include maintaining or improving environmental factors,
such as climate change, and human health in addition to
agricultural production based on nutrient management. Soil

is potent living system that supports terrestrial life through

PHYSICAL PROPERTIES
(TEXTURE,STRUCTURE)

CHEMICAL PROPERTIES
(pH,CEC)

its ability to sustain biological productivity, promote en-
vironmental quality, and support plant and animal health.
Unlike the static term “Soil Quality” encompasses both
agronomic productivity and ecosystem services. Modern
agriculture and land-use practices necessitate a meticulous
understanding of soil health indicators to ensure long-term
sustainability['1. Soil health indicators are presented in Fig-
ure 3, while their ecological implications are summarized
in Table 1.

SOIL ORGANIC CARBON
AND ROLE IN ECOLOGICAL
BALANCE

BIOLOGICAL PROPERTIES
(MICROBIAL BIOMASS)

Figure 2. Soil Health: Concepts and Indicators.

Soil Health Indicators

Sail
Physical
Properties

Soil
Chemical
Properties

Biological |
Properties /“%

SN

Figure 3. Different types of Soil Health Indicators.
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Table 1. Ecological implications of Soil health indicators.

Indicator Category Specific Indicator Function in Soil Health Ecological Implications Source
Physical Texture (sand, silt, clay) Dete@1nes waler retention, Inﬂgences P lan‘t W_ate‘r use, Cardoso et al.[13]
aeration, root depth erosion, and soil biodiversity
. . Enhances productivity,
Stru.d.ure (aggregate Aﬁ.‘eCtS water mﬁltratlon, microbial habitat, and Doran & Zeiss!!!
stability) resistance to erosion - .
resilience to compaction
Controls air/water Boosts drought resistance,
Porosity movement, microbial nutrient cycling, and soil Chahal et al.[14]
colonization respiration
. e Modulates species
Chemical pH Inﬂugnces n utrlen‘t s‘olublhty composition, acidification, Karlen & Stott[15]
and biological activity . . .
and microbial function
. . . Determines buffering
g;ECac(ga)tlon Exchange thper;tsiz?ts nutrient-holding capacity, nutrient loss risk, Kibblewhite et al. [1]
pacity p and fertility status
. S Essential for crop Supports food web, biomass
E;ment Availability (N, P, productivity and yield, and ecosystem Allen et al.[17]
plant-microbe interactions stability
Reflects biological Influences soil respiration,
Biological Microbial Biomass productivity and nutrient disease suppression, and Pankhurst et al. 18]
transformation carbon cycling

Enzymatic Activity
(dehydrogenase, etc.)

Catalyzes nutrient turnover
and organic matter
decomposition

Indicates biological stress or
resilience, links to organic
matter processing

Alkorta et al. 1]

Cross-domain

Soil Organic Carbon (SOC)

Stores energy, enhances
aggregation, and microbial

Critical for carbon
sequestration, erosion

Chahal et al.[14]

habitat

control, nutrient buffering,
and climate regulation

2.1. Structural Attributes of Soil Health

2.1.1. Soil Texture and its Implications

The relative proportions of sand, silt and clay particles
which affect the water flow & storage, aeration, nutrient and
contaminant adsorptive capacity, ease of tillage are referred
to as a soil texture which is a major character that decides
the soil quality?%). It influences microbial activity, promotes
root development, and affects the soil’s capacity to hold onto
water and nutrients all of which are crucial for conserving
soil fertility and productivity.

The four soil health indicators are evolved NHj,
evolved CO,, active fraction of available N, and soil organic
matter (SOM) which are usually affected by the soil texture.
Research revealed the impact of soil texture on soil health
indices in agricultural soils in Ontario, underscoring the dif-
ficulties in implementing consistent soil health paradigms in
various geographical locations and soil types. The evaluation
of soil health and productivity management was simplified
through the 3-category classification viz.,coarse, medium and

fine as it offers more scope for easy understanding and on

field decision making even by the non-experts. Soil mapping
is made easy with the three-category classification making
it more efficient and less complex '], Precision agriculture
requires the clear and concise data for accurate results that
are acquired by five group classification of soil viz., sand,
sandy loam, light loam, medium loam, and clay which helps
in unique soil management practices for each textural class
across variable depths and regions. The association of soil
textural classes mentioned in the five group classification
with various soil attributes gives a clear picture in framing up
the unique soil management practices >3, The fertile soils
offer optimal conditions for root development and nutrient
availability other than moisture and nutrition retention which
are affected by the soil texture>*. Loamy soils are combina-
tion of sand, silt and clay particles which offer high moisture
retention, high field capacity due to diversified macro and
micro pores making them unique from the other soils support-
ing the plant growth and soil sustainability. Soil management
practices are mostly recommended by understanding the tex-
tural class from the soil texture triangle which explains the

water permeability and retention, leaching losses 2>, Sand
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particles are low in surface area thereby they cannot bind
the organic matter (essential carbon and nitrogen) which has
negative effects on the microbial activity and faster decompo-
sition!?7]. Soil texture determines the binding and releasing
of the nutrients. The high cation binding capacity is observed
in clayey soil compared to sandy soils thereby affecting the
micronutrient efficiency management and holistic nutrient
profile of the soil (28],

Texture is only the basic component of the soil health
but not the sole determinant, other factors like land use his-
tory, climate and management tactics play an imperative role.
For illustration, the effective soil conservation strategies vary
based on the interaction between soil texture and climatic

conditions[2°].

2.1.2. Soil Structure and Porosity

Soil structure refers to the spatial organization of soil
particles, pores, and organic components, which significantly
influences various soil functions and processes. It is a dy-
namic property that varies with time due to natural and an-
thropogenic factors, affecting soil health and its ability to
support plant growth, water infiltration, and other ecological
functions.

Enhancing soil form is one major aspect of the complex
process of improving soil health, which is essential for en-
vironmentally conscious farming and sustainable practices.
Water retention, nutrient cycling, and carbon sequestration
are all impacted by soil structure and are essential for pre-
serving soil health. Use of ecological farming practices,
incorporation of organic matter fosters the soil structure by
boosting carbon sequestration and also aids in mitigation of
climate change 3%,

Soil porosity refers to the volume of pores or spaces
within the soil, which affects its capacity to hold air and water,
crucial for plant roots and soil microorganisms. The applica-
tion of organic materials, such as compost and manure, fur-
ther enhances soil porosity and aggregation, preventing soil
crust formation !, Alteration of pore structure by biochar
application favors in improved porosity and water retention.
This is particularly evident with higher biochar application
rates, which result in a broader pore size distribution and
increased air-filled porosity 3%,

Water and nutrient retention are essential for plant
growth and increased porosity allows for better water infiltra-

tion and storage, reducing runoff and erosiont®3]. Adequate

porosity ensures sufficient air space for root respiration and
microbial activity, which are vital for nutrient cycling and
soil health 39341 Soil structure is influenced by the porosity
by affecting its stability and resistance to compaction. Well-
structured soils with optimal porosity support healthy root
systems and reduce the risk of soil degradation3*!, Differ-
ent agricultural practices like conservative agriculture which
includes no tillage, crop residue retention, and crop rotation,
lead to improvements in soil structure, porosity, and pore
size distribution over a period of six to ten years, enhancing
soil health and physical properties while also increasing soil
organic carbon concentration. Studies reveal that soil under
zero tillage (ZT) exhibits the lowest porosity compared to
conventional management practices, which show the highest
porosity and maximum connected pores, highlighting the
significant differences in soil physical properties between

CA and conventional agricultural methods 33!,

2.2. Soil Organic Carbon and its Role in Eco-
logical Balance

Soil Organic Carbon (SOC) is one of the main pillars
in determining soil health and in maintaining ecological bal-
ance. The SOC affects various soil properties and functions,
contributing to ecosystem activities such as climate regu-
lation, soil fertility, and biodiversity. SOC acts as a major
carbon reservoir, significantly larger than the atmospheric
and biotic carbon pools, and is integral to the global car-
bon cycle. This makes it a key player in mitigating climate
change and enhancing soil productivity.

