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ABSTRACT

Jaipur, India, is experiencing rapid urbanization that is significantly altering its land use and land cover (LULC) 
patterns, presenting both challenges and opportunities for sustainable development and socio-economic advancement. 
This study utilizes advanced geospatial and remote sensing technologies to assess these changes and project future 
scenarios. Specifically, satellite data were processed using Google Earth Engine, land cover was accurately classified 
using the Random Forest algorithm, and future projections were modeled through QGIS-MOLUSCE using a 
polynomial-based Cellular Automata–Artificial Neural Network (CA-ANN) approach. Analysis of Landsat imagery for 
the years 2000 and 2020 reveals a dramatic 188.59% increase in urban built-up areas and a 145.44% rise in vegetation 
cover, largely due to successful afforestation efforts. Meanwhile, barren land declined by 47.37%, and water bodies 
exhibited fluctuating trends, reflecting the intricate interplay between urban development and climatic variability. 
Looking ahead to 2045, model projections estimate that built-up areas will expand to approximately 1303.08 square 
kilometres, potentially threatening the integrity of vital green spaces and aquatic ecosystems. These findings highlight 
the urgent need for integrated policy interventions aimed at mitigating environmental risks such as urban heat island 
effects and biodiversity loss. By providing a detailed account of past and present LULC dynamics, this research 
delivers actionable, data-driven insights to support sustainable urban planning. Moreover, the integration of urban 
growth models with climate resilience strategies offers a replicable framework for managing urban expansion in other 
rapidly developing cities, particularly those situated in semi-arid regions.
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1.	 Introduction
Land Use and Land Cover (LULC) refers to the uti-

lization of land, the resources it encompasses, and the 
physical or biological cover present on the Earth’s surface, 
including forests, water bodies, vegetation, agricultural 
fields, and built-up areas [1]. Globally, over 75% of the ter-
restrial environment has been significantly altered by hu-
man activity, and more than one-third of the Earth’s land 
surface is now used for agriculture [2]. In India alone, urban 
areas increased by over 54% between 2001 and 2021, sig-
nificantly impacting agricultural land, forests, and wetlands 
[3]. The city of Jaipur, Rajasthan, exemplifies this transfor-
mation, with urban built-up areas expanding rapidly at the 
expense of natural ecosystems. Between 1990 and 2020, 
Jaipur’s urban land cover expanded by nearly 200%, while 
green spaces and water bodies declined sharply [4]. Chang-
es in LULC are among the most significant human-induced 
environmental disruptions, leading to various macrocli-
matic alterations [5]. Understanding these changes is essen-
tial for the sustainable and efficient management of natural 
resources and the environment [6]. Effective land use plan-
ning and resource management necessitate a comprehen-
sive understanding of LULC patterns within a specific area 
[7]. Moreover, analysing both qualitative and quantitative 
land-use changes over time is crucial for sustainable urban 
planning and management [8]. In rapidly developing cities, 
LULC changes are inevitable, necessitating the identifi-
cation of emerging trends [9]. Insights into these shifting 
patterns are vital for developing strategies that balance de-
velopmental needs, prevent conflicts, and support sustain-
able urban planning [10]. Over time, human activities have 
significantly modified the Earth’s surface to enhance food 
production through various agricultural practices [11]. 

Currently, more than half of the Earth’s surface has un-
dergone transformation, with agricultural land constituting 
over one-third of the planet [12]. The ongoing conversion 
of natural landscapes into agricultural land continues to be 
a pressing issue [13]. Experts and land use administrators 
are increasingly assessing the effects of these changes on 
hydrological processes due to their extensive impact [14]. 
By analysing patterns of land use change, decision-mak-
ers and land managers can gain deeper insights into the 
interactions between human activities and natural systems 
[15]. Research highlights that rapid population growth is the 

primary driver behind the global shift in land use [16]. Rec-
ognizing shifts in LULC is essential for formulating strat-
egies that balance developmental needs while preventing 
conflicts and supporting effective city planning and con-
servation efforts [17]. Changes in LULC are influenced by 
various factors, including a city’s socioeconomic, political, 
and meteorological conditions [18]. However, in many ur-
ban environments, population growth remains the principal 
driver of these changes [19]. It is crucial to identify changes 
in LULC, as these can impact the arrangement of various 
spatial elements across different land surfaces [20]. Accurate 
image classification techniques are essential for obtaining 
LULC data from remotely sensed images [21]. In recent de-
cades, machine learning classifiers have emerged as pow-
erful tools for LULC classification, enhancing accuracy 
and performance [22]. Several models have been developed 
to predict future LULC dynamics, assisting in the evalua-
tion of land use management policies [23]. 

Understanding the patterns and drivers of LULC 
change is essential for sustainable urban planning, resource 
management, and mitigation of the adverse effects of un-
planned development [24]. By analysing historical LULC 
trends, policymakers and urban planners can identify fac-
tors contributing to these changes and develop strategies 
that balance urban growth with environmental conserva-
tion [25]. The integration of advanced technological tools 
is transforming LULC analysis, enabling more accurate 
assessments and predictions [26]. Remote sensing technol-
ogies and Geographic Information Systems (GIS) are now 
essential for capturing and analysing spatial data related 
to land use changes [27]. These technologies facilitate the 
monitoring of LULC dynamics over time, providing criti-
cal insights into the interactions between human activities 
and natural environments [28]. Furthermore, the application 
of machine learning algorithms in image classification has 
significantly enhanced the precision of LULC mapping, 
enabling researchers to classify land cover with greater ac-
curacy and efficiency [29-31]. 

