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Variations in net ecosystem exchange (NEE) of carbon dioxide, and the 
variables influencing it, at woodland sites over multiple years determine the 
long term performance of those sites as carbon sinks. In this study, week-
ly-averaged data from two AmeriFlux sites in North America of evergreen 
woodland, in different climatic zones and with distinct tree and understory 
species, are evaluated using four multi-linear regression (MLR) and seven 
machine learning (ML) models. The site data extend over multiple years 
and conform to the FLUXNET2015 pre-processing pipeline. Twenty in-
fluencing variables are considered for site CA-LP1 and sixteen for site 
US-Mpj. Rigorous k-fold cross validation analysis verifies that all eleven 
models assessed generate reproducible NEE predictions to varying degrees 
of accuracy. At both sites, the best performing ML models (support vector 
regression (SVR), extreme gradient boosting (XGB) and multi-layer per-
ceptron (MLP)) substantially outperform the MLR models in terms of their 
NEE prediction performance. The ML models also generate predicted ver-
sus measured NEE distributions that approximate cross-plot trends passing 
through the origin, confirming that they more realistically capture the actual 
NEE trend. MLR and ML models assign some level of importance to all in-
fluential variables measured but their degree of influence varies between the 
two sites. For the best performing SVR models, at site CA-LP1, variables 
air temperature, shortwave radiation outgoing, net radiation, longwave ra-
diation outgoing, shortwave radiation incoming and vapor pressure deficit 
have the most influence on NEE predictions. At site US-Mpj, variables 
vapor pressure deficit, shortwave radiation incoming, longwave radiation 
incoming, air temperature, photosynthetic photon flux density incoming, 
shortwave radiation outgoing and precipitation exert the most influence on 
the model solutions. Sensible heat exerts very low influence at both sites. 
The methodology applied successfully determines the relative importance 
of influential variables in determining weekly NEE trends at both conifer 
woodland sites studied.
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1. Introduction

The balance of photosynthesis and respiration in the 
life existing above- and below-ground in biomes around 
the world determine the rate of exchange of carbon diox-
ide (CO2) between biosphere and atmosphere. The mea-
surement of CO2 fluxes is essential for determining the lo-
cations of naturally occurring carbon sinks and sources [1].  
Indeed, in addition to carbon, the fluxes of water and en-
ergy [2] are required to understand the dynamics of ecosys-
tem -atmosphere exchanges [3]. Such requirements inspired 
the development of eddy-covariance measurements [4], 
and the progressive improvement of the technique and a 
refinement of measurements involved [5,6]. That technique 
has facilitated regular half-hourly measurements of Net 
Ecosystem Exchange (NEE), also referred to as CO2 flux 
measurements, being recorded at many hundreds of sites 
around the world. 

The NEE recordings have made it possible to identify 
distinctive and somewhat variable trends in carbon ex-
change occurring in different biomes [7]. This is not sur-
prising as NEE is influenced by multiple factors. Influenc-
es include the intensity of solar radiation at specific sites 
[8], variations in weather and climate, geographic position, 
species mixture and degree and frequency of disturbance 
(wildfires, pests, diseases and anthropogenic activities 
involving soil exposure). This requires a substantial 
number of influential variables to be monitored as part of 
flux-tower recording projects. 

The rates of biosphere photosynthetic and respiratory 
processes are, to an extent determined by certain specif-
ic environmental variables, including near-ground level 
atmospheric temperatures [9], various solar-radiation attri-
butes, soil-water concentrations, soil-temperature trends 
and woodland-canopy conditions [10], specifically canopy 
height and aerodynamic conditions [11] and tree stand den-
sity [12]. Heat energy being released to or absorbed from the 
atmosphere varies substantially in the biosphere on a diur-
nal basis [13], both in terms of latent heat (related to phase 
changes) and sensible heat (related to changes in tempera-
ture). Such heat changes influence CO2 fluxes between 
atmosphere and biomes. The Bowen Ratio (sensible heat/
latent heat) is about 0.1 at the ocean surface in the tropics 
at one extreme rising to about 10.0 in desert environments 
and can vary substantially over the seasonal and crop cy-
cles in some ecosystems [14]. Photosynthetically-active ra-
diation (PAR) is incident light (wavelength from 400 nm 
to 700 nm) representing the spectral fraction stimulating 
photosynthesis and thereby influencing NEE trends [15].  
Photosynthetic photon-flux density (PPFD) comprises 
PAR’s photon-flux density [16]. PPFD is often measured as 

an NEE-influencing variable as it represents the compo-
nent of PAR-zone light that reaches the biosphere canopy. 

In order to extend the spatial and temporal understand-
ing of NEE variations recorded at individual flux-tower 
sites they are frequently correlated with satellite-record-
ed spectral measurements [17]. Normalized difference 
vegetation index (NDVI) provides a satellite-derived 
remote-sensing measurement, that assesses whether a 
region includes live green vegetation based on infrared 
linear combinations [18]. Some of the mentioned variables, 
including NDVI and PPFD, can be monitored spatially 
using the moderate-resolution-imaging-spectroradiometer 
(MODIS) and land-remote-sensing-satellite (Landsat) 
datasets [19], particularly across woodland terrains [20].

Respiratory processes are known to fluctuate more sub-
stantially in response to ecosystem temperature changes 
than photosynthetic processes. This can result in signifi-
cant seasonal NEE fluctuations in certain biomes [21], and, 
to an extent, explains why some ecosystems become more 
effective carbon sinks at lower latitudes [22]. Eddy-co-
variance recordings can become unreliable in rapidly 
changing weather and abrupt fluctuations in atmospheric 
conditions. Such conditions negatively impact the ability 
to record reliable and continuous datasets at some sites. 
Eddy-correlation techniques and machine-learning (ML) 
algorithms can, in such circumstances, assist in providing 
realistic data-gap replacement values [23].

Certain species communities are able to deliver unique 
seasonal components to NEE, and these can sometimes be 
usefully distinguished by partitioning species-related CO2 
fluxes [24,25]. Lengths of active growth seasons of specific 
species and whole biomes influence NEE and can fluctu-
ate with local changes in climate. For instance, evergreen 
and deciduous forests often exhibit distinctive NEE trends 
both seasonally and longer term, partly related to fluctuat-
ing respiratory contributions [26]. The multiple influencing 
factors identified and the wide spectrum of climates and 
latitudes in which ecosystems exist explains why multi-
year NEE trends tend to be complex, and in some cases 
difficult to understand. Attempts to distinguish the key 
influential factor determining fluctuations in seasonal [27] 
and annual NEE trends are important but fraught with un-
certainties. Correlation and regression analysis [28], appli-
cation of various ML models [29,30], and data mining tech-
niques [31] can provide useful insight to these relationships.

In this study, two evergreen woodland eddy-covariance 
recording sites in North America, forming part of the 
AmeriFlux dataset [32] processed to FLUXNET2015 [33]  
requirements over multiple years, were modelled to pre-
dict NEE weekly-averaged trends in terms of multiple 
influencing variables measured at those sites. The key ob-
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jectives of the study were to: (1) compare the abilities of 
four multi-linear regression and seven ML models to ac-
curately model the multi-year NEE trends at the two sites; 
(2) identify the relative contributions of the influential 
variables to selected model solutions; and, (3) interpret 
the significance of the model results for NEE prediction 
approaches for woodland sites more generally.

