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A methodology integrating correlation, regression (MLR), machine 
learning (ML), and pattern analysis of long-term weekly net ecosystem 
exchange (NEE) datasets are applied to four deciduous broadleaf forest 
(DBF) sites forming part of the AmeriFlux (FLUXNET2015) database. 
Such analysis effectively characterizes and distinguishes those DBF 
sites for which long-term NEE patterns can be accurately predicted 
using the recorded environmental variables, from those sites cannot be 
so delineated. Comparisons of twelve NEE prediction models (5 MLR; 
7 ML), using multi-fold cross-validation analysis, reveal that support 
vector regression generates the most accurate and reliable predictions for 
each site considered, based on fits involving between 16 and 24 available 
environmental variables. SVR can accurately predict NEE for datasets for 
DBF sites US-MMS and US-MOz, but fail to reliably do so for sites CA-
Cbo and MX-Tes. For the latter two sites the predicted versus recorded 
NEE weekly data follow a Y ≠ X pattern and are characterized by rapid 
fluctuations between low and high NEE values across leaf-on seasonal 
periods. Variable influences on NEE, determined by their importance to 
MLR and ML model solutions, identify distinctive sets of the most and 
least influential variables for each site studied. Such information is valuable 
for monitoring and modelling the likely impacts of changing climate on the 
ability of these sites to serve as long-term carbon sinks. The periodically 
oscillating NEE weekly patterns distinguished for sites CA-Cbo and 
MX-Tes are not readily explained in terms of the currently recorded 
environmental variables. More detailed analysis of the biological processes 
at work in the forest understory and soil at these sites are recommended to 
determine additional suitable variables to measure that might better explain 
such fluctuations.
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1. Introduction

Carbon dioxide (CO2) heat and water fluxes from eco-
systems need to be accurately measured to establish their 
potential as long-term carbon sinks [1-3]. The eddy-covari-
ance technique has been refined to provide reliable net eco-
system exchange (NEE) CO2-flux measurements [4-6]. Eco-
systems display a wide range of NEE seasonal patterns [7]  
as they are influenced by many environmental, climate, 
and biological factors. Environmentally, solar radiation, 
air/soil temperatures, rainfall, soil water contents, and 
vapor pressure deficit tend to influence NEE patterns [8,9]. 
Periodic disturbances (droughts, wildfires, pests, diseases, 
industrial activities, etc.) can perturb deciduous broadleaf 
forest (DBF) NEE contributions from the canopy, under-
story, and soil. 

In woodland biomes, canopy height, aerodynamics, 
mean tree age, tree-stand density, and friction velocity 
(surface roughness) influence NEE patterns [10-13]. Latent 
and sensible heat fluxes vary diurnally and seasonally 
due to geographic factors [14,15]. Photosynthetically ac-
tive radiation (PAR; 400 nm ~ 700 nm wavelengths) and 
photosynthetic photon flux density (PPFD) are key NEE 
influencers, for the DBF canopy in particular [16,17]. Satel-
lite-derived information is widely used to extrapolate NEE 
data measured at specific sites across broader geographic 
areas based on selected environmental variables [18-22], tak-
ing into account seasonal, latitudinal and weather-related 
variations [23-25]. Machine Learning (ML) techniques are 
often used to fill data gaps in such circumstances [26].

Partitioning NEE contributions among the species pres-
ent in the DBF canopy, understory and soil, taking into 
account their respective growing seasons (leaf-on versus 
leaf-off), the impacts of wet and dry seasons, seasonal 
changes, and extreme events can refine the understanding 
of NEE seasonal patterns at specific sites where such data 
is recorded [27-33]. Variable correlations and multi-linear 
regressions (MLR) with NEE provide further insight [34,35]. 
Comparisons of multiple ML algorithms applied to fit 
NEE seasonal patterns [36,37], and data mining techniques 
to explore the details of NEE-environmental-variable rela-
tionships typically provide complementary insights to the 
calculated NEE datasets [38].

NEE determination involves multi-component calcu-
lations combining photosynthetic and respiratory eco-
system contributions recorded every thirty minutes, to 
meet FLUXNET2015 standards, and partitioned between 
daytime and nighttime recordings [39,40]. The pre-processed 
and verified NEE data are compiled into hourly, daily, 
weekly, monthly and annual datasets, and then formally 
released for public-domain analysis [41]. NEE calculation 

and verification are complex and time-consuming. Hence, 
ML models that accurately predict NEE from routinely 
recorded, site-specific environmental variables are useful 
for expanding the spatial application of recorded data. 
However, there is a research gap as not many ML models 
developed to date accurately replicate multi-year, seasonal 
NEE patterns at specific sites.

The NEE computation involves net primary production 
(NPP), taking into account the respiration of autotrophs 
(Ra) and gross primary production (GPP) (Equation (1)) 
and respiration of forest-litter/soil-based heterotrophs (Rh) 
(Equation (2)) [42].
NPP = GPP – Ra (1)

NEE = NPP – Rh (2)
The daylight hours (NEEdaytime) contribution is then de-

termined by distinguishing daylight photorespiration (Rp), 
maintenance respiration (Rm), autotroph growth respira-
tion (Rs), and Rh (Equation (3)). 
NEEdaytime = GPP – Rp – Rm – Rs – Rh (3)

The NEE components record carbon flux as absorbed 
(NEE +ve; carbon sinks) and/or released (NEE-ve; carbon 
sources) in relation to specific surface areas and periods of 
time. For daily and weekly time periods, NEE is expressed 
for FLUXNET2015 in gCm–2d–1. Weekly information is 
useful for NEE-seasonal-pattern analysis as it provides ap-
propriate granularity for understanding long-term changes 
impacting specific DBF sites [43].

Four DBF sites with FLUXNET2015-quality, mul-
ti-year, eddy covariance datasets from the AmeriFlux 
database [44] are characterized hourly with MLR and ML 
models to assess the ability of the recorded environmental 
variables to reliably predict NEE patterns. The analyses 
specifically: 

•	 Combine correlations, MLR, ML, and pattern anal-
ysis to determine whether NEE weekly patterns at 
DBF sites can or cannot be expressed reliably from 
available environmental variables;

•	 Establish which available environmental variables 
have the most influence on multi-year NEE pattern 
fits;

•	 Identify the specific annual periods at specific DBF 
sites that the MLR/ML models find difficult to pre-
dict.

2. Materials

2.1 FLUXNET Recorded and Processed Data

In excess of one thousand eddy-covariance recording 
sites now constitute the FLUXNET [41] worldwide data-
base [45]. The favored processing pipeline for that data is to 
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the FLUXNET2015 standard [46] rigorously pre-processes, 
quality controls, and, where possible, gap-fills the record-
ed data before releasing it for research. 

Several hundred eddy-covariance recording sites dis-
tributed throughout the Americas belong to the AmeriFlux 
network [44] supported by the US Department of Energy. 
The Ameriflux sites make datasets publicly available 
under license. The data released on specified sites are pro-
cessed and verified to meet FLUXNET2015 requirements [47]. 
Weekly datasets from four DBF sites processed to FLUX-
NET2015 standards were selected for evaluation by this 
study. These sites are CA-Cbo, MX-Tes, US-MMS, and 
US-MOz. These sites were selected because continuous 
data recordings were available at each site for multiple 
years covering a substantial number of environmental var-
iables without major data gaps. In addition to weekly-av-
eraged NEE data, 16 to 24 continuously recorded envi-
ronmental variables, as part of each site’s processed NEE 
datasets, were compiled for use in NEE prediction models 
by this study. 729, 203, 1005, and 739 weekly data records 
were compiled, respectively for sites CA-Cbo, MX-Tes, 
US-MMS, and US-MOz for the analysis conducted in this 
study. Figure 1 defines those variables, the abbreviations 
applied to them, and their units of measurement.

2.2 Deciduous Woodland AmeriFlux Sites 
Modelled

Weekly data records of NEE-averaged values with as-
sociated environmental variables are evaluated for four 
deciduous broadleaf forest (DBF) sites with seasonal leaf-
on and leaf-off periods each year. The sites are CA-Cbo 
(Canada), MX-Tes (Mexico), US-MMS and US-MOz 
(U.S.A.) and are described below. These woodland sites 
are all parts of secondary forests that were at one stage 
cultivated for agricultural purposes and subsequently al-
located for woodland development. The sites form part of 
the AmeriFlux dataset, the historical data recorded from 
which now conforms to the FLUXNET2015 protocol. 

