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ABSTRACT
The relationship between habitat and behaviour provides important information for species management. For 

large, free roaming, marine animals satellite tags provide high resolution information on movement, but such datasets 
are restricted due to cost. Extracting additional biologically important information from these data would increase 
utilisation and value. Several modelling approaches have been developed to identify behavioural states in tracking 
data. The objective of this study was to evaluate a behavioural state prediction model for blue shark (Prionace glauca) 
ARGOS surface location-only data. The novel nature of the six SPLASH satellite tags used enabled behavioural events 
to be identified in blue shark dive data and accurately mapped spatio-temporally along respective surface location-
only tracks. Behavioural states modelled along the six surface location-only tracks were then tested against observed 
behavioural events to evaluate the model’s accuracy. Results showed that the Behavioural Change Point Analysis 
(BCPA) model augmented with K means clustering analysis performed well for predicting foraging behaviour 
(correct 86% of the time). Prediction accuracy was lower for searching (52%) and travelling (63%) behaviour, likely 
related to the numerical dominance of foraging events in dive data. The model’s validation for predicting foraging 
behaviour justified its application to nine additional surface location-only (SPOT tag) tracks, substantially increasing 
the utilisation of expensive and rare data. Results enabled the critical behavioural state of foraging, to be mapped 
throughout the entire home range of blue sharks, allowing drivers of critical habitat to be investigated. This validation 
strengthens the use of such modelling to interpret historic and future datasets, for blue sharks but also other species, 
contributing to conservational management. 
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1. Introduction
Satellite tracking allows behavioural studies of 

large, free roaming marine animals, where migration 
trips are long, out of observational reach and dynam-
ic in three dimensions [1,2]. In addition to providing 
movement tracks, this technology has the potential 
to address questions as to what drives the observed 
movements, and thereby contribute important in-
formation to biological, political and conservation 
issues [3-5]. While satellite tag technology has evolved 
from initial location only tracks, to recording and 
transmitting dive profiles and environmental infor-
mation, the expense of satellite tags acts as a major 
limiting factor on the number of individuals sampled. 
Satellite tag sample sizes are six to seven orders 
of magnitude less than samples from the bycatch 
data predominantly used for conventional fisheries 
management policies. Bycatch data is however 
acknowledged to contain flaws through misreporting, 
low observer coverage and spatio-temporal biases [6,7]. 
Combining bycatch data with satellite tagging data 
can provide ‘big data’ type approaches, potentially 
providing a step change for the management of 
highly migratory marine species [3-5,8-10]. While a 
persistent restricting factor of expense may not 
alleviate small sample sizes in satellite tagging 
studies, validation of data processing methodologies 
that enable better utilisation of such data sets, 
would strengthen their application within ‘big data’ 
studies and help their contribution to conservational 
management [11].

The Blue shark (Prionace glauca) is the most 
abundant and widely distributed pelagic shark 
species [12]. It is the most exploited by-catch in tuna  
longline fisheries and has a high prevalence in the fin 
trade [13-15] resulting in observed population declines [16-22]. 
Effective management of blue sharks requires a glob-
al approach defining spatio-temporal patterns in be-
havior and habitat use [10,23]. Satellite tagging studies 
provide such data, however only approximately 548 
individual blue sharks have ever been tagged [21,24-44]. 
While this sample size is sourced from throughout 
the species global range, and appears numerically 
large, in context to data required for conservational 

management, additional insight would be beneficial. 
The restricted sample size of satellite tagging data 
for this, and other species, highlights the need to 
develop methodologies to garner additional informa-
tion where possible from these data sets. 

Behavioural modelling provides a methodology 
to extend the interpretation of two-dimensional 
movement data. It utilizes the understanding that 
animals will change their movement patterns in 
relation to habitat, prey density or other internal 
or external stimuli [45], which can be detected by 
characterising the distributions of the movement 
parameters. Foraging behaviour is of common 
interest as it represents an important habitat, however,  
it is rarely possible to observe it directly for marine 
pelagic animals. Behaviour theory suggests that an 
animal should maximize its time in productive areas [46],  
meaning variation in an individual’s movement 
pattern can be interpreted as the switching between 
different underlying behavioural states [47]. In the 
marine environment, food resources for pelagic species 
are highly aggregated and patchy [48]. Studies show 
that a series of slow, persistent and directionally 
variable movements (high turning angle and 
frequency) in one area, can be interpreted as the 
visible consequence of intensive foraging whereas 
the opposite indicates directed movement, such 
as migration [49,50]. Movements that appear as in-
between in these states may represent searching [51]. 
These differences in movement behaviour can enable 
foraging, searching and transitioning behaviours to 
be inferred from a two-dimensional time series of 
positions.