2. Materials and Methods

2.1 NEE Determination

The NEE involves a defined calculation [34] designed to 
distinguish carbon becoming fixed in land-based biomes 
by organic processes, including above-ground photosyn-
thetic activity and below-ground microbial activity, from 
carbon being released autotrophically and/or heterotro-
phically into the atmosphere, especially by respiration. In 
order to record that information accurately requires the 
separate measurement of daytime and nighttime fluxes 
relating to a biome’s carbon uptake and respiration [35]. At 
most monitoring sites such measurements are recorded 
every half-hour. Those recordings are then preprocessed to 
verify data quality and infill, when possible, data gaps and 
errors. The pre-processed data are then compiled as hour-
ly-, daily- and weekly- averaged values, enabling diurnal, 
monthly and seasonal trends to be routinely monitored. 

NEE values need to be computed from the key record-
ed components mentioned in a two-step sequence as de-
scribed by Equations (1) and (2) [36].

 (1)

 (2)
where,  = Net Primary Production accounting for 
carbon from photosynthesis less autotrophic respiration; 

 = Gross Primary Production; a measure of carbon 
generated and retained (i.e., at least temporarily fixed 
within the biome) as a result of photosynthesis; 

 = carbon released to the atmosphere as a result of plant 
(autotrophic) respiration: and, 

 = carbon released to the atmosphere as a result of mi-
crobial (heterotrophic) respiration. 

Daytime respiration is typically subdivided into four 
components to provide more accurate measurements, so 
that it is more usefully described by Equation (3). 

 (3)
where, Rp= photorespiration;

 = maintenance respiration;
 = autotrophic synthesis, also referred to as growth res-

piration; and,
 = faunal/microbial heterotrophic respiration.
For daily and weekly analysis these variables are all 

measured in units of gC m-2 d-1.
These variables are measured as magnitudes of ab-

sorbed/released carbon associated with a designated 
surface area over specified unit time periods. NEE data 
calculated and averaged on a weekly basis, as used in this 
study, are typically compiled and reported in gC m-2 d-1  
units. On the other hand, hourly NEE data are typically 
compiled and reported in µmolCO2 m

-2 s-1 units. An NEE 
value below zero (negative NEE) signifies time periods 
during which carbon is absorbed, and at least temporarily, 
retained by the combined above-ground and below-ground 
components of a biome on a net basis. However, an NEE 
value above zero (positive NEE) signifies time periods 
during which carbon is released from a biome into the at-
mosphere on a net basis. NEE trends, accurately recorded 
over multiple years make it possible to elucidate whether 
a specific biome is acting as a long-term carbon source or 
carbon sink [37]. Due to variable weather conditions and 
climatic changes year-on-year some biomes can act as 
carbon sinks in some years and carbon sources in others. 
Hence, to reliably quantify the average magnitude of car-
bon stored on an annual basis in biomes considered to be 
long-term carbon sinks, meticulous recording of NEE data 
over multiple years is essential. The same is true for mon-
itoring carbon flux responses to local changes in climate.

2.2 FLUXNET Variable Recording

FLUXNET is an organization that operates a world-
wide network of micrometeorological tower sites [33]. It 
includes more than one thousand eddy covariance mea-
surement sites distributed globally covering most climatic 
zones and a wide range of biomes. Eddy covariance was 
adopted as the favored method for measuring trace-gas 
fluxes (ecosystems to/from atmosphere) more than two 
decades ago [38]. FLUXNET2015 [39] is the most up-to-
date, publicly available, FLUXNET dataset. It is hosted 
by the Lawrence Berkeley National Laboratory (U.S.A.) 
and delivers improved data-quality-control protocols com-
bined with the more rigorous data-processing pipeline that 
deals more effectively with data gaps. 

AmeriFlux [32] comprises a network of about 560 eco-
system-monitoring sites, built up since the mid-1990s 
and distributed throughout the Americas (Central, North 
and South), recording CO2, water, and energy fluxes by 
applying the eddy covariance techniques. The United 
States Department of Energy, through the auspices of the 
AmeriFlux Management Project, supports the AmeriFlux 
network. In early 2022, 14 of the Ameriflux sites offered 
public data processed to the FLUXNET2015 standard [40], 
including the two evergreen woodland sites evaluated in 
this study, one in British Columbia, Canada (CA-LP1) and 
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another in New Mexico, United States of America (US-
Mpj). These sites are described in detail in Section 2.3.

FLUXNET-designated sites are obliged to record cer-
tain variables using approved techniques. They are also 
encouraged, where possible, to report on other relevant 
variables [41]. Twenty such variables are available for site 
CA-LP1 and sixteen for site US-Mpj. Figure 1 lists those 
variables together with their measurement units and the 
abbreviations applied to them in this study.

2.3 Woodland Sites Evaluated

Weekly-averaged NEE and influencing variable data 
are compiled in this study for two evergreen-conifer 
woodland sites, CA-LP1 and US-Mpj that form part of the 
AmeriFlux datasets conforming to FLUXNET2015 pro-
tocols. These were the only sites included in that dataset 
located in conifer woodlands in early 2022.

The needle-leaf pine forest site in western Canada 
(CA-LP1) has recorded NEE data from 2007 to present [42].  
It is located in British Columbia at latitude 55.1119 oN and 
longitude 122.8414 oW at +751 m elevation relative to 
sea level (Csa Koppen climate zone experiencing dry hot 
summers which are tending to become hotter with climate 

change [42]). Greater than sixty percent of the trees are 
lodge-pole pine up to 15 m high. The understory consists 
of Vaccinium spp. (mosses) and Cladonia spp. (moss-like 
lichens). Since before FLUXNET monitoring began, the 
trees have been under attack from the mountain-pine bee-
tle [43]. This has resulted in progressive damage to many 
trees disturbing site attributes such as tree density over-
time, as under normal conditions lodge-pole pines grow in 
dense stands. 

The pinyon-juniper woodland is a biome characteristic 
of upland desert sites in the Western United States. Site 
US-Mpj close to Mountainair in New Mexico has record-
ed NEE data from 2007 to present [44] with published data 
available from 2008 to 2020. The woodland is situated on a 
mesa at +2196 m relative to sea level at latitude 34.4385 oN  
and longitude 106.2377 oW (Bsk Koppen climate zone ex-
periencing a steppe climate with a relatively warm winter 
and dry hot summers which are tending to become hotter 
with climate change [44]). It is owned and managed by 
Heritage Land Conservancy. The tree species Pinus edulis 
(Engelm.) (an erect pine growing to about 21 m height) 
and Juniperus monosperma (Engelm.) Sarg. (a shrubby 
conifer growing to about 7 m height) make up about 95% 

Figure 1. Variables evaluated in this study including their measurement units.
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of the percent of the trees present on the site, with overall 
tree cover varying from about 30% to >60% forming a 
woodland/savanna. The herbaceous/ shrubby understory, 
including sages, artemisias and various grass species exist 
typically more than 2 m below the tree canopy. The site 
does experience periodic droughts and low grade wild 
fires [45]. 

Weekly recorded NEE data for the two sites are dis-
played in Figure 2, revealing clear seasonal variations 

with a certain amount of scatter in both cases. The data 
assessed in this study for site CA-LP1 are curtailed in 
2015 because there are substantial gaps in recorded data 
of some influencing variables in several of the subsequent 
years.

Table 1 provides a statistical summary of the variables 
assessed for the 323 pre-processed data records compiled 
for site CA-LP1. This includes 20 of the independent vari-
ables listed and defined in Figure 1.

Figure 2. Calculated NEE trends from AmeriFlux recorded data for sites: (A) CA-LP1; and (B) US-Mpj. The data pe-
riods sampled represent time intervals over which the most continuous recordings of the independent variables exist at 

each site.
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Table 1. Statistical description of data variables for the 323 data records compiled for woodland site CA-LP1.