CA-Cbo (44o19’0”N, 79o50’60”W) is located in the 
Borden Forest Research Station at 120 m above sea level; 
an extensive woodland area of Southern Ontario (Cana-
da) close to the ecotone with boreal conifer forests to the 
north. It constitutes a mixed forest dominated by Acer 
rubrum (red maple; ~50%), Pinus strobus (white pine), 
Populus grandidentata (large-tooth aspen), Fagus gran-
difolia (American beech) and Fraxinus americana (white 
ash), evolving as natural regrowth on abandoned farmland 
since 1916. The forest canopy is currently about 22 m 
tall and the tree density (living and dead) is greater than  

Figure 1. Abbreviations and definitions of climatic, environmental, and atmospheric variables were recorded as part 
of FLUXNET2015 datasets in the AmeriFlux databasee [48]. Note that reliable multi-year recorded data is not available 
for all these variables at every site. There are data gaps resulting in some variables being omitted at some sites. Data 

pre-processing involving gap filling and filtering is part of the FLUXNET2015 processing pipeline.
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4000 ha–1 [49]. The location experiences a warm summer 
continental climate with a cold winter and substantial pre-
cipitation throughout the year; classified as Dfb (Koppen). 
The mean annual temperature is 6.7 °C and average an-
nual rainfall is 876 mm but that varies substantially from 
year to year. FLUXNET data has been collected from 
1994 to the present day at the Environment Canada facil-
ity [50]. More continuous recorded data for twenty poten-
tially influential variables is available for the period from 
April 2004 to December 2020, and the weekly-averaged 
data for that period is compiled for NEE analysis in this 
study. 

MX-Tes (27o50’41”N, 109o17’52”W) is a dry tropical 
woodland extending over about 15 ha just east of Rosario 
de Tesopaco (SE Sonora, Mexico). The recording site is 
located in almost flat land 460 m above sea level on the 
western flanks of the Madre Occidental mountains. Up to 
80% of annual rainfall tends to occur in the July-Septem-
ber period related to the North American Monsoon but the 
level of rainfall fluctuates substantially from year to year [30]. 
It experiences a steppe climate with cold but dry winters 
and is classified as Bsh (Koppen). The average temper-
ature at the site is 24.3 °C and average annual rainfall 
is 647 mm. Broadleaf trees reaching > 2 m height cover 
more than sixty percent of the site with individual trees 
reaching 10 m. The species present are dominated by Ly-
siloma divaricatum (tepemesquite), Ipomoea arborescens 
(tree morning glory), Acacia cochliacantha (boatspine 
acacia), Haematoxylum brasiletto (Mexican logwood), 
and Celtis reticulata (netleaf hackberry). FLUXNET data 
is only reported from 2004 to 2009 [51], and sixteen poten-
tially influential variables have been compiled from that 
available data for NEE analysis in this study.

US-MMS (39o19’24”N, 86o24’47”W) is a mixed decid-
uous broadleaf forest located in the Morgan Monroe State 
Forest (south-central Indiana, U.S.A) at 275 m above sea 
level displaying ridge and ravine topography. The forest 
is comprised of about 29 tree species dominated by Acer 
saccharum (sugar maple), Liriodendron tulipifera (tulip 
poplar), Sassafras albidum (sassafras), Quercus alba 
(white oak) and Q. velutina (black oak), Lindera benzoin 
(spicebush), Asimina triloba (pawpaw) and Cornus florida 
(flowering dogwood) with a summer understory of diverse 
vascular plants contributing substantially to forest litter [52]. 
The forest has been grown and managed on abandoned 
farmland since 1929. It experiences a humid, subtropical, 
mild climate with hot summers and no dry seasons; clas-
sified as Cfa (Kloppen). The average mean temperature is 
10.9 °C and mean annual rainfall is 1032 mm. FLUXNET 
data has been collected from this site from 1999 to the 
present [53] and eighteen potentially influential variables 

have been compiled from that available data for NEE 
analysis in this study.

US-MOz (38o44’39”N, 92o12’0”W) is a secondary 
oak-hickory, predominantly broadleaf forest located in 
the Baskett Wildlife Research and Education Area of the 
Ozark border region of central Missouri (U.S.A) at 219 
m above sea level. Its dominant tree species are Quercus 
alba (white oak), Q. velutina (black oak), Carya ovata 
(shagbark), Acer saccharum (sugar maple) and Juniperus 
virginiana (eastern red cedar) [54]. The forest has been 
grown and managed on overgrazed and bankrupt farmland 
since the 1930s. It experiences a humid, subtropical, mild 
climate with hot summers and no dry seasons; classified as 
Cfa (Kloppen). The average mean temperature is 12.1 °C  
and mean annual rainfall is 986 mm. The forest exists on 
relatively thin soils which can lead to sever plant-water 
stress during periods of drought [55]. FLUXNET data has 
been collected from this site from 2004 to the present [56]. 
Twenty potentially influential variables have been com-
piled from that available data (2004 to 2019) for NEE 
analysis in this study.

3. Predicting NEE from Recorded Environmental 
Variables

3.1 Multi-linear Regression (MLR) 

MLR techniques expand upon Ordinary Linear Regression 
(OLR), by applying error minimization algorithms and/or 
various error penalty functions [57]. 

MLR models assign values to coefficients C0 to CN, 
(Equation (4)) for each of the N independent variables, 
with C0, representing a constant term. 
Y = C0 + C1X1 + C2X2 + C3X3 (4)
where X1 to XN are the independent variables and Y is 
the dependent variable. When applying Equation (4), 
the models typically assume that no dependencies exist 
among the influencing variables. In this study five distinct 
MLR algorithms are applied to predict the NEE datasets 
involving different error functions and in some cases min-
imizers. These are: 

(1) LR: applies a basic function for least-squares error 
determination [58] expressed as Equation (5):
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α is tuned to suit the dataset, with higher α values gen-
erating larger changes in the values of C0 to CN from one 
iteration to the next. Various penalty functions can be ap-
plied with SGDR (i.e., L1, L2 regularization terms).

3.2 Machine Learning Models Evaluated 

A diverse suite of widely used ML models is applied 
in attempts to determine accurate NEE predictions from 
the influencing variables available for the four DBF sites 
considered (Table 1). The models are run in customized 
Python code applying publicly available SciKit Learn 
functions [60]. These mathematical formulations on which 
the selected ML models are based are well established and 
are available in the citations provided in Table 1, together 
with examples of their more recent applications in ecolog-
ical research.

The ML (and most of the MLR) models require tuning 
their hyperparameters to suit the data variable distribu-
tions and relationships of each DBF dataset. The model 
structures and optimized tunable control values applied to 

Table 1. ML models adopted for NEE prediction of four DBF site weekly-averaged datasets.

Machine Learning Models Applied to Predict NEE at DBF Sites With Influencing Variables

Model Code Type Originator(s) Examples of Use in Ecology Studies

Adaptive Boosting ADA Boosted Tree ensemble [61] [62]

Decision Tree DT Single tree [63] [64]

K-Nearest Neighbor KNN Data Matching [65] [66]

Multi-Layer Perceptron MLP Artificial Neural Network [67] [68,69]

Random Forest RF Tree ensemble [70] [37, 71-72]

Support vector Regressor SVR Hyperplane Fit [73] [74-75]

Extreme Gradient Boosting XGB Boosted Tree ensemble [76] [77-78]
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each model are described in Table 2. The optimized values 
were established using a combination of trial and error, 
grid search [79] and Bayesian optimizers [80].

Determining the appropriate number of data records 
from the datasets to assign to training and validation sub-
sets is an important requirement for MLR and ML model 
evaluation. This is typically defined as the split percent-
ages (A% training: B% validation; where A+B=100%) 
or “splits”. The splits applied need to allocate sufficient 
data records to training such that the models adequately 
fit the full range of data present, and, at the same time, 
allocate sufficient data records to validation to verify that 
the trained models can generate reproducible and reliable 
predictions based on random allocations. 

3.3 Multi-fold Cross Validation Analysis

Evaluating data subset splits for MLR/ML models can 

be conducted by trial and error but it is time consuming 
and tends to lack statistical rigor. The K-fold cross-vali-
dation technique offers a powerful and statistically robust 
tool for evaluating various percentage splits between 
training and validation subsets [81], particularly when ap-
plied with multiple values of K. The technique divides, at 
random, a dataset into K subsets of equivalent size. The 
value of K can vary, but for most datasets it is worthwhile 
applying the techniques with 4 <= K <= 15. For small da-
tasets (less than about 200 data records) the larger K val-
ues in that range tend to allocate too few data records (less 
than about 20) to each validation subset, introducing more 
statistical dispersion into the results. Each K-fold analysis 
sequentially assigns one of the K subsets for validation 
and the remaining K-1 subsets for training. The sequence 
is continued until each of the K subsets is evaluated once 
as the validation subset. For a 4-fold evaluation that in-
volves four separate executions, for a 15-fold evaluation 

Table 2. MLR and ML Model architectures and control parameters applied.