The SOC improves the structure and increases in poros-
ity influence the moisture & nutrient retention capacity vital
for spike in plant growth and agricultural productivity 36371,
The presence of SOC improves soil structure by promot-
ing the formation of soil aggregates, which enhances soil
stability and reduces erosion*®. SOC and soil organic ni-
trogen are closely related which has a direct impact on soil
productivity as it is a crucial nutrient for biomass produc-
tion. It also plays a crucial role in the carbon cycle, serving
as a source and sink of carbon and aiding in the sequestra-
tion of atmospheric CO,, which helps to mitigate climate
change3¥3% The reduced emission of greenhouse gases
is to be achieved by stabilizing SOC in soils through ef-
fective management of factors like soil type, climate, and

land management practices which enhance SOC storage37].
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Microbes are harboured by SOC which contributes to nutri-
ent cycling and conditioning of soil health*%!, The decline
in the SOC levels is due to shifting or conversion of the
forest cover into agriculture. Ecofriendly management prac-
tices, including the use of organic compost and reduced soil
disturbance, can help maintain or increase SOC levels?7].
Understanding the topography, climate and soil properties
which influence the SOC dynamics is crucial for designing
effective land management strategies (4142,

While SOC is crucial for ecological balance, its man-
agement poses challenges due to its dynamic nature and
sensitivity to environmental changes. Anthropogenic activi-
ties can either enhance or deplete SOC levels, impacting its
role as a carbon sink. Therefore, sustainable management
practices are essential to harness the benefits of SOC for
climate regulation and soil health. Additionally, ongoing
research and policy initiatives are vital to address the com-
plexities of SOC management and to promote practices that

enhance its ecological functions.

2.3. Chemical (pH, CEC, nutrient availability)

The compositional properties such as pH, cation ex-
change capacity (CEC), and nutrient availability are the main
indicators of soil quality, impacting its capacity to sustain
and promote plant development ecosystem functions. These
chemical indicators interact with physical and biological
properties to determine soil fertility and productivity. Under-
standing these interactions is essential for sustainable soil

management and agricultural practices.
2.3.1. pH (Power of Hydrogen ions)

Soil pH is a critical determinant influencing a wide
range of biological, chemical, and physical processes that
are essential for plant growth and ecosystem sustainability.
It affects microbial activity, enzyme efficiency, and nutri-
ent availability, making it a “master soil variable”**]. The
pH has a greater impact on nutrient availability, as it affects
both soil reactions and plant uptake. For instance, increas-
ing pH can decrease the availability of certain nutrients like
phosphate, while increasing the availability of others like
molybdate**!, Optimal pH levels are necessary for main-
taining a balanced ecosystem, as extreme pH levels can lead
to nutrient deficiencies or toxicities, affecting plant growth

and soil biodiversity 431,

2.3.2. Cation Exchange Capacity (CEC)

The capacity of the soil to adsorb the cations like Ca’",
Mg?" is an imperative indicator of soil health, reflecting the
soil’s ability to retain and exchange nutrient ions, which is
integral for plant growth and soil fertility. It serves as a key
metric for assessing soil quality, particularly in agricultural
and natural ecosystems which are impacted by various fac-
tors, including soil texture, organic matter content, and the
presence of clay minerals*. High CEC values indicate a
greater capacity to hold essential nutrients, which can en-
hance soil fertility and plant growth. Conversely, low CEC
can lead to nutrient leaching and reduced soil fertility.

Cation Exchange Capacity (CEC) of sandy soils in the
forest agro-ecosystem significantly increases due to forest
cover, which enhances fertility of the soil through the replen-
ishment of biodegradable matter from diverse plant debris.
This increase in CEC is influential for improving the soil’s
ability to retain and exchange major essential nutrients for

plant growth 461,

2.3.3. Nutrient Availability

Sustainable agriculture practices mainly reflect on the
supply of essential nutrients for the plant growth. Soil health
is a multifaceted concept encompassing physical, chemical,
and biological characteristics that collectively determine the
soil’s ability to function as a living ecosystem. Nutrient
availability, particularly of nitrogen (N), phosphorus (P), and
potassium (K), plays a significant role in assessing soil health,
as it directly impacts plant growth and productivity. The fer-
tility of the soil is determined by availability of nutrients and
is influenced by factors such as soil pH, CEC, organic matter
content, and microbial activity [**]. The availability of nutri-
ents like nitrogen, phosphorus, and potassium is essential for
plant growth and productivity. Fostering soil health through
nutrient cycling and retention by nurturing the soil*). Soil
microbes serve as indicators in shaping soil nutrient cycling
processes by understanding their response to the nutrient
additions which help in enhancing soil health and productiv-
ity. Addition of phosphorus significantly influences the soil
bacterial community composition which aids in maintaining
biodiversity and ecological function in temperate ecosys-
tems 8], Enhanced nutrient availability and soil health are
achieved through the organic amendments like bokashi and

biochar. These amendments enhance nutrient cycling and mi-
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crobial interactions, contributing to environmentally friendly

soil management (4%,

2.4. Biological Attributes

Microbial biomass and enzymatic activity depict the
biological activity and health of soil ecosystems. For sus-
tainable farming methods and ecosystem restoration, these
indicators offer information on the cycling of nutrients, the
breakdown of organic matter, and the general fertility of the
soil. Incorporating these biological markers into evaluations
of soil health can improve knowledge of soil function and
guide improved land management techniques. The mineral-
ization of essential nutrients particularly nitrogen and carbon
is carried out by diversified microbial population and made

[50.51] ' Regenerative agriculture practices

available to plants
like cover cropping, biodegradable waste management im-
prove the SOC, total N, and phosphorus, sulphur related
enzymatic activity. This implies that these practices enhance
the biological functions and vitality of the soil. Microbial
biomass responds positively to regenerative agricultural prac-
tices, such as organic amendments and conservation tillage,
which boost soil organic matter and nutrient availability P2
Improved nutrient availability and soil structure are altered
by higher microbial biomass in various cropping systems>!1.
Soil Biochemical Activity as a Health Indicator
The organic matter decomposition and nutrient min-
eralization are the core indicators for maintaining the soil
health. Enzymes such as dehydrogenase, urease, and phos-
phatases are involved in key soil processes which indicate the

33,341 Soil enzymes like

biological activity and soil health!
dehydrogenase, acid phosphatase, B-glucosidase, and urease
are sensitive to altering soil conditions, making them reliable

351, The biochemical

indicators of soil health and fertility!
properties of the soil are influenced by soil pH, moisture,
and temperature, which affect microbial activity and enzyme
efficiency®. Soil management practices like addition of
organic amendments and reduced tillage will improve or
exhibit the high enzymatic activities in soils which reflects
enhanced microbial activity and nutrient cycling %3¢, Bio-
logical indicators can be constrained by soil classification,
which should be considered when interpreting soil health
scores. Adjusting assessments based on soil type can improve
the accuracy and relevance of soil health evaluations 2. The
holistic understanding of soil conditions can be accomplished

by conjunction of other soil health metrics.