Statistical Summary of Variables compiled for the CA-LP1 Pre-Processed Dataset

Variable Units Min Mean Max Standard Deviation

323 weekly data records     

Dependent Variable     

NEE gC m-2 d-1 –1.80 –0.44 2.02 0.56

20 Independent Variables     

TA deg C –25.37 6.14 21.77 8.93

SWINP W m-2 53.50 303.43 484.10 142.08

SWIN W m-2 11.26 143.80 317.97 81.27

LWIN W m-2 155.85 287.00 354.15 35.99

VPD hPa 0.20 4.48 17.66 3.40

PA kPA 90.46 92.32 93.67 0.47

P mm 0.00 1.56 9.03 1.70

WS m s-1 1.13 2.26 4.09 0.43

USTAR m s-1 0.12 0.37 0.87 0.09

NetRad W m-2 –36.21 75.94 190.22 60.36

PPFDIN μmolPhoton m-2 s-1 21.08 341.44 814.21 201.73

PPFDOUT μmolPhoton m-2 s-1 2.47 19.54 70.14 13.25

SWOUT W m-2 1.58 15.77 37.02 7.55

LWOUT W m-2 199.47 341.31 423.86 44.43

CO2 μmolCO2 mol-1 372.51 393.03 412.65 6.75

TS deg C –5.54 6.54 19.52 6.37

SWC 0-100% 2.30 9.21 15.48 2.51

G W m-2 –33.74 1.48 41.26 9.31

LE W m-2 0.06 21.28 59.17 14.31

H W m-2 –27.68 40.63 117.49 35.65

Note: See Figure 1 for definitions of the variables  
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Table 2. Statistical description of data variables for the 624 data records compiled for woodland site US-Mpj.

Statistical Summary of US-Mpj Pre-Processed Dataset

Variable Units Min Mean Max Standard Deviation

624 weekly data records

Dependent Variable     

NEE gC m-2 d-1 –2.09 –0.26 1.96 0.61

20 Independent Variables     

TA deg C –5.14 11.23 26.58 7.76

SWINP W m-2 198.29 352.51 484.64 101.16

SWIN W m-2 0.26 236.82 390.56 74.95

LWIN W m-2 199.26 274.02 365.44 41.89

VPD hPa 1.02 9.54 29.12 5.53

PA kPA 76.95 78.10 78.85 0.36

P mm 0.00 0.97 16.80 1.66

WS m s-1 2.00 3.56 5.77 0.67

USTAR m s-1 0.26 0.52 0.88 0.10

NetRad W m-2 –98.41 110.93 215.95 57.42

PPFDIN μmolPhoton m-2 s-1 1.77 443.39 723.34 142.41

SWOUT W m-2 2.59 30.21 60.43 8.57

LWOUT W m-2 278.95 375.03 471.12 47.47

CO2 μmolCO2 mol-1 367.45 394.92 423.32 10.43

LE W m-2 3.40 29.40 107.69 18.17

H W m-2 –2.48 72.05 158.36 39.59

Note: See Figure 1 for definitions of the variables  

Tables 2 provides a statistical summary of the variables 
assessed for the 624 pre-processed data records compiled 
for site US-Mpj. This includes 16 of the independent vari-
ables listed and defined in Figure 1. Independent variables 
PPFDOUT, TS, SWC and G included for site CA-LP1 
were not available for site US-Mpj.

Comparisons of the Pearson correlation coefficients  
(R) [46] and the Spearman correlation coefficients (p) [47] 
between influencing variables and calculated NEE are dis-

played for CA-LP1 and US-Mpj in Figure 3. R assumes 
linear/parametric distribution relationships between the 
variables it assesses [48,49], whereas p makes no such as-
sumptions as it uses the rank positions of the data points in 
the variable distributions it assesses [50]. By avoiding linear/
parametric assumptions [51] p is of more general relevance 
in determining whether two variable distributions can be 
meaningfully expressed as functions of each other, in para-
metric or non-parametric, and linear or non-linear terms [52]. 
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Figure 3. Pearson and Spearman correlation coefficients compared between influencing variables and NEE (weekly 
data) for sites: (A) CA-LP1 with all 20 variables listed in Figure 1 recorded; and (B) US-Mpj with 16 of the Figure 1 

variables recorded (PPFDout, Ts, SWC and G are not available for this site).

The R and p values for sites CA-LP1 and US-Mpj are 
in relatively close agreement between all the influencing 
and NEE (Figure 3). This implies that parametric rela-
tionships predominate for these datasets and the degree 
of non-linearity involved in these variable relationships 
is relatively low. MLR models should be expected to pro-
vide reasonable NEE predictions if the measured variables 
capture the key influences impacting NEE at these sites.

3. NEE Prediction Models

3.1 Regression: Alternative Multi-linear Methods 

Regression models considering multiple influential 
or input variables in attempts to predict the values of a 
dependent variable are termed multi-linear regression 

(MLR). Prior to applying machine learning (ML) meth-
ods it is typically worthwhile applying MLR methods to 
establish whether regression can generate accurate pre-
dictions for the dependent variable of interest. Although 
MLR methods simplistically assume linear relationships 
between the independent and dependent variables [53], that 
assumption can often provide quite accurate predictions 
for complex systems. MLR methods build on classical 
linear regression [54] by employing an optimizer to mini-
mize the regression errors. Standard MLR methods apply 
coordinate descent as their optimization algorithm. Such a 
model used in this study is referred to as the LR model.

LR determines the coefficient values C1 to CN, together 
with a constant value C0, that when applied to the set of 
influencing variables to provide the most accurate predic-
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tions of dependent variable Y, by minimizing error term , 
according to the linear Equation (4).

 (4)
By finding the coefficient values that minimize an error 

function (J) leads to the determination of the most accu-
rate dependent variable values that can be determined with 
Equation (4). A least-squares error function [55] is used in 
LR, as defined by Equation (5).

 (5)

in which, and  represent the actual and predicted values, 
respectively, for the dependent variable relating to the ith 
data record, and m represents the number of data records 
in the dataset. In order to determine the optimum mini-
mum value of J, multiple iterations of Equation (5) are 
required.

The LR method assumes independence among the in-
fluencing variables, and if dependences do occur they can 
magnify errors by resulting in multiple high coefficient 
values. The Ridge regression method addresses this by im-
posing an additional penalty or regularization term to the 
least-squares minimization function. This acts to limit the 
magnitude of the regression coefficients by progressively 
penalizing the residual sum of squares as the coefficients 
considered become larger. The least-squares minimization 
function for Ridge regression is expressed as Equation (6).

 (6)

in which,  is the regularization or penalty function. 
In Ridge regression that penalty function includes each 
tested coefficient squared thereby inhibiting higher coef-
ficient values in the optimum solution. This makes it an 
L2 regularization term with an L1 ratio of 0. When λ = 0  
zero the penalty component of Equation (3) is removed 
and the regression reverts to LR. So, λ > 0 is required for a 
Ridge regression but if λ >> 0 the penalty will become too 
large and the data will be underfitted leading to reduced 
accuracy. With an appropriate λ value Ridge regression 
limits the effects of collinearity/dependency among the 
influencing variables and also reduces the risks of overfit-
ting the data compared to LR. A range of optimizers are 
available to minimize the Ridge regression error function 
and in this study it is configured to automatically choose 
the best solver available.

Least absolute shrinkage and selection operator (LAS-
SO) regression is an alternative method with a different 
regularization term added to the least-squares minimi-
zation function. Its configuration acts to preferentially 
select solutions with the least number of non-zero variable 
coefficients (i.e., it tends to disregard those variables with 
the least influence on the dependent variable). The least-

squares minimization function for LASSO regression is 
expressed as Equation (7).