NEE Prediction Models 
Applied

Hyperparameter Values Applied

Regression Models

Ordinary Least Squares 
Regression (LR)

Fit Intercept = true

LASSO
Alpha= 0.0001 (0.1 for CA-Cbo); coordinate descent optimization; tolerance =0.0001; L1 regularization; L1 ratio 
=1.0; Fit intercept = true

ElasticNet
Alpha= 0.0001; optimization solver = auto; tolerance =0.0001;  
L1 ratio =0.01; Fit intercept = true

Ridge
Alpha= 0.1 (1.0 for CA-Cbo); optimization solver = auto; tolerance =0.001; L2 regularization (L1 ratio =0.0); Fit 
intercept = true

Stochastic Gradient Descent 
(SGDR)

Alpha= 0.0001;  Loss function = episilon insensitive; learning rate = invscaling; L2 regularization; L1 ratio = 0.15; 
Fit intercept = true

Machine Learning Models

Adaptive Boosting (ADA)
Number of estimators=1000; learning rate =0.01;  loss function = linear 
base estimator is DT with depth =15; splitter =best

Decision Tree (DT) Maximum depth = None; splitter =best; splitting criterion = mse

K Nearest Neighbour (KNN)
Number of nearest neighbours assessed K = 8 to 11 (depending on the site); distance metric = Minkowski with p 
= 2 (Euclidian) for US-Moz and MX-Tes) and p=1(Manhattan) for US-MMS and CA-Cbo; neighbour selection 
algorithm = auto

Multi-layer Perceptron (MLP)

3 hidden layers with 100, 50 and 25 neurons;  Learning rate = adaptive  
with initial learning rate = 0.001;  Solver = adam; alpha=0.01  
(=1.0 MX-Tes); activation fn. = tanh for US-MMS and MX-Tes; 
activation fn. = relu for US-MOz and CA-Cbo;

Random Forest (RF)
Number of estimators = 1000; maximum depth = 100;  
Splitting criterion = mse

Support Vector Regressor 
(SVR)

Kernel = rbf;  
CA-Cbo: C = 7; gamma = 0.22; MX-Tes: C = 0.3; gamma = 0.1; 
US-MZo: C = 21; gamma = 0.22; US-MMS: C = 12; gamma = 0.23;

Extreme Gradient Boosting  
(XGB)

Number of estimators=1500; Maximum depth = 5 (=4 MX-Tes); eta = 0.01; 
Subsample = 0.6 (=0.7 MX-Tes); Columns sampled per tree = 0.8



19

Research in Ecology | Volume 04 | Issue 04 | December 2022

that involves fifteen separate executions. The error anal-
ysis is then compiled to establish the mean and standard 
deviation of the error metric used (in this study MAE). As 
the initial k-fold division into subsets is random, it makes 
sense to repeat the evaluation for each K-fold in several 
separate runs to improve statistical confidence in the re-
sults. For instance, repeating a 10-fold cross validation 
analysis three times, with three distinct initial random 
splits of the datasets into ten subsets, result in thirty dis-
tinct cases, leading to a more robust mean and standard 
deviation. 

Multi-K-fold cross validation analysis is a powerful 
tool. By comparing the means and standard deviations 
of the multi-K-fold results the appropriate splits of data 
records between ML training and validation subsets can 
be more precisely determined. When this approach is 
used to select the optimum data splits between training 
and validation subsets, it tends to substantially improve 
the prediction accuracy of the MLR/ML models applied 
and minimizes the impacts of data over-fitting. The multi-
K-fold cross validation analysis applied to the four DBF 
datasets is presented and interpreted in Section 4.2.

3.4 Filtering FLUXNET2015 Data Records

FLUXNET data records over time typically include 
some data gaps, due either to equipment/recording failures 
or unreliable data being recorded. The FLUXNET2015 
processing pipeline [46] is designed to identify these and 

gap fill the data, if possible. In this study, for the four 
weekly-averaged datasets compiled (CA-Cbo, MX-Tes, 
US-MMS and US-MOz) any data record with missing 
values for the influencing data variables selected has been 
omitted. 

Prior to MLR and ML analysis, the values of each 
data variable are normalized (Equation (12)) within each 
dataset to a range of –1 to +1. Normalization avoids the 
impacts of variable scaling biases.
Xi*= 2*[(Xi- Xmin)/(Xmax-Xmin)]-1 (12)
where Xi is the ith data point within the distribution of var-
iable X values and Xmin, Xmax and 

Xi* are the minimum, maximum and normalized values 
relating to that variable distribution.

The error performance measures employed to assess 
the performance of MLR and ML models in this study 
are mean squared error (MSE), root mean squared error 
(RMSE), mean absolute error (MAE), correlation coeffi-
cient (R) and correlation coefficient squared (R2). These 
terms are defined in Appendix A. The work-flow sequence 
recommended and adopted for high-level characterization 
and analysis of multi-year, weekly-averaged NEE FLUX-
NET2015 datasets, recorded in conjunction with poten-
tially influential environmental variables is summarized in 
Figure 2. It combines correlation, MLR, ML and pattern 
analysis, and applied systematically, it provides a useful 
approach for benchmarking and comparing sites at differ-
ent locations involving related ecosystems.

Figure 2. Work flow description of multi-year, weekly NEE pattern analysis proposed and executed in this study of four 
DBF sites.



20

Research in Ecology | Volume 04 | Issue 04 | December 2022

4. Results

4.1 NEE Weekly Patterns and Variable Correlations

Repetitive seasonal variations are apparent at each of 
the four sites when weekly-averaged NEE data from each 
site are considered over multiple years. The NEE annual 
ranges are more extreme but the seasonal patterns are 
more regular for sites US-MMS and US-MOz (Figure 
3A) located within the same climatic zone. On the other 
hand, the magnitudes of the NEE weekly-averaged peaks 
and troughs vary substantially from year to year at the 
CA-Cbo site (Figure 3B) with some abrupt alternations 
between peaks and troughs within the summer season. In 
contrast, the NEE range displayed at the MX-Tes site is 
quite narrow with few weekly data points falling outside 
the –0.5 to +0.5 gCm–2d–1 range, however, its seasonal 
NEE pattern is similar to that shown in Figure 3B for the 
CA-Cbo site. 

Figure 3. Characteristic seasonal patterns of net ecosystem 
exchange (NEE) weekly data sequences for: a) AmeriFlux 
sites and US-MMS; and (B) CA-Cbo. Note that the pattern 
for site MX-Tes is similar to that of CACbo but on a more 
compressed NEE scale of =1 to +0.25 gCm–2d–1 and with 

the majority of the weeks recording values below 0.

Pearson (R) [82] and Spearman (p) [83] correlation coeffi-
cients between influencing variables and multi-year NEE 
weekly patterns can be usefully compared to benchmark 
variable relationships in different ecosystems [34,35]. Both 
correlation coefficients are calculated using the same 
formula (Appendix A): R using actual distribution val-
ues; p using their rank positions. Figure 4 displays such 
a comparison for the four sites of interest revealing dis-
tinctive NEE-influencing variable relationships. For sites 
US-MMS and US-MOz (Figures 4A and 4B) many of 
the recorded variables show high negative correlation co-
efficients (< –0.5) with NEE, with variables WS, USTAR, 
CO2 and SWC showing moderate positive correlations 
(between +0.2 and +0.5). Moreover, there is generally 
good agreement between R and p values at both sites, 
implying that the linear parametric variable distribution 
relationships assumed in the R calculations [84] are a rea-
sonable approximation for the distributions recorded at 
those sites [85]. 

Because the p calculation involves the rank positions of 
the data variable values in its distribution range, making it 
more suitable for assessing both parametric and non-par-
ametric relationships [86]. The p values are more suitable 
than the R values in quantifying relationships between 
variable distributions that involve a degree of non-line-
arity [87,88]. Most variables recorded at sites US-MMS and 
US-MOz display slightly lower p than R values, although 
for CO2 the reverse is the case (Figures 4A and 4B). Such 
minor differences imply that a minor degree of non-linear-
ity participates in the relationships between most variable 
distributions and NEE.