As urban areas continue to expand, the need for re-
al-time monitoring and data-driven decision-making be-
comes increasingly essential, underscoring the role of 
technology in addressing contemporary urban challenges 
[32]. The implications of LULC changes extend beyond im-
mediate environmental concerns, affecting socioeconomic 
dimensions such as public health, equity, and resource dis-
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tribution [33]. Urbanisation often increases pollution levels, 
adversely impacting community health and well-being [34]. 
Additionally, the displacement of communities due to land 
conversion for urban development raises critical social 
justice issues, necessitating the examination of how land 
use policies can be more inclusive and equitable [35]. Un-
derstanding the multifaceted impacts of LULC changes is 
crucial for developing holistic urban policies that promote 
economic growth while safeguarding the rights and liveli-
hoods of vulnerable populations [36].

Urbanization and its environmental consequences 
are closely tied to LULC changes, particularly in rapidly 
growing cities. As observed in previous studies, urban ex-
pansion often leads to the irreversible loss of agricultural 
land and natural habitats, exacerbating issues such as hab-
itat fragmentation and biodiversity decline [37]. This trans-
formation is particularly evident in developing regions, 
where unplanned urban sprawl outpaces sustainable land 
management practices [38]. Addressing these challenges re-
quires integrated planning frameworks that reconcile urban 
growth with ecological preservation [39]. Advancements in 
geospatial technologies have revolutionized LULC mon-
itoring, enabling precise tracking of land transformations 
[40]. According to a study in United States, remote sensing 
and machine learning now allow for high-resolution map-
ping of urban expansion patterns, providing critical data 
for policymakers [41]. Similarly, various studies emphasize 
the role of predictive modeling in forecasting future LULC 
scenarios, which is essential for proactive land-use plan-
ning [42,43]. These tools are indispensable for mitigating the 
adverse effects of urbanization while promoting sustain-
able development. Despite growing scholarly attention to 
LULC dynamics, several critical research gaps persist, par-
ticularly in the context of rapidly urbanizing regions. Many 
existing studies focus predominantly on historical LULC 
changes, with limited integration of predictive modeling 
tools that account for socioeconomic and environmental 
drivers. There is often a lack of spatially explicit, high-res-
olution analyses that can capture localized impacts of land 
transformation, especially in peri-urban and fringe areas. 
Another major gap lies in the insufficient incorporation of 
machine learning techniques and advanced remote sensing 
platforms for more accurate classification and forecast-
ing. Opportunities exist to bridge these gaps by leveraging 
geospatial technologies such as Google Earth Engine and 

machine learning classifiers like Random Forest, along-
side simulation models like MOLUSCE. This integration 
allows for more comprehensive, forward-looking assess-
ments that can inform policy interventions. Additionally, 
there is a pressing need for interdisciplinary approaches 
that connect LULC dynamics to broader concerns such as 
climate resilience, social equity, and resource governance. 
Addressing these gaps offers a valuable opportunity to en-
hance land use planning frameworks, support sustainable 
urban development, and contribute to evidence-based deci-
sion-making in complex urban ecosystems.

What sets this research apart is its focus on the com-
plex challenges posed by rapid urbanization and its 
far-reaching environmental implications. The study of 
LULC change is particularly critical in rapidly growing 
metropolitan areas, where the expansion of built-up spac-
es, depletion of water bodies, and loss of vegetation are 
transforming urban landscapes. These shifts contribute to 
pressing issues such as urban heat islands, water scarcity, 
reduced biodiversity, and heightened vulnerability to cli-
mate change. By employing the MOLUSCE tool to project 
LULC scenarios for 2045, this research not only analyses 
historical patterns but also adopts a forward-looking per-
spective that integrates socioeconomic and environmen-
tal variables. This comprehensive approach provides a 
nuanced understanding of the interactions between urban 
expansion, conservation efforts, and climate dynamics. 
The predictive capability of MOLUSCE is instrumental 
in informed decision-making, enabling policymakers and 
urban planners to design interventions that support sus-
tainable development, protect critical ecosystems, and 
enhance urban resilience. Through the use of advanced 
modelling techniques and a multidisciplinary framework, 
this study addresses significant knowledge gaps in under-
standing LULC dynamics. By forecasting potential futures 
and assessing their implications, it aims to offer actionable 
insights that guide cities toward more sustainable and live-
able futures.