 (7)

in which, is the regularization or penalty func-
tion. In contrast to Ridge regression, the penalty function 
for LASSO regression includes the absolute value of each 
tested coefficient, thereby acting to reduce the least im-
portant variable coefficients to 0 and introducing a degree 
of feature selection. This makes LASSO regularization an 
L1 term with an L1 ratio of 1. LASSO regression typical-
ly applies coordinate descent optimization.

An alternative approach is to adopt gradient-descent 
optimizers (GD) [56]. These employ a partial differential of 
J for coefficients C0 to CN as defined in Equation (8).

  (8)

in which, k indicates a particular epoch in the optimizer’s 
execution, and α specifies the learning rate. By differ-
entiating each term in Equation (8), C0 to CN coefficient 
values for the next GD epoch are derived according to 
Equation (9) for C0, and Equation (10) for C1 to CN.

 (9) 

 .... (10)

If a small value of α is applied, the adjustments made in 
each epoch to coefficient C0 to CN values are small, so it is 
appropriate to optimize the α value applied to suit a specific 
dataset. Various penalty functions can be applied to the error 
functions of linear regression models utilizing GD optimiz-
ers. The stochastic gradient descent algorithm is applied as 
an alternative regression method (SGDR) in this study with 
an L2 penalty involved in its error function.

The four regression methods described (LR, LASSO, 
Ridge and SGDR) [57] are applied to the two AmeriFlux 
woodland datasets considered in this study (CA-LP1 with 
20 variables and 323 data records (Table 1); US-Mpj with 
16 variables and 624 data records (Table 2)). This assesses 
the relative benefits of applying the different regression 
error / penalty functions and optimization methods to 
these specific datasets.

3.2 Machine Learning Methods Applied 

In addition to the four MLR algorithms, seven ML al-
gorithms are applied to the woodland datasets evaluated in 
this study. These ML algorithms were executed in Python 
and customize publicly available codes [58]. The algorithms 
are selected specifically because they have proven capa-
bilities of being able to successfully process and evaluate 
complex independent/dependent variable relationships. 



33

Research in Ecology | Volume 04 | Issue 02 | June 2022

The models are listed alphabetically. The first citation 
associated with each ML method refers to the original 
developers of the technique. The subsequent citations for 
each ML method refer to ecological studies that have ap-
plied the specific ML methods. 

●	 Adaptive boosting-ADA [59,60] 
●	 Decision tree- DT [61,62]

●	 K-nearest neighbor-KNN [63,64]

●	 Multi-layer perceptron-MLP (artificial neural net-
work) [65-67]

●	 Random forest-RF [30,68-70]

●	 Support-vector regressor-SVR [71-73]

●	 Extreme gradient boosting-XGB [74-76] 
These ML algorithms apply distinctive methodologies, 

making it useful to compare their results when applied 
to complex datasets. They can be categorized as regres-
sion-based (SVR), single-tree (DT), ensemble-tree (ADA, 
RF, XGB), data-matching (KNN) and neural-network 
(MLP) algorithms. These ML algorithms are widely used 

and their applications extensively published (see citations 
provided), so their mathematical methodologies are not 
repeated here. Nevertheless these models need to be ap-
propriately tuned and configured to suit specific datasets. 
This requires establishing values for their hyperparameters 
that optimize their performance for the woodland datasets 
evaluated (Table 3). That optimization was achieved for 
this study using GridSearchCV [77] and Bayesian optimiza-
tion [78] techniques.

Another requirement to determine when executing re-
gression and ML algorithms is the optimum percentage 
of data records (“splits”) in the datasets to allocate to the 
training and validation subsets to achieve reliable and 
reproducible prediction results. If the splits are too much 
in favor of the training subsets then the small randomly 
selected validation subsets generate a range of prediction 
results with too much variation (high standard deviations). 
On the other hand, if the splits are too much in favor of 
the validation subsets then model training tends to be in-

Table 3. Hyperparameters optimized for MLR and ML models applied to predict NEE from measured input variables at 
two evergreen conifer AmeriFlux sites.
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adequate leading to high prediction errors. K-fold cross 
validation provides a statistical method for establishing 
the suitability of specific data splits for the dataset con-
sidered. The K-fold-cross-validation method works by 
randomly dividing a dataset into K-equal-sized subsets, 
with the value of K typically varying from about 4 to 15, 
depending on the number of data records available. Se-
quentially, one of the K subsets serves as the validation 
subset, while the other K-1 subsets are used to train the 
model. That sequence is repeated until, one at a time, all 
the K subsets are evaluated as the validation subset. The 
results are then compiled to assess the mean and standard 
deviation of their errors. It is typically worthwhile repeat-
ing that process several times with different random sub-
divisions to improve the statistical confidence in the error 
results. In this study, the SciKit Learn K-fold validation 
routine [79] is employed, and the results provided and in-
terpreted in Section 4, which justify the use of data record 
splits of 90% training : 10% validation for detailed analy-
sis of the datasets compiled for this study.

3.3 Statistical Measures of Prediction Performance 
Assessed

Prediction errors associated with the MLR and ML 
models applied in this study are evaluated in terms of 
three widely used statistical measures. These are:

Root Mean Squared Error (RMSE)

 (11)

cNEEi = measured NEE value based on eddy covari-
ance measurements (ith data record), and pNNNi = predict-
ed NEE value derived from the regression or ML methods 
for data record i, while m = quantity of distinct data re-
cords evaluated.

Mean Absolute Error (MAE)
 (12)

In this study, both MAE and RMSE values presented 
relate to the daily units (gC m-2 d-1) in which NEE values 
are calculated and presented for AmeriFlux sites. Conse-
quently, when interpreting MAE and RMSE values it is 
useful to consider them in terms of the range of NEE val-

ues reported for specific sites.

Coefficient of Determination (R2)

 (13)                  

 and are the arithmetic means of the cNEE and 
pNEE variable distributions. The R2 value derived varies 
between 0 to 1.

3.4 Pre-processing of Weekly Data Records

Some data records recorded at each AmeriFlux site are 
missing values for certain weeks of specific variables. 
There are some gaps in the data variable distributions re-
corded. Such missing values may not have been collected 
due to equipment issues, or, during the FLUXNET2015 
processing pipeline of the recorded data may have been 
identified as invalid or unreliable. For this study, any 
data record with missing weekly values of the normally 
recorded variables values was removed from the dataset 
compiled for evaluation by the regression and ML mod-
els. This resulted in 323 data records with 20 independent 
variables being compiled for site CA-LP1 (Table 1) and 
624 data records with 16 independent variables being 
compiled for site US-Mpj (Table 2). 

The values of all variables in the compiled datasets 
were normalized to the scale range –1 to +1 by imple-
menting Equation (14) for each variables distribution.
Xi*= 2*[(Xi- Xmin)/(Xmax-Xmin)]-1 (14)
Xi = ith data record in variable X distribution; 
Xmin = minimum value in distribution X; 
Xmax = maximum in distribution X; and,
Xi* = normalized value of ith record of variable X.

Normalization is necessary to avoid scaling biases 
introduced to the prediction methods by variable values 
extending over different scale ranges.

Figure 4 provides a workflow diagram of the NEE pre-
diction and variable-influence detection methodology ap-
plied to the two woodland AmeriFlux datasets considered. 
It applies a number of regression and ML algorithms to 
predict assess the NEE distributions using a large suite of 
measured environmental influences.
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Figure 4. Workflow diagram describing the methodology adopted in this study for comparing regression and machine 
learning models to prediction NEE values from multiple influencing variables.



36

Research in Ecology | Volume 04 | Issue 02 | June 2022

4. Results

4.1 Regression Versus Machine Learning NEE 
Predictions

The results of applying four regression and seven ML 
algorithms to the weekly, multi-year datasets of the two 
woodland AmeriFlux sites (CA-LP1/US-Mpj) confirm the 
superior NEE predictions generated by most of the ML 
models. This is illustrated in Figures 5 and 6, displaying 
the results for the best performing regression and ML 
models for each site.