Various modelling methodologies have been 
developed to identify behaviours from the geometry 
of movement paths (for example, first-passage time 
methods [52], Levy flight analysis [53], and state-space 
models [45,54,55]). Each methodology has strengths 
and weaknesses, and some are likely more accurate 
in predicting behavioural states for certain species 
based on their movement trajectories. More model 
validation is required, where the predictive ability of 
a model is evaluated using true/observed behavioural 
states [56-58]. Validation of a particular model’s use, 
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for a particular species, would justify the application 
of that model to further, similar datasets, increasing 
information from tracking data for conservational 
management. 

The purpose of this paper was to exploit the 
novel use of SPLASH tags (www.wildlifecomputers.
com) on blue sharks, which uniquely provide 
spatiotemporally accurate ARGOS dive data 
and location data, to evaluate a behavioural state 
prediction model. Validation would justify the 
prediction model’s application to additional location 
only data sets from Smart Position or Temperature 
Tags (SPOT tags; www.wildlifecomputers.com), 
which make up 40% of blue shark satellite tag data 
globally [43]. Such data provide no insight relative to 
sub-surface behaviour, unlike the other 60% of data 
which come largely from Pop-up Satellite Archival 
Tags (PSAT tags), but are limited to low accuracy 
location information. Validated application of a 
behavioural prediction model would not only expand 
data utilisation in this study but also justify it in other 
studies where such data are potentially underutilised. 
Having confidence in predicting behaviour through 
space and time, allows the identification of environ-
mental parameters associated with such behaviours, 
helping define critical habitat. 

2. Methods 

2.1 Tagged blue sharks (Prionace glauca) and 
data processing

As described in detail by Elliott et al. [43] between 
2012 and 2015, nine SPOT tags (model 196) and 
six SPLASH tags (model 289 and 316) (www.
wildlifecomputers.com) were attached to the dorsal 
fins of 15 blue sharks in New Zealand. Two mature 
females, two mature males, one juvenile male (< 
190 cm in fork length) and one juvenile female (< 
180 cm in fork length) were SPLASH tagged. Seven 
mature males, one mature female, and one juvenile 
male were SPOT tagged. SPOT and SPLASH tags 
both provide ocean surface ARGOS locations of 
sharks (location only data) while SPLASH tags also 
provide dive data (depth and temperature), both of 

which are transmitted opportunistically, every time 
the shark’s dorsal fin (and thus the tag) breaks the 
water’s surface. Data were processed and filtered 
as described in Elliott et al. [43] resulting in two 
forms of data output: time-stamped surface location 
only tracks of blue sharks and subsurface dive data 
associated with SPLASH tag tracks. 

Elliott et al. [43] identified five common dive 
patterns which were used to infer blue shark 
behavioural states from SPLASH tagged blue 
sharks. U, VU and UV dives are inferred to represent 
foraging. V and W dives are to represent searching, 
and ZZ or no diving is to represent travelling. 
Dive data from SPLASH tags are time-stamped, 
indicating the actual occurrence time of a dive shape 
and thus the inferred behavioural event, even though 
such data is transmitted at a later surface time and 
location. To identify approximate locations of dive 
events, the time of occurrence was tracked back 
along the surface location track (as the crow flies), 
based on the average swim speed of that shark and 
available locations of the same or similar time, thus 
interpolating the location of inferred dive events as 
best possible. No behavioural/dive event greater than 
24 hours from a surface location was retained in this 
interpolation process. Interpolated events were used 
as ‘known’ behavioural events, to test the validity 
of the model’s predicted behaviour states from the 
surface location-only aspect of SPLASH tag tracks. 

2.2 Modelling of surface location only data 
from SPLASH tags

A behavioural change point analysis (BCPA) and 
K-means clustering as described by Zhang et al. [59] 
were used. This approach extends the state-space 
BCPA model developed by Gurarie et al. [54,60]—a 
likelihood-based means of detecting latent structural 
changes in parameters (e.g. intra-fix speed and 
relative turning angles (RTA)) underlying locational 
time-series data. K-means clustering is a common 
statistical approach to group similar observations or 
events. 

Filtered Argos locations (as per Elliott et al. [43]) 
longitude and latitude, were converted into a plain 

http://www.wildlifecomputers.com
http://www.wildlifecomputers.com
http://www.wildlifecomputers.com
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project system (New Zealand Transvers Mercator 
2000) in ArcMap 10.2 [61]. The intra-fix speed and 
relative turning angles were then calculated and used 
as inputs for the BCPA model. Behavioural bouts 
were characterized by BCPA based on the changes 
in the temporal autocorrelation structures in data 
and means of speed and RTA were calculated for 
each individual bout. The number of behavioural 
states was determined using maximum likelihood 
estimation. The bout means were then grouped by 
K-means clustering analysis, and a multi-exclusive 
behavioural state was assigned to each individual 
bout. All locations within the bout, were assigned 
with the same behavioural state.

2.3 Validating the model—modelled surface 
location behavioural states contrasted with 
‘known’ dive events

To evaluate the BCPA modelled behavioural 
states for SPLASH tag surface location tracks, a 
simple question was asked in comparison to the 
‘known’ and interpolated behavioural events from 
SPLASH tag dive data. When a ‘known’ dive 
behaviour event from SPLASH tag data is present, 
in the same location/time (within 3 hours) as a BCPA 
modelled state, does the modelled state match the 
‘known’ event? The number of correct modelled 
‘known’ matches for each behaviour, was divided 
by total matches along a track, thus quantifying 
the BCPA model’s ability to predict blue shark 
behaviour, based solely on surface location tracks. 