In contrast, the R and p values for site CA-Cbo (Figure 
4C) are both low with only SWC just reaching values of 
–0.2. Moreover, for several variables (VPD, PPFDout, 
SWC, LE and H) there are substantial differences between 
the calculated p and R values for this site. These relation-
ships imply that the NEE distribution cannot be easily or 
well described in terms of the potentially “influential” var-
iables measured at that site, and that several of the poor 
relationships that do exist are substantially non-linear. 

The R and p values for site MX-Tes (Figure 4D) are 
between –0.5 and +0.4, thereby falling about midway be-
tween sites US-MMS and US-MOz on the one hand, and 
site CA-Cbo on the other. However, the p and R values for 
most of the variables at site MX-Tes are quite different, 
highlighting that their relationships with NEE are non-par-
ametric with a strong degree of non-linearity. Taken to-
gether, the plots displayed in Figures 3 and 4 generally 
provide high-level characterization of NEE recording sites 
considering multi-year, weekly-averaged data.
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Figure 4. Correlations of influential variables with NEE based on weekly datasets for woodland sites: (A) US-MMS; (B) US-MOz; (C) CA-Cbo; and (D) MX-Tes. Vari-
able abbreviations are defined in Figure 1.
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4.2 NEE Prediction Models

Five MLR models and seven ML models were care-
fully configured and applied to the compiled datasets for 
each of the four DBL woodland sites considered. Prior to 
describing and comparing those model results in detail, 
graphics are displayed for predicted NEE versus recorded 
NEE, including each weekly-averaged data record in the 
multi-year sequence, for the best performing MLR and 
ML models applied to each site. Figure 5 compares those 
results for sites US-MMS and US-MOz, whereas Figure 6 
compares those results for sites CA-Cbo and MX-Tes. It 
is apparent from Figure 5 that for sites US-MMS and US-
MOz the models generate similar results, with site US-
MOz achieving slightly low prediction errors. The Ridge 
MLR models (Figures 5A and 5C) provide credible pre-
dictions with predicted versus recorded NEE values ap-
proximating Y=X patterns, albeit with a degree of scatter. 
However, the SVR models (Figures 5B and 5D) noticea-
bly improve upon the Ridge model results, following Y=X 
patterns (R2 > 0.95)with less dispersion (MAE = 0.3463 
gCm–2d–1 for US-MMS; MAE = 0.2343 gCm–2d–1 for US-
MMS).

On the other hand, the NEE-prediction model perfor-
mances are less impressive for sites CA-Cbo and MX-Tes 
(Figure 6). What particularly stands out, for both sites, is 
that the predicted versus recorded NEE patterns for both 
MLR and ML models deviate substantially from Y = X 
patterns. Moreover, they do so in a significantly system-
atic way, with NEE predictions overestimating the lowest 
(most negative) values and underestimating the highest 
(most positive) values. This leads to relatively high MAE 
and RMSE values in relation to the NEE range recorded 
and low R2 values, despite clear linear patterns between 
predicted and recorded NEE values being established. In 
fact, the majority of the data points recorded at both sites 
are predicted with reasonable accuracy (i.e., those situated 
between recorded NEE of –1 and +3 gCm–2d–1 for site CA-
Cbo, and those situated between recorded NEE of –0.6 
and 0 gCm–2d–1 for site MX-Tes). The prediction problem, 
using the influential variables recorded is associated with 
the NEE peaks and troughs for these two sites. Although 
the ML models improve prediction performance slightly 
compared to the MLR models they do not resolve the Y ≠ 
X pattern issue. 

Figure 5. Predicted versus recorded NEE for: (A) US-MMS Ridge Solution; (B) US-MMS SVR Solution; (C) US-MOz 
Ridge Solution; and (D) US-MOz SVR Solution. NEE values displayed in gCm–2d–1.
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4.3 Multiple-K-fold Cross Validation of MLR and 
ML Models

K-fold cross-validation analysis (Section 3.3) offers a 
highly effective technique for establishing the reliability 
and reproducibility of the NEE prediction models (MLR 
and ML) by systematically and randomly running multiple 
cases using different training/validation splits of each da-
taset. Additionally, it helps to guard against being misled 
by the tendency of some models to overfit to varying de-
grees the training subsets used to fit the models. The K-fold 
analysis results relating to each of the sites considered, 
including 4-, 5-, 10- and 15-fold configurations, are listed 
in Tables 3 to 6. The results of the 10-fold cross-valida-
tion configuration are also displayed graphically in Figure 
7. This technique is a reliable way of determining which 
models generate the most reliable NEE predictions at each 
DBF site with minimum prediction errors.

It is apparent from Tables 3 to 6 that the SVR model 
generates the best NEE prediction accuracy for all sites, 
although its performance is matched by the MLP model 
for site US-MOz. Taking into account the mean MAE val-
ues and their standard deviations the 10-fold and 15-fold 

configurations provide the most accurate results with the 
least dispersion for the models applied to each site. This 
indicates that the models work best with at least 90% of 
the data records allocated to the training subset.

With respect to the MLR models applied to datasets 
from sites US-MMS and US-MOz (Tables 3 and 4), four 
models generate almost identical prediction models for 
each K-fold configuration. The SGDR model generates 
inferior predictions for those sites. For site CA-Cbo (Ta-
ble 5), the LASSO model slightly outperforms the Ridge 
model providing the best MLR NEE predictions, whereas 
the SGDR model provides the poorest NEE predictions. 
However, for the MX-Tes site the SGDR model provides 
the best MLR NEE predictions (Table 6).

For the ML models, the SVR, XGB, MLP and RF 
models generate better NEE prediction accuracy than the 
ADA, KNN and DT models for sites US-MMS, US-MOz 
and CA-Cbo (Tables 3 to 5). However, for site MX-Tes 
the ADA and KNN models provide comparable NEE pre-
dictions to the SVR, XGB, MLP and RF models (Table 6). 
The DT model provides the worst NEE prediction results 
and is outperformed by all MLR models as well as the 
other ML models.

Figure 6. Predicted versus recorded NEE for: (A) CA-Cbo Ridge Solution; (B) CA-Cbo SVR Solution; (C) MX-Tes 
Ridge Solution; and (D) MX-Tes SVR Solution. NEE values displayed in gCm–2d–1.
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Table 3. Cross-validation (4-, 5-, 10-, and 15-fold) of NEE prediction-error analysis for woodland site US-MMS in 
terms of mean absolute error (MAE) displaying results for 5 MLR models and 7 ML models. Best-performing SVR 

solution is shown in bold.

K-Fold Cross Validation NEE Prediction Errors (MAE) for Woodland Site US-MMS

Mean Absolute Error (MAE)
4-Fold 5-Fold 10-Fold 15-Fold

Mean StDev Mean StDev Mean StDev Mean StDev

Regression

LR 0.7186 0.0304 0.7196 0.0355 0.7180 0.0547 0.7185 0.0629

LASSO 0.7184 0.0305 0.7194 0.0356 0.7179 0.0548 0.7183 0.0630

RIDGE 0.7181 0.0305 0.7190 0.0357 0.7177 0.0548 0.7181 0.0630

ELASTICNET 0.7182 0.0305 0.7191 0.0357 0.7177 0.0548 0.7181 0.0630

SGDR 0.7291 0.0341 0.7307 0.0385 0.7274 0.0546 0.7266 0.0645

Machine Learning

ADA 0.5457 0.0279 0.5443 0.0316 0.5374 0.0439 0.5354 0.0568

DT 0.7757 0.0503 0.7891 0.0413 0.8017 0.0888 0.7933 0.0913

KNN 0.5476 0.0184 0.5428 0.0229 0.5401 0.0365 0.5367 0.0514

MLP 0.5127 0.0264 0.5414 0.0391 0.5008 0.0483 0.4972 0.0557

RF 0.5451 0.0276 0.5476 0.0328 0.5403 0.0485 0.5380 0.0615

SVR 0.4982 0.0161 0.4962 0.0205 0.4894 0.0400 0.4856 0.0504

XGB 0.5119 0.0187 0.5092 0.0233 0.5020 0.0405 0.5013 0.0560

Table 4. Cross-validation (4-, 5-, 10-, and 15-fold) of NEE prediction-error analysis for woodland site US-MOz in terms 
of mean absolute error (MAE), displaying results for 5 MLR models and 7 ML models. Best-performing MLP and SVR 

solutions are shown in bold.