Figure 5. NEE predictions for site CA-LP1: (A) mul-
ti-linear regression LASSO model; and (B) Multi-layered 

Perceptron (MLP) model. NEE units are gC m-2 d-1. In 
the equations for the best fit straight lines (y = mx + c), 
generated by linear regression and shown in the lower 

right corner of each graphic, y = pNEE, x = cNEE and the 
numerical values refer to coefficient m and constant c. The 
higher the value of c, the further that best-fit line deviates 

from passing through the origin of the graph.

In Figure 5, it is clear that MAE and RMSE are sub-
stantially lower, and R2 substantially higher, for the MLP 
model than the LASSO model for site CA-LP1. Moreover, 
predicted NEE vs measured NEE are linearly arranged to 
more closely follow a pNEE = cNEE relationship for the 

SVR model (Figure 5B), making it a more credible solution.

Figure 6. NEE predictions for site US-Mpj: (A) multi-lin-
ear regression LASSO model; and (B) Support Vector 
Regression (SVR) model. NEE units are gC m-2 d-1. In 
the equations for the best fit straight lines (y = mx + c), 
generated by linear regression and shown in the lower 

right corner of each graphic, y = pNEE, x = cNEE and the 
numerical values refer to coefficient m and constant c. The 
higher the value of c, the further that best-fit line deviates 

from passing through the origin of the graph.

Figure 6 shows a similar outcome for site US-Mpj. The 
results for the SVR model (Figure 6B) are substantially supe-
rior to the regression model displayed (Figure 6B) and more 
closely approximate a pNEE = cNEE relationship.

4.2 K-fold Cross Validation Analysis of NEE Pre-
diction Models

The K-fold cross validation technique provides con-
fidence in the reliability of both MLR and ML models 
evaluated to predict NEE from the influencing variables 
for the two woodland sites considered. 4-fold, 5-fold, 10-
fold and 15-fold cross validation analysis (as described in 
Section 3.2) was performed, and repeated three times, for 
each model and the mean MAE and standard deviation of 
the MAE for each model are displayed in Tables 4 and 5. 
These results are compared in Figures 7 and 8. 
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Table 4. K-fold cross validation results for NEE prediction analysis applying four regression and seven machine learn-
ing models to data for the lodge pole pine CA-LP1 woodland site. Best performing MLP model highlighted in bold type. 

StDev = standard deviation.

K-Fold Cross Validation NEE Prediction Errors (MAE) for Woodland Site CA-LP1

 4-Fold  (12 Cases) 5-Fold  (15 Cases) 10-Fold  (30 Cases) 15-Fold  (45 Cases)

 Mean MAE StDev MAE Mean MAE StDev MAE Mean MAE StDev MAE Mean MAE StDev MAE

Regression         

LR 0.2987 0.0309 0.2958 0.0331 0.2911 0.0430 0.2912 0.0568

LASSO 0.2963 0.0305 0.2946 0.0303 0.2922 0.0422 0.2919 0.0556

RIDGE 0.2949 0.0325 0.2970 0.0305 0.2908 0.0429 0.2908 0.0565

SGDR 0.3139 0.0299 0.3151 0.0266 0.3130 0.0414 0.3100 0.0557

Machine Learning         

ADA 0.2979 0.0354 0.2973 0.0371 0.2957 0.0554 0.2940 0.0655

DT 0.4141 0.0292 0.3974 0.0334 0.3809 0.0656 0.4019 0.0853

KNN 0.2974 0.0333 0.2940 0.0296 0.2910 0.0480 0.2911 0.0574

MLP 0.2725 0.0306 0.2692 0.0250 0.2566 0.0425 0.2582 0.0460

RF 0.2943 0.0373 0.2961 0.0386 0.2908 0.0554 0.2877 0.0634

SVR 0.2715 0.0366 0.2642 0.0327 0.2612 0.0448 0.2575 0.0482

XGB 0.2834 0.0363 0.2830 0.0353 0.2757 0.0535 0.2745 0.0577

Table 5. K-fold cross validation results for NEE prediction analysis applying four regression and seven machine learn-
ing models to data for the juniper US-Mpj woodland site. Best performing SVR model highlighted in bold type. StDev 

= standard deviation.

K-Fold Cross Validation NEE Prediction Errors (MAE) for Woodland Site US-Mpj

 4-Fold  (12 Cases) 5-Fold  (15 Cases) 10-Fold  (30 Cases) 15-Fold  (45 Cases)

 Mean MAE StDev MAE Mean MAE StDev MAE Mean MAE StDev MAE Mean MAE StDev MAE

Regression         

LR 0.3333 0.0213 0.3321 0.0266 0.3326 0.0309 0.3326 0.0427

LASSO 0.3314 0.0220 0.3308 0.0281 0.3310 0.0326 0.3305 0.0442

RIDGE 0.3328 0.0213 0.3317 0.0267 0.3323 0.0311 0.3323 0.0428

SGDR 0.3559 0.0181 0.3527 0.0280 0.3517 0.0356 0.3505 0.0451

Machine Learning         

ADA 0.2564 0.0177 0.2541 0.0249 0.2504 0.0295 0.2468 0.0359

DT 0.3593 0.0192 0.3516 0.0234 0.3613 0.0358 0.3595 0.0430

KNN 0.2621 0.0137 0.2629 0.0235 0.2599 0.0282 0.2587 0.0339

MLP 0.2460 0.0151 0.2374 0.0207 0.2370 0.0260 0.2364 0.0305

RF 0.2525 0.0202 0.2501 0.0257 0.2476 0.0280 0.2473 0.0336

SVR 0.2271 0.0144 0.2252 0.0215 0.2194 0.0282 0.2203 0.0318

XGB 0.2424 0.0176 0.2370 0.0227 0.2332 0.0262 0.2336 0.0328
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Figure 7. K-fold cross validation analysis of model NEE predictions for site CA-LP1: (A) 10-fold (splits 90% training: 
10% validation); (B) 15-fold (splits 93.33%:6.67%); (C) 5-fold (splits 80%:20%); and, (D) 4-fold (splits75%:25%).

Figure 8. K-fold cross validation analysis of model NEE predictions for site US-Mpj: (A) 10-fold (splits 90% training: 
10% validation); (B) 15-fold (splits 93.33%:6.67%); (C) 5-fold (splits 80%:20%); and, (D) 4-fold (splits75%:25%).
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The 4-fold cross validation randomly splits the data re-
cords into four subsets and alternately one of those subsets 
is assigned for model validation and the other three sets 
are used to train the regression or ML model. This results 
in four cases being evaluated with each validation subset 
involving 25 percent of the available data records. Re-
peating the 4-fold process three times, each with distinct 
random selections, results for twelve cases are generated 
and used to calculate the MAE mean and standard devi-
ation for the models. In a similar way, the 15-fold cross 
validation randomly splits the data records into fifteen 
subsets and alternately one of those subsets is assigned 
for model validation and the other fourteen sets are used 
to train the regression or ML model. This results in fifteen 
cases being evaluated with each validation subset involv-
ing 6.7 percent of the available data records. Repeating 
the 15-fold process three times, each with distinct random 
selections, results for forty-five cases are generated and 
used to calculate the MAE mean and standard deviation 
for the models.  In a similar way, the 5-fold and 10-fold 
processes repeated three times results in fifteen and thirty 
cases being generated, respectively.