2.4 Model application to additional location-on-
ly SPOT tag tracks and association of environ-
mental variables with blue shark behaviour

Movement data from nine additional, surface 
location-only blue shark satellite tag tracks (SPOT 
tags), were processed through the BCPA model, in 
the same fashion as that of SPLASH tag surface 
location-only data. To understand how environmental 
variables may be associated with behavioural states, 
modelled behavioural states from SPOT tag data 
were mapped along with modelled states from 

SPLASH tag surface location-only data, as well as 
inferred behaviour events from SPLASH tag dive 
data. 

A generalized linear model (GLM) was run in R [62]  
using the package ‘stats’ to test the influence of 
independent predictor variables, on the behavioural 
state response of blue sharks. Behavioural states 
have been categorised into travelling, searching 
and foraging. Using spatiotemporal information 
relative to each behavioural state location, satellite 
derived environmental variables of ocean depth, 
weekly mean sea surface temperature (SST), weekly 
mean chlorophyll A (9km daily resolution NASA 
L4 MODIS), ocean current magnitude (25 km 
daily resolution AVISCO), and distance from shore 
were obtained through the STAT program (www.
seaturtle.org), and two shark-related variables (shark 
swim speed and shark ID), collectively formed 
the predictors that were put through 13 different 
GLM models. Models were run for three binomial 
comparisons of behavioural state responses (forage 
vs travel, forage vs search, search vs travel), 
comprising different combinations of predictor 
variables, including those where correlated variables 
were excluded and/or certain data series were 
transformed (log). Akaike Information Criterion 
(AIC) values were compared between the 13 models 
and the model with the lowest AIC was selected as 
the final model. The output from this model was 
used to determine the impact predictor variables 
had on response variables, so that the potential 
association of habitat type to behavioural state, could 
be investigated. Raw datasets of predictor variables 
associated with behavioural states were analysed 
manually, to determine means and if statistically 
significant differences were present via F and T-tests. 
This provided greater insight as to potential habitat 
types associated with blue shark behavioural states. 

3. Results

3.1 Tagged blue sharks (Prionace glauca) and 
data received

Fifteen blue sharks were satellite tagged, 9 with 

http://www.seaturtle.org
http://www.seaturtle.org
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SPOT tags and 6 with SPLASH tags. SPOT tags 
transmitted data for periods between 66 and 505 d 
(mean ± SD = 250 ± 144 d) and SPLASH tags be-
tween 200 and 343 d (255 ± 63 d), spanning latitudes 
of 0.1° and 43.1° S and between longitudes of 160.1° 
E and 150.8° W. Also, SPLASH tags transmitted 
3923 hours of dive data, used to infer 373 foraging, 
94 searching and 83 travelling events (Table 1), each 
of which were interpolated along reciprocal surface 
location tracks from SPLASH tags (Figure 1 inset 
illustrates a sample of data (see Elliott et al. [43] for an 
in-depth summary)). 

Table 1. Behaviour events were identified throughout each shark 

track from SPLASH tag dive data.

Shark id
(Maturity/
sex)

Track 
duration 
(d)

# 
Foraging 
events

# 
Searching 
events

# 
Travelling 
events

16 (mM)  267    99   31    7
17 (mF)  206    47    7   22

68 (jF)  200    40   21   27

69 (jM)  200    27    1   12

70 (mM)  315    48   11    7

71 (mF)  343   112   23    8

Total 1531   373   94   83

 

Figure 1. Satellite location-only tracks of 6 SPLASH tags that were later modelled using BCPA method to predict behavioural 
states of sharks using turning angle and speed. Blue X indicates release location of all sharks. Inset map is an expansion of part of 
SPLASH tag 71’s location-only track, showing results once the prediction model and ‘known’ behavioural events from dive data were 
overlapped. ‘Known’ behavioural events from dive data (large circles) overlaid on BCPA predicted behavioural states (small circles) 
to validate model performance. Green = Foraging, Yellow = Search, Blue = Travel. The letter ‘A’ indicates three examples of matches 
based on colour codes of behaviours; ‘B’ indicates an example of a non-match.



18

Research in Ecology | Volume 05 | Issue 04 | December 2023

3.2 Modelling of behavioural states in surface 
location-only data from SPLASH tags

Surface location-only information from all six 
SPLASH tag tracks was successfully processed 
through the BCPA K-means model from Zhang  
et al. [59]. Filtering the data before input removed on 
average 20% (range 10-26%) of original, raw Argos 
locations. Most deleted locations were duplicate 
locations with zero time or distance difference, 
therefore little information was removed from data 
sets. The BCPA model output for all six location 
tracks showed three alternating behavioural states 
throughout each track’s duration. Consistent with 
behaviour modelling theory and supporting literature, 
specific animal behaviours were associated with each 
state defined by relative turning angle (RTA) and 
speed. 