2.	 Materials and Methodology

2.1.	Study Area

Jaipur, the capital of Rajasthan in Northern India, 
ranks as the tenth-largest city in the country and lies be-
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tween 26°25ʹ to 27°51ʹ N latitude and 74°55ʹ to 76°10ʹ E 
longitude (Figure 1). Celebrated for its rich history, vi-
brant culture, and iconic pink-hued architecture, Jaipur is 
also known as the “Pink City”. This city was founded in 
1727 by Maharaja Sawai Jai Singh II as one of India’s first 
planned cities. Characterised by a grid-like layout and ar-
chitectural marvels such as the Hawa Mahal, City Palace, 
and Amer Fort, Jaipur is a unique confluence of heritage 
and urbanisation. Over recent decades, the city has under-
gone rapid urban expansion driven by economic growth, 
tourism, and population inflows. Between the 2001 and 
2011 Census periods, Jaipur’s urban population rose from 
2.3 million to 3.07 million, and this trajectory is projected 
to continue, positioning Jaipur as a key metropolitan hub 

in North India. The city’s accelerated urban growth has 
placed immense pressure on infrastructure, housing, and 
essential services. Environmental issues such as worsening 
air quality, water scarcity, urban heat islands, and the loss 
of green spaces are becoming increasingly pronounced. 
The rising surface temperatures have increased reliance on 
artificial cooling systems, resulting in higher energy con-
sumption and placing strain on the city’s power infrastruc-
ture, especially during peak summer months. These social 
and environmental stresses underscore the urgency of in-
tegrated, forward-thinking urban planning approaches. In 
this context, the present study gains particular significance 
as it aims to project future land use patterns using a combi-
nation of machine learning and CA-ANN models.

Figure 1. Study Area Map - Jaipur.

2.2.	Data Collection and Pre-processing

2.2.1.	Satellite Imagery Acquisition

The study utilized Google Earth Engine (GEE), a 

cloud-based geospatial platform, to analyse Landsat satel-
lite imagery without requiring extensive local computing 
resources. Figure 2 illustrates the methodological work-
flow employed for LULC classification. The researchers 
began by accessing GEE through a Google account and 
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navigating to the Code Editor interface. The study area 
was defined by uploading a Jaipur city boundary shape-
file created in ArcGIS 10.8, which was then visualized on 
the GEE map. For historical LULC assessment, Landsat 7 
Enhanced Thematic Mapper Plus (ETM+) imagery from 
2000 was acquired and processed (Table 1). The dataset 
was filtered to include only images from January 1 to De-
cember 31, 2000, with cloud cover limited to less than 1% 
to minimize atmospheric interference. The same spatial 

extent (Jaipur city) and quality criteria were applied when 
processing Landsat 8 Operational Land Imager (OLI) im-
agery for 2020. The standardized 30-meter resolution im-
agery from both sensors enabled consistent spatial analysis 
across the two decades. All datasets were obtained from 
the USGS Earth Explorer portal as part of the Landsat 
Collection 2 inventory, which provides radiometrically cal-
ibrated top-of-atmosphere (TOA) reflectance values suit-
able for time-series analysis.

Figure 2. Flowchart showing methodology of LULC mapping.

Table 1. Satellite Data and specifications.

Satellite Acquisition Period Resolution(m) Source Description

Landsat 7 ETM+ From 01/01/2000 to 31/12/2000 30 x 30 USGS Landsat 7 Collection 2 Tier 1 and Real-Time data 
calibrated top-of-atmosphere (TOA) reflectance.

Landsat 8 OLI From 01/01/2020 to 31/12/2020 30 x 30 USGS Landsat 8 Collection 2 Tier 1 and Real-Time data 
calibrated top-of-atmosphere (TOA) reflectance.
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2.2.2.	Auxiliary Spatial Datasets

Multiple geospatial datasets were used to derive crit-
ical parameters for land use modelling, as summarized 
in Table 2 below. The Digital Elevation Model (DEM) 
was acquired from USGS Earth Explorer (accessed April 
1, 2025) and served as the foundational dataset, enabling 
the derivation of five key terrain parameters: slope, as-
pect, curvature, hill shade, and contours through spatial 
analysis in ArcGIS. Hydrographic data obtained from Hy-
droSHEDS (accessed April 1, 2025) provided the stream 
network used to calculate distance from water features. 
Transportation infrastructure layers, including roads and 
railways, were sourced from BBBike extracts (accessed 
April 1, 2025) and processed to generate proximity buffers. 

These parameters collectively address some fundamental 
dimensions of land use dynamics, such as topographic con-
straints (through DEM derivatives), hydrological consid-
erations (via stream distance), and accessibility influences 
(through road/railway proximity). The integration of these 
datasets in MOLUSCE modelling ensures comprehensive 
representation of both biophysical constraints and anthro-
pogenic factors driving land use changes in Jaipur’s unique 
geographic context, where the Aravalli terrain and linear 
infrastructure corridors create distinct urban growth pat-
terns. Figure 3 illustrates the spatial variables employed in 
forecasting land use changes. The April 2025 data acquisi-
tion ensures the model works with the most recent pre-pro-
cessed datasets available at the time of analysis.

Table 2. Spatial Variable Data and specifications.

Data Source Acquisition Date Utility

DEM earthexplorer.usgs.gov/ 01/04/2025

Slope
Aspect

Curvature
Hill shade
Contour

Stream hydrosheds.org/ 01/04/2025 Distance from Stream

Road extract.bbbike.org/ 01/04/2025 Distance from Road

Railway extract.bbbike.org/ 01/04/2025 Distance from Railway

Figure 3. Surface Variable Maps used for future simulation.