The rigorous k-fold process and the low MAE means 
and standard deviations it generates for all the models 
evaluated confirms the robustness of those models for all 
four splits considered. Even with only 6.7% of the data re-
cords assigned to the validation subset results in reproduc-
ible results with relatively low MAE standard deviations. 
For both woodland sites the 10-fold process generally 
yields the lowest MAE mean for the models considered. 
Moreover, the models display similar relative NEE predic-
tion accuracies for each k-fold process applied (Figures 7 
and 8). 

For the CA-LP1 site, the MLP model provides the low-
est MAE mean for the 10-fold process, followed by the 
SVR and XGB models (Figure 7). However, for the 4-fold, 
5-fold and 15-fold processes the MLP and SVR models 
generate almost identical means for the CA-LP1 site. The 
better performing regression models (all but SGDR) show 
similar MAE means for all k-fold processes to the ADA, 
RF, KNN models. Nevertheless, the DT model generates 
the poorest NEE predictions for the CA-LP1 site with sub-
stantially higher mean MAE values than the other regres-
sion and ML models evaluated for each k-fold process. 

The K-fold results for the US-Mpj site (Figure 8) are 
similar to those of the CA-LP1 site but with some distinc-
tive features. SVR, XGB and MLP are the best performing 
models, in that order, for all k-fold processes. However, 
for US-Mpj, there is a substantial gap in performance be-

tween the six best ML models and the regression models. 
The poor-performing DT model generates predictions that 
are similar but slightly worse than the SGDR model for 
this site. The LASSO regression model provides a slightly 
better NEE prediction performance than the other three re-
gression models for both sites. The LASSO, LR and ridge 
models provide quite similar NEE prediction performanc-
es that outperform the other regression model considered 
(SGDR) for both sites. The k-fold analysis result lead to 
the conclusions that the SVR, XGB and MLP are the best 
performing prediction models with the datasets from the 
two sites evaluated.

4.3 Training and Validation Subset Performances

Further consideration of the NEE prediction results of 
specific training and validation subsets provides further 
insight to the performance of the regression and ML mod-
els applied to woodland sites CA-LP1 and US-Mpj. These 
results are displayed in Tables 4 and 5 and Figure 9 for a 
representative case (90% training subset: 10% validation 
subset random split). The use of the 90%:10% split is jus-
tified based upon the results of the 10-fold cross validation 
analysis (Tables 4 and 5). The execution times of each 
model are also listed in Tables 6 and 7.

For the regression models, the prediction performances 
of the training subset and the trained model applied to the 
complete dataset (100% of the data records) are similar 
for both sites (Tables 6 and 7). Overfitting is clearly not 
an issue for the regression models. The prediction perfor-
mance for the validation subset is slightly worse than for 
the training subset in the case of site CA-LP1, but slightly 
better for site US-Mpj. Such variations are consistent with 
what should be expected from the random selections of 
the validation and training subsets considered. 

For the ML models, it is apparent that all but the 
SVR and MLP models involve a degree of overfitting. 
The100% prediction accuracy achieved with the training 
subset by the ADA, DT, KNN models, compared with 
much lower accuracies for those models applied to the 
validation subset, are clear indications of overfitting (Ta-
bles 6 and 7). The RF and XGB models also show similar 
but less extreme prediction relationships between their 
training subset and validation subset results, indicative 
of a degree of overfitting associated with those models. 
Despite that overfitting the XGB model is still able to pro-
vide prediction performances for both sites that rival the 
best performing SVR and MLP models. The trends shown 
for the 10% validation subset in Figure 9 are consistent 
with the k-fold analysis (Figures 7 and 8) for both sites.
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Table 6. Training and validation subset NEE prediction performances of MLR and ML models for the CA-LP1 wood-
land site.

NEE Forecasting Accuracy for Training and Validation Analysis Applied to the Full Dataset for Site CA-LP1

 
Example 
Training Subset 
(90% of Data Records)

Example 
Validation Subset 
(10% of Data Records)

Example 
Full Dataset 
(100% of Data Records)

Model R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE Ex Time

Regression           

LR 0.6225 0.3430 0.2606 0.4241 0.4613 0.3652 0.6002 0.3569 0.2713 4.5

LASSO 0.6149 0.3464 0.2647 0.4293 0.4592 0.3630 0.5944 0.3596 0.2748 4.6

Ridge 0.6217 0.3433 0.2611 0.4276 0.4599 0.3651 0.6000 0.3570 0.2718 4.3

SGDR 0.5040 0.3932 0.2945 0.3039 0.5072 0.4074 0.4819 0.4063 0.3061 4.5

Machine Learning           

ADA 1.0000 0.0000 0.0000 0.3238 0.4999 0.3760 0.9199 0.1598 0.0384 71.1

DT 1.0000 0.0000 0.0000 -0.1579 0.6311 0.5171 0.8723 0.2017 0.0528 5.3

KNN 1.0000 0.0000 0.0000 0.3741 0.4809 0.3863 0.9258 0.1537 0.0395 4.4

MLP 0.8425 0.2216 0.1697 0.5303 0.4166 0.3024 0.8064 0.2486 0.1832 64.3

RF 0.9408 0.1358 0.1013 0.3224 0.5004 0.3704 0.8677 0.2053 0.1288 60.2

SVR 0.8249 0.2336 0.1443 0.5561 0.4050 0.3056 0.7936 0.2564 0.1608 4.5

XGB 0.9950 0.0394 0.0303 0.4200 0.4629 0.3425 0.9269 0.1526 0.0622 12.5

Notes: (1) RMSE and MAE are expressed in terms of the measured weekly NEE range for the site: -2.47935 to 2.01894 gC m-2 d-1 
(2) Execution times (Ex Time) are expressed in seconds and include 10-fold cross validation.

Table 7. Training and validation subset NEE prediction performance results for the regression and ML models applied 
to the US-Mpj woodland site.

NEE Forecasting Accuracy for Training and Validation Analysis Applied to the Full Dataset for Site US-Mpj 

 
Example 
Training Subset 
(90% of Data Records)

Example 
Validation Subset 
(10% of Data Records)

Example 
Full Dataset 
(100% of Data Records)

Model R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE Ex Time

Regression           

LR 0.5510 0.4140 0.3287 0.6399 0.3506 0.2682 0.5595 0.4080 0.3226 4.4

LASSO 0.5465 0.4161 0.3294 0.6540 0.3437 0.2657 0.5577 0.4094 0.3230 4.4

Ridge 0.5508 0.4141 0.3289 0.6417 0.3497 0.2683 0.5595 0.4080 0.3228 4.3

SGDR 0.4659 0.4515 0.3516 0.5885 0.3748 0.2866 0.4775 0.4444 0.3450 4.4

Machine Learning           

ADA 1.0000 0.0000 0.0000 0.7618 0.2852 0.2213 0.9783 0.0906 0.0223 119.7

DT 1.0000 0.0000 0.0000 0.5170 0.4061 0.3011 0.9559 0.1290 0.0304 5.4

KNN 1.0000 0.0000 0.0000 0.7346 0.3010 0.2387 0.9758 0.0956 0.0241 10.0

MLP 0.8559 0.2346 0.1860 0.7762 0.2764 0.2079 0.8487 0.2391 0.1882 53.0

RF 0.9624 0.1198 0.0922 0.7635 0.2842 0.2165 0.9443 0.1451 0.1048 40.7

SVR 0.8376 0.2490 0.1694 0.7908 0.2672 0.1966 0.8356 0.2509 0.1722 2.6

XGB 0.9824 0.0821 0.0635 0.7835 0.2718 0.2019 0.9642 0.1163 0.0775 3.9

Notes: (1) RMSE and MAE are expressed in terms of the measured weekly NEE range for the site: -2.44429 to 1.95933 gC m-2 d-1 
(2) Execution times (Ex Time) are expressed in seconds and include 10-fold cross validation.
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Figure 9. Validation subset (representative 10% split of 
the dataset) prediction performances compared for the 
regression and ML models applied to: (A) CA-LP1 site 

data; and, (B) US-Mpj site data.