State 1 was characterised by fast (mean speed = 
3.33 ms–1, σ’ = 1.89 ms–1) and comparatively straight 
(mean RTA = 57°, σ’ = 6.34°) movement trajectories, 
suggestive of ‘persistent travelling’ or ‘transit’ 
behaviour. 

State 2 was defined by slow swimming speeds 
(mean speed = 0.74 ms–1, σ’ = 0.14 ms–1) and 
moderately low variation in direction (mean RTA = 
48°, σ’ = 6.94°). Searching behaviour was the label 
given to what could also be commonly labelled 

‘unknown’ or ‘in-between’ state of transit and 
foraging. 

State 3 was classified by similarly slow swimming 
speed (mean speed = 0.76 ms–1, σ’ = 0.17 ms–1) but 
highly tortuous (mean RTA = 105°, σ’ = 18.94°) 
movements. In this state, shark locations were 
highly localized and restricted in area; represented 
commonly in the literature as foraging (Table 2).

Individual sharks mean RTA and speed values 
support the prediction of three distinct behavioural 
states. However, shark 68 had a travelling state 
that was far slower than other sharks. The common 
mean values across all six sharks (except the 
aforementioned difference) gave confidence in 
labelling modelled behaviour states 1, 2 and 3 
respectively, as Travelling (blue), Searching (yellow) 
and Foraging (green) (plotted as small circles of 
respective colours in Figure 1 inset as an example).

The proportion of locations classified in each of 
the three behavioural states was relatively similar 
between four of the sharks: 16, 17, 69, 71 where 
state 1 (travelling) accounted for between 2-6% of 
all locations, state 2 (searching) between 65-76% 
and state 3 (foraging) between 19-28%. Sharks 68 
and 70 had far more locations representing travelling 
behaviour in comparison to foraging, and searching, 
respectively (Table 2). 

Table 2. Six SPLASH tag surface location-only tracks modelled by the BCPA methodology identified three behavioural states based 
on relative turning angle (RTA) and speed of inter-location legs.

Shark id
(Maturity/
sex)

Track 
duration 
(days)

#Locations
pre-filter

#Locations 
post-filter

%Locations
in travel 
(mean RTA/Speed)

% Locations
in search
(mean RTA/Speed)

% Locations
in forage 
(mean RTA/Speed)

16 (mM) 267 959 783 6 (55/2.60) 65 (43/0.64) 29 (98/0.58)

17 (mF) 206 823 633 5 (78/3.50) 73 (49/0.60) 22 (103/0.60)

68 (jF) 200 458 336 25 (39/0.90) 69 (58/0.65) 6 (142/0.69)

69 (jM) 200 370 277 2 (48/6.30) 70 (39/0.91) 28 (87/0.93)

70 (mM) 315 795 719 24 (74/2.20) 46 (53/0.76) 30 (98/0.80)

71 (mF) 343 929 773 5 (48/4.50) 76 (45/0.90) 19 (105/1.00)

Total 1531 4334 3513 Mean 11.2(57/3.33) 66.5(48/0.74) 22.3(105/0.76)
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3.3 Evaluating the model

Using the time stamp that accompanied ‘known’ 
dive events, the approximate location of each was 
plotted in ArcGIS along respective shark tracks 
(a subsample represented in Figure 1 inset, as big 
circles coloured the same as modelled behaviour 
states, being the small circles). The interpolated 
dive events lay over Argos locations or linear legs/
bouts between locations, both of which had BCPA 
modelled behaviour state colour coding (reciprocal to 
inferred behaviours from dive events). Simple colour 
comparison of a BCPA modelled state location, 
when a ‘known’ dive behaviour event was present, 
within three hours of a track location, enabled the 
predictive ability of the BCPA model to be tested (all 
comparisons represented in Figure 2). 

BCPA model predictions matched behavioural event 
states on average 86.2% of the time (σ’ = 13.37) for 

foraging, 52.6% (σ’ = 28.71) for searching and 63.3% 
(σ’ = 28.95) for travelling states (Table 3). The results 
indicate that the method performed well in predicting 
foraging behaviour and reasonably well for travelling. 
Searching behaviour was not as well predicted.

Table 3. Results from behaviour event overlay validation of 
BCPA model ability.