2.3.	LULC Classification

2.3.1.	LULC Classification and Training Data

Supervised classification was conducted using labelled 

training data to generate accurate LULC maps. Represen-

tative land cover classes were first identified through visual 

interpretation of high-resolution base maps. Training sam-

ples were then manually delineated for five main LULC 

http://earthexplorer.usgs.gov/
http://www.hydrosheds.org/
http://extract.bbbike.org/
http://extract.bbbike.org/
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categories: Built-up Land, Water Bodies, Dense Vegetation, 
Cropland, and Barren Land. The details of the LULC clas-
sification scheme are presented in Table 3. Each digitized 
polygon was assigned a corresponding class label, enabling 
the extraction of spectral signatures from the satellite imag-
ery. For Landsat 7 (2000), spectral information was derived 
from bands B1 to B5 and B7, while for Landsat 8 (2020), 
bands B2 to B7 were utilized, as these bands provided opti-
mal separability between land cover types. A Random For-
est (RF) classifier comprising 50 decision trees was trained 
using the sampled data. This ensemble-based classifier was 
chosen for its robustness in handling noisy datasets and cap-
turing complex, non-linear relationships among input fea-
tures. Once the classifier was trained, it was applied to the 

entire satellite imagery to produce classified LULC maps 
for the years 2000 and 2020. The classified outputs were vi-
sualized within the Google Earth Engine environment, with 
distinct colour schemes assigned to each class, such as red 
for built-up areas, blue for water bodies, green for dense and 
sparse vegetation, yellow for cropland, and brown for barren 
land, thereby enhancing interpretability and thematic clarity. 
The classified images were visualized in GEE using distinct 
colour palettes for each land cover class. An accuracy as-
sessment was conducted by splitting the training data into 
training and validation subsets (70/30 split). The accuracy 
was evaluated using a confusion matrix, and metrics such as 
overall accuracy and the kappa coefficient were calculated 
to ensure reliability.

Table 3. Description of LULC Classification Scheme.

LULC Type Description
Built-up Land Residential, Commercial, and Other Infrastructure

Water Body Rivers, lakes, ponds, and dams
Dense Vegetation All types of forest cover land

Crop Land Agricultural Land, Farm Land, Fallow Land

Barren land All types of barren land

2.3.2.	Future Simulation Using MOLUSCE

The subsequent step involved predicting the future 
LULC scenario for Jaipur in the year 2045. This was 
achieved using the MOLUSCE plugin in QGIS, which fa-
cilitates dynamic modelling of land use transitions through 
spatial analysis and machine learning. The process began 
with the preparation of suitable input layers. The classified 
maps of 2000 and 2020, derived from GEE, were export-
ed as GeoTIFF raster files and imported into QGIS. These 
raster files were then meticulously pre-processed to ensure 
uniform spatial resolution, consistent geographic extents, 
and a common coordinate reference system. Each map 
was reclassified to ensure that identical land cover class-
es shared the same numerical codes across the temporal 
datasets, a crucial step for comparative change detection. 
In parallel, ancillary spatial datasets such as aspect, slope, 
curvature, hill shade, contour, distance to roads, and prox-
imity to water bodies were prepared to serve as influenc-
ing factors or driver variables that might affect land use 
change. These layers enhanced the accuracy of the simu-

lation by incorporating environmental and infrastructural 
variables that typically govern land transformation patterns 
in urban settings like Jaipur. Once the datasets were in 
place, the MOLUSCE plugin was launched and the clas-
sified LULC rasters for 2000 and 2020 were loaded as the 
primary input layers. MOLUSCE performed a detailed 
land cover change detection analysis to compute the tran-
sitions between different land categories over the 20-year 
interval. Based on these transitions, the tool automatically 
generated a transition probability matrix, which quantified 
the likelihood of a specific land class changing into an-
other. Subsequently, a suitable simulation algorithm was 
chosen within the MOLUSCE framework to model fu-
ture land use transitions. Among the available methods—
such as Logistic Regression, Weights of Evidence, and 
CA-ANN—the CA-ANN model was selected due to their 
proven ability to capture complex, non-linear relationships 
in geospatial data. The ANN model was trained using ob-
served land cover transition data between 2000 and 2020, 
effectively learning how different land categories evolved 
over time in response to environmental and infrastructural 
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driving factors such as aspect, slope, curvature, hill shade, 
contour, distance to roads, and proximity to water bodies. 
Once the ANN was calibrated, it was employed to simulate 
the projected land use and land cover for the year 2045, 
advancing the temporal horizon by 25 years from the last 
observed data. The MOLUSCE tool utilized these trained 
ANN parameters to generate a predictive LULC map for 
Jaipur in 2045. This output spatially represented expected 
land categories based on transition probabilities derived 
from past changes. A corresponding confidence layer was 
also generated, indicating the model’s certainty levels re-
garding each class prediction. An accuracy assessment, 

including the computation of a confusion matrix and the 
Kappa Index of Agreement (KIA), confirmed the model’s 
reliability. A satisfactory KIA value affirmed that the ANN-
based model had a strong capacity to replicate real-world 
changes and, therefore, was dependable for future projec-
tion. The final predicted LULC map for 2045 was then the-
matically styled and interpreted to identify potential spatial 
patterns of change. The visualization clearly indicated a 
pronounced expansion of built-up areas, especially along 
the northwest and southern edges of Jaipur, consistent with 
the city’s ongoing urban sprawl. Figure 4 illustrates the 
methodological workflow employed for future simulation.