K-Fold Cross Validation NEE Prediction Errors (MAE) for Woodland Site US-MOz

Mean Absolute Error (MAE)
4-Fold 5-Fold 10-Fold 15-Fold

Mean StDev Mean StDev Mean StDev Mean StDev

Regression

LR 0.5858 0.0256 0.5861 0.0421 0.5839 0.0545 0.5842 0.0692

LASSO 0.5854 0.0255 0.5859 0.0422 0.5836 0.0544 0.5839 0.0688

ElasticNet 0.5847 0.0253 0.5852 0.0423 0.5831 0.0541 0.5833 0.0684

RIDGE 0.5841 0.0252 0.5848 0.0424 0.5829 0.0539 0.5831 0.0682

SGDR 0.6280 0.0287 0.6286 0.0424 0.6260 0.0535 0.6252 0.0704

Machine Learning

ADA 0.5368 0.0312 0.5374 0.0304 0.5207 0.0470 0.5169 0.0561

DT 0.7310 0.0542 0.7621 0.0554 0.7061 0.0725 0.7214 0.0863

KNN 0.5662 0.0260 0.5630 0.0356 0.5547 0.0614 0.5510 0.0714

MLP 0.4955 0.0307 0.4931 0.0328 0.4744 0.0469 0.4698 0.0491

RF 0.5313 0.0292 0.5342 0.0357 0.5182 0.0499 0.5146 0.0576

SVR 0.4879 0.0246 0.4883 0.0310 0.4745 0.0441 0.4692 0.0520

XGB 0.4907 0.0199 0.4899 0.0287 0.4825 0.0490 0.4756 0.0514
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Table 5. Cross-validation (4-, 5-, 10-, and 15-fold) of NEE prediction-error analysis for woodland site CA-Cbo in terms 
of mean absolute error (MAE), displaying results for 5 MLR models and 7 ML models. Best-performing SVR solution 

is shown in bold.

K-Fold Cross Validation NEE Prediction Errors (MAE) for Woodland Site CA-Cbo

Mean Absolute Error (MAE)
4-Fold 5-Fold 10-Fold 15-Fold

Mean StDev Mean StDev Mean StDev Mean StDev

Regression

LR 1.2723 0.0864 1.2715 0.1120 1.2674 0.1532 1.2673 0.2174

LASSO 1.2524 0.0993 1.2539 0.1165 1.2512 0.1570 1.2522 0.2177

ElasticNet 1.2706 0.0873 1.2698 0.1124 1.2659 0.1533 1.2658 0.2172

RIDGE 1.2597 0.0931 1.2605 0.1139 1.2576 0.1561 1.2585 0.2166

SGDR 1.3070 0.1095 1.3103 0.1196 1.3011 0.1573 1.3024 0.2197

Machine Learning

ADA 1.1465 0.1033 1.1508 0.1284 1.1394 0.1695 1.1375 0.2231

DT 1.6126 0.1495 1.6411 0.1893 1.5927 0.2457 1.6179 0.3002

KNN 1.2509 0.0870 1.2538 0.1218 1.2373 0.1661 1.2388 0.2281

MLP 1.2525 0.1003 1.2567 0.1384 1.1994 0.1623 1.2252 0.2291

RF 1.1477 0.0979 1.1488 0.1281 1.1460 0.1617 1.1429 0.2127

SVR 1.1105 0.0758 1.1159 0.1127 1.1029 0.1496 1.1005 0.2061

XGB 1.1240 0.0928 1.1152 0.1148 1.1090 0.1599 1.1085 0.2094

Table 6. Cross-validation (4-, 5-, 10-, and 15-fold) NEE prediction-error analysis for woodland site MX-Tes in terms of 
mean absolute error (MAE), displaying results for 5 MLR models and 7 ML models. Best-performing SVR solution is 

shown in bold.

K-Fold Cross Validation NEE Prediction Errors (MAE) for Woodland Site MX-Tes

Mean Absolute Error (MAE)
4-Fold 5-Fold 10-Fold 15-Fold

Mean StDev Mean StDev Mean StDev Mean StDev

Regression

LR 0.1342 0.0215 0.1335 0.0194 0.1277 0.0323 0.1257 0.0436

LASSO 0.1229 0.0208 0.1236 0.0192 0.1192 0.0324 0.1184 0.0452

ElasticNet 0.1337 0.0214 0.1330 0.0193 0.1273 0.0323 0.1254 0.0436

RIDGE 0.1316 0.0210 0.1312 0.0192 0.1259 0.0324 0.1243 0.0437

SGDR 0.1146 0.0214 0.1165 0.0259 0.1159 0.0376 0.1124 0.0483

Machine Learning

ADA 0.1176 0.0229 0.1189 0.0222 0.1170 0.0341 0.1158 0.0479

DT 0.1623 0.0213 0.1743 0.0309 0.1587 0.0506 0.1646 0.0641

KNN 0.1104 0.0234 0.1113 0.0241 0.1086 0.0337 0.1082 0.0464

MLP 0.1135 0.0212 0.1153 0.0219 0.1127 0.0340 0.1126 0.0468

RF 0.1161 0.0230 0.1169 0.0250 0.1148 0.0328 0.1142 0.0478

SVR 0.1036 0.0240 0.1044 0.0262 0.1038 0.0348 0.1038 0.0482

XGB 0.1233 0.0216 0.1228 0.0232 0.1214 0.0338 0.1213 0.0464
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Figure 7 highlights the superiority of the SVR predic-
tion model taking into account the datasets from all four 
sites considered. Note also that the hyperparameters ap-
plied to the SVR model need to be optimized for each of 
those datasets.

4.4 MLR/ML Model Training/Validation 

Additional insight into the NEE-prediction model per-
formances at each DBF site is provided by assessing train-
ing, validation and full dataset results for an individual, 
randomly selected case contributing to the multi-K-fold 
cross-validation analysis. Tables 7 to 10 display the results 
for Case X, one of the thirty cases contributing to the 10-
fold cross validation analysis, applied to each of the four 
sites considered. Case X results therefore involve a split 
of data records comprising 90 percent assigned to the 
training subset and ten percent assigned to the validation 
subset. Each site generates distinct prediction results and 
prediction errors for Case X. These results are plotted sep-
arately for each site studied in Tables 7 to 10. Those tables 
also present the computational times taken to execute each 
MLR and ML model at each site.

The Case X results of the regression models for the 
four sites are consistent, with the NEE prediction perfor-

mance for its validation subset being slightly better in 
terms of MAE, RMSE and R2 values. Moreover, the NEE 
prediction performances for the full datasets are close to 
those of the training subset for the MLR models indicating 
that no overfitting has occurred. The MLR models all take 
between 4 and 6 seconds to execute for the four datasets 
assessed. The MLR models can therefore be executed rap-
idly and be relied upon to generate consistent results for 
each data subset assessed.

On the other hand, several of the ML models show 
clear evidence of overfitting with respect to Case X ap-
plied to each site (Tables 7 to 10). The ADA, DT, KNN, 
RF and XGB models fit the training subset with very low 
error values (MAE and RMSE close to or at zero, and R2 
values close to or at 1.0), whereas the error values asso-
ciated with the validation subsets are much higher, and 
the errors achieved for the full datasets are substantially 
higher than for the training subsets. Such outcomes are 
indicative of overfitting. On the other hand, for the SVR 
models applied to Case X for each site, errors achieved 
for the training subset, the validation subset and the full 
dataset are in closer agreement. This is consistent with 
the SVR model not overfitting the dataset, and thereby 
generating consistently high NEE prediction accuracy for 
the validation subsets compared to the other ML models. 

Figure 7. NEE weekly prediction results from cross-validation analysis (10-fold only displayed) applied to each MLR 
and ML model evaluated for sites (A) US-MMS; (B) US-MOz; (C) CA-Cbo: and (D) MX-Tes.
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Table 7. Case X (one example of the thirty 10-fold cross-validation cases evaluated) results for training /validation/ full 
dataset NEE prediction performances for MLR/ML models applied to woodland site US-MMS. The best performing 

SVR solution is shown in bold.