3. Emerging Technologies Enhancing
Soil Health

3.1. Precision Agriculture Tools

Precision agriculture technologies (PATs) have signifi-
cantly enhanced soil health by leveraging resource use, im-
proving soil nutrient management, and promoting sustainable
agricultural practices. By using data-driven methods to mon-
itor and control soil conditions, these technologies increase
soil fertility and mitigate their negative effects on the en-
vironment. By integrating advanced tools such as remote
sensing, [oT devices, machine learning, and metagenomics,
PATs offer precise interventions tailored to specific field con-
ditions, thereby enhancing soil quality and crop productivity.
The contributions of various technologies in enhancing the
soil health are discussed as follows:

Sensors, GPS, drones, and IoT-based soil monitor-
ing; Variable rate technology (VRT)

The integration of advanced sensor technologies into
soil health monitoring has been significantly optimized by
providing the real-time data on various soil parameters that
improve soil conditions. Soil health monitoring includes
a range of technologies viz., IoT devices, nanotechnology,
and remote sensing, each contributing uniquely to the under-
standing and management of soil health (Figure 4).

The research reports suggest that the integration of ad-
vanced sensor technology for monitoring soil pH, moisture,
and temperature significantly escalates the crop growth condi-
tions, leading to increased agricultural output while minimiz-
ing environmental impacts. The effectiveness of the sensor-
based system in promoting sustainable agriculture through
precise irrigation practices and maintaining optimal conditions
for microbial activity and root development. An alert mecha-
nism within the system notifies users of significant changes
in soil conditions, facilitating timely crop management inter-
ventions and improving overall soil fertility®”). SensorSuite,
a low-cost IoT device, enhances precision agriculture with
real-time soil health analysis using five sensors, capturing data
on moisture, temperature, and pH levels, and providing reli-
able and accurate results through cloud-based analytics and
solar-powered operation. High resolution images and data for
precise surveillance of pests, soil conditions and plant health
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help in optimal use of resources. Manual sampling, laboratory
testing are laborious and protracted processes making it diffi-
cult to take the immediate corrective action which affects the
crop productivity. IoT-based soil nutrient monitoring and anal-
ysis system enables real-time data collection and analysis of
key soil parameters such as nitrogen, phosphorus, potassium
(NPK), moisture, and pH levels, which significantly improves
the efficiency of soil management compared to traditional
methods that are time-consuming and reliant on manual sam-
pling. By integrating IoT sensors, cloud computing, and data
analytics. The system generates pertinent data that improves
crop management, reduces fertilizer overuse, and improves
resource efficiency, ultimately leading to higher agricultural
yields and more sustainable practices[*®!. Variable rate tech-
nology (VRT) is efficiently used in application of Agri inputs

like water, fertilizer, and pesticides more efficiently guided

NANOTECHNOLOGY'

by GPS-based real-time data, reducing waste and minimizing
environmental impacts such as nutrient runoff and greenhouse
gas emissions*%l, The integration of GPS with GIS and re-
mote sensing technologies enables the creation of digital soil
maps. These maps offer comprehensive details on soil charac-
teristics, which are essential for site-specific nutrient manage-
ment and sustainable crop production[®)]. Precision farming,
utilizing GPS, sensors, and drones, significantly reduces ad-
verse environmental effects by sparingly using insecticides,
fertilizers, and water, leading to less waste and more efficient
resource use ). The enactment of UAV-based remote sens-
ing with soil metagenomics is proposed as a transformative
approach for precision agriculture, enhancing resource effi-
ciency and aligning with sustainable agricultural objectives
by reducing environmental impacts and minimizing chemical

inputs 2],

\\
W
Gls
(GEOGRAPHIC
) INFORMATION SYSTEM)

(GLOBAL
POSTIONING SYSTEM)

Figure 4. Emerging Technologies Enhancing Soil Health.

3.2. Nanotechnology in Soil Management:
Nano Fertilizers and Nano Pesticides; Soil-
Targeted Delivery Systems

Nanotechnology is a transformative tool in soil man-
agement, illustrating innovative concepts for soil remedia-
tion, fertility enhancement, and real-time monitoring. The
high reactivity and mobility of nanoparticles can address

various soil-related challenges, including salinity, nutrient

management, and pathogen control by fostering agricultural
productivity and promoting environmental sustainability.
By efficiently adsorbing, immobilizing, and degrad-
ing different contaminants like heavy metals, persistent or-
ganic pollutants, and resistant pesticides, nanotechnology
shows great promise in soil remediation. This will address
the degradation of soil quality and improve environmental
sustainability. The application of nanomaterials improves

soil structure by enhancing water retention, promoting aera-
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tion, and facilitating nutrient diffusion, while also enabling
controlled-release capabilities of nano fertilizers that provide
precise nutrient delivery to plants, ultimately boosting soil
fertility and promoting plant growth 631,

The adsorption and degradation of soil contaminants is
offered by the nanomaterials like nano zero-valent iron and
metal oxides which provide a more efficient and targeted

63.641 Nanoreme-

approach compared to traditional methods'
diation techniques are eco-friendly and cost-effective, facili-
tating both in situ and ex situ applications to eliminate the
soil contaminants 3,

Globally, Urbanization and agricultural expansion
cause severe threat to the soil health through soil erosion,
contaminants, and declining agricultural productivity. Impro-
visation of the affected soils through existing technological
advancements is expensive and labor intensive thus failing
to restore soil conditions to desired levels. When soils in-
clude nanomaterials (NMs), the effectiveness of rhizosphere
microbes and other beneficial microbes improves the nutri-
ent access for crops and supports better root system func-
tioning and overall crop growth (). Nanomaterials such as
zero valent iron, iron oxides, graphene oxide, and bimetallic
nanoparticles are widely used for immobilizing heavy metals
in soil and groundwater, demonstrating effective solutions for
remediating heavy metal-contaminated sites and improving
soil quality. Nanotechnology enhances agricultural sustain-
ability by improving food production, nutrition quality, and
overall agricultural practices, with nanomaterials also being
utilized for antimicrobial properties in pesticides, biosensors,
and fertilizers (64,