Figure 4. Flowchart showing the methodology of LULC simulation.

3.	 Results and Discussion

3.1.	Land Use and Land Cover Changes in Jaipur 
from 2000 to 2020

Jaipur’s LULC patterns between 2000 and 2020 were 
classified into five main categories: built-up areas, water 

bodies, vegetation, cropland, and barren land. During these 

twenty years, the city witnessed notable shifts in its land-

scape. As depicted in Figure 5, cropland and vegetation 

were the most dominant land cover types throughout this 

period, significantly influencing Jaipur’s environmental 

and agricultural profile.  
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Figure 5. Changes in different land use classes from the year 2000 and 2020 in Jaipur.
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Table 4 presents a comparison of LULC in Jaipur be-

tween the years 2000 and 2020, Over the past two decades, 

Jaipur has undergone major transformations in LULC, as 

depicted in maps shown in Figures 6 and 7, reflecting rapid 

urbanization and shifting environmental dynamics. The data 

reveals key trends that highlight both progress and challeng-

es in the region’s development. One of the most striking 

changes is the dramatic expansion of built-up areas, which 

nearly tripled, increasing from 382.15 sq. km in 2000 to 

1102.67 sq. km in 2020. This surge points to intense urban 

growth, likely driven by population increase, economic ac-

tivity, and infrastructure projects. While this development 

signals prosperity, it also raises concerns about resource 

strain, overcrowding, and environmental stress. 

Table 4. Total area covers by different LULC classes and the percentage of cover for the years 2000, 2020 in Jaipur.

Classes 2000 (sq. km) In Percentage 2020 (sq. km) In Percentage
Built-up Land 382.15 3.43 1102.67 9.91

Waterbody 67.95 0.61 130.55 1.17
Vegetation 520.39 4.68 1277.15 11.48
Cropland 7483.88 67.25 7209.92 64.80

Barren Land 2672.85 24.03 1406.92 12.64

Figure 6. Land Use Land Cover Map of Jaipur for the year 2000.
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Figure 7. Land Use Land Cover Map of Jaipur for the year 2020.

At the same time, barren land has decreased consid-
erably, dropping from 2672.85 sq. km to 1406.92 sq. km. 
This suggests that previously unused land is being repur-
posed, possibly for urban expansion or agriculture. The 
decline aligns with the rise in built-up areas, showing how 
urban sprawl is reshaping the region’s landscape.  Interest-
ingly, water bodies have nearly doubled in size, increasing 
from 67.95 sq. km to 130.55 sq. km. This could indicate 
better water management practices or the construction of 
artificial reservoirs to meet growing demand. Vegetation 
cover has also seen a significant boost, expanding from 
520.39 sq. km to 1277.15 sq. km, a positive sign that green 
spaces are being prioritized despite urban growth. More 

trees and plants can help mitigate pollution, support wild-
life, and enhance residents’ quality of life.  

On the other hand, cropland has decreased from 
7483.88 sq. km to 7209.92 sq. km, likely due to farmland 
being converted into housing or commercial zones. This 
loss of agricultural land could threaten food security if not 
managed carefully, underscoring the need for sustainable 
land-use policies.  Overall, Jaipur’s land use changes re-
flect a city in transition—embracing urban development 
while grappling with its consequences. The growth in in-
frastructure and greenery is promising, but the reduction 
in farmland and natural landscapes calls for balanced plan-
ning to ensure long-term sustainability. As Jaipur continues 
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to expand, finding ways to harmonize urban progress with 
environmental and agricultural preservation will be crucial.

3.2.	Accuracy Assessment of LULC Maps

The accuracy of the LULC classification for the years 
2000 and 2020 was evaluated by comparing the classified 
land use categories with reference satellite imagery and 
ground truth data. A pixel-by-pixel assessment method was 
used, where 100 random points were generated on each 
LULC map. These points were cross-checked using satel-
lite images and spatial data from the study area to ensure 
they accurately represented the different land use catego-
ries. A confusion matrix was then created to identify mis-
classified pixels and calculate the overall classification per-

formance. As shown in Table 5, the results indicate a high 
level of accuracy for both years. The overall classification 
accuracy was 91.1 percent for 2000 and increased to 94.4 
percent for 2020. The corresponding Kappa coefficients 
were 86.1 and 87.4, indicating strong agreement between 
the classified data and the reference imagery. Looking 
at user accuracy, both Built-Up Land and Water Bodies 
achieved perfect scores (100 percent) in both years, sug-
gesting these classes were very clearly identifiable. Dense 
Vegetation and Crop Land had moderate accuracy levels, 
around 70 percent, while Barren Land showed the lowest 
user accuracy, declining from 66.2 percent in 2000 to 62.4 
percent in 2020, indicating frequent confusion with similar 
land cover types, such as developed areas.

Table 5. Accuracy Assessment of LULC Maps from the Years 2000 and 2020.