Shark id
(maturity/
sex)

% of BCPA
Foraging 
validated 
correct by 
events

% of BCPA
Searching 
validated 
correct by 
events

% of BCPA
Travelling 
validated 
correct by 
events

16 (mM) 92 59 50

17 (mF) 69 22 60

68 (jF) 100 67 93

69 (jM) 83 100 100

70 (mM) 100 34 55

71 (mF) 73 34 22

Mean 86.2 52.6 63.3

Figure 2. Satellite Time series plots of 6 SPLASH tagged blue sharks (#16, 17, 68, 69, 70, 71). For each shark, the grey row shows 
only BCPA modelled foraging behaviour locations that had ‘known’ dive behaviour event data present within three hours of a 
location. The black row shows all ‘known’ dive events for each shark, based on SPLASH tag dive data (green = foraging, yellow =  
searching, blue = travel). If a modelled BCPA foraging behaviour location had supporting evidence, being foraging dive event/s 
within three hours of the modelled behaviour location, the bar representing that BCPA location (in the grey row) is coloured green (for 
correct validation). If a foraging event was absent and a searching or travelling dive event was present, the modelled BCPA foraging 
behaviour bar was coloured red (for incorrect validation). A single bar width represents 3 hours, meaning multiple BCPA location 
validations may occur within one bar; the sample size of which is represented by numbers above validated BCPA behaviour bars, and 
which were used to calculate the validation percentage for each shark. Dates for each shark track are on the X-axis, and the shark ID 
number is on the Y-axis.
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3.4 Application of the validated model to addi-
tional, surface location-only SPOT tag tracks, 
to enable association of environmental variables 
with blue shark behaviour

BCPA processing of nine additional blue shark 
location-only tracks was justified due to the high 
validation percentage for foraging behaviour, 
and respectable predictability for searching and 
travelling. All nine tracks generated three categories 
of animal movement with similar turning angles and 
velocities to the foraging, searching and travelling 
behavioural states from modelled SPLASH tag 
location only tracks. Foraging behaviour was of pri-
mary focus for further analysis, due to its high val-
idation score but also because it’s representative of 
important habitat. However, searching and travelling 
behaviours were still modelled for comparative rea-
sons.

BCPA modelling of all 15 location-only tracks 
from SPOT and SPLASH tags, coupled with 
behaviour events inferred from SPLASH tag dive 
data, generated 2049 time-stamped foraging locations 
for blue sharks. These were distributed throughout 
the entire horizontal range of blue shark tracks 

(Figure 3). Within the same spatial distribution as 
foraging locations, 1221 significant bathymetric 
sea features were identified via Allain et al. [63] and 
plotted with foraging locations. Significant features 
included seamounts, knolls, hills, ridges, deep banks, 
submerged atolls, and other unnamed bathymetric 
features. Of the 2049 foraging behaviour locations, 
2.6% occurred within 10 km proximity (the largest 
Argos satellite location error radius) of an identified 
significant sea feature from Allain et al. [63], and only 
1.0% within 5 km proximity. Most foraging locations 
occurred in locations void of identified bathymetric 
features, or in proximity to those not identified such 
as trenches (see insets Figure 3).

3.5 Using a generalised linear model (GLM) 
to determine the impact of habitat data on 
behavioural states

For all three behavioural response comparisons 
(search/forage, travel/search, travel/forage), the 
GLM model using a linear combination of all predic-
tor variables giving the lowest AIC value, was used 
as the final model structure. The GLM suggested that 
searching and foraging behaviour were influenced 

Figure 3. Distribution of all foraging behaviour locations, either predicted through BCPA model or inferred from dive data, plotted 
with identified major bathymetric features from Allain et al. [63].
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similarly by the predictor variables. Chlorophyll A, 
distance from shore, shark speed and shark ID had 
less than significant (p = < 0.05) impact on determin-
ing the behavioural response of searching or forag-
ing states. However, ocean depth, SST and current 
magnitude did show a significant positive impact 
on these states. All predictor variables significantly 
impacted the comparison of response variables trav-
eling and searching, except ocean currents. Similar-
ly, the comparison of travel and foraging states was 
significantly impacted by all variables, except SST 
in this case (Table 4). 

In addition to significant findings from the 
GLM, mean values derived from raw data for 
predictor variables, associated with behavioural 
states, provided further insight on associations. 
Foraging occurred in areas with significantly lower 
chlorophyll A (µ = 0.181 mg m–3, σ’ = 0.164) when 

compared with travelling (µ= 0.256 mg m–3, σ’ = 
0.227); t2364 = 10.3, p = 2.8e–24. As did searching 
behaviour (µ = 0.187 mg m–3, σ’ = 0.151); t2259 = 9.7, 
p = 9.4e–22. Chlorophyll A did not differ significantly 
between areas of foraging or searching; t3269 = 1.3,  
p = 0.2. 

Shark speed was significantly slower in foraging 
locations (µ = 3.1 km h–1, σ’ = 4.4), than in travelling 
locations (µ = 3.7 km h–1, σ’ = 5.4); t3397 = 3.4, p = 
6.3e–4. It was also significantly slower in searching 
locations (µ = 3.2 km h–1, σ’ = 4.5); t3267 = 2.8, p = 
5.0e–3. There was no significant difference in shark 
speed while foraging or searching; t4567 = 1.0, p = 0.3. 