Nanoparticles enable the controlled and gradual release
of nutrients, enhancing their availability to plants over time
while minimizing leaching and runoff. In potato cultivation,
foliar application of NPK nanofertilizers at just 50% of the
conventional rate significantly improved yield, profit, and
quality compared to traditional soil applications. This demon-
strates the efficacy of nanofertilizers as an environmental
friendly and efficient alternative to conventional chemical fer-
tilizers (7). The efficient use of essential plant nutrients such
as nitrogen (N), phosphorus (P), and potassium (K), which
are currently used to enhance the soil through development
of smart fertilizers and delivery systems by using nanotech-
nology in agriculture, specifically through the application
of nanofertilizers and nanopesticides, which improves the

solubility of active ingredients and enable slow or targeted
release, thereby minimizing degradation and maximizing the
effectiveness of these agricultural inputs!®®l. Encapsulated
nanoparticles absorb or bind pesticides and improve pesticide
delivery by enabling targeted and controlled release directly
onto plants and pests by reducing toxicity and environmen-
tal leakage while increasing pesticide efficacy. By adding
ligands to bind to plant surfaces and creating pH-responsive
nanoparticles, functionalization of nanoparticles improves
pesticide targeting and controlled release, resulting in less
pesticide use and a decreased risk of environmental contami-
nation®°. Nanotechnology significantly enhances agricul-
tural practices by improving seed germination, root-shoot
length, and seedling biomass, while also boosting physio-
logical parameters such as nitrogen metabolism and photo-
synthetic activity in various crop plants. The application
of nanoparticles in agriculture allows for reduced chemical
usage, increased nutrient absorption from the soil, and the
potential for controlled release of agrochemicals, leading to
enhanced productivity and environmental protection through
precise application of nanopesticides and nanofertilizers %),
Nanotechnology offers a sustainable approach to pest and
disease management by enabling precise agrochemical deliv-
ery with minimal environmental impact. However, concerns
like long-term safety, production costs, and regulatory gaps
remain, though advancements in eco-friendly, biodegradable
nanoparticles aim to overcome these challenges "',
3.3. Remote Sensing and Artificial Intelligence
(Ai) Tools: Use in Mapping And Managing
Soil Degradation

Remote sensing integrated with Artificial Intelligence
(AI) has been popping up as a vital tool for monitoring and
addressing soil degradation, delivering accurate, timely, and
cost-efficient insights. These technologies allow large-scale
data collection and analysis, helping to detect degradation
trends and support sustainable land management.

Land degradation is a significant global issue which
renders land unsuitable for both human use and natural soil
environment. Mitigating land degradation requires a deep
understanding of its causes, effects, and severity. Effec-
tive monitoring of desertification has historically been lim-
ited by inefficient strategies. Land degradation is assessed

through various means such as expert input, field surveys,
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user feedback, and modeling. Recent research increasingly
emphasizes its value in accurately mapping land deterio-
ration, degradation assessment, soil moisture studies, soil

(721, Remote sensing (RS) has

fertility, soil resource studies
significantly enhanced the availability of soil data, allowing
for the generation of digital soil maps at fine resolutions.
The utilization of diverse satellites has yielded significant
covariate data for digital soil mapping (DSM) endeavors, en-
hancing the spatial management of soil characteristics over
the last 20 years!”3]. Various satellites, including Landsat,
Sentinel, and MODIS, are extensively used for soil mapping.
These platforms offer high-resolution data that are essential
for digital soil mapping (DSM) and the assessment of soil
resources 4],

GIS and RS are critical in assessing and managing soil
degradation. Integrated with models like USLE (Universal
Soil Loss Equation) and RUSLE (Revised Universal Soil
Loss Equation), they allow precise estimation of soil loss—
for instance, in Punjab’s lower Sutlej River basin, soil loss
ranged from 1.26 to 25 tonnes per hectare annually, with total
loss exceeding 2.4 million tonnes. Studies in Ethiopia show
an annual soil loss of 1.5 billion tonnes, with productive
land potential declining by 2.2% per year in highland areas.
These tools help delineate watersheds, identify erosion-prone
zones, and prioritize sub-watersheds like WS8 (highest ero-
sion) and WS2 (lowest erosion). RS also identified 80%
of the Wonji sugarcane farm in Ethiopia as severely saline-
affected. Despite their utility, challenges remain, including
lack of access to technology, skilled personnel, and funding,
Strengthening support for GIS and RS adoption is necessary
for effective, data-driven soil conservation and sustainable
land management "3,

Mapping and management of soil degradation through
deep learning enhances the accuracy and efficiency over tra-
ditional methods. By leveraging advanced algorithms and
high-resolution data, deep learning models can effectively
identify, map, and predict various aspects of soil degrada-
tion, such as erosion, organic matter content, and overall
soil health. This approach not only aids in understanding
current soil conditions but also supports sustainable land
management practices.

The challenges of land degradation in irrigated agro-
ecosystems are addressed by RS and GIS tools that delineate,
map and generate a holistic database on resources7®). Effi-

ciency and accuracy of soil health is monitored using special
systems viz., Soil Health Intelligence System using Multi-
spectral Imaging and Advanced Deep Learning Techniques
(SHIDS-ADLT) by integrating multispectral imaging with
advanced deep learning algorithms, allowing for precise iden-
tification of nutrient deficiencies, soil contamination, and
other critical parameters affecting agricultural productivity.
SHIDS-ADLT provides a scalable and user-friendly platform
that facilitates real-time analysis and actionable recommen-
dations for farmers, agronomists, and researchers, promoting
sustainable agricultural practices and enabling prior detection
of degradation of soils for timely management!’’]. The map-
ping of peat land degradation at a 25cm resolution aided in
identifying the drainage channels and erosion features, vital
for carbon sink maintenance and estimation of GHG’s emis-
sion through use of convolutional neural networks (CNN5s)
type of deep learning models["®. Development of various
conservation strategies utilizing high-resolution satellite im-
ages of deforestation activities like road construction, log-
ging and natural disasters (forest fire) achieved through con-
tinuous monitoring can be helpful for mapping of forest
degradation through deep learning models to obtain higher
accuracy than traditional methods 7).

Al-driven perspectives of soil physiochemical prop-
erties such as moisture, pH, and nutrient levels yield accu-
rate recommendations for fertigation, and soil management.
When integrated with IoT and GIS, it improves resource
efficiency, boosts agricultural yields, and promotes sustain-
able agriculture through fostering proactive decision-making
and conservation of the environment®%). A hybrid CNN-
RF model using GeoAl and satellite imagery fusion accu-
rately predicted soil texture (clay, sand, silt) with high pre-
cision. Using soil samples from Iran’s Golestan province
and data from Landsat-8, SRTM DEM, and weather parame-
ters, the model outperformed standalone methods, offering
improved tools for sustainable agriculture and soil manage-
ment8!. Reports from various studies introduced a deep
learning approach to map soil degradation using 37 years of
multi-temporal Landsat data, focusing on bare soil surfaces
(BSS) instead of vegetation indices. Using 244 BSS masks,
the model achieved 75% accuracy. The proposed Spectral
Neighborhood of the Soil Line (SNSL) method analyzed
RED and NIR bands to identify degradation, with ground

validation showing strong correlation to organic matter and
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humus depth, confirming its effectiveness 32,

Al tools offer significant advancements in soil degra-
dation management, but challenges remain in terms of data
availability, model accuracy, and integration with existing
agricultural practices. Additionally, the reliance on technol-
ogy may pose accessibility issues for regions with limited
resources. In spite of several setbacks in adopting Al, the
continuous advancement and deployment of Al in soil con-
servation emphasize an affirmative response in eco-friendly

management of soils.