Classes 2000 2020

User Accuracy
( percentage)

Built-Up Land 100.0 100.0
Water Body 100.0 100.0

Dense Vegetation 70.1 70.4
Crop Land 71.0 72.4

Barren Land 66.2 62.4

Producer Accuracy
(percentage)

Built-Up Land 100.0 91.4
Water Body 100.0 100.0

Sparse Vegetation 83.4 81.7
Crop Land 92.1 88.7

Barren Land 100.0 66.4
Overall Accuracy 91.1 94.4

Kappa 86.1 87.4

Producer accuracy tells a similar story. Built-Up Land 
and Water Bodies were accurately captured in 2000, but 
the accuracy for Built-Up Land dropped slightly to 91.4 
percent in 2020. Sparse Vegetation remained fairly consis-
tent at around 82–83 percent, while Crop Land saw a small 
decrease from 92.1 percent to 88.7 percent. Barren Land 
experienced the largest drop, from 100 percent in 2000 to 
just 66.4 percent in 2020, again highlighting the challenge 
of distinguishing it from other classes. Overall, the clas-
sification results were most reliable for Water Bodies and 
Built-Up Land due to their distinct appearance in satellite 
images. Meanwhile, areas like Barren Land, Forest, and 
Agriculture were more prone to misclassification, likely 

due to overlapping spectral characteristics and the presence 
of mixed pixels in heterogeneous landscapes.

3.3.	Transition Dynamics in ANN Modelling

To assess the model’s accuracy and validate the pre-
dictions, the MOLUSCE plugin utilizes the Kappa valida-
tion method along with a comparison between actual and 
simulated LULC maps. During the ANN training process, 
the following parameters were applied: 1000 iterations, a 
neighborhood size of 1 × 1 pixels, a learning rate of 0.1, 10 
hidden layers, and a momentum value of 0.05 to forecast 
the LULC for the year 2045. Table 6 presents the ANN pa-
rameter for LULC simulation in MOLUSCE plugin.



43

Research in Ecology  |  Volume 07 | Issue 04 | October 2025

Table 6. ANN parameters for LULC simulation.

Parameter Value
Neighborhood 1 x 1 pixel
Learning Rate 0.100

Maximum iterations 1000
Hidden layers 10
Momentum 0.050

The classification accuracy assessment for the years 
2000 and 2020 reveals a strong and reliable performance 
of the LULC classification model. The overall accuracy 
improved from 91.1 percent in 2000 to 94.4 percent in 
2020, indicating a high level of concordance between the 
classified maps and ground truth data. This enhancement 
reflects improved data quality, refined classification meth-
odologies, or more distinct land cover signatures over 
time. Similarly, the Kappa coefficient, which accounts for 
the possibility of agreement occurring by chance, also in-
creased from 86.1 to 87.4, signifying a substantial agree-
ment between the observed and predicted classifications. 
These metrics confirm the robustness and reliability of 
the classification results, suggesting that the maps can be 
confidently used for further spatial analysis and predictive 
modeling of LULC changes in the Jaipur.

3.4.	Land Use and Land Cover Changes in 
Jaipur of the Predicted year 2045

This study employs a polynomial-based CA-ANN 

model within the MOLUSCE framework to predict Jai-
pur’s urban growth. Unlike linear models, the CA-ANN 
captures complex, non-linear patterns of accelerating ur-
banization by analyzing how multiple factors (roads, slope, 
population) interact multiplicatively. The ANN processes 
these complex relationships, while Cellular Automata ap-
plies spatial rules to simulate realistic expansion. This ap-
proach more accurately reflects Jaipur’s actual growth dy-
namics, where development accelerates near infrastructure 
and economic centers, thereby producing more accurate 
2045 projections than simpler linear methods. CA-ANN 
model simulates future LULC patterns in Jaipur, project-
ing changes up to the year 2045 (Figure 8). Key surface 
variables including contour, slope, aspect, curvature, hill 
shade, distance to streams, distance to roads, and railways 
were integrated into the model to enhance prediction accu-
racy (Figure 3). Figure 9 highlights the anticipated shifts 
across different LULC classes, while Table 7 provides a 
detailed breakdown of the area and percentage coverage 
for each class in 2045.
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Figure 9. Simulated Land Use Land Cover Map of Jaipur for the year 2045.

Table 7. Area cover of different LULC classes in the year 2000, 2020 and 2045.

Classes 2000 (sq. km) 2020 (sq. km) 2045 (sq. km)
Built-up Land 382.15 1102.67 1303.08

Waterbody 67.95 130.55 79.52
Vegetation 520.39 1277.15 859.94
Cropland 7483.88 7209.92 7608.77

Barren Land 2672.85 1406.92 1275.9

The analysis of Jaipur’s LULC patterns from 2000 
to 2045 shown in Table 4, reveals significant transforma-
tions in the urban landscape, with important implications 
for urban planning and environmental management. The 
data highlights distinct trends across five major land cover 
categories, highlighting both positive developments and 
emerging challenges that demand policy attention.