The regression models are all executed rapidly (about 
4.5 seconds). Whereas the SVR model rivals or improves 
upon the MLR models for execution speeds, the MLP, RP 
and ADA models involve more computational seconds 
(Tables 6 and 7). All the models applied to data compiled 
for site CA-LP1 evaluate 20 variables and 323 data re-
cords (Table 1). All the models applied to data compiled 
for site US-Mpj evaluate 16 variables and 624 data re-
cords (Table 2).

4.4 Input Variable Importance Derived from 
Model Solutions

MLR models all generate their solutions transparently 
by routinely revealing the regression coefficients associat-
ed with each solution they generate. The SVR models can 
reveal their support vector coefficients for each solution 
generated, which are also useful for estimating feature 
influences on their solutions. Also, the DT models and the 
tree-ensemble ML models (ADA, RF and XGB) can also 
provide the relative influences of each input variable in 
the solutions they generate. DT model estimates of feature 
importance are derived from the relative contributions 
each attribute-split point (node) makes to improving the 

selected prediction-performance metric, for example, the 
Gini index of concentration [80,81]. To establish that the 
node contributions need to be weighted by the quantity of 
values associated with each node. For the ensemble-tree 
models feature-importance estimates calculated in that 
way for each tree involved need to be averaged. Such 
variable influence information cannot be easily extracted 
from the KNN and MLP solutions.

It is useful to compare variable influence information 
for the two woodland sites considered for the regression 
and ML models for which it can be readily extracted. Fig-
ures 10 and 11 make such a comparison in the form of bar 
charts; one for the four regression models plus SVR, and 
one for five ML models (SVR, XGB, RF, ADA, DT) for 
each site. It is apparent that both regression and ML mod-
els are influenced quite differently by the input variables 
at the two woodland sites. However, in the case of almost 
all models, all the input variables are assigned a weight, 
implying that they do exert some influence, albeit very 
small in the case of some models.

The three best-performing regression models (LASSO, 
LR and Ridge) applied to the CA-LP1 site are general-
ly in agreement with respect to the respective weights 
given to input variables (Figure 10A). They assign most 
weight to TA followed by SWIN, NetRad, PPFDIN, TS 
and LE. The LR and Ridge models assign more weight 
to SWOUT and PPFDOUT than the LASSO model. The 
LASSO model assigns slightly more weight to TA, SWIN, 
NetRad, PPFDIN, TS, LE and H than the LR and Ridge 
models. On the other hand, the SGDR model assigns quite 
different weights to the variables in establishing its some-
what poorer solution, in particular, assigning much higher 
weights to SWIN, LWIN, PF, LWOUT and H and much 
lower weights to TA, NetRad and LE than the other three 
regression model. 

In comparison with the best-performing regression 
models, SVR (Figure 10A) gives more weight to LWOUT 
and TA and less weight to SWIN, CO2, LE and H, oth-
erwise its variable weightings are quite similar to those 
regression models. On the other hand, SVR shows quite 
different priorities in its input variable weightings than 
the other ML models evaluated for sites CA-LP1 (Figure 
10B).

The DT model stands out in Figure 10B in that it as-
signs almost 40% of its weightings to the input variable 
SWout, twice as much as other ML models. This probably 
explains the poorer NEE prediction performance of the 
DT model in that it converges too quickly to a solution 
skewed towards the variations of just one variable. The 
three tree-ensemble models (XGB, RF and ADA; Figure 
10B) show generally similar input variable weightings 
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giving most priority to variables SWout, H and PPFDout. 
Although XGB assigns slightly more weight to H, TSF 
and LWout, and less weight to PPFDout than the other 
tree-ensemble models. SVR is distinctive from the other 
ML models in that it assigns more weight to TA, VPDF, Net-
Rad and LWout but less weight to LWinF, SWout and H.

The three best-performing regression models (LASSO, 
LR and Ridge) applied to the US-Mpj site are, as they are 
for the CA-LP1 site, generally in agreement with respect 
to the respective weights given to input variables (Figure 
11A). However, distinctively from the CA-LP1 site, those 
models assign most weight to VPD followed by SWIN, 

LWIN, TA, SWOUT and P, in that order. LASSO gives 
more slightly more weight to VPD SWIN, LWIN, TA and 
SWOUT than the LR and Ridge models. LASSO also as-
signs no weight to NetRad, PPFDIN, LWOUT and H, in 
contrast to the other regression models. Nevertheless, the 
SGDR model, distinctive to the other regression models, 
assigns substantially higher weights to LWIN, SWOUT, 
CO2, LE and H and a much lower weight to SWIN and 
almost no weight to TA. 

In comparison with the best-performing regression 
models, SVR (Figure 11A) gives more weight to PPF-
DIN and slightly more weight to TA but lower weights 

Figure 10. Relative importance of the twenty influencing variables on the NEE predictions for woodland site CA-LP1 
of: (A) regression models; and (B) those ML models from which variable influences can be extracted.
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to SWOUT, LWOUT, LE and H. On the other hand, 
SVR shows quite different priorities in its input variable 
weightings to the other ML models evaluated for site US-
Mpj (Figure 11B), as was the case for site CA-LP1.

For site US-Mpj the DT shows general agreement with 
the tree-ensemble models in the weights it assigns the 
input variables, with slightly higher weights assigned to 
LWOUT and CO2 and slightly lower weights assigned to 
TA and SWOUT (Figure 11B). The three tree-ensemble 
models (XGB, RF and ADA; Figure 11B) assign substan-
tially higher weights to LWIN than the other variables, 
with LWOUT, TA, H, LE and CO2 also being assigned 

relatively high weights. The XGB model assigns a some-
what lower weight to LWIN and slightly higher weights 
to H, P and SWIN than the other tree-ensemble models. 
SVR is distinctive from the other ML models applied to 
site US-Mpj in that it assigns higher weights to SWIN, 
VPD, PPDFIN, SWOUT and SWINP but less weight to 
LWOUT, H, LE and CO2.

As the SVR model provides the most accurate NEE 
predictions of the models applied to data from both wood-
land sites considered, from a variable-influence perspec-
tive, its weightings should be given the greatest consider-
ation. They suggest that:

Figure 11. Relative importance of the sixteen influencing variables on the NEE predictions for woodland site US-Mpj 
of: (A) regression models; and (B) those ML models from which variable influences can be extracted.
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●	 For	site	CA-LP1: variables TA, SWOUT, NetRad, 
LWOUT, SWIN and VPD, in that order, are the most 
influential, whereas variables LWIN, H, G, CO2, PA 
and P have very little influence on the SVR solution.

●	 For	 site	US-Mpj: variables VPD, SWIN, LWIN, 
TA, PPFDIN, SWOUT and P, in that order, are the 
most influential, whereas variables H, LE, LWOUT, 
NetRad and WS have very little influence on the 
SVR solution. See Figure 1 for variable abbreviation 
definitions.

Although there are some commonalities regarding 
variable influences on the SVR solutions generated for 
the two sites (i.e., high influences by TA, VPD and SWIN 
and very low influence by H), overall there are substantial 
differences. In particular, site CA-LP1 assigns relatively 
high weights to LWOUT and NetRad, whereas site US-
Mpj assigns very low weight to those two variables.