NEE Forecasting Performance for Training and Validation Analysis Applied to the Full Dataset for Site US-MMS

Case X Training Subset 
(90% of Data Records)

Case X Validation Subset 
(10% of Data Records)

Case X Full Dataset 
(100% of Data Records)

Model R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE Ex Time

Regression
LR 0.9028 0.9272 0.7116 0.9323 0.8027 0.6336 0.9063 0.9155 0.7038 4.8

LASSO 0.9028 0.9272 0.7115 0.9322 0.8032 0.6339 0.9063 0.9155 0.7037 5.2

ElasticNet 0.9028 0.9272 0.7116 0.9320 0.8043 0.6347 0.9063 0.9156 0.7038 6.2

Ridge 0.9028 0.9273 0.7115 0.9320 0.8045 0.6348 0.9063 0.9157 0.7038 4.3

SGDR 0.8996 0.9425 0.7236 0.9256 0.8411 0.6586 0.9027 0.9328 0.7171 4.8

Machine Learning
ADA 1.0000 0.0129 0.0031 0.9424 0.7403 0.5424 0.9938 0.2350 0.0573 221.0

DT 1.0000 0.0000 0.0000 0.8738 1.0957 0.8092 0.9865 0.3474 0.0813 4.8

KNN 1.0000 0.0000 0.0000 0.9431 0.7356 0.5561 0.9939 0.2332 0.0559 5.4

MLP 0.9806 0.4140 0.2989 0.9548 0.6557 0.5194 0.9779 0.4443 0.3211 250.0

RF 0.9907 0.2876 0.1975 0.9408 0.7502 0.5640 0.9854 0.3619 0.2344 174.6

SVR 0.9658 0.5501 0.3302 0.9591 0.6235 0.4911 0.9652 0.5579 0.3463 7.6

XGB 0.9976 0.1467 0.1111 0.9528 0.6700 0.5003 0.9928 0.2539 0.1502 74.9

Notes: (1) RMSE and MAE are expressed in terms of the measured weekly NEE range for the site: -8.37437 to 3.73218 gC m-2 d-1. (2) 
Execution times (Ex Time) are expressed in seconds and include full 10-fold cross validation analysis.

Table 8. Case X (one example of the thirty 10-fold cross-validation cases evaluated) results for training/validation/full 
dataset NEE prediction performances for MLR/ML models applied to woodland site US-MOz. The best performing 

MLP solution is shown in bold.

NEE Forecasting Performance for Training and Validation Analysis Applied to the Full Dataset for Site US-MOz

Case X Training Subset 
(90% of Data Records)

Case X Validation Subset 
(10% of Data Records)

Case X Full Dataset 
(100% of Data Records)

Model R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE Ex Time

Regression
LR 0.8731 0.7437 0.5725 0.8885 0.6647 0.5194 0.8749 0.7362 0.5672 4.5

LASSO 0.8731 0.7438 0.5725 0.8883 0.6650 0.5189 0.8749 0.7362 0.5671 5.8

ElasticNet 0.8730 0.7440 0.5723 0.8876 0.6672 0.5189 0.8748 0.7367 0.5670 5.7

Ridge 0.8729 0.7443 0.5724 0.8871 0.6686 0.5194 0.8746 0.7371 0.5671 4.7

SGDR 0.8464 0.8182 0.6223 0.8373 0.8028 0.6152 0.8461 0.8167 0.6216 4.6

Machine Learning
ADA 1.0000 0.0129 0.0031 0.8891 0.6627 0.4150 0.9898 0.2101 0.0443 267.4

DT 1.0000 0.0000 0.0000 0.8060 0.8766 0.6111 0.9822 0.2774 0.0612 4.7

KNN 1.0000 0.0000 0.0000 0.8711 0.7144 0.4527 0.9882 0.2261 0.0453 4.6

MLP 0.9844 0.2606 0.1868 0.9329 0.5153 0.4002 0.9798 0.2962 0.2082 65.1

RF 0.9833 0.2694 0.1955 0.8984 0.6343 0.3890 0.9756 0.3250 0.2149 207.3

SVR 0.9636 0.3984 0.2153 0.9310 0.5226 0.4057 0.9607 0.4125 0.2343 6.5

XGB 0.9979 0.0953 0.0739 0.9114 0.5924 0.3710 0.9900 0.2081 0.1037 65.7

Notes: (1) RMSE and MAE are expressed in terms of the measured weekly NEE range for the site: -7.21799 to 2.99522 gC m-2 d-1. (2) 
Execution times (Ex Time) are expressed in seconds and include full 10-fold cross validation analysis.
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The MLP model results for Case X show little evidence of 
overfitting for sites US-MMS (Table 7), US-MOz (Table 8) 
and MX-Tes (Table 10) for which the MLP model rivals 
the SVR model in terms of the NEE prediction accuracy 
it achieves. On the other hand, for site CA-Cbo (Table 9) 
the MLP model results show signs of overfitting, and it 
generates the poorest NEE prediction accuracy for the val-
idation subset of Case X. 

The Case X results (Tables 7 to 10) confirm the find-
ings of the K-fold cross-validation analysis that the SVR 
and MLP models (except for site CA-Cbo in the case of 
the MLP model) generate better NEE prediction accuracy 
than the other MLR and ML models assessed for the four 
DBF woodland site datasets. The SVR models also rival 
the regression models in terms of their fast execution 
times, making it an accurate, fast and dependable model 
to apply to each of the weekly datasets considered.

4.5 Relative Influences of Recorded Variables on 
NEE Predictions

Insight into the relative influence of the measured en-
vironmental variables available for each woodland site 
can be obtained by comparing the regression coefficients 
of the MLR model solutions [34,35], the support vector co-
efficients of the SVR model solutions and the Gini coef-
ficients of the DT and ensemble model (ADA, RF, XGB) 
solutions. Bar-chart analysis is presented in Figure 8 to 

compare variable influences on the 10-fold cross-valida-
tion solutions for sites US-MMS and US-MOz. Figures 
8A and 8C display the variable influence comparisons 
based on regression coefficients for those sites. It is appar-
ent that the poorer performing SGDR model assigns dis-
tinctive significance to the influencing variables compared 
to the other four regression models. Considering the LR, 
LASSO, ElasticNet and Ridge model results, in descend-
ing order of significance, those model solutions indicate 
that the most important influences for those sites are:

• US-MMS: H, SWINF, LE, LWINF, TA, VPDF, GF, 
PF, WSF, SWOUT and LWOUT

• US-MOz: SWOUT, PPFDIN, SWINF, TA, H, 
LWINF, VPDF, LWOUT, TS

On the other hand, the regression models make the 
least use of the following variables for the solutions they 
generate for those sites:

• US-MMS: PAF, USTAR and PPF
• US-MOz: PAF, WSF, PF, USTAR, NETRAD and CO2

Figures 8B and 8D show quite distinctive variable im-
portance assigned to these two sites by the ML models. 
The tree and ensemble models all assign overriding sig-
nificance to LE (> 50% weight) and low significance to 
the other variables. In the case of the XGB model, it also 
assigns minor importance to TS for site US-MMS and 
SWINP for site US-MOz which helps it to provide more 
accurate NEE predictions for those sites than the other tree 
and ensemble models. 

Table 9. Case X (one example of the thirty 10-fold cross-validation cases evaluated) results for training/validation/full 
dataset NEE prediction performances for MLR/ML models applied to woodland site CA-Cbo. The best performing SVR 

solution is shown in bold.

NEE Forecasting Performance for Training and Validation Analysis Applied to the Full Dataset for Site CA-Cbo
Case X Training Subset Case X Validation Subset Case X Full Dataset

Model R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE Ex Time

Regression
LR 0.2411 1.7762 1.2446 0.2516 1.7760 1.1212 0.2429 1.7762 1.2322 5.0

LASSO 0.2086 1.8139 1.2375 0.2103 1.8244 1.1173 0.2096 1.8149 1.2255 4.5

ElasticNet 0.2410 1.7763 1.2436 0.2490 1.7791 1.1222 0.2426 1.7766 1.2315 5.3

Ridge 0.2360 1.7822 1.2403 0.2307 1.8006 1.1261 0.2362 1.7840 1.2289 4.4

SGDR 0.1936 1.8309 1.2827 0.1898 1.8479 1.1761 0.1941 1.8326 1.2721 6.0

Machine Learning
ADA 0.9993 0.0541 0.0150 0.3857 1.6090 0.9565 0.9372 0.5117 0.1093 267.0