One of the most prominent trends is the substantial ex-
pansion of built-up areas, which nearly tripled from 382.15 

km² in 2000 to 1,102.67 km² in 2020, with projections 
indicating further growth to approximately 1,303 km² by 
2045. This rapid urbanization mirrors Jaipur’s emergence 
as a major economic and population centre in Rajasthan. 
However, the slower rate of expansion between 2020 and 
2045 (an increase of only 200 km² compared to 720 km² 
in the previous two decades) suggests potential constraints 
on urban growth, possibly due to geographical limitations, 
policy interventions, or natural barriers to expansion. Veg-
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etation cover presents an interesting pattern, showing re-
markable growth from 520.39 km² in 2000 to 1,277.15 km² 
in 2020, followed by a projected decline to 859.94 km² by 
2045. The initial increase likely resulted from urban green-
ing initiatives and afforestation programs, while the antic-
ipated decrease may reflect competing land use pressures 
from urban expansion and agricultural needs. This project-
ed loss of green cover could have significant implications 
for urban heat island effects, biodiversity, and overall en-
vironmental quality in the region. Water resources demon-
strate a concerning trajectory, with water bodies expanding 
from 67.95 km² in 2000 to 130.55 km² in 2020, but then 
projected to contract sharply to 79.52 km² by 2045. This 
pattern suggests that while water conservation efforts may 
have been successful in recent decades, future climate vari-
ability, increased water demand, and potential mismanage-
ment could reverse these gains. The predicted reduction in 
water bodies raises serious concerns about water security 
and ecosystem health in the region. Agricultural land use 
shows a more optimistic trend, with cropland decreasing 
from 7,483.88 km² in 2000 to 7,209.92 km² in 2020, but 
then projected to recover to 7,608.77 km² by 2045. This 
rebound may indicate successful implementation of agri-
cultural protection policies, technological improvements 
in farming efficiency, or possibly the recognition of food 
security needs in regional planning. The parallel decline 

in barren land (from 2,672.85 km² in 2000 to a projected 
1,275.9 km² in 2045) suggests ongoing efforts to bring 
marginal lands into productive use, whether for agriculture 
or other purposes.

3.5.	Land Use Land Cover Trends in Jaipur 
(2000–2045)

The breakdown of LULC changes in Jaipur between 
2000 and 2020, along with projections up to 2045, reveals 
profound transformations influenced by urban expansion, 
agricultural transitions, and environmental conditions. 
These changes reflect broader socioeconomic and eco-
logical dynamics, underscoring the need for strategic and 
sustainable urban development planning. The built-up area 
has shown a substantial increase, rising from 382.15 sq. 
km. in 2000 to 1102.67 sq. km. in 2020. This represents 
a growth of approximately 188.59 percent, largely driven 
by rapid population growth, expanding infrastructure, and 
intensified economic activities. Projections indicate that 
built-up areas will further expand to 1303.08 sq. km. by 
2045. This trend highlights the pressing need to implement 
sustainable urban planning measures to address challenges 
such as the urban heat island effect, reduced green space, 
and growing pressure on urban infrastructure. Table 8 il-
lustrates the trend of LULC change in Jaipur.

Table 8. Area cover of different LULC classes in the year 2000, 2020 and 2045.

Classes 2000
 (sq. km)

2020 
(sq. km)

2045 
(sq. km)

2000 
(percent)

2020 
(percent)

2045 
(percent)

Change 
(2000–
2020) 

(sq. km)

Percent 
Change 
(2000–
2020)

Change 
(2020–
2045) 

(sq. km)

Percent 
Change 
(2020–
2045)

Built-up 
Land 382.15 1102.67 1303.08 3.43 9.91 11.71 720.52 188.59 200.33 18.17

Waterbody 67.95 130.55 79.52 0.61 1.17 0.71 62.6 92.15 -51.03 -39.09

Vegetation 520.39 1277.15 859.94 4.68 11.48 7.73 756.76 145.44 -417.21 -32.68

Cropland 7483.88 7209.92 7608.77 67.25 64.80 68.38 -273.96 -3.66 398.85 5.53

Barren 
Land 2672.85 1406.92 1275.9 24.03 12.64 11.47 -1265.93 -47.37 -131.02 -9.31

Water bodies experienced growth from 67.95 sq. km. 
in 2000 to 130.55 sq. km. in 2020. This expansion may 
be attributed to enhanced water conservation and rehabil-
itation programs. However, a decline to 79.52 sq. km. is 
projected by 2045, suggesting that continued urban expan-

sion and inefficient management could undermine these 
gains. This anticipated reduction underscores the need 
for comprehensive water resource management to ensure 
long-term ecological and human water security. Vegetation 
cover, which includes both dense and sparse vegetation, 



46

Research in Ecology  | Volume 07 | Issue 04 | October 2025

increased significantly from 520.39 sq. km. in 2000 to 
1277.15 sq. km. in 2020. This improvement likely reflects 
effective afforestation and greening initiatives. However, 
it is projected to decrease to 859.94 sq. km. by 2045. The 
decline could have negative implications for biodiversity 
conservation, carbon storage, and urban climate mitiga-
tion. This projection reinforces the importance of preserv-
ing and enhancing urban green infrastructure. Cropland 
experienced a slight decline between 2000 and 2020, but it 
is projected to increase significantly to 7608.77 sq. km. by 
2045. This recovery may indicate a shift toward more sus-
tainable and productive agricultural practices. Reinforcing 
rural land-use policies and advancing agroecological meth-