5. Discussion: Significance for Ecosystem As-
sessments

Two evergreen conifer woodland sites from the Ameri-
Flux dataset incorporating eddy covariance recordings 
and prepared to comply with FLUXNET2015 protocols 
provide useful insights regarding variable influences at 
those sites. The relative degree of importance assigned 
to a suite of measured variables in the prediction of net 
ecosystem exchange (NEE) weekly-averaged trends 
over multiple years can be meaningfully ascertained by 
evaluating four multi-linear-regression (MLR) and seven 
machine-learning (ML) models. The findings of this study 
indicate that NEE can be predicted with confidence and a 
relatively high degree of accuracy by the SVR, MLP and 
XGB models (Figures 7 and 8) considering a large suite 
of recorded input variables (20 variables for site CA-LP1; 
16 variables for site US-Mpj). That result implies that the 
variables being recorded are sufficient to explain the NEE 
trends observed over multiple years at those two sites. It is 
an important piece of information to ascertain for all sites 
recording eddy covariance datasets [28]. 

Unlike the two woodland sites studied, for some 
woodland ecosystem sites being monitored to FLUXNET 
standards, the full suite of recorded variables are not able 
to reliably predict the observed NEE trends over several 
years. For instance, the same methodology applied in 
this study has been applied to AmeriFlux sites MX-Tes, a 
dry temperate deciduous forest in Mexico [82,83], and PE-
QFR, a tropical palm swamp in Peru [84] without being 
able to generate highly accurate predictions with predicted 
NEE versus measured NEE values failing to approximate 
pNEE=cNEE relationships. In such situations, it implies 
that the recorded input variables are insufficient and that 

there are additional factor(s) influencing NEE that are not 
being recorded. This situation is also the case for many 
cropland sites for which variables adequately assessing 
the impacts of tillage and harvests are typically not being 
recorded [28,85].

In some seasonally dry ecosystems, carbon fluxes 
can demonstrate time-lag effects, caused by variations 
in timing and precipitation levels during the wet season, 
resulting in fluctuating carbon flux responses during sub-
sequent growing seasons [86]. In such situations short-term, 
daily or weekly, variations in environmental variables are 
inadequate predictors on their own of NEE, as it is being 
partially affected by certain environmental influence from 
several months earlier. 

With the confidence that an adequate set of input vari-
ables are being recorded for the two evergreen-conifer 
sites studied (CA-LP1/US-Mpj), assessments of variable 
influences on MLR regression and ML prediction models 
can be considered a worthwhile exercise. For sites where 
the models generate poor or moderate NEE predictions, 
with predicted NEE versus measured NEE trends deviat-
ing substantially from pNEE=cNEE, that is not the case, 
as at least some key influential variables are not being tak-
en into consideration. 

The results of this study highlight for the two wood-
land sites considered that multi-linear regression models 
are only able to generate moderately accurate solutions 
with the input variables available. The fact that several 
ML models can generate much more reliable NEE predic-
tions for these sites indicates that there is some degree of 
non-linearity between at least some of the input variables 
and NEE. The MLR models are unable to capture such re-
lationships as these methods rely upon linear relationships 
between dependent and independent variables. This find-
ing has implications for other woodland sites, particularly 
those with established conifer stands. Further studies are 
required to determine whether that is a general feature of 
all woodland site including deciduous woodlands. More-
over, the role of the understory [87], tree-stand densities [12]  
and periodic disturbances [88] making substantial NEE 
contributions to the non-linearity of relationships between 
NEE and its influencing variables, although considered 
likely, requires further investigation.

It is not a surprise that the relative influence of the input 
variables on the best NEE prediction solutions is quite dif-
ferent for the two woodland sites modelled in this study. 
Although both are conifer woodlands, the sites involve 
different evergreen tree species and are located in quite 
different geographic locations (latitudes) and climatic 
zones. However, the high relative influences of variables 
TA, VPD and SWIN and very low influence by H at both 
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sites, associated with the best NEE prediction models, are 
features worth assessing at other woodland sites. A knowl-
edge of the key influencing variables at specific sites from 
which NEE can be predicted is valuable, as it can assist in 
the understanding the likely impacts of climate change on 
a site in the future.

Such variable-influence information can be used to es-
tablish baseline parameters with which to assess the influ-
ences of other dynamic factor potentially at play over time 
at most woodland sites. There are a substantial number of 
dynamic factors that could potentially influence woodland 
sites over the medium and long term. For example climate 
change and extreme weather events (droughts and wild 
fires in particular), anthropogenic disturbances (periodic 
tree harvesting) various kinds of insect and microbial 
infestations, introduction of invasive understory species, 
altering stand density and tree species planting mix over 
time. Understanding how such changes might alter the 
balance of influence between independent variables and 
NEE could assist in woodland management decisions and 
the selection of certain protection strategies.

Notwithstanding the importance of knowledge pertain-
ing to the most influential factors at specific woodland 
sites, the fact that almost all the input variables measured 
at both sites considered exert some influence on the most 
accurate NEE prediction model solutions suggests that 
none of these variables should be ignored or disregarded 
via feature selection processes. It may be tempting to filter 
out some of the less influential input variables to construct 
simpler and quicker to implement prediction models in-
volving just a few key variables. However, considering 
the dynamic factors impacting woodland sites over time, 
just described, it is possible that variables exerting low 
influence on NEE at prevailing woodland conditions could 
become much more significant when certain disturbances 
are introduced.

6. Conclusions

The lodge-pole-pine site (CA-LP1; British Columbia, 
Canada) evaluated involves twenty environmental vari-
ables, and the pinon-juniper site (US-Mpj; New Mexico, 
U.S.A.) evaluated involves sixteen environmental vari-
ables. Weekly-averaged data for these variables recorded 
over several years can reliably predict net ecosystem 
exchange (NEE) at these two sites. Close similarities in 
the Pearson (R) vs Spearman (p) correlation coefficients 
of these variables with weekly NEE distributions at both 
sites indicate that their relationships with NEE are at least 
approximately parametric. 

4-fold, 5-fold, 10-fold and 15-fold cross validation 
analysis of eleven prediction models applied to each site 

show reliable and reproducible NEE prediction perfor-
mances with relatively low mean and standard deviation 
mean absolute errors (MAE). Machine learning (ML) 
models, support vector regression (SVR), extreme gra-
dient boosting (XGB) and multilayer perceptron (MLP), 
provide substantially more accurate NEE weekly pre-
dictions than the multi-linear regression (MLR) models 
evaluated. Predicted NEE (pNEE) versus measured NEE 
(cNEE) distributions at both sites follow pNEE = cNEE 
trends passing approximately through the origin of cross 
plots of those two variable, whereas they do not for MLR 
models. 

At site CA-LP1 variables air temperature, shortwave 
radiation outgoing, net radiation, longwave radiation out-
going, shortwave radiation incoming and vapor pressure 
deficit, in that order, are the most influential, whereas 
variables longwave radiation incoming, sensible heat, soil 
heat flux, carbon dioxide in wet air, atmospheric pressure 
and precipitation have very little influence on NEE pre-
dictions in the best-performing SVR solution. At site US-
Mpj variables vapor pressure deficit, shortwave radiation 
incoming, longwave radiation incoming, air temperature, 
photosynthetic photon flux density incoming, shortwave 
radiation outgoing and precipitation, in that order, are the 
most influential, whereas variables sensible heat, latent 
heat, longwave radiation outgoing, net radiation and wind 
speed have very little influence on NEE predictions in the 
best-performing the SVR solution. At both sites variables 
air temperature, vapor pressure deficit and shortwave ra-
diation incoming exert high influence on NEE predictions, 
whereas variable sensible heat exerts very low influence. 

Comparing Pearson and Spearman correlation coef-
ficients between influential variables and NEE, and the 
NEE prediction solutions of a suite of MLR and ML mod-
els provides valuable insight to the relative importance of 
variables in determining weekly NEE trends at specific 
woodland sites.
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