4. Innovative Materials for Sustain-
able Soil Management

4.1. Carbon Sequestration and Nutrient Reten-
tion Using Biogenic Amendments

Globally climate change is emerging as a serious threat
affecting the ecosystem. Mitigating the effects of climate
change and boosting up the soil health by trapping the atmo-
spheric carbon dioxide and storing it in the soil as biomass
and retaining nutrients in the soil will help in holding of
essential nutrients for plant growth. Resilient ecosystem
and eco-friendly management of land are achieved through
diversified agricultural and forestry practices.

Biochar, produced through pyrolysis, is known for its
ability to alter the soil structure, nutrient holding, and car-
bon sequestration, while soil conditioners like crop residues
and manure primarily impact the soil quality and microbial
count. Both the products significantly impact soil health
indicators, such as microbial biomass, nutrient availability,
and greenhouse gas emissions.

Optimization of various soil health parameters, includ-
ing soil pH, organic carbon content, cation exchange capacity,
microbial biomass carbon, and reduced bulk density through
biochar amendments by applying at higher rates (20 t ha™!
and 30 tha!) resulted in increased strawberry yield and better
fruit quality proving its effect on agronomic and economic
benefits in organic agriculture Long-term carbon storage in
soilst®3],

Biochar enhances soil health by structural alteration, nu-
trient retention, and water-holding capacity, which supports
better crop productivity. It also aids in carbon sequestra-
tion, helping mitigate climate change. Additionally, biochar
shows promise in restoring degraded lands and remediating

polluted soils. However, widespread use faces challenges
like inconsistent properties from varied production methods,
high costs, and the need for long-term research to assess its
full impact 34,

Biochar, an anthropogenic material, significantly im-
pacts the soil nitrogen (N) cycle, both directly and indirectly,
thereby affecting soil ecological functions. Its unique prop-
erties play a pivotal role in soil amelioration and nutrient
retention, which are integral to its effects on nitrogen dy-
namics. It influences the N cycle by adsorption of various
nitrogen species, impacts various biochemical processes like
nitrification, denitrification and nitrogen fixation. Biochar
exhibits high surface area and porous structure, which en-
hances its ability to adsorb ammonium (NH4") and nitrate
(NOs") which enhances the nitrogen retention and slow re-
lease and long-term availability of nutrients. The biochar
affects the microbial community based on pH and moisture
levels as well as lowers the bulk density promoting aera-
tion®]. Application of biochar along with different nitrogen
sources enhances the soil health and supports sustainable
agricultural practices thereby impacting the crop yield and
environment. The effects of biochar and biodegradable ni-
trogen on alkaline soils in semi-arid regions, finding that
combining biochar at 30 t ha™' with nitrogen at 150 kg ha™'
from poultry manure or FYM significantly enhances soil
fertility and carbon sequestration [®%]. Biochar amendments
can lead to significant increases in SOC stocks, although the
stability of these stocks varies depending on soil texture and
biochar properties 71,

Organic amendments significantly increase SOC con-
tent, with studies showing an average increase of 26.9%
in SOC due to amendment application. This increase is at-
tributed to the addition of organic matter, which enhances
carbon storage in soils[®3].

Biochar, along with organic amendments like rice husk,
coconut coir, and sheep manure, enhances carbon sequestra-
tion and improves nutrient cycling by influencing microbial
activity in soils. These amendments reduce carbon limitation
and increase nitrogen demand, boosting soil fertility. Their
effectiveness varies with soil texture. Biochar and rice husk
perform better in clayey soils by enhancing enzyme activ-
ities linked to carbon, nitrogen, and phosphorus, while in
sandy soils, sheep manure supports carbon and phosphorus
cycling, and biochar aids nitrogen-related enzymes %1, Tt
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provides a stable form of carbon that resists decomposition,
thus contributing to long-term carbon storage. The applica-
tion of organic amendments in cropping systems, such as
wheat-maize, has been shown to increase crop carbon uptake
and reduce carbon dioxide emissions, further contributing to

carbon sequestration ],

4.2. Compost, Vermicompost, and Green Ma-
nures: Enhancing Microbial Life and Nu-
trient Cycling

The soil health preservation is a basic element of eco-
friendly agriculture practice through increased microbial pop-
ulation. Soil microorganisms, encompassing bacteria, fungi,
and archaea, are indispensable to the processes of nutrient
cycling, organic matter decomposition, and disease control,
all of which significantly enhance soil fertility and promote
plant growth. Diversified microbes are shaped by a multitude
of natural and anthropogenic determinants, their interactions
with soil characteristics and plant roots are critical for the
sustenance of robust soil ecosystems.

Sustainable methodologies such as composting, crop
rotation, and the application of organic amendments signifi-
cantly augment this biodiversity. Assessing soil health indica-
tors can guide tailored strategies to maintain productivity ).
Both conventional composting methods and vermicompost-
ing approaches markedly improved the concentrations of
SOC, total phosphorus, and the availability of phosphorus,
while concurrently augmenting the enzymatic activities of
soil enzymes pertinent to the cycling of carbon and phospho-
rus, including a-glucosidase, B-glucosidase, acid phospho-
monoesterase, and alkaline phosphomonoesterase®?!. Ver-
micomposting effectively converts large amounts of organic
waste into high-quality organic fertilizer, resulting in a nutri-
tionally rich and biologically active product that enhances
soil health and supports sustainable nutrient management
in agricultural soils. It emphasizes that the use of vermi-
composting not only improves crop growth and yield but
also contributes to reducing environmental pollution by effi-
ciently managing waste materials 3],

Vermicomposting improves soil fertility and crop
growth by enriching beneficial microbes, enhancing plant
hormones and enzymes, and increasing resistance to pests
and diseases. Its high nutrient content, water retention, and

permeability make it valuable for sustainable agriculture and

eco-friendly waste management across various sectors 4],

The carbon is sequestered by recycling organic waste into
nutrient enriched soil amendment which reduces the GHGs
emission. The use of vermicompost improves soil health and
increases yields by enhancing soil makeup and biochemical
properties, leading to higher nutrient density in plants and

overall better agricultural productivity (>3,

4.3. Zeolites, Hydrogels, and Polymers: Soil
Moisture Regulation and Nutrient Hold-
ing Capacity

Zeolites, hydrogels, and polymers are progressively
acknowledged for their potential to augment soil moisture
regulation and enhance nutrient retention capacity, both of
which are essential for eco-friendly agriculture. These materi-
als possess distinctive characteristics that can optimize water
use efficiency (WUE) and nutrient use efficiency (NUE),
consequently facilitating plant development while dimin-
ishing ecological repercussions. The utilization of zeolites
functions as soil ameliorants (Figure 5).