The GLM showed that SST had the variable 
significance of impact across all comparisons of 
response variables. When mean values for each 
response were compared, foraging locations had 
significantly higher SST (µ = 20.3 °C, σ’ = 3.6), over 

Table 4. GLM output indicating the impact of predictor habitat variables on response behavioural states of blue sharks. Significance 
codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Response variables Predictor variables Estimate Standard error P-value

Search/Forage OceanDepth (m)  1.414e-04 3.169e-05 8.05e-06     ***

SST (°C)  2.127e-01 1.661e-02 < 2e-16      ***

CurrentMag (cms–1)  1.137e-02 4.887e-03 0.0200       *

ChlA  6.115e-02 4.428e-01 0.8902

DistanceFromShore (km) –4.368e-05 3.131e-04 0.8890

SharkSpeed (kmh–1)  8.236e-03 8.170e-03 0.3134

SharkID  2.910e-03 1.512e-03 0.0542       .

Travel/Search OceanDepth (m)  8.996e-05 3.627e-05 0.0131            *

SST (°C) –1.411e-01 1.695e-02 < 2e-16           ***

CurrentMag (cms–1)  4.898e-03 5.004e-03 0.3277               

ChlA  2.130e+00 4.214e-01 4.29e-07         ***

DistanceFromShore (km)  8.601e-04 3.296e-04 0.0091             **

SharkSpeed (kmh–1)  3.147e-02 7.695e-03 4.32e-05         ***   

SharkID  7.374e-03 1.543e-03 1.77e-06         ***

Travel/Forage OceanDepth (m)  2.408e-04 3.718e-05 9.31e-11         ***

SST (°C)  2.842e-02 1.621e-02 0.0797              .

CurrentMag (cms–1)  1.169e-02 5.497e-03 0.0334             *               

ChlA  1.712e+00 4.090e-01 2.86e-05         ***

DistanceFromShore (km)  1.025e-03 3.410e-04 0.0027             **

SharkSpeed (kmh–1)  3.500e-02 8.248e-03 2.20e-05         ***   

SharkID  1.180e-02 1.605e-03 2.00e-13         ***
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travelling (µ = 19.7 °C, σ’ = 3.7); t3530 = 4.5, p = 8.2e–6. 
Searching locations were also significantly warmer  
(µ = 21.7 °C, σ’ = 3.4) than travelling locations;  
t4513 = 18.2, p = 7.9e–72.

Ocean current magnitude also had the variable 
significance of the impact on response behaviours 
in the GLM. Results were aligned with analysis 
of mean values, indicating that foraging locations  
(µ = 13.3 cm s–1, σ’ = 7.8) occurred in weaker current 
areas when compared with searching (µ = 15.6 cm s–1,  
σ’ = 9.2); t3795 = 8.4, p = 4.7e–17 or travelling locations  
(µ = 14.2 cm s–1, σ’ = 8.6); t3157 = 3.0, p = 2.7e–3.

Collectively the GLM results and comparisons 
of mean predictor variables suggest that foraging 
and searching, generally occurred in areas of similar 
habitat, comprised of lower chlorophyll A, warmer 
SST and slower animal speeds, when compared to 
travelling behaviour. 

4. Discussion
The long-term monitoring of blue sharks (Prion-

ace glauca) with SPLASH tags provides an oppor-
tunity to validate behavioural state predictions and 
extend utilisation of our own, and existing SPOT 
tag data. Movement models can infer behavioural 
information from location-only data, however, many 
require extensive data pre-processing and model 
training, such as the removal of large outliers, stand-
ardisation of intervals between observations, and 
estimation of the ranges of parameter distributions 
even with movement data collected by more accurate 
GPS devices. The method used in this study is con-
ceptually simple, as it identified states of behaviour 
within the geospatial lifelines of animals by acute 
changes in the temporal autocorrelation structure of 
movement metrics. The objective of this study was 
not to determine the best model for predicting behav-
ioural states in blue sharks, but rather to evaluate the 
use of one model to demonstrate how, if validated, 
such a model can enable greater utilisation of rare 
and expensive satellite tag data. Fishery independent 
data are several orders of magnitude less abundant 
than fishery bycatch data for blue sharks, and thus 
any increase in such data would aid in the manage-

ment of the species, which in recent times looks most 
promising through global ‘big data’ collaborations [10].

The model identified three distinctive behavioural 
states within the 6 two-dimensional tracks. Most 
individual sharks shared similar parameters for each 
of these states. Searching states were the dominant 
output from the model (66.5% of locations), likely 
because they were an ‘in-between’ state. This 
state has also been labelled as resting and likely 
comprises mixed behaviours associated with efforts 
to locate prey [59]. Given the large-scale environment 
and prey distribution being patchy, it makes sense 
that this behaviour was dominant. Foraging states 
(22.3% of locations) were predicted along tracks 
where expected, according to modelling theory; 
when the sharks’ movements were restricted in an 
area, moving in tight circles. This supported the 
prospect of determining what correlation may exist 
between modelled foraging areas and associated 
environmental variables, allowing the prediction 
of important habitats. Travelling states (11.2% of 
locations) were the least frequently modelled, but 
were predicted as expected, most often along long, 
direct routes where a shark moved at the fastest 
speeds. Overall, the predicted behavioural states 
from the model were consistent with behaviour 
modelling theory and the literature [32,64-67]. 