DT 1.0000 0.0000 0.0000 0.1977 1.8389 1.1375 0.9187 0.5819 0.1139 5.1

KNN 1.0000 0.0000 0.0000 0.2721 1.7515 1.0513 0.9263 0.5543 0.1053 4.5

MLP 0.9383 0.5065 0.3577 0.1554 1.8867 1.1520 0.8591 0.7663 0.4372 29.7

RF 0.8916 0.6713 0.4342 0.3407 1.6669 0.9855 0.8359 0.8269 0.4894 56.4

SVR 0.4497 1.5126 0.8911 0.4370 1.5405 0.9280 0.4489 1.5154 0.8948 5.4

XGB 0.9880 0.2231 0.1693 0.3517 1.6530 1.0192 0.9236 0.5643 0.2545 43.6

Notes: (1) RMSE and MAE are expressed in terms of the measured weekly NEE range for the site: -6.05399 to 10.1207 gC m-2 d-1. (2) 
Execution times (Ex Time) are expressed in seconds and include full 10-fold cross validation analysis.
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The best performing SVR model assigns relative 
importance to the influencing variables that bear closer 
relationships to those of the MLR models than the tree/
ensemble models. In descending order of significance, the 
SVR solutions indicate that the most important influences 
for those sites are:

• US-MMS: LE, H, SWINF, SWOUT, LWINF, TA, 
VPDF and PF

• US-MOz: SWOUT, TA, SWINF, LWINF, VPDF, 
LWOUT, PPFDIN, PPFDOUT, H and LWOUT

For the CA-Cbo dataset, the MLR models (Figure 9A) 
assign the most importance (in descending order) to vari-
ables SWOUT, PPFDOUT, WSF, LE, H and TA, and the 
least significance (in ascending order) to PAF, PF, SWC 
and SWINP for the 10-fold cross-validation solutions. The 
LASSO model assigns zero weights to variables SWINF, 
LWINF, PDF, PF, NetRad and PPFDIN, allowing it to as-
sign more weight to preferred variables SWOUT, PPFD-
OUT, LE and TS than the other regression variables. That 
distinction enables the LASSO model to provide slightly 
better NEE predictions for CA-Cbo than the other MLR 
models.

The tree and ensemble ML models assign the most 
weight to variables LE, SWOUT, TS, WSF and SWC for 
CA-Cbo 10-fold cross-validation solutions (Figure 9B). 
Those models assign low but relatively similar levels of 
importance to the other variables for those solutions. In 

contrast, the better performing SVR model assigns sub-
stantially higher weights to variables SWOUT, PPFD-
OUT, TA and LWINF than the other ML models for its 
CA-Cbo solution (Figure 9B).

For the MX-Tes dataset, the MLR models (Figure 
9C) assign the most importance (in descending order) to 
variables WSF, SWINP, SWINF, H, VPDF and SWOUT, 
and the least significance (in ascending order) to USTAR, 
LWOUT and CO2 (except for the SGDR model) for the 
10-fold cross-validation solutions. The SGDR model for 
this site achieves more accurate regression solutions than 
the other MLR models by assigning more weight to WSF, 
SWINP and CO2 and less weight to H and LE.

The tree-ensemble 10-fold model solutions applied to 
the MX-Tes dataset assign higher weights to variables 
SWCF, USTAR and WSF and relatively even weights to 
the remaining variables (Figure 9D). In contrast, the better 
performing SVR model assigns more weight (in descend-
ing order) to PF, VPDF, TA, H, SWINP, SWOUT and PAF 
and less weight (in ascending order) to USTAR, SWINF 
and GF than the other ML models. 

This analysis indicates, as should be expected due to 
their distinct locations and ecosystems, that different sets 
of the recorded variables are exerting the most influence 
at each site. Such information provides useful insight to 
assist in better understanding the ecosystem dynamics of 
specific sites.

Table 10. Case X (one example of the thirty 10-fold cross-validation cases evaluated) results for training/validation/full 
dataset NEE prediction performances for MLR/ML models applied to woodland site MX-Tes. The best performing MLP 

solution is shown in bold.

NEE Forecasting Performance for Training and Validation Analysis Applied to the Full Dataset for Site MX-Tes

Case X Training Subset Case X Validation Subset Case X Full Dataset

Model R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE Ex Time

Regression

LR 0.2796 0.1990 0.1147 0.0713 0.1457 0.0928 0.2732 0.1942 0.1124 4.4

LASSO 0.2662 0.2009 0.1101 0.1613 0.1384 0.0824 0.2662 0.1953 0.1072 4.5

ElasticNet 0.2795 0.1990 0.1146 0.0739 0.1455 0.0925 0.2733 0.1942 0.1123 4.4

Ridge 0.2793 0.1991 0.1141 0.0859 0.1445 0.0915 0.2737 0.1941 0.1118 4.4

SGDR 0.2008 0.2096 0.1121 0.0189 0.1497 0.0965 0.1961 0.2042 0.1105 4.3

Machine Learning

ADA 1.0000 0.0008 0.0001 0.2181 0.1337 0.0788 0.9655 0.0430 0.0082 25.4

DT 1.0000 0.0001 0.0000 0.0538 0.2166 0.1392 0.9064 0.0697 0.0144 4.5

KNN 1.0000 0.0000 0.0000 0.1193 0.1419 0.0769 0.9599 0.0456 0.0080 4.5

MLP 0.2377 0.2047 0.1090 0.2570 0.1303 0.0782 0.2477 0.1983 0.1058 40.9

RF 0.8796 0.0814 0.0450 0.1567 0.1388 0.0805 0.8472 0.0890 0.0487 46.7

SVR 0.2980 0.1965 0.0940 0.1601 0.1385 0.0792 0.2948 0.1913 0.0925 4.4

XGB 0.9979 0.0108 0.0083 0.0858 0.1445 0.0807 0.9563 0.0476 0.0158 12.8

Notes: (1) RMSE and MAE are expressed in terms of the measured  weekly NEE range for the site: -1.82451 to 0.422752 gC m-2 d-1. (2) 
Execution times (Ex Time) are expressed in seconds and include full 10-fold cross validation.
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Figure 8. The influences of measured environmental variables on the 10-Fold cross-validation NEE-prediction solutions of MLR and ML models for woodland sites: (A) 
US-MMS MLR models; (B) US-MMS ML models; (C) US-MOz MLR models; and, (D) US-MOz ML models.
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Figure 9. The influences of measured environmental variables on the 10-Fold cross-validation NEE-prediction solutions of MLR and ML models for woodland sites: (A) 
CA-Cbo MLR models; (B) CA-Cbo ML models; (C) MX-Tes MLR models; and, (D) MX-Tes ML models.
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5. Discussion

5.1 Implications of Modelled NEE Patterns for 
Deciduous Woodland Ecosystems

The results presented identify distinctive NEE patterns 
and influences at the four DBF sites evaluated in terms of 
their weekly-averaged FLUXNET2015 datasets. Sites US-
MMS and US-MOz display more systematic variations 
(Figure 3A) in their seasonal patterns that are easier to fit 
and explain in terms of the recorded environmental varia-
bles than sites CA-Cbo (Figure 3B) and MX-Tes. 

Sites US-MMS and US-MOz (Figure 3A) display dis-
tinctive spring NEE peaks in April of each year, descend-
ing rapidly into a summer NEE trough (in July at US-
MMS and May/June at US-MOz). The NEE pattern then 
rises to an October/November peak followed by a shallow 
winter trough at those two sites. These NEE patterns are 
consistent with leaf-on and leaf-off periods and seasonal 
weather fluctuations reflected in the environmental-vari-
able recordings at those sites. MLR and ML models have 
little difficulty in fitting the NEE weekly patterns at those 
two sites with the environmental variables available.

At sites CA-Cbo (Figure 3B) and MX-Tes the weekly 
NEE patterns are seasonally more complex and variables 
but within narrower NEE annual ranges. A spring peak 
occurs in May each year at CA-Cbo, developing into a 
summer NEE trough (June/July), followed by an autumn 
peak (September/October) and winter trough (January/
February). During that leaf-on summer season, several 
short-lived alternations between NEE peaks (+4 to +10) 
and troughs (–4 to –5) occur. The MLR and ML models 
struggle to accurately fit those summer peaks and troughs 
(Figures 6A and 6B). The short-term, summer NEE fluctu-
ations cannot be explained by the environmental variables 
considered for this site, and are likely to be a consequence 
of biological processes. 