Zeolites are increasingly acknowledged for their func-
tion as effective soil conditioners, proficient in enhancing both
the physicochemical properties of soil. Their integration into
agronomic systems has been demonstrated to augment per-
meability, saturated hydraulic conductivity, water retention
capacity, and cation exchange capacity. These attributes con-
tribute to more sustainable agricultural practices by increasing
water use efficiency (WUE) and nutrient use efficiency (NUE).
Zeolites accomplish this by sequestering water and critical
nutrients such as ammonium, nitrate, phosphate, potassium,
and sulfate within their porous matrix, thereby elevating crop
yields and mitigating the potential for nutrient leaching into
surface and groundwater(°®l. Integrating superabsorbent poly-
mer hydrogels with soil conservation practices enhances crop
productivity by conserving water and nutrients and protecting
seeds from stress. Biodegradable polysaccharide hydrogels
offer a sustainable alternative to synthetic ones, serving as
soil conditioners, fertilizer carriers, and slow-release pesticide
systems, while reducing environmental impact®®”. Hydro-
gels embedded with municipal sludge-derived hydrochar have
shown improved water retention, nutrient release, and plant
growth support, making them promising for sustainable agri-
culture in arid regions[*®). Potassium polyacrylate-derived
hydrogels markedly enhance the moisture retention capabili-
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ties of sandy soils, thereby presenting a viable approach for

the conservation of water in arid and semi-arid agricultural

zones®1. Synthetic amendments have a more pronounced on soil health are detailed in Table 2.

ZEOLITES,HYDROGELS
ENHANCING SOIL HEALTH

Zeolites,

Nutrient
Holding

Polymers.

Polymers

Moisture
regulation

Polymers

Figure 5. Zeolites, Hydrogels, and Polymers.

Table 2. Comparative Effect of Organic vs Synthetic Amendments on Soil.

impact on soil health compared to organic amendments. The

comparative effects of organic versus synthetic amendments

Soil Property

Organic Amendments

Synthetic Amendments

Source

Soil Structure &
Aggregation

Improve aggregation due to higher organic
matter input and microbial activity

Often degrade structure over time due to lack
of organic matter

Naushabayev et
al. [100]. [ g1 [101]

Water Retention

Increases water-holding capacity by
enhancing soil porosity and humus content

Minimal impact; may even reduce porosity
with long-term use

Chivenge et al.[102]

pH Stability

Buffers pH due to organic acids and
complexation

May acidify soils over time, especially with
ammonium-based fertilizers

Bhattacharyya et
a1, [103]

Edmeades, [104

Cation Exchange Capacity
(CEC)

Enhances CEC by contributing humic
substances

No contribution; can reduce CEC indirectly
through soil acidification

Lorenz & Lal 103

Nutrient Release

Slow, sustained release; aligns with
microbial and plant uptake

Rapid nutrient availability; risk of leaching
and runoff

Leifeld & Fuhrer[106]

Soil Organic Carbon
(SOC)

Substantially increases SOC stocks and
promotes carbon sequestration

Typically reduces SOC over time if not
combined with organic sources

Diacono &
Montemurro

Naushabayev et
a1, [100]

[107].

Microbial Biomass

Stimulates microbial growth, diversity, and
enzymatic activity

Often suppresses microbial diversity,
especially with high doses

Lehmann et al. [108]

Soil Enzymatic Activity

Increases due to carbon input and microbial
stimulation

May decline under heavy or prolonged
synthetic use

Maeder et al. 109

Long-Term Soil Health

Enhances long-term resilience, fertility, and
ecological balance

May lead to nutrition deficiency, compaction,
and degradation

Ding et al. [110]
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5. Soil Health and Climate Change

Climate change exerts a substantial influence on soil
processes through modifications in temperature, precipitation
patterns, and biological activity, thereby impacting SOC con-
centrations, microbial diversity, and the structural integrity
of the soil. Elevated temperatures enhance the rate of organic
matter decomposition, which results in a decline in SOC and
microbial diversity. Catastrophic climatic events, including
floods and droughts, further disrupt soil structure, exacerbate
erosion, and diminish the availability of essential nutrients
that alter the soil quality and ecosystem functioning.

Elevated temperatures attributable to climate change
expedite the process of SOM decomposition, consequently
resulting in diminished stocks of SOC. This phenomenon is
predominantly due to the fact that the rate of SOM decom-
position exhibits a pronounced sensitivity to variations in
temperature, which may surpass the rate at which carbon
is introduced through plant detritus and organic material,
ultimately culminating in a net loss of carbon from soil sys-
tems '], The fluctuation in temperature shows a significant
impact on the microbial community by affecting their physi-
ological characteristics, symbiotic relations with plants that
impacts the recycling of nutrients and maintenance of soil
health[112),

Soil formation process is affected by variable patterns
of precipitation such as droughts and floods. Drought im-
plies reduced soil moisture which limits microbial activities
and nutrient availability and floods may cause soil erosion
and loss of nutrients by leaching.

Changes in precipitation patterns, including increased
frequency of droughts and floods, significantly impact soil
processes. Drought conditions reduce soil moisture, which
can limit microbial activity and nutrient availability, whereas
soil erosion and nutrient leaching occur due to floods[!!3.

Reduced rainfalls have demonstrated the suppression of
soil multifunctionality in semiarid regions, an aspect that has
lowered the nutrient provisioning and the efficiency of the
microbial growth. In contrast, the precipitation can stimulate
the efficiency of microbial growth improvement, however,
it does not influence the global multifunctionality of soil

114

significantly[!'4]. Fertile soils are subjected to erosion and

structural degradation due to extreme weather conditions viz.,
heavy rainfall, storms therefore contributing to loss of SOC

and increased mineralization[!1:113],

Reports on adverse impacts of climate change, the ad-
verse impacts of climate change on soil processes are re-
ported but on the other side the potential adaptive tactics for
eco-friendly land management practices like common agro-
nomic practices viz., no-tillage, crop rotation and organic
amendments which improve soil quality by fostering micro-

bial growth and soil structure, also SOC sequestration[!6].

5.1. Soil as a Carbon Sink: Mitigation Strate-
gies

The capturing of atmospheric CO, and storing it as
biomass in soil helps in reducing the GHGs emission and
acts as a natural carbon sink. The capturing ability is in-
fluenced by factors, including soil management practices,
land use, and climate conditions. There are good soil man-
agement practices that can help increase soil organic carbon
(SOC), hence through that climate change will be addressed.
The solution to this question will examine the importance of
soil as a carbon sink and measures that can be undertaken to
strengthen carbon sequestration abilities of the soil (Figure
6).