4.1 Model validation

The simple ‘overlay’ methodology used to 
compare ‘known’ behaviour events, with predicted 
behavioural states, provided useful validation of the 
model. Such validation can be rare in modelling, but 
it is important as it avoids simply applying a model 
with no actual way of determining its accuracy [56-58].  
Although such practice has been applied to GPS tracked 
animal movements (for example Zhang et al. [59]),  
and validation of ARGOS data in other species albeit 
rarely [56-58], to the author’s knowledge this is the 
first study to validate Argos data from blue sharks in 
this way. This is important as behavioural data for 
blue sharks is rare, and the prediction of behavioural 
states from ARGOS data for some marine species 
has proven inaccurate [56]. ARGOS data may be 
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species-specific as far as its representation of 
behaviour, relative to the spatio-temporal nature of 
two-dimensional, surface location tracks. Results 
in this study reflected that the BCPA behavioural 
prediction model proved valid for blue sharks. The 
ability to accurately predict foraging behaviour for 
the species, throughout its distribution tracked, can 
assist with management through awareness of critical 
habitat and potential overlap with fisheries.

A reason for the model’s lower predictive prob-
ability of travelling and searching states may be 
related to the dominance of foraging in the ‘known’ 
events [43]; making them potentially more likely to 
overlap spatio-temporally with the more apparent 
searching or travelling modelled states. ‘Mismatches’ 
between searching and foraging are not surprising 
because searching is likely made up of mixed behav-
iours, with sporadic foraging events occurring with-
in searching bouts. A lack of foraging persistence 
during a searching bout would be inadequate for the 
model to reflect a foraging bout, but on the contrary, 
an individual foraging event is detectable in dive 
data. As previously mentioned however, the robust 
spatio-temporal coverage of the dive event data set 
provides confidence that an adequate number of each 
behavioural state was likely captured, providing a 
strong metric for validation.

4.2 Application of the validated model to 
additional, surface location-only SPOT tag 
tracks

The high predictive probability of foraging 
behaviour for blue sharks (69-100% of locations 
across individuals), validated the model’s use in 
further analysis of the nine additional location-only 
tracks from SPOT tags. In doing so, greater insight 
into blue shark habitat use was possible than what 
was originally available in this study. Given other 
pelagic species display similar prey related diurnal 
vertical migrations (basking shark [68,69], whale sharks [70],  
tuna [71], sperm whale [72]), and thus likely similar 
surface location patterns, the model from Zhang  
et al. [59] or similar, could be validated and applied for 
comparable benefits, especially as surface location-

only Argos tracks are common within studies of 
pelagic species. 

The large number and wide spatio-temporal 
distribution of these predicted and inferred behav-
ioural events (2049 foraging, 2877 searching, 1839 
travelling), enabled an extensive range of habitat 
and environmental variation to be captured and later 
investigated for influence on behavioural state. It 
was evident that blue sharks exhibited all behaviour-
al states, throughout their entire range and calendar 
seasons. In the context of foraging, as a critical be-
haviour, the consistent expression of it indicates an 
absence of specific locations or seasonal timing of 
foraging habitat. This is important as it suggests a 
persistent predator impact and potential ecological 
services provided by the blue shark throughout its 
entire distribution range in this region. It also sug-
gests persistent exposure to fisheries which often bait 
using prey of the blue shark.

There appeared, through simple proximity corre-
lation, to be no obvious spatial link between foraging 
and significant bathymetric features like seamounts, 
which are often associated with pelagic produc-
tivity and predator preference. This is interesting 
as seamounts, in particular, are often considered 
to be biodiversity hotspots [73,74], that aggregate 
commercially valuable fish [75]. Because of this, they 
have been identified as areas of particular interest 
for conservation and marine-protected areas [76,77]. 
Associations of this kind are justified for certain 
species but should be applied with caution. Certain 
species may not actually prefer such habitat, but 
due to their abundance and distribution overlapping 
with fishery location and effort, they may be falsely 
associated with these features. This could be the case 
with the blue shark. As an example, Litvinov et al. [78]  
suggested that seamounts are of particular interest 
to male blue sharks, where they aggregate, forming 
‘male clubs’. However, Litvinov et al. [78] also made 
comparisons using catch per-unit effort fishery data, 
where the target species, likely tuna, may prefer such 
a habitat, whilst stating that blue shark aggregations 
may prefer other places such as features of water 
structure or gradients. Recent tagging studies, in 
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combination with oceanography revealed that blue 
sharks counter intuitively showed foraging prefer-
ence in low surface chlorophyll A, anticyclonic ed-
dies [39], characterised by anomalously warm water, 
conventionally thought to be ocean deserts void of 
significant biomass [79]. Such areas differ from con-
ventional seamount ‘hotspots’ that aggregate com-
mercially valuable fish [75], reflecting how fishery 
bycatch data may not be able to represent important 
blue shark habitats. The ability to define critical hab-
itats and areas of bycatch vulnerability, like foraging 
areas, in a fishery independent way is valuable for 
the management of highly migratory, marine species 
like the blue shark [10].