ods can enhance food security, safeguard rural livelihoods, 
and limit farmland loss to urban encroachment. Barren 
land has been consistently declining, from 2672.85 sq. km. 
in 2000 to an estimated 1275.90 sq. km. in 2045. Figures 
10 and 11 show area in sq. km. and area in percentage for 
the year 2000, 2020, 2045 respectively. Figures 12 and 13 
depict percentage area changes and area changes in sq. km 
for the year 2000, 2020, 2045 respectively. This reduction 
reflects improvements in land utilization through agricul-
tural and urban development. However, the continued de-
crease also raises concerns regarding land degradation, soil 
erosion, and the loss of natural open spaces, necessitating 
targeted efforts in land restoration and soil conservation.
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These changing land use patterns demonstrate the 
complex interdependence between urban development, 
agricultural sustainability, and environmental stewardship. 
The application of advanced geospatial technologies such 
as Google Earth Engine, the MOLUSCE module in QGIS, 
and machine learning classifiers has enabled a comprehen-
sive analysis and projection of LULC changes. These tools 
provide critical insights that can inform evidence-based 
policy interventions and enhance land management prac-
tices. To ensure Jaipur’s sustainable and resilient future, 
it is essential to implement integrated land-use strategies 
that align urban growth with ecological preservation. This 
includes establishing and maintaining green belts, adopt-
ing robust water resource governance, protecting agricul-
tural land, and reinforcing climate-resilient infrastructure. 

Equally important is fostering community participation 
in urban planning and promoting inclusive governance 
that reflects the needs of all stakeholders. Future research 
should aim to identify the specific drivers of LULC chang-
es in Jaipur and assess the effectiveness of current land 
management policies. By understanding the interactions 
between demographic shifts, policy frameworks, economic 
development, and environmental pressures, researchers and 
planners can contribute to the creation of forward-looking 
strategies that support sustainable urban transformation.

4.	 Conclusion
This study provides a comprehensive and spatially 

detailed analysis of LULC dynamics in Jaipur from 2000 



48

Research in Ecology  | Volume 07 | Issue 04 | October 2025

to 2020, with future projections extending to 2045 using 
the CA-ANN model integrated with remote sensing and 
GIS tools. The results reveal significant patterns of urban 
expansion, shifts in ecological land covers, and the im-
plications of these changes on the region’s environmen-
tal sustainability. The findings also reflect broader trends 
observed in other urbanizing contexts, while highlighting 
distinct features of Jaipur’s urban ecological trajectory. In 
alignment with earlier findings, this study confirms a sub-
stantial increase in built-up area rising by 188.59 percent 
from 3.43 percent in 2000 to 9.91 percent in 2020 and proj-
ects continued growth to 11.71 percent by 2045 [44]. While 
previous research predicts more rapid decadal increases in 
built-up land (exceeding 100 percent in some cases), the 
current study presents a relatively moderate yet persistent 
urban growth trend, suggesting that the expansion in Jaipur 
is both substantial and sustained but may be following a 
more gradual trajectory than in some other Indian cities [44]. 
Unlike the continuous degradation of vegetation and for-
est cover reported by a study in Linyi, China, the present 
study observes a significant increase in vegetation cover in 
Jaipur from 4.68 percent in 2000 to 11.48 percent in 2020 
[45]. This positive trend may reflect successful afforestation 
drives, green infrastructure projects, and efforts to enhance 
urban livability. However, the projections indicate a rever-
sal, with vegetation expected to decline by 32.68 percent 
by 2045 due to increasing urban encroachment, revealing 
the vulnerability of urban green spaces under continued 
land development pressures. Water bodies in Jaipur also 
exhibited temporary gains, expanding by 92.15 percent 
until 2020. This may be attributed to improved water re-
source management and the restoration of traditional water 
systems. However, the projected 39.09 percent reduction 
by 2045 aligns with concerns raised by a study in Manisa, 
about the long-term threat of urbanization to natural hydro-
logical systems [18]. If unaddressed, this could exacerbate 
water scarcity and degrade ecosystem services in the re-
gion. Cropland dynamics in Jaipur diverge from the trends 
typically observed in rapidly urbanizing cities, where agri-
culture is often displaced. While a minor decrease of 3.66 
percent occurred between 2000 and 2020, a 5.53 percent 
recovery is projected by 2045. This suggests a possible 
rebound in peri-urban agriculture or a reallocation of un-
derutilized land back to cultivation, offering a potential 
pathway for enhancing food security and rural livelihoods 

within the urban fringe. Despite its strengths, this study 
has several limitations. First, the LULC projections are 
derived from historical land change patterns and assume 
that past trends will continue, potentially overlooking the 
effects of future land-use regulations, infrastructure devel-
opment, or unexpected socio-political shifts. Second, while 
the CA-ANN model achieved high classification accuracy, 
it does not explicitly account for key socio-economic driv-
ers such as population density, income levels, migration, 
or land tenure patterns, which are critical to understanding 
urban growth dynamics. Additionally, the study primari-
ly uses decadal satellite imagery, which may mask short-
term or seasonal fluctuations in land cover, particularly for 
croplands and water bodies. This research contributes to 
the growing body of knowledge on urban land transforma-
tion by offering a detailed case study of Jaipur’s changing 
LULC profile. It not only reinforces the broader concerns 
about the environmental impacts of rapid urbanization but 
also highlights unique local dynamics, such as the initial 
increase in green cover and the potential for agricultural 
resurgence [18,44,45]. These findings highlight the urgent need 
for proactive, spatially-informed urban planning and pol-
icy interventions that prioritize ecological balance, water 
resource management, and the preservation of productive 
land amidst ongoing urban expansion.
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