Carbon Storage Capacity: Soil is the largest terres-
trial carbon sink, holding around three times as much carbon
as in the atmosphere and holding four and a half times as
much carbon as in the biotic pool. Because of this, soil is a
key player in the global carbon cycle and a possible controller

of greenhouse gases as CO,, N,O and CH,4 171181,

5.2. Technological Adaptation Across Agro-
Ecological Zones

In the context of climate change, to enhance the agri-
cultural productivity and resilience, technological adaptation
across the various agro-ecological regions is highly recom-
mended. Technological adaptations include agro-forestry,
climate-smart agriculture and conservation agriculture which
are localized due to heterogenetic nature of these zones to
maximize the efficacy. For instance, in Ethiopia, the imple-
mentation of carbon farming and CSA methodologies has
been demonstrated to augment resilience and mitigate emis-

(1191 The improved

sions when tailored to regional conditions
soil fertility in the semi-arid regions of Tanzania is reported
due to conservative agricultural practices which efficiently

use the resources. This discourse will examine the adaptation

193



Research in Ecology | Volume 07 | Issue 05 | December 2025

of these technologies across various agro-ecological zones,

Conservation
Tillage

concentrating on their execution and resultant impacts 2],

— Carbon
Restoration of Sequestration and Agroforestry &
Degraded Soils Soil Health Vegetation Cover

Figure 6. Soil as a Carbon Sink: Mitigation Strategies.

In agroforestry, trees are paired up with crops and ani-
mals and help to increase biodiversity and carbon sequestra-
tion. In Ethiopia, carbon farming includes use of agroforestry
system that enhances storage of carbon in soil and improves
soil health which supports climate change mitigation and
ecosystem resilience. Carbon farming also known as earth-
friendly farming is a significant way to trap CO, and hold
it in the ground and plants. This technology not only cuts
down the amount of greenhouse gases discharged but also
helps in raising the level of soil fertility and the capacity to

hold water as well[119],

5.2.1. Climate-Smart Agriculture (CSA)

The enhancement of agricultural output is achieved by
practicing CSA as it is a holistic approach of production,
mitigation and adaptation goals that include the reduction
of GHGs emissions, diversified cropping patterns and maxi-
mizing resource-use efficiency. The CSA practices are im-
pacted by climate information authorization, training and
extension services which are essential for ensuring food se-

curity 1211221,

5.2.2. Conservation Agriculture

Farming practices like minimum tillage, residue man-
agement and crop rotation are the vitals of the Conserva-

tion agriculture (CA) concept which improve the soil health

by increasing moisture conservation, and increase nutrient
buildup, leading to higher crop productivity. In the context
of Ethiopia, Conservation Agriculture (CA) has been recog-
nized as a pivotal approach for both climate change adapta-
tion and mitigation, facilitating enhancements in soil organic
carbon sequestration while simultaneously decreasing green-
house gas emissions[!?>124], The adoption of different soil
management strategies influences various soil properties.
The comparative impacts of these strategies on soil health
are presented in Table 3.

5.2.3. Adaptation Strategies Across Agro-
Ecological Zones

Different agro-ecological regions are subject to choos-
ing various farm types and adaptive strategies for CA. For
example, Africa being a drought prone or dry land conti-
nent the strategies are adopted based on its crop and cli-
matic conditions. In semi-arid regions, the implementation
of conservation agriculture has demonstrated efficacy in the
enhancement of soil fertility, whereas in elevated terrains,
livestock management practices are customized to align with
the distinct climatic conditions.

Although the incorporation of technological innova-
tions is a most significant trigger of agricultural resiliency,
one should consider the socio-economic processes that im-

pose an impact on the process of adoption of such procedures.

194



Research in Ecology | Volume 07 | Issue 05 | December 2025

Factors which influence the outcome of adaptation strategies
are the ease of access to resources, education levels, and the
status of social equity. Moreover, the possibility of the mal-
adaptation emerges in case the interventions fail to take into

make some farmers more vulnerable to the negative effects
of the climate change. The need is therefore a more transfor-
mational structure which is able to address these structural

factors leading to establishing a state of vulnerability towards

consideration the underlying socio-economic systems that

achieving sustainable development goals

Table 3. Comparative Impact of Soil Management Strategies on Soil Health.

[124]

M . . . .
S t?:;ie;ment Physical Impact Chemical Impact Biological Impact SOC Impact Source
. . . . Slows SOC loss;
. Enhances aggregation, Improves nutrient Promotes microbial W ?
Conservation : e . . promotes . [125]
. reduces erosion, stratification, slows biomass in upper L Hellin et al.
Tillage . . L . sequestration in
improves bulk density  acidification layers .
surface soil
Improves structure Enhances nutrient Increases microbial Builds SOC by
Cover Cropping and water infiltration;  availability, especially ~ diversity and continuous organic Franzluebbers, [126]
reduces compaction Nand P enzymatic activity input
. Diversifies microbial . .
Breaks up hardpans; Enhances nutrient cor\;riuini t?eS' Tobt Moderate increase in
Crop Rotation improves porosity and  cycling; mitigates S SOC, especially in Sisay et al.[122]
. . enhances symbiotic . .
texture nutrient mining . . diversified systems
interactions

Organic Farming

Integrated Nutrient
Mgmt.

No-Till + Organic
Inputs

Conventional
Tillage

Improves soil porosity
and aggregate stability

Maintains structure by
combining
organic/inorganic
inputs

Maximum
improvement in
physical parameters
like infiltration and
aggregation

Leads to compaction,
soil crusting, and
erosion

Increases CEC, pH
buffering, and
macro-nutrient
availability

Reduces risk of
nutrient leaching;
balances short and
long-term nutrient
availability

Sustained nutrient
availability with
reduced synthetic
input

Often causes pH shifts
and nutrient loss due
to leaching

Substantial rise in
microbial activity,
earthworm biomass,
and enzymatic
diversity

Promotes beneficial
soil fauna and
microbial metabolism

Very high microbial
biomass and activity

Disrupts microbial
networks; reduces
biodiversity

Strong enhancement
of SOC due to regular
organic input

Sustains or improves
SOC, depending on
organic input levels

Long-term SOC
buildup and enhanced
carbon stabilization

Accelerates SOC
depletion

Lehmann et al. 108];
Lorenz & Lal 03]

Lal,[101]

Naushabayev et

al.[19] ; Poeplau et
al 1271

Gattinger et al.[128]

6. Challenges and Gaps in Current
Research

The absence of prescribed protocols for evaluation
across stratified agro-ecosystems is the major limitation. The
non-uniformity hinders consistent tracking and comparison
of indicators of soil health between regions and globally
thus compromising the efficacy of soil management inter-
ventions. Moreover, due to less access and availability of
laboratory facilities in most regions, it is difficult to carry out
in-depth diagnostics of the soil health and thereby hindering
the process of creating efficient and site-specific approaches
to remediation of the soil.

Predictive assessments of soil health based solely on
land use or management practices are often unreliable due

to the dynamic nature of soil physico-chemical, and biolog-

ical interactions. These processes vary across spatial and
temporal scales, making it difficult to evaluate watershed
health or the long-term effectiveness of conservation strate-
gies. Further complicating this is the influence of legacy
land-use practices, climatic variability, and the inherently
slow turnover rates of soil systems, all of which obscure
direct correlations between soil health and water quality.
Current remediation technologies whether physical, chem-
ical, or biological struggle to maintain soil integrity while
addressing contamination. The persistence of pollutants in
soil, coupled with the high cost and complexity of remedia-
tion, underscores the urgent need for preventive strategies
focused on minimizing soil pollution at the source.