4.3 Using a GLM to determine the impact of 
habitat data on behavioural states

The GLM provided novel insight into the 
influence habitat variables can have on behavioural 
states of blue sharks. The insight was novel firstly 
because of its location in the South Pacific where 
no fishery independent data has been recorded 
for blue sharks before; and because insight came 
from SPLASH tags, which enabled highly accurate 
observed and validated behavioural predictions 
to be mapped. These factors combined, allowed 
the influence of the environment to be assessed in 
relation to data directly from blue sharks, through 
space and time, rather than one-off encounters in 
fisheries.

Conventional fisheries management has been 
historically limited to using bycatch data, contrast 
with environmental variables in an attempt to 
determine or predict species presence/absence, 
abundance and distribution in relation to habitat 
preference. Such data is widely recognised to come 
with biases however [6], primarily related to effort 
and location of fleets, and because blue sharks are 
so commonly caught, presence/absence predictions 
are nearly always present [80]. While the data set 
used in the present study’s GLM was limited to 15 
blue sharks, the tags used and the validation of a 
behavioural prediction model, generated a robust 
data set providing novel insight on critical habitat. 

When GLM results were coupled with T-test anal-
ysis of raw data sets of habitat and other predictor 
variables, it was evident that foraging and searching 
generally occurred in areas of similar habitat, com-
prised of lower chlorophyll A, warmer SST, weaker 
ocean currents (foraging only) and slower animal 
speed, when compared to travelling behaviour. Low 
levels of chlorophyll A are not commonly associated 
with foraging by oceanic predators. It is often sug-
gested that higher surface chlorophyll A, generated 
by features like seamounts, especially in oligotrophic 
regions [81-83], causes greater productivity and likeli-
hood of prey densities, which should catalyse search-
ing and foraging behaviour. Results from the present 
study suggest this correlation is not the case for blue 
sharks. Although blue sharks are not filter feeders, 
which target surface-oriented chlorophyll A densities 
as they attract zooplankton aggregations [68], there 
are prey species of blue sharks that do target such 
chlorophyll A rich habitat [84]. Braun et al. [39] found 
that satellite tagged blue sharks in the gulf stream 
also, counter intuitively, showed foraging preference 
in waters with low chlorophyll A surface expression. 
Such habitat use was related to anticyclonic eddies 
(ACE), characterised by anomalously warm water, 
conventionally thought to be ocean deserts void of 
significant biomass [79]. Their findings suggested that 
blue sharks use the core of ACE, which carries warm 
water down, as conduits to forage more optimally 
at depths with higher prey densities, where they are 
usually constrained by their physiological thermal 
constraints [85]. In the present study, SST was signif-
icantly higher on average in foraging and searching 
locations, than in travelling locations. Foraging loca-
tions were also associated with significantly slower 
ocean current magnitude, which could likely occur 
within the centre of eddies. Eddy characteristics 
were not investigated in the present study, however, 
observations from Braun et al. [39] explain how ACE 
may be the reason why foraging and searching be-
haviours in the present study, were associated with 
areas of lower mean surface chlorophyll A, warmer 
waters and slower ocean current magnitude when 
compared with travelling.
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It is important to acknowledge that further under-
standing of prey distribution with eddy type is need-
ed before concluding that eddy type is catalysing 
better foraging environments, and thus behaviours. 
However, optimal foraging theory does suggest that 
conditions which enable a predator to spend greater 
duration in contact with prey distribution, would be 
beneficial. The correlation of foraging and searching 
behaviour with features representative of ACE sug-
gests that they should not be considered barren de-
serts. ACE move location, grow and shrink, meaning 
their potential benefit may come and go for the blue 
shark. This does not mean that the prey associated 
with the deep scattering layer also moves, but rather 
that ACE simply enables optimal foraging, and thus 
it should not be surprising that blue sharks may show 
spatio-temporal preference for them. 

5. Conclusions
The BCPA model [59] was validated for use in 

predicting foraging behaviour through the entire 
home range of satellite tagged blue sharks (Prionace 
glauca) in the southwest Pacific. When coupled with 
habitat information, novel insight on behaviour dis-
tribution categorised potential critical habitat quite 
differently to suggestions from studies using fishery 
data; predominantly the positive association with 
surface chlorophyll A [78,86,87]. Because there are pros 
and cons to both fishery and non-fishery derived data 
sets, population management of blue sharks would 
benefit most from the coupling of both through ‘big 
data’ studies. This study has demonstrated a method-
ology enabling greater insight from ARGOS satellite 
tags, enhancing the contribution of such data sets 
for ‘big data’ studies. This process and the validated 
model have been specific to blue sharks but can like-
ly be applied to other pelagic predators either direct-
ly, or via a similar validation methodology.
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