At the MX-Tes site, NEE declines slowly across the 
winter reaching a low in April each year. During the leaf-
on season, NEE oscillates displaying peaks (+0.25) and 
troughs (–1) during the wet season (late June to early Sep-
tember), and subsequently rises to an autumn high, which 
may occur at any time between late September and early 
December. From that high across the early winter the 
NEE pattern falls erratically following a more regular and 
gentle downward pattern from January/February to April 
each year. The peak-trough oscillations at MX-Tes do 
not correspond to changes in the environmental variables 
considered, making the fits of the MLR and ML model 
inaccurate (Figures 6C and 6D). At this site, data analysis 
indicates that the summer and autumn NEE variations are 
not responses to short-term fluctuations in the recorded 

environmental variables.
Further studies of the biological processes at work in 

the canopy, understory and topsoil during the leaf-on sea-
son are required at sites CA-Cbo and MX-Tes in attempts 
to explain the NEE oscillations at those sites. Possible 
processes to consider include microbial/fungal/insect 
cycles, and potential lag times in those cycles related to 
prior season environmental conditions or fluctuations in 
ground-water levels and/or soil temperatures. Additional 
soil temperature (TS) and soil water content data have 
been recorded at CA-Cbo. The variables TS and SWC, 
used by the NEE prediction models are for the shallow-
est soil depths. However, six TS (TS1 to TS6 deepest) 
and SWC (SWC1 to SWC6 deepest) values have been 
recorded at different soil depths. MLR and ML analysis 
was repeated to include four ratios of the TS and SWC re-
cordings at different depths (TS1/TS6, TS1/TS2, SWC1/
SWC6, and SWC1/SWC2). 

The MLR and ML models for CA-Cbo were re-run 
with a 24-variable dataset including the four additional TS 
and SWC ratios. The results revealed very slight improve-
ments in the NEE predictions: the Ridge 10-fold cross-val-
idation model MAE decreased from 1.2576 gCm–2d–1 to 
1.2530 gCm–2d–1 for the 20-variable and 24-variable mod-
els, respectively; the SVR 10-fold cross-validation model 
MAE decreased from 1.1029 gCm–2d–1 to 1.0843 gCm–2d–1 
for the 20-variable and 24-variable models, respective-
ly. However, for the SVR and Ridge 24-variable models 
the predicted versus recorded NEE relationship remains 
skewed from the Y = X pattern to similar degrees to that 
of the 20-variable models. These results imply that short-
term fluctuations in SWC and TS cannot explain the NEE 
summer season peak-trough oscillations observed at the 
site.

SWC is a highly influential variable at the MX-Tes site 
(Figure 9D), however, SWC and TS measurements were 
not taken at multiple depths, so it is not possible to deter-
mine the role of groundwater level fluctuations in the NEE 
peak-trough oscillations at that site. Verduzco et al. (2015) 
identified a threshold level of about 350-400 mm of wet 
season precipitation that caused this site to switch from a 
net carbon source to a net carbon sink. That threshold was 
only exceeded in about half of the years assessed. Meas-
uring SWC and TS at different soil depths would probably 
help to establish prior-season influences at the MX-Tes 
site. 

5.2 Economic and Climate Change Implications 
of NEE Models

Reliable NEE prediction models based on a broad set 
of continuously recorded environmental variables for spe-
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cific ecological sites are necessary to provide an under-
standing of the carbon flux driving mechanisms and how 
they vary seasonally at that site. Seasonal patterns in the 
weekly recorded NEE data understood in terms of fluc-
tuating environmental and biological conditions through 
ML prediction models, will help to establish the capabil-
ities of specific sites to act as reliable carbon sinks over 
time. Such information also helps in the understanding 
of how climate change, unusual natural events, and other 
anthropogenic activities will likely influence a site’s NEE 
weekly pattern. Reliable and credible multi-year NEE 
prediction models are also necessary, and require regular 
auditing, to justify whether a particular site is entitled 
to receive carbon credit payments (i.e., it is a verifiable 
carbon sink with cumulative NEE values across the sea-
sons < 0. There are inaccuracies in net-carbon account 
balances reported for some forest sites, which can result 
in substantial over-payments under existing commercial 
forest carbon protocol (CFCP) offsets [89]. One issue is that 
some sites fail to accurately record soil efflux of carbon 
and ecosystem respiration. Transparent ML models that 
use a set of recorded variables that can accurately predict 
a site’s weekly NEE seasonal patterns would increase con-
fidence in the carbon fluxes reported by the site.

The methodology proposed and applied in this study 
using weekly NEE seasonal data patterns can be used to 
rapidly establish whether a site is able or not to explain its 
seasonal NEE fluctuations in terms of the environmental 
variables it records. The methodology can help to identify 
sites requiring recordings of additional variables in order 
to better predict their long-term NEE patterns, and how 
those patterns might change as the sites are subjected to 
specific changes in environmental conditions. 

6. Conclusions

Weekly net ecosystem exchange (NEE) patterns, 
combined with large suites of environmental variables, 
recorded as FLUXNET2015 (AmeriFlux) datasets over 
multiple years for four deciduous broadleaf forest (DBF) 
sites located in Canada, Mexico, and the United States can 
be assessed to characterize the varied influences on DBF 
sites that impact their potential as long-term carbon sinks. 
A proposed methodology that integrates considerations, 
correlations, multi-linear regression (MLR), machine 
learning (ML), and pattern analysis provides valuable 
insight into long-term variable relationships with NEE at 
DBF sites. Specifically, that methodology can distinguish 
sites for which long-term NEE patterns can be readily ex-
plained and predicted in terms of the onsite environmental 
variables currently recorded, from those that cannot.

Correlation-coefficients analysis distinguishes pre-

dominantly parametric from non-parametric relationships 
between environmental variables and NEE distributions. 
MLR models exploit the linear-variable relationships 
in the datasets, whereas the ML models exploit more 
complex non-linear-variable relationships to provide bet-
ter predictions of the long-term, weekly, NEE patterns. 
Multi-fold cross-validation analysis, with repeated runs, 
determines the reproducibility of MLR and ML models, 
making it easier to avoid or minimize the overfitting ten-
dencies of some ML models. 10-fold and 15-fold analyses 
with multiple runs provide the most dependable NEE pre-
diction models for the site datasets assessed. From twelve 
MLR+ML models evaluated the support vector regression 
(SVR) model consistently generates the lowest prediction 
errors for the weekly data for each of the four DBF sites 
considered.

Models for two DBF sites (US-MMS and US-MOz) ac-
curately predict their long-term, weekly NEE patterns by 
exploiting 18 and 20 of the recorded environmental varia-
bles available, respectively. Importantly, the SVR models 
for those sites deliver predicted (Y) versus recorded (X) 
NEE patterns that closely follow Y=X relationships. In 
contrast, the available datasets from two other DBF sites 
(CA-Cbo and MX-Tes) fail to adequately predict their 
long-term, weekly NEE patterns by exploiting up to 24 
and 16 of the recorded environmental variables available, 
respectively. Significantly, the SVR models for those two 
sites deliver predicted versus recorded NEE patterns that 
deviate substantially from Y=X relationships.

Analysis of the relative influence of each recorded 
environmental variable on the prediction solutions of 
certain MLR and ML models to reproduce the measured 
multi-year NEE patterns, reveals that different sets of 
variables exert the most influence at each of the sites stud-
ied. Such information is useful in focusing attention on the 
likely impacts of climate change on each site’s potential 
as a carbon sink. Detailed NEE pattern analysis for sites 
CA-Cbo and MX-Tes reveals rapid oscillations between 
high and low NEE values across specific seasonal periods 
including the leaf-on seasons at both sites. Large week-
to-week swings in NEE cannot be explained or accurately 
modelled in terms of the recorded environmental variable 
variations. Such swings suggest that other biological cycles 
are at play at those sites, possibly in the soil and forest un-
derstory that require further investigation to identify their 
drivers. Such work should establish additional variables to 
record at those sites that would make it possible to establish 
more accurate and dependable NEE-prediction models for 
those sites. Such models are essential to quantify and justify 
the future potential of such sites as reliable carbon sinks as 
environmental conditions change over time.
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Appendix A. Error Metrics Used to Assess MLR and ML models 
The statistical metrics used in this study to determine correlation coefficients and quantify prediction errors are de-

fined in Figure A.

Figure A. Definitions of prediction error measures applied.

https://scikit-optimize.github.io/stable/modules/generated/skopt.BayesSearchCV.html
https://scikit-optimize.github.io/stable/modules/generated/skopt.BayesSearchCV.html
https://scikit-optimize.github.io/stable/modules/generated/skopt.BayesSearchCV.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://doi.org/10.2307/2532051
https://journals.sagepub.com/doi/pdf/10.1177/172460080201700213
https://journals.sagepub.com/doi/pdf/10.1177/172460080201700213
https://doi.org/10.1002/0471667196.ess5050
https://doi.org/10.1016/j.tfp.2021.100171