Remote sensing and smart sensor systems are novel
technological inputs used in monitoring the soil health. On

the other hand, the adoption of these technologies has multi-

195



Research in Ecology | Volume 07 | Issue 05 | December 2025

ple barriers such as being highly economical. technical limi-
tations, lack of integration with traditional farming practices,
and the need for specialized skills to operate and interpret
the data. In remote sensing applications, particularly for soil
salinity assessment, there is a significant trade-off between
spatial coverage, resolution, and data accuracy. Most sen-
sors offer limited spatial and temporal resolution, restricting
salinity studies to localized areas and making long-term mon-
itoring difficult. The scarcity of reliable ground data further
limits validation, owing to the heterogeneous nature of soil
properties, inconsistent sampling methodologies, and limited
accessibility of some field locations.

The crucial challenge in modern agriculture is efficient
application of nutrients to the crop. Environmental issues
linked to the overuse or disproportionate application of fertil-
izers underscore the necessity for integrated nutrient manage-
ment (INM) approaches that amalgamate organic, inorganic,
and biological inputs. INM presents significant potential for
bolstering soil fertility and promoting sustainability while en-
hancing adaptive capacity in the context of climate change;
however, its broad adoption is still constrained by a defi-
ciency in awareness, education, and conducive policy frame-

works.

7. Future Prospects and Recommen-
dations: Multidisciplinary Ap-
proach Integrating Tech, Policy,
and Farmer Education

A globally adaptable soil health assessment (SHA)
methodology is urgently required to serve farmers from vari-
ous socio-economic backgrounds and agroecological zones.
Contemporary assessment instruments frequently depend
on complex and expensive laboratory techniques, constrain-
ing their feasibility and broad use, particularly in resource-
limited environments. Establishing location-specific indica-
tor baselines and threshold values is essential, as the gener-
alized use of global references fails to reflect the inherent
variability in soil-climate interactions. This underscores the
imperative for the formulation of assessment frameworks that
are specifically customized to regional contexts, ensuring
alignment with prevailing environmental conditions. More-
over, an extensive comprehension of the interrelationships

between soil vitality and ecological preservation is essential.

The future investigations focused on determining spe-
cific soil characteristics that facilitate sustainable land man-
agement strategies, employing interdisciplinary frameworks
that harmonize ecological sustainability with socio-economic
requirements. Conservation of soil health along with water
and air quality is coordinated with resource management and
assessment of long-term ecological ramifications, while the
sustainability of nanomaterial applications in soil remedi-
ation and land rehabilitation also demands comprehensive
scrutiny. The interactions between the nanomaterials and
soil microbiota are understudied and the impact on the envi-
ronment is less known. Furthermore, forthcoming research
endeavors should encompass longitudinal field studies aimed
at evaluating the cumulative impacts of diverse soil man-
agement strategies on soil quality, agricultural yield, and
ecosystem functionalities over extended periods.

Ultimately, there exists an increasing imperative to in-
tegrate participatory research strategies that involve farmers
as integral participants in the research framework. Engaging
local knowledge and the experiential insights of farmers can
yield more contextually relevant and pragmatic solutions that
effectively tackle the real-world challenges encountered by
agricultural communities across various regions.

Future investigations ought to emphasize a comprehen-
sive examination of the functional dynamics of microbial
communities in nutrient cycling, particularly within the con-
text of tropical agroecosystems. It is imperative to compre-
hend the influence of agricultural methodologies such as
crop rotation, the application of organic amendments, and
INM on microbial diversity and ecological functions, as this
knowledge is crucial for the enhancement of soil health and
agricultural productivity. The advancement of our capabili-
ties to monitor and analyze microbial structure and diversity
is of paramount importance; consequently, the establishment
of standardized and rigorous methodologies for the evalua-
tion of microbial indicators in relation to soil attributes rep-
resents a significant research imperative. Furthermore, the
expansion of research concerning the long-term ramifications
of organic waste management practices, especially vermi-
composting and traditional composting, is essential. These
investigations should concentrate on assessing alterations in
soil characteristics, nutrient retention, and crop yield across
diverse agro-climatic zones and cropping systems. Analyz-
ing the specific responses of bacterial and fungal populations
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to various organic inputs will also yield valuable insights into

enhancing nutrient cycling and promoting soil resilience.

8. Conclusion

Soil quality serves as the cornerstone of sustainable
agriculture, ecosystem functionality, and food security. This
review has underscored the multifaceted nature of soil health,
encompassing physical, chemical, and biological attributes,
and the challenges associated with their standardized assess-
ment across diverse agroecological zones. While substan-
tial progress has been made in understanding soil-microbe
interactions, nutrient cycling, and the benefits of organic
amendments such as vermicompost, key gaps persist, partic-
ularly in long-term impact studies and microbial function-
ality under varied environmental conditions. Technological
innovations such as remote sensing and sensor-based mon-
itoring present promising avenues for non-invasive soil as-
sessment. However, limitations in spatial resolution, data
validation, and integration with field-level practices con-
strain their widespread adoption. Additionally, existing re-
mediation strategies face significant challenges in balancing
effectiveness with the preservation of soil structure and eco-
logical balance. To ensure holistic soil management, future
efforts must focus on developing accessible, low-cost, and
locally adaptable assessment frameworks, fostering farmer
participation, and promoting interdisciplinary research that
integrates agronomic, ecological, and socio-economic dimen-
sions. Addressing these deficiencies will not only facilitate
the progression of scientific knowledge but also promote the
execution of contextually relevant strategies that improve
productivity, foster environmental sustainability, and bolster
resilience against climatic fluctuations. Ultimately, a cohe-
sive and inclusive methodology towards soil health will be
crucial in satisfying the worldwide requirement for sustain-
able land utilization and food generation. Recent advances
in technology, including precision agriculture tools, remote
sensing, artificial intelligence, and nanotechnology, offer
powerful means to monitor, manage, and improve soil con-
ditions in real time. These advanced technologies facilitate
interventions tailored to specific sites, thereby enhancing the
efficient utilization of resources and mitigating detrimental

environmental consequences. Cutting-edge materials, in-

cluding biochar, nano-fertilizers, and organic amendments,
play a pivotal role in the sustainable management of soil by
augmenting nutrient availability, enhancing soil structure,
and fostering microbial activity. Their incorporation into es-
tablished agricultural practices aids in carbon sequestration
and alleviates the negative impacts associated with intensive
agricultural methodologies. Furthermore, the health of soil is
instrumental in both the mitigation and adaptation strategies
related to climate change. Well-maintained soils function
as carbon sinks, regulate hydrological cycles, and provide
resilience against climatic extremes, emphasizing the im-
perative for climate-smart soil management methodologies.
As global challenges escalate, a synergistic paradigm that
amalgamates traditional knowledge with contemporary in-
novations is vital for the enhancement of soil health, the
assurance of food security, and the preservation of environ-

mental integrity